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Abstract— This paper presents a geometry-based, multi-
layered synergistic approach to solve motion planning problems
for mobile robots involving temporal goals. The temporal
goals are described over subsets of the workspace (called
propositions) using temporal logic. A multi-layered synergistic
framework has been proposed recently for solving planning
problems involving significant discrete structure. In this frame-
work, a high-level planner uses a discrete abstraction of the
system and the exploration information to suggest feasible
high-level plans. A low-level sampling-based planner uses the
physical model of the system, and the suggested high-level plans,
to explore the state-space for feasible solutions. In this paper,
we advocate the use of geometry within the above framework to
solve motion planning problems involving temporal goals. We
present a technique to construct the discrete abstraction using
the geometry of the obstacles and the propositions defined over
the workspace. Furthermore, we show through experiments
that the use of geometry results in significant computational
speedups compared to previous work. Traces corresponding to
trajectories of the system are defined employing the sampling
interval used by the low-level algorithm. The applicability of
the approach is shown for second-order nonlinear robot models
in challenging workspace environments with obstacles, and for
a variety of temporal logic specifications.

I. INTRODUCTION

Traditional motion planning algorithms have considered

the problem of constructing a motion plan for a given robot

model, such that the plan takes the robot from a set of initial

states to a set of goal states while avoiding obstacles in the

workspace [1], [2]. A class of planning approaches have been

proposed recently that use a richer framework to specify

complex temporal goals like coverage, ordering of events,

etc [3]–[8] using formalisms like Linear Temporal Logic

(LTL) (cf. [9]). As an example, the temporal goal “Eventually

visit region A followed by a visit to region B or region

C”, can be easily expressed using LTL. An approach for

motion planning with deterministic µ-calculus specifications

has been proposed recently in [10].
To deal with LTL constraints, a hierarchical approach for

motion planning for point-mass linear robot models with

temporal goals has been proposed recently in [7]. The focus

of the approach is on the construction of provably correct

motion plans. Currently, the approach can handle second-

order linear robot models and more work needs to be done to

extend the approach for nonlinear robot models. An approach

combing synthesis technique with receding horizon control

has also been proposed recently for linear robot models [8].
The focus of this paper is motion planning problems

involving, nonlinear robot models with finite geometry, com-
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plex workspace environments, and high-level temporal goals.

To the best of our knowledge, such a general version of the

motion planning problem has not been examined before in

the literature. We propose a geometry-based, multi-layered

synergistic approach that trades some of the completeness

guarantees provided by [7] to efficiently solve the problem.

The idea of trading strong completeness guarantees for

efficiency and scalability has also been used successfully for

solving challenging instances of traditional motion planning

problems using sampling-based algorithms [1], [2]. Our

approach uses sampling-based algorithms within a multi-

layered synergistic framework that has been proposed re-

cently for solving a variety of planning problems [6], [11],

[12]. The framework introduces a discrete component to

the search procedure by synergistically utilizing the discrete

structure present in the problem. The framework consists

of following steps: a) Construction of a discrete abstraction

for the system, b) High-level planning for the abstraction

using the specifications and the exploration information from

the low-level planner, c) Low-level sampling-based planning

using physical model and the suggested high-level plans.

The construction of the discrete abstraction, and the two-way

synergisitc interaction between the layers are critical issues,

that affect the overall performance of the approach.

In this paper, we suggest an instantiation of the above

framework for solving motion planning problems involving

complex robot models and high-level temporal goals. The

work presented in this paper differs from [6], [11] in the

following ways. First, [11] used the geometry of the obstacles

but did not address problems involving temporal goals. The

work reported in [6] did not consider obstacles and did

not address the issue of the construction of the discrete

abstraction, but assumed it to be user defined. Benchmark

problems with simple specifications that allowed the user

to readily provide an abstraction were considered. In this

paper, we address the issue of the construction of the discrete

abstraction. We propose a geometric approach to construct

the discrete abstraction using the geometry of the obstacles

as well as the propositions. It is shown through experiments

that there is a significant computational advantage in using

geometry to construct the abstraction. Second, both our work

and [6] use a discrete-time approximation of the continuous-

time dynamics to construct discrete traces. However, [6]

considers the class of discrete traces where every two neigh-

boring elements in the trace are required to be different. We

do not impose this requirement, and as a result our approach

to construct discrete traces is more general than [6].

We consider a variety of LTL planning problem instances

involving second-order nonlinear robot models, and investi-

gate the effect of vehicle dynamics, the properties of the LTL

formula, and the size of the abstraction on the computational

performance of the approach. We further show through



experiments that the synergistic interaction between different

layers is indeed necessary, and that approaches based on

one-way interaction (e.g., using an external monitor for the

specification) scale poorly with the size of the specification.

II. MATHEMATICAL FRAMEWORK

A. Robot model

We consider the class of robot models R that can be

represented as: ẋ(t) = f(x(t), u(t)), x(t) ∈ X ⊂ R
n,

u(t) ∈ U ⊂ R
m. x̃(x0, ũ) denotes the trajectory of the

system starting from x0 and under the effect of input signal

ũ. tf denotes the terminal time for the trajectory which

is assumed to be finite. A state on the trajectory x̃(x0, ũ)
reached at time t ∈ [0, tf ] is denoted as x(x0, ũ, t). W ⊂ R

2

is the robot’s workspace with Wfree = W \ Wobs denoting

collision-free positions for the robot and Wobs denoting the

set of (polygonal) obstacles in the workspace. hR : X → W
maps each state x ∈ X of the robot to the workspace W .

B. Temporal logic

Linear temporal logic is a propositional logic that is used

to describe modalities of time along trajectories of a given

system (for details we refer the reader to [9]). Let Π =
{π1, π2, . . . , πN} be a set of boolean atomic propositions.

The semantics of LTL are defined over infinite traces of a

given system. Let σ = {τi}
∞
i=0, with τi ∈ 2Π and let σi =

τi, τi+1, . . . and σi = τ0, τ1, . . . , τi−1. σi is a prefix of the

trace σ. σ |= φ indicates that σ satisfies the formula φ.

Syntactically co-safe LTL formulas: The focus of this

paper is motion planning problems over a finite time horizon.

The traces generated by trajectories of the system are finite,

but, under some restrictions, LTL formulas can be interpreted

over finite traces as we describe next. A particular class

of LTL formulas are known as co-safety formulas [13].

Informally, these are the LTL formulas such that any good

trace satisfying the formula has a finite good prefix. A finite

good prefix for a formula is a finite prefix such that all

its trace extensions satisfy the formula (cf. [13]). A class

of co-safety formulas that are easy to characterize are the

syntactically co-safe LTL formulas. Syntactically co-safe

LTL formulas are the LTL formulas that contain only the

X ,F ,U operators, when written in positive normal form

(i.e., the negation operator ¬ occurs only in front of atomic

propositions, see [13] for more details). For this paper, we

limit our attention to syntactically co-safe LTL formulas.

Model checking LTL specifications: One of the most

widely used methods to check whether a given system

M satisfies an LTL formula φ is through an automaton

construction [9]. A Büchi automaton A¬φ is first constructed

whose language is exactly the set of runs that violate φ. The

product of A¬φ and M is then checked for feasible runs. A

feasible run on A¬φ × M gives a feasible trace for M that

violates φ. For constructing feasible motion plans satisfying

the specification, we instead consider the automaton Aφ.

NFA for syntactically co-safe LTL: Given a set of atomic

propositions Π, and a syntactically co-safe LTL formula φ,

it has been shown that an NFA can be constructed (with

at most exponential blowup), that describes all the finite

prefixes satisfying the formula φ [13]. The NFA is given by

the tuple Aφ = (Z,Σ, δ, z0, Zacc). Z is the set of automaton

Fig. 1. NFA Aφ describing all the finite good prefixes for the syntactically
co-safe LTL formula φ = F (p1 ∧ F (p2 ∨ p3)).

(a) Workspace (b) Decomposition

Fig. 2. (a) A workspace with obstacles and three propositions p1, p2, p3.
(b) A triangulation-based decomposition of the workspace.

states, Σ = 2Π is the input alphabet, δ : Z × Σ → 2Z is the

transition relation. z0 ∈ Z is the initial state and Zacc ⊂ Z
is the set of accepting final states. The set of states on which

Aφ ends when run on a trace σ = τ0, τ1, . . . , τk, is:

Aφ(σ) =

{

δ(z0, τ0), if k = 0,
∪z∈Aφ(σk)δ(z, τk), if k > 0.

For the formula φ = F (p1∧F (p2∨p3)), the corresponding

NFA is shown in Figure 11. It has been shown recently that

using a minimized Deterministic Finite Automaton (DFA)

for an NFA can offer significant computational speedups for

model checking and falsification of temporal specifications

for hybrid systems (cf. [6], [14]). In light of this result, we

use minimized DFA in the work presented in this paper.

C. Specifications for robots

The specifications considered in this paper are expressed

as co-safe LTL formulas using finite number of atomic

propositions. Let Π = {p0, p1, p2, . . . , pN} denote the set

of boolean atomic propositions. Each proposition denotes a

region of interest in the workspace for the robot. Γ : Wfree →
2Π maps each point w ∈ Wfree to the set of propositions

that hold there. p0 is a proposition that holds true for all

w ∈ Wfree \
⋃

i=1,...,N

Γ−1(pi). For a given atomic proposition

p ∈ Π, ¬p holds true for all w ∈ Wfree \ Γ−1(p)2. In

Figure 2(a), we show an example with three propositions

in the workspace together with the obstacles.

Note that we do not describe obstacles as propositions in

our work for the following reason. The geometric constraints

arising due to obstacles, and the finite geometry of the robot,

are checked using collision-detection scheme by the low-

level planner. The satisfaction of a proposition on the other

hand, is evaluated by treating the robot as a point mass.

Trajectory Traces: A trajectory of the robot x̃(x0, ũ) is

defined over time horizon [0, tf ] ⊂ R
+, and is constructed

using a sampling-based algorithm in the proposed approach.

1We recommend the online version of the paper for viewing figures.
2If the set Wfree \ Γ−1(p) is non-convex, it can still be represented as

union of finite number of convex sets.



To interpret an LTL formula, we need an appropriate notion

of traces generated by such trajectories.

For systems with dynamics, a sampling-based motion

planning algorithm typically generates a tree of feasible

trajectories GR = (VR, ER) where each vertex v ∈ VR

represents a feasible state v.x for the robot and each edge

e ∈ ER connecting a pair of vertices (v, v′) represents a

control ũ and a time step ∆t, such that v′.x = x(v.x, ũ, ∆t).
Many instantiations of such algorithms exist [1], [2], [15]–

[19]. In Figure 3, we show an iteration of one such algorithm.

vinit denotes the root of the tree at initial state of the robot. A

node vselect is selected for expansion. A new vertex vnew and

the resulting state vnew.x = x(vselect.x, ũ, ∆t) is generated

using the robot dynamics, together with a suitably chosen

time-step ∆t and a control ũ (cf. [2]). Typically, ũ is a

constant input u ∈ U , applied for time step ∆t.

(a) Node selection (b) Tree expansion

Fig. 3. An exploration step in a general, sampling-based algorithm

Since the search tree GR stores feasible states at sampling

instants, and the proof of correctness for our approach

(discussed in Section III-D) uses the search tree, a suitable

framework is needed to describe the sampling nature of

our approach. We do so by defining the notion of sampled

discretization as follows.

Definition 1 (Sampled discretization): Given a trajectory

x̃(x0, ũ), and a sampling interval ∆t ∈ R+, with tf =
if∆t for some if ∈ N, the sequence x̃∆t(x0, ũ) =

{x(x0, ũ, i∆t)}
if

i=0 is a sampled discretization of x̃(x0, ũ).
Given a sampled discretization of a trajectory x̃∆t(x0, ũ)

we can associate a trace as follows. The trace denotes the

sequence of sets of atomic propositions that hold true at

sampling instants on a given trajectory.

Definition 2 (Trace): Given a sampled discretization

x̃∆t(x0, ũ) of robot trajectory x̃(x0, ũ) with

tf = if∆t, the trace generated by the discretization

is defined as σ(x̃∆t(x0, ũ)) = τ0, τ1, . . . , τif
, with

τi = Γ(hR(x(x0, ũ, i∆t)).
Note that our approach to construct traces is more general

than the one used in [6]. In [6], every two neighboring

elements τi, τi+1 of the trace are required to be different.

Semantics: The LTL semantics here is defined with respect

to the finite traces generated by sampled discretization of the

trajectories. These traces are finite, but, under the co-safety

restriction, LTL formulas can be interpreted over finite traces.

Definition 3 (LTL semantics): Given a trajectory

x̃(x0, ũ), a sampling interval ∆t, and an LTL formula

φ, we say that the trajectory satisfies the formula, denoted

as x̃(x0, ũ) |=R,∆t φ, if Aφ(σ(x̃∆t(x0, ũ))) contains an

accepting state.

Fig. 4. Multi-layered synergistic approach for planning

D. Problem definition

Definition 4 (LTL motion planning problem P): Given a

robot model R, a sampling interval ∆t, and a syntactically

co-safe LTL formula φ, construct a robot trajectory x̃(x0, ũ),
such that x̃(x0, ũ) |=R,∆t φ.

III. MULTI-LAYERED SYNERGISTIC PLANNING

Sampling-based motion planning approaches such as

PRM [20], RRT [15], [16], EST [17], [18] and PDST [19],

have been widely used in motion planning problems in-

volving complex kinematic and differential constraints. An

iteration of one such algorithm (for systems with dynamics)

was briefly discussed in Section II (shown in Figure 3). A key

feature of these approaches is that they are single-layered,

i.e., exploration happens directly in the state-space of the

system.

The multi-layered framework discussed in Section I, is

inspired by earlier works [21], [22] that introduced a discrete

search component for solving planning problems. The multi-

layered framework is different from the earlier works [21],

[22] and the LTL planning approaches [4], [7], [23] in that

there is a two-way, synergistic interaction between different

layers of planning. Our implementation of the framework is

shown in Figure 4, and consists of four steps. 1) Construction

of discrete abstraction for the robot motion, 2) Discrete

planning for the abstraction using temporal logic specifica-

tion and low-level exploration information, 3) Exploration

of robot’s state-space using high-level discrete plan as a

guide, 4) Termination if solution found (or computation time

exceeds the limit) in step 3, or else feedback of exploration

information from step 3 to step 2, and repeat from step 2.

In the context of temporal logic specifications, previous

work [6] did not address the issue of the construction of

the discrete abstraction, but instead assumed it to be defined

by the user, and presented simple benchmarks where the ab-

straction can be easily defined. In our work, we automatically

construct the discrete abstraction and advocate the use of the

geometry of the specifications for its construction.

A. Construction of discrete abstractions

As mentioned in Section I, the construction of the discrete

abstraction is a critical step in the approach of Figure 4, and

it significantly affects the performance of the approach. A

way to construct such abstractions is by using the geometric

structure present in the planning problem. For traditional mo-

tion planning problems, this geometric structure is induced

by obstacles in the workspace and for problems involving

temporal goals the geometric structure is also induced by

the observation map Γ. In this paper, we employ discrete



abstractions that use a triangulation-based decomposition of

the workspace. We wish to remark here that the idea of using

a triangulation-based decomposition of the workspace has

been used before (cf. [7], [24]). The abstractions used in [7],

[24] need to satisfy the bisimilarity property [25], while in

our work, this is not required.

Definition 5 (Workspace decomposition): Given a robot

workspace W ⊂ R
2, a decomposition D = ∪ND

i=1Di is a

partition of workspace into number of equivalence classes

defined by the map ΥD : W → D.

A well-defined decomposition should also satisfy the follow-

ing property. This is a standard requirement that ensures that

the observation map Γ is also well defined for the abstraction

(also discussed in [7]).

Definition 6 (Proposition-preserving decomposition):

A decomposition D of the workspace W is proposition

preserving if for all w1, w2 ∈ W , ΥD(w1) = ΥD(w2) ⇒
Γ(w1) = Γ(w2).
The simplest proposition-preserving decomposition is the

one that is induced by Γ and ignores the geometry of the

specifications. We call such a decomposition as geometry

ignoring. Every element of 2Π is represented by at most one

element of the geometry-ignoring decomposition. However,

as we will show through experiments, there is a signifi-

cant computational advantage in using decompositions that

use the geometry of the specifications. To compute such

decompositions, we use a triangulation of the workspace.

The workspace is given as a Planar Straight Line Graph

(PSLG) to a mesh generation package (we use the Triangle

package [26]). To ensure that the resulting decomposition is

proposition-preserving, the sets describing propositions are

given as segments. The obstacles are given as holes. One such

decomposition for the example considered in Figure 2(a) is

shown in Figure 2(b). Such decompositions will be referred

as geometry-using decompositions. Given a decomposition

of the the workspace, an abstraction of robot model can be

constructed as follows. With slight abuse of notation, we

define Γ(Υ−1
D (d)) = Γ(w), where d = ΥD(w), w ∈ W .

Definition 7 (Robot model abstraction): Given a robot

workspace W and a decomposition D of the workspace,

M = (D, d0,→D, hD) is an abstraction of the robot model.

D is the set of states, d0 ∈ D is the initial state of

the abstraction, satisfying the property ΥD(hR(x0)) = d0.

→D⊂ D×D is the transition relation. di →D dj iff Υ−1
D (di)

and Υ−1
D (dj) share an edge in the workspace W . hD : D →

Π is the observation map, defined as hD(d) = Γ(Υ−1
D (d)).

The abstraction will be called as geometry ignoring or

geometry using, depending on the kind of decomposition

used. We again wish to emphasize that unlike [7], [24], the

abstractions used in our work do not need to satisfy the

bisimilarity property [25].

B. Discrete planning

Given a discrete abstraction M for a robot model R, and

an LTL formula φ defined over the set of propositions Π,

the (discrete) high-level planner searches for promising high-

level plans (also called as guides) over the product Aφ.Z×D.

The idea of using the product Aφ.Z×D for discrete planning

has also been used before (cf. [4], [7], [23]). An important

difference in our approach is that the edges in the graph

representation of Aφ.Z × D are assigned weights (called

as feasibility estimates). These are used to synergistically

convey the low-level exploration information to the high-

level layer. We now introduce the notion of a high-level state,

and a high-level plan.
Definition 8 (High-level state): For a given LTL formula

φ defined over set of propositions Π, a pair (z, d) ∈ Aφ.Z×
D is a high-level state.
A high-level state (z, d) will be called as accepting if z is an

accepting state of the automaton. A feasible high-level plan

ζ is defined over the set of high-level states as follows.
Definition 9 (Feasible high-level plan): A high-level plan

ζ is a sequence (zi, di)
k
i=1, such that each (zi, di) is a high-

level state, di →D di+1,∀i ∈ [1, k − 1], d1 = d0, and zi ∈
δ(zi−1, hD(di)) and zk ∈ Aφ.Zacc.

A high-level plan is based on the formula φ and the

abstraction M . It does not take into account the dynamics

of the underlying robot model. Moreover, there can be

potentially many candidate feasible high-level plans and in

some cases none. The high-level planner attempts to take the

dynamics of the underlying robot model into account through

the feasibility estimate defined for each high-level state. This

also helps the high-level planner to suggest more promising

plans amongst possibly many candidate plans. The following

notion is adapted from [6].
Definition 10 (Feasibility estimate): Given a high-level

state (z, d), the feasibility estimate associated with it is given

by weight w(z, d) defined as:

w(z, d) =
(cov (z,d)+1)∗vol (Υ−1

D
(d))

w (z)∗(nrsel (z,d)+1)2 , where,

cov (z, d) estimates the coverage of the region Υ−1
D (d) from

the tree vertices associated with (z, d), vol (Υ−1
D (d)) is the

volume of the region Υ−1
D (d) and nrsel (z, d) is the number

of times the high level state (z, d) has been selected in

the past for further exploration. w (z) computes the shortest

distance of the state z from the set of accepting states Zacc.
Thus, the discrete planner associates a high weight to a pair

(z, d) if the region Υ−1
D (d) has a larger volume, the state

z is closer to the set of accepting states Zacc, and the low-

level sampling-based motion planner makes quick progress

in covering the region Υ−1
D (d) with tree vertices.

An edge e((zi, di), (zj , dj)) connecting high-level states

(zi, di) and (zj , dj) is assigned a weight (w(zi, di) ∗
w(zj , dj))

−1. The discrete planner computes the shortest

path from an (abstract) initial state to the set of (abstract)

accepting states using Dijkstra’s algorithm. To account for

the fact that the weights are an estimate of feasibility, the

planner also computes a random path occasionally, which

need not be the shortest one.

C. Algorithm

We now discuss the main algorithm (called as

ML-LTL-MP, and shown in Figure 5), and later discuss

details of the low-level planner. The ML-LTL-MP algorithm

is different from the algorithm proposed in [6] in that the

construction of the discrete abstraction is also part of our

algorithm. (Lines: 3,4, Figure 5) and not an input.
Input: The algorithm takes as an input the problem P ,

the decomposition map ΥD, a time-step ∆t, the bound on

simulation time tmax, and the bound on exploration time

texplore for each call to the low-level planning algorithm.



ML-LTL-MP(P , ΥD , ∆t, texplore, tmax)

1 Aφ ← COMPUTE AUTOMATON(P.φ) {Compute automaton}
2 T ← INIT(P.R.x0,Aφ) {Initialize the search tree}
3 D ← DECOMPOSE(P.R, ΥD) {Compute decomposition}
4 M = G(V, E)← COMPUTE ABSTRACTION(D)
5 w ← INITIALIZE ESTIMATES(Aφ, M )
6 clck ← 0 { Initialize timer}
7 (solution, x̃, ũ)← (⊥, ∅, ∅)
8 while (clck ≤ tmax ∧ ¬solution) do
9 ζ ← DISCRETE PLANNER(M,Aφ, w)

10 (T , w, solution, vacc)← EXPLORE(P ,T ,M ,w,ζ,texplore,∆t)
11 if (solution) then
12 (x̃∆t(ũ, x0), ũ)← CONSTRUCT DISCRETIZATION(T , vacc)

13 return (T , solution, x̃∆t(ũ, x0), ũ)

Fig. 5. Multi-layered synergistic interaction-based LTL Planning algorithm

Output: The algorithm returns a boolean variable solution

that is true if a solution is found. If a solution is found, then

x̃∆t(ũ, x0) is the solution with the corresponding control ũ.

Data structures: The search tree T is stored as a directed

graph T = GT (VT , ET ). Each vertex v′ ∈ VT of the tree

T stores a feasible state v′.x of the robot R and an edge

e(v, v′) ∈ ET connecting it to its parent vertex v. An edge

e(v, v′) ∈ ET stores a control ũ, and time duration t = ∆t
such that v′.x = x(v.x, ũ, t). v is called the parent of the

vertex v′ and v′ a child of the vertex v. D is the computed

decomposition and M is the abstraction. ζ denotes a high-

level plan. With slight abuse of notation, we use w to also

denote the data-structure holding the feasibility estimates for

each of the high-level states.

Let T (vinit, v) denote the sequence of vertices connecting

the root of the tree vinit to the vertex v. Let x̂(T (vinit, v))
denote the corresponding sequence of robot states. v.α =
Aφ(σ), stores the state of the automaton Aφ when run on

the trace σ = Γ(hR(x̂(T (vinit, v)))). vacc is a tree vertex

such that vacc.α ∩ Aφ.Zacc 6= ∅.

We now discuss each line of shown in Figure 5.

Line 1: COMPUTE AUTOMATON(P.φ) computes the minimized

DFA Aφ corresponding to the co-safe LTL specification

P.φ. Line 2: INIT(P.R.x0,Aφ) initializes the search tree

T with a vertex vinit corresponding to the initial state

P.R.x0 and the corresponding automaton state vinit.α.

Line 3: DECOMPOSE(P.R, ΥD) computes the decomposition

D using the map ΥD (see Section III-A). Line 4: COM-

PUTE ABSTRACTION(D) computes the abstraction M corre-

sponding to the decomposition D (see Section III-A). Line 5:

INITIALIZE ESTIMATES(Aφ, M ) initializes the feasibility esti-

mates w(z, d) for each high-level state (z, d). Line 6: The

timer is initialized by setting clck to 0. Line 7: The boolean

variable solution and the data structures x̃, ũ for storing

a solution are initialized. Line 8: The search for a fea-

sible solution begins. Line 9: DISCRETE PLANNER(M,Aφ, w)

computes a high-level plan ζ (see Section III-B). Line 10:

EXPLORE(P ,T ,M ,w,ζ,texplore,∆t) invokes the low-level planner

to search for a feasible solution guided by the high-level plan

ζ for a maximum of texplore time. EXPLORE is described

later and shown in Figure 6. EXPLORE returns with variable

solution (true if solution is found), the updated tree T
and the updated feasibility estimates w. Additionally, if a

solution is found, then vacc is marked with an accepting state

of the automaton. Line 11: Check if a solution was found

by the low-level planner. If solution is true, then Line 12

is executed, else the procedure is repeated from Line 8.

Line 12: CONSTRUCT DISCRETIZATION(T , vacc) constructs a

sampled discretization (x̃∆t(ũ, x0), ũ) using the set of states

x̂(T (vinit, vacc)).
We now explain the low-level sampling-based exploration

algorithm EXPLORE, shown in Figure 6. The algorithm differs

from the one used in [6] in two major ways. First, our

approach for generating discrete traces is more general

compared to [6] (Lines:11,15, Figure 6; see Sections I, II).

Second, our problem setup involves finite geometry of the

robot and the presence of obstacles in the workspace. Hence,

we also need to include collision detection in the low-level

exploration (Line:11, Figure 6).

EXPLORE(P ,T ,M ,w,ζ,texplore,∆t)

1 (solution, vacc, clck)← (⊥, ∅, 0)
2 σavail ←FEASIBLE HIGHLEVEL STATES(ζ, T )
3 while (clck < texplore ∧ ¬solution) do
4 (zselect, dselect)← SELECT HIGHLEVEL STATE(w, σavail)
5 vselect ← SELECT VERTEX (w, (zselect, dselect))
6 x0 ← vselect.x
7 u← CHOOSE INPUT (P.R.U, T , vselect)
8 nsteps← CHOOSE STEPS(P.R)
9 for i = 0, 1, . . . , nsteps do

10 (xi+1, vi+1)←SIMULATE DYNAMICS (P.R, xi, u, ∆t)
11 if CHECK FEASIBILITY(P.R,Aφ, vi+1) then
12 T ←UPDATE TREE(T , vi+1, u, ∆t)
13 σavail ←UPDATE FEASIBLE HIGHLEVEL STATES(ζ, vi+1)
14 w ← UPDATE FEASBILITY ESTIMATES(w, vi+1)
15 if (vi+1.α ∩ P.Aφ.Zacc 6= ∅) then
16 (solution, vacc)← (⊤, vi+1)
17 break
18 else
19 break
20 return (T , w, solution, vacc)

Fig. 6. Low-level sampling-based exploration algorithm

Input: The algorithm takes as an input the problem P
the search tree T , abstraction M , feasibility estimates w,

suggested high-level plan ζ, bound on exploration time

texplore and time-step used for simulation of dynamics ∆t.
Output: The algorithm returns the boolean variable

solution, the updated feasibility estimates w, updated search

tree T . Additionally if solution = ⊤, then vacc is the vertex

marked with an accepting state of the automaton.
Data structures: In addition to the previously defined

data structures, the following are the ones used by the

low-level algorithm. For a given high-level state (z, d), let

(z, d).vertices = {v ∈ VT : z ∈ v.α, hR(v.x) ∈ Υ−1
D (d)}.

For a given vertex v, v.nsel stores the number of times the

vertex has been selected for expansion before. Similarly for

a given high-level state (z, d), (z, d).nsel stores the number

of times the state has been selected before for exploration.

Line 1: The variables solution and vacc are initialized

and the local timer clck is initialized. Line 2:

FEASIBLE HIGHLEVEL STATES(ζ, T ) identifies the high-

level states (zi, di), such that (zi, di).vertices 6= ∅. All such

high-level states are stored in σavail. Line 3: The low-level

planning algorithm starts exploration of the state-space for a

feasible solution. Line 4: SELECT HIGHLEVEL STATE(w, σavail)

selects a high-level state (zselect, dselect) for further

exploration (and (zselect, dselect).nsel is incremented by

1). A high-level state (z, d) is selected with probability

w(z, d)/Σ(z,d)∈σavail
w(z, d). Line 5: SELECT VERTEX

(w, (zselect, dselect)) selects a vertex vselect from

(zselect, dselect).vertices favoring the vertices that have

been selected fewer times so far in the exploration. Line 6:

The local variable x0 is initialized to the robot state vselect.x.



Line 7: CHOOSE INPUT (P.R.U, T , vselect) chooses an input

u from the input set P.R.U . Line 8: CHOOSE STEPS(P.R)

chooses the number of time steps nsteps for which

the robot dynamics are to be incrementally simulated

with constant input u. For our work, we have kept this

variable to a fixed value given by the user. Line 9:

Start the incremental simulation of dynamics. Line 10:

SIMULATE DYNAMICS (P.R, xi, u, ∆t) computes the state

of the robot at time ∆t starting from xi and using

the input u. Line 11: CHECK FEASIBILITY(P.R,Aφ, vi+1)

returns true if vi+1.x satisfies the geometric constraints,

and the set of automaton states vi+1.α is non-empty.

Line 12: UPDATE TREE(T , vi+1, u, ∆t) updates the tree

with the new vertex and the corresponding time-step

and input. vi.nsel is incremented by 1. Line 13:

UPDATE FEASIBLE HIGHLEVEL STATES(ζ, vi+1) updates the

data-structure σavail to account for the fact that the

vertex vi+1 is also available for expansion in future.

Line 14: UPDATE FEASBILITY ESTIMATES(w, vi+1) updates the

feasibility estimates for the high-level states taking into

account the addition of vertex vi+1 to the tree. Line 15-16:

If vi+1.α∩Aφ.Zacc 6= ∅, then solution, vacc are set to true

and vi+1 respectively.

D. Correctness of the algorithm

The changes introduced in the construction of the dis-

crete traces, and the semantics used in our approach (see

Section II), allow us to prove correctness of the proposed

algorithm (in contrast to [6]) as follows.

Theorem 1 (Correctness of algorithm): Given an LTL

motion planning problem P , if the ML-LTL-MP algorithm

returns with solution = ⊤ and a control ũ, then x̃(x0, ũ) is

a solution to the problem.

Proof: Consider the sampled discretization x̃∆t(ũ, x0)
constructed by the algorithm. Let tf = if∆t be the time

horizon of the trajectory x̃(ũ, x0). Let T (vinit, vacc) be the

sequence of vertices from which the sampled discretization

is constructed. Consider a vertex v′ ∈ T (vinit, vacc) \ vinit

and let v be its parent. v′.x = x(v.x, u,∆t), u ∈ U and v′.x
is collision-free and v′.x ∈ X (line 11, Figure 6). Hence,

v′.x is a feasible state for the robot. Moreover, v.α 6= ∅ for

all v ∈ T .V (Line:11, Figure 6) and vacc.α ∩ P.Aφ 6= ∅.

Hence it can be concluded that the trace σ =
Γ(hR(x̂(T (vinit, vacc)))) satisfies the formula φ and that the

corresponding trajectory x̃(x0, ũ) is a feasible collision-free

trajectory for the robot. Hence, x̃(x0, ũ) |=R,∆t φ.

IV. EXPERIMENTAL RESULTS

We now discuss the results obtained using the proposed

approach, and also do a comparative analysis with some other

possible approaches, for a variety of problem instances.

A. Implementation and hardware

The code developed for the experiments presented in this

paper is based on the OOPSMP library [27], and builds on

top of the code written for [6]. For computing DFAs for

syntactically co-safe LTL formulas, we have used the tool

scheck2 [28]. For computing triangulations, we have used

the package Triangle [26]. All the experiments were run on

Rice SUG@R cluster. Each processor used from the cluster

(a) Workspace (b) Decomposition

nop Number of states / Number of transitions

Coverage (φ
nop
1 ) Sequencing (φ

nop
2 ) Strict sequencing (φ

nop
3 )

1 2 / 2 2 / 2 2 / 2
2 4 / 8 3 / 5 3 / 6
3 8 / 26 4 / 9 4 / 12
4 16 / 80 5 / 14 6 / 28
5 32 / 242 6 / 20 10 / 76
6 64 / 728 7 / 27 17 / 209
7 128 / 2186 8 / 35 29 / 569

(c) Size of minimized DFA Aφ for different specifications

Fig. 7. (a) Workspace with seven propositions used in experiments. The sets
shown in blue were labeled with propositions for each run using a random
permutation. (b) Conforming Delaunay triangulation-based decomposition
of the workspace. See Section IV-B. (c) Size of minimized DFA Aφ for
different specifications.

is an Intel Xeon processor running at 2.83 GHz, and can

access up to 16 GB RAM. Each test run was executed on a

single processor with no parallelism.

B. Experimental setup

Robot models: We have used second-order models of a

car, a unicycle, and a differential drive, as robot models for

experiments. These models are rich enough to capture the

key aspects of the dynamics and have been extensively used

for benchmarking planning algorithms for mobile robots. We

refer to [6], [11] for more details.

LTL formulas: We have considered the following LTL

formulas for the experiments. φ
nop

1 = ∧
nop

i=1(Fpi), φ
nop

2 =
F (p1 ∧ F (p2 ∧ F (p3 . . . F (pnop

)))), φ
nop

3 = F (p1 ∧ ((p0 ∨
p1)U(p2 ∧ ((p0 ∨ p2)U . . . (pnop

)))) where nop ∈ [1, 7] is

the number of temporal operators in the formula. φ
nprop

1 are

usually referred to as coverage formulas since they can be

used to describe coverage specifications over the workspace

of the robot. φ
nprop

2 are referred to as the sequencing formulas

and these are used to describe sequencing requirements in

the specifications. φ
nprop

3 are the strict sequencing formulas.

They are different from sequencing formulas in the fact

that the order of visits is strict. Additionally, we have also

used the formula φ4 = F (p1 ∧ F (p2 ∨ p3)) in some of

the experiments. This is the same formula that was used to

describe some of the ideas in Section II. In Figure 7(c), the

size of minimized DFA for different kinds of specifications

is shown.

Test cases: The workspaces used for the set of experiments

are shown in Figure 2(a) and Figure 7. The time-step ∆t for

constructing sampled discretization was set to 0.25 seconds.

We have used conforming Delaunay triangulation for com-

puting the abstraction. The labels for each of the regions

corresponding to the propositions were permuted randomly

in each of the test run. The robot model (including the bounds

on input) were also chosen using uniform distributions. To

ensure that the initial state of the robot is always feasible, the



(a) A simulation run for φ3
3

nop Unicycle Car Differential Drive

φ
nop
1 φ

nop
2 φ

nop
3 φ

nop
1 φ

nop
2 φ

nop
3 φ

nop
1 φ

nop
2 φ

nop
3

1 1.3 1.8 1.2 2.0 1.4 2.0 7.0 10.8 11.4
2 3.9 3.0 3.9 5.0 10.2 36.3 14.4 14.3 21.0
3 5.6 5.9 12.5 10.9 10.2 78.4 32.7 27.6 32.5
4 14.0 7.5 27.3 22.4 21.1 112.3 78.5 56.5 46.9
5 24.9 11.0 18.1 39.6 33.6 146.2 116.6 51.5 80.9
6 57.2 17.3 34.1 77.3 33.2 196.9 215.3 78.9 94.7
7 109.8 19.2 41.4 153.6 29.7 211.5 429.2.0 97.9 159.3

(b) Performance results (in seconds) for the approach

Fig. 8. Experimental results of the approach for different robot models and specifications. The workspace and the decomposition used for the experiments
are shown in Figure 7. For the simulation run, shades closer to blue indicate earlier snapshots of the robot, and those closer to red, the later ones.

initial position of the robot was fixed at (−0.43, 0.45). The

remaining components of the initial state of the robot were

set to 0. All the computation times are reported in seconds

as average over 40 test runs. The maximum time allocated

for each simulation tmax was set to 900 seconds and the

exploration time texplore (for single call to EXPLORE) was

set to 0.75 seconds. For the test runs when no solution was

found, we have used the upper bound on simulation time

tmax. For every experiment involving 40 test runs, less than

15% of the runs reported a timeout in finding a solution.

C. Results

We now discuss the performance results of our approach.

We have carried out detailed analysis based on three param-

eters: type of robot model, the properties of the co-safe LTL

formula, and the resolution of abstraction.

i) Type of robot model: We have analyzed separately, the

performance of the approach for each type of robot model.

We wish to remark here that the robot model involves not

only the dynamics, but also the geometry of the robot. The

workspace used for these set of experiments is shown in

Figure 7(a). The experimental results for different types of

robot models are shown in Figure 8. For the simulation run,

shades closer to blue indicate earlier snapshots of the robot,

and closer to red the later ones. The results indicate that

the mean computation times for the case of differential-

drive are the longest for coverage (φ
nop

1 ) and sequencing

formulas (φ
nop

2 ). For strict sequencing formulas (φ
nop

3 ), the

mean computation times for the case of car were the longest.

The size of the automaton Aφ (shown in Figure 7(c)),

support the performance trends observed for coverage (φ
nop

1 )

and sequencing formulas (φ
nop

2 ). However, note that the

computation times for low-level exploration are affected by

not only the dynamics, but also the geometry of the robot.

This helps to explain the performance trends for the strict

sequencing formulas (φ
nop

3 ).

ii) Properties of the specifications: The performance re-

sults shown in Figure 8 (and later in Figure 9) indicate that

the performance of the approach is affected by not only the

length of the formula but also the type of temporal operators

in the formula. Problems involving coverage formulas (φ
nop

1 )

with about 6-7 temporal operators take the longest to solve.

We refer to Figure 7(c), and the above discussion on the role

of robot model on overall performance of the approach.

iii) Resolution of abstraction: We have also done a pre-

liminary investigation of the role of triangulation parameters

on performance of the approach. The workspace shown in

Figure 2 was used, with the formula φ4. Different kinds of

triangulations were considered, like those constructed using

the area constraints on the triangles as well as the conforming

Delaunay triangulation. The upper bound on area was varied

between 0.5 and 0.0005. The average time taken to find a

solution varied between 3.5 and 4.4 seconds. Even though

this suggests that the approach is not very sensitive to the

exact choice of the triangulation parameters, further work is

required to develop a principled approach for choosing the

triangulation parameters.

D. Comparative analysis

We now discuss the benefits of using synergy, and geom-

etry in the overall framework, by examining the effect of

removing these ideas from the overall framework.

Single-layered, monitor-based (Figure 9, left): The per-

formance obtained using a single-layered, sampling-based

approach that relies on an external monitor is shown in

Figure 9, at the left. The external monitor keeps track of

the state of the automaton on every vertex of the search tree

T and raises a flag if an accepting state of the automaton

is reached during exploration (indicating that a solution was

found). We skip the details and refer the reader to [6] for the

details and the comparison when doing falsification of LTL

safety properties for hybrid systems.

Synergistic, geometry-ignoring abstraction (Figure 9, cen-

ter): The performance results obtained using the geometry-

ignoring abstraction (with 8 states) are shown in Figure 9 at

the center.

Synergistic, geometry-using abstraction (Figure 9, right):

Finally, the performance results obtained with the geometry-

using abstraction (with 618 states) are shown in Figure 9 at

the right.

Analysis: The results indicate the following. First, a two-

way, synergistic interaction between different layers of plan-

ning is indeed necessary for scalability. Even for traditional

planning problems (nop = 1), the single-layered, monitor-

based approach performs 25 times slower than the geometry-

based, multi-layered synergistic approach proposed in this

paper (cf. [11]). For nop ≥ 2, the performance of the single-

layered, monitor-based approach degrades significantly. In

fact, for nop ≥ 4, the single-layered, monitor-based approach

does not work.

Second, even though the discrete abstraction can be con-

structed by ignoring the geometry of the specifications, there

is a significant improvement in performance if the abstraction

is constructed using the geometry of the specifications. For

the case of sequencing (φ
nop

2 ) and strict sequencing formulas

(φ
nop

3 ), geometry-based abstractions result in speedup of up



Mean computation time (seconds) / Number of successful runs

nop Single-layered, monitor-based Synergistic, geometry-ignoring abstraction Synergistic, geometry-using abstraction

φ
nop
1 φ

nop
2 φ

nop
3 φ

nop
1 φ

nop
2 φ

nop
3 φ

nop
1 φ

nop
2 φ

nop
3

1 51.7 / 40 50.2 / 40 50.2 / 40 4.4 / 40 4.1 / 40 3.8 / 40 2.5 / 40 2.6 / 40 2.8 / 40
2 55.5 / 11 63.4 / 10 63.2 / 9 24.2 / 40 14.1 / 40 29.5 / 40 9.0 / 40 7.5 /40 12.0 / 40
3 63.4 / 5 33.0 / 1 33.1 / 1 24.2 / 40 25.8 / 40 70.8 / 39 18.3 / 40 13.0 / 40 44.2 / 39
4 37.9 / 1 X / 0 X / 0 45.0 / 40 54.9 / 40 114.4 / 39 33.9 / 40 21.9 / 40 41.5 / 40
5 35.7 / 1 X / 0 X / 0 113.1 / 40 115.8 / 38 259.4 / 35 64.3 / 40 24.5 / 40 81.8 / 39
6 X / 0 X / 0 X / 0 213.5 / 39 172.7 / 37 265.7 / 37 119.6 / 40 40.1 / 40 78.0 / 39
7 X / 0 X / 0 X / 0 362.7 / 36 194.8 / 38 322.1 / 36 200.2 / 40 58.5 / 40 155.1 / 38

Fig. 9. Performance results for different approaches (see Section IV-D); (left) single-layered, monitor-based approach using the RRT algorithm; (center)
synergistic approach with geometry-ignoring abstractions; (right) synergistic approach with geometry-using abstractions proposed by us. The workspace
used for the experiments is shown in Figure 7(a). The robot model was chosen at random, and the labels for propositions were permuted randomly, in
each run. The geometry-ignoring abstraction (center) has 8 states and the geometry-using abstraction (right) has 618 states. For the case of single-layered,
monitor-based approach (left), the mean computation times are based on successful runs only.

to 3-4 times. For the challenging case of coverage specifi-

cations (φ
nop

1 ) with many temporal operators, the speedup

obtained is about 50%. The results indicate that geometry-

based abstractions certainly result in significant improvement

in computational efficiency. However, more efficient high-

level search techniques are needed to take full advantage of

such abstractions that are larger in size compared to those

constructed without using the geometry of the specifications.

V. CONCLUSIONS

In this paper, we have considered motion planning prob-

lems involving temporal goals. We have considered a general

version of the problem that involves differential constraints

arising from the robot dynamics, the temporal logic con-

straints arising from the specification, and the geometric

constraints arising from the obstacles and the propositions

(in the workspace). We have proposed a geometry-based

multi-layered synergistic approach for solving the problem.

A critical step in the approach is the construction of the

discrete abstraction, which is the main focus of the paper.

We have proposed a way to construct the discrete abstraction

using the geometry of the obstacles and the propositions. The

framework used to construct discrete traces from continuous-

time robot trajectories uses the time-step used by the low-

level sampling-based algorithm. The propositions considered

here are defined on the workspace. We plan to consider a

more general version of the problem involving propositions

defined on the state-space of the robot in future.
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