
Sampling-based Program Execution Monitoring

Sebastian Fischmeister
Department of Electrical and Computer Engineering

University of Waterloo
sfischme@uwaterloo.ca

Yanmeng Ba
Department of Electrical and Computer Engineering

University of Waterloo
yba@uwaterloo.ca

Abstract
For its high overall cost during product development, program de-
bugging is an important aspect of system development. Debugging
is a hard and complex activity, especially in time-sensitive systems
which have limited resources and demanding timing constraints.

System tracing is a frequently used technique for debugging em-
bedded systems. A specific use of system tracing is to monitor and
debug control-flow problems in programs. However, it is difficult to
implement because of the potentially high overhead it might intro-
duce to the system and the changes which can occur to the system
behavior due to tracing.

To solve the above problems, in this work, we present a
sampling-based approach to execution monitoring which specifi-
cally helps developers debug time-sensitive systems such as real-
time applications. We build the system model and propose three
theorems to determine the sampling period in different scenarios.
We also design seven heuristics and an instrumentation framework
to extend the sampling period which can reduce the monitoring
overhead and achieve an optimal tradeoff between accuracy and
overhead introduced by instrumentation. Using this monitoring
framework, we can use the information extracted through sampling
to reconstruct the system state and execution paths to locate the
deviation.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—tracing

General Terms Theory, Algorithms, Experimentation

Keywords sampling, monitoring, tracing, debugging, embedded
system

1. Introduction
Debugging is an important procedure in embedded software devel-
opment, because between 30 to 50 percent of the development cost
is spent on testing and debugging (Bouyssounouse and J.Sifakis
2005; Gallaher and Kropp 2002). We define a software defect as
“An incorrect step, process, data definition or result.” (IEE 1990).
While testing is the process of revealing failure by showing the
presence of software defects, debugging starts after testing and
is the process of locating and removing the defects. Because of
the increase of system and software complexity, good debugging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’10, April 13–15, 2010, Stockholm, Sweden.
Copyright c© 2010 ACM 978-1-60558-953-4/10/04. . . $10.00

methods for embedded software become increasingly important.
Software instrumentation is a popular technique for software-based
debugging and tracing. System monitoring can effectively detect
faults of programs running in the system. However, both instru-
mentation and monitoring introduce overhead to the execution of
the program.

Our approach to bound the cost of monitoring is to sample the
program at a fixed rate to collect adequate and necessary informa-
tion about the execution at runtime. Besides, we develop several
algorithms to strategically insert markers to the program to reduce
the overhead introduced by the instrumentation. We thus propose a
sampling-based monitoring mechanism which allows the developer
to extract information from the system under test to determine the
execution path of programs with an optimal tradeoff between accu-
racy and overhead. The execution trace contains the execution path
of the last run and helps to find the location of software defects.
Our work targets embedded, time-sensitive systems, and provides
a framework for reconstructing system state and execution paths. A
typical debugging session in our work flow consists of the follow-
ing steps:

1. Detect the presence of software defect. Using traditional
testing methods such as unit tests (Elbaum et al. 2009) or
white/blackbox tests (Kirani et al. 1994), the developer deter-
mines that the tested software deviates from its specification.

2. Budget resources for monitoring. A good practice when de-
veloping embedded systems is to define a specific budget for
debugging overhead. The available budget determines the mon-
itoring precision as it affects the sampling period.

3. Prepare program for monitoring. The developer uses our al-
gorithms to instrument the program with markers for sampling-
based monitoring.

4. Collect traces. The developer runs the instrumented system. A
monitor periodically collects data from the markers and other
system state and transmits them to the developer workstation.

5. Reconstruct execution. Once the instrumented system crashes
or the developer stops the execution, the framework permits
reconstructing the execution path from the sequence of samples
to locate the software defect in the code.

The advantages of our approach are as follows: Compared with
continuous monitoring, our sampling-based technique can greatly
reduce the overhead introduced. Since the sampling rate is fixed,
we can estimate and bound the overhead and impact on the system
under test. Also, our approach can easily be combined with data-
tracing methods. There are, however, several issues to be solved
regarding sampling-based approaches:

First, we need to balance between overhead and correct re-
construction of the control flow. On one hand, we want to gather
enough information to be able to reconstruct the execution path;

133

on the other hand, monitoring should have only modest impact on
the program. Second, we need to address the problem of how many
markers should be used. Each marker requires memory, so we want
to use as few markers are possible. Third, we need to devise an in-
strumentation algorithm that efficiently uses the available markers.
Using markers well can reduce the number of required markers to
achieve the target sampling period.

This paper makes several contributions to the issues mentioned
above:

• We provide a formal framework that permits quantitative rea-
soning of many aspects involved in sampling-based mecha-
nisms.

• We propose the optimality from both vertex and the whole
control-flow graph perspectives.

• We provide theorems for termination conditions of instrumen-
tation algorithms with an unlimited number of markers and with
exactly one marker.

• We validate the general approach by proposing and comparing
several algorithms for inserting markers into programs.

• We investigate interference among markers and propose tai-
lored algorithms to compensate for this interference.

• We discuss a number of observations and insights from the
development of the algorithms.

Besides debugging, sampling-based execution monitoring can
also be used in performance profiling of software systems. Com-
bined with tracing, it can give performance engineers a sufficiently
detailed analysis of the system with relatively low overhead (Metz
et al. 2005), such as event relationships in time and reconstructing
the dynamic behavior of a software system. In addition, sampling-
based execution monitoring can be applied to code coverage test-
ing (Shye et al. 2005) which finds the code exercised by a particular
set of test input. Moreover, sampling-based execution monitoring
can be a feasible and efficient technique for reducing the overhead
while collecting profile information (Lee and Zilles 2008).

In our paper, following a discussion about several traditional
approaches, we firstly describe the problem targeted and then build
our system model (Section 3) which served as the theoretical foun-
dation for the whole paper. Secondly, we propose two theorems
which provide the termination conditions of instrumentations in
different scenarios and give the corresponding examples to explain
them (Section 4). We then proceed and propose a BFS-based al-
gorithm which calculates the sampling period (Section 5). We an-
alyze the interference between instrumentations in Section 6. With
the interference and the proper model, we proceed to experiment
with different algorithms (Section 7) and interpret the results (Sec-
tion 8). By drawing conclusions we close the paper in Section 9 and
outline future work.

2. Related Works
Debugging techniques have been around since the early program-
ming stages and come in different flavors. In hardware-based de-
bugging, boundary scan testing (also named as JTAG) (Chun and
Lim 2005) targets systems with limited resources and space for de-
bugging. This method provides the ability to run the program and
halt it at any given time which is undesirable in real-time system be-
cause of the timing constraints. With the higher integration of SoC
and the increase of software complexity, logic analyzers become
expensive for debugging, because of the high frequency and the
increased number of ports required by large systems. ARM Core-
Sight is an On-chip debug technology for streaming data off the
chip (Orme 2008). However, it suffers from limited bandwidth on

the trace port (e.g., not all program counter values can be streamed
off chip) and is only available on a limited number of chips.

Instrumentation is usually used to collect program profile and
run-time information for various testing/debugging and analysis
applications, such as detecting program invariants, dynamic slic-
ing and alias analysis (Kumar et al. 2005), to monitor and track the
program behavior (Biberstein et al. 2005). However, it introduces
considerable overhead to the execution of the program. Researchers
have proposed several methods to reduce the cost of instrumenta-
tion overhead (Kumar et al. 2005; Arnold and Ryder 2001; Mis-
urda et al. 2005). Software instrumentation collects information of
program execution by inserting instrumentation statements which
might print out program location or variable values (Titzer and
Palsberg 2005). Instrumenting printf statements is a naive approach
which is tedious and inflexible. It might also result in “probe ef-
fect”.

Software failure is expensive (IEE 2005) and system moni-
toring is one method to detect faults before they become fail-
ures (Jiang et al. 2009). There are some different flavors of sys-
tem monitoring. Metric-correlation models use correlations among
management metrics in software systems to detect bugs and local-
ize their cause (Jiang et al. 2009). By posing queries, a software-
based framework was proposed to monitor the state and perfor-
mance of running programs (Cheung and Madden 2008). Struc-
tural monitoring determines which program entities, such as state-
ments, branches and data-flow or control-flow relationships, are ex-
ecuted (Santelices and Harrold 2007). Previous research has devel-
oped efficient monitoring methods for states and branches (Ball and
Larus 1992, 1994) which insert various counters into the program
executed. An efficient branch-based monitoring approach is DUA
(definition-use associations) (Frankl and Weyuker 1988; Hutchins
et al. 1994), which results in additional overhead (Santelices and
Harrold 2007).

One use for software instrumentation is to monitor control-flow.
From the perspective of when to instrument the program, there are
usually two types of software instrumentations: the static instru-
mentation insert the instrumentation code to the program before it
executes, while the dynamic instrumentation instruments the pro-
gram when it is running. The most commonly used static binary in-
strumentation tool is ATOM (Srivastava and Eustace 2004), which
was implemented by extending OM and provides a framework for
building a customized program analysis tools. For dynamic binary
instrumentation, Pin provided by Intel is a valid option. Pin (Luk
et al. 2005) follows the model of ATOM, but it does not instru-
ment an executable statically by rewriting it, but rather adds the
code dynamically while the executable is running. However, by in-
strumenting the executable with extra code, these software instru-
mentation methods might change the timing of the execution of the
program unexpectedly and unpredictably, thus they are not soundly
applicable to the real-time systems where timing has the top prior-
ity. Related work investigated software-support perspectives (Ball
and Larus 1994) and hardware-based approach (Zhang et al. 2005).
Meanwhile, monitoring control-flow is especially expensive, and
there is little work done so far to characterize or bound its cost.

There are already several works that apply the concept of sam-
pling into program debugging: using random sampling in statistical
debugging to isolate bugs (Liblit et al. 2005); debugging programs
given sampled data from thousands of user runs (Zheng et al. 2006);
a sampling infrastructure for gathering information from a large
number of executions (Liblit et al. 2003). These works focused on
using the sampling concept to gather run-time information from
program executions in workstation softwares.

134

3. System Model & Terminology
This work concentrates on multi-process single-threaded applica-
tions like the ones found in background/foreground systems. This
structure dominates the embedded software domain due to its main-
tainable structure and efficient resource utilization (Labrosse 2002;
Fischmeister and Lee 2007). Note that about 85 percent of all em-
bedded systems use 8-bit or smaller architectures (Tennenhouse
2000).

We also assume that the system supports interrupts and has
at least one high-precision timer as commonly found in micro-
controllers. For example, the ATmega128 microcontroller has four
timers.

3.1 Model Definition and Terminology

To analyze and reconstruct the execution path of the application,
we convert a source program to a directed graph, representing the
program’s control flow, which is defined as the control-flow graph
G = 〈V, E〉.

In G, each vertex (v ∈ V) represents a basic code block in
a program. The entry vertex ven is the start of the program. The
exit vertex vex is the termination of the program. Edge e :=
〈vs, vd〉 represents the specific transition from a source vertex vs
to a destination vertex vd. It assumes that G is an unweighed graph
with e := 〈vs, vd〉 = 0, which means that the transition between
two vertices requires no time.

We define the function c : V → N, which specifies the required
execution time for a vertex v. For example, c(v0) = 10 means
that the basic code block at vertex v0 requires 10 time units for its
execution.

A path p is defined as a sequence of adjacent vertices vi →
vi+1 → . . . → vk. The execution time of a path is the sum of the
execution times of all vertices and is defined as cp(p) =

∑
c(vi)

for all vi ∈ p. An execution path r, which is a special p, is the
actual path executed from the entry vertex ven to the exit vertex
vex.

Our approach periodically takes samples from the execution
information and program state. In this context, we define a sample
as a triple s := 〈state, v, t〉 where v represents the vertex sampled,
t represents the time stamp when the sample is taken and state
represents the program state(e.g. the values of some variables) at
that time stamp. The sampling period T is defined as the constant
time interval Δt between two adjacent samples, that is, T = Δt =
ti+1 − ti for two adjacent samples si := 〈statei, vi, ti〉 and
si+1 := 〈statei+1, vi+1, ti+1〉.

Furthermore, to evaluate the quality of the sampling period, we
define the function pathfindt(vi, vj ,Δt) with Δt = tj−ti return-
ing all possible paths between two vertices while Δt represents the
execution time interval between vi and vj . We define the sampling
period as too long, if multiple paths exist between two vertices
of two samples, which is indicated by |pathfind(vi, vj ,Δt)| >
1,where vi, vj ∈ V . We define a sampling period as sufficient, if
only one path exists between two vertices.

The concept of optimality for the sampling period is formed
with respect to both a vertex and a complete control-flow graph.
If a sampling period of T is sufficient and a sampling period of
T + ε is too long, then T is the optimal sampling period for
the the starting vertex in the given control-flow graph. In other
words: sampling after T permits only one path between the two
samples and T + ε permits multiple. Stating this formally, start-
ing from a specific node vi, the sampling period T is said to be
optimal for the node vi, if |pathfindt(vi, vnext, T)| = 1 while∣∣∣pathfindt(vi, v

′
next, T + ε)

∣∣∣ > 1.

For the whole control-flow graph G = (V,E), the optimal
sampling period is the minimum of the optimal sampling periods

Δt1

v3

v4v1

v2

v5 v6

Δt3
Δt2

Figure 1. Different sampling periods for one control flow

of vertices in the control-flow graph. Thus, the optimal sampling
period Topt is defined as Topt = min(T1, . . . , Tk) where Ti is the
optimal sampling period for vi ∈ V with V = (v1, . . . , vk).

Example 1. Figure 1 shows an example of a control-flow graph, a
starting vertex v1, and several sampling periods Δt1 = 1, Δt2 =
2, and Δt3 = 3. All basic blocks have the same execution time
c(vi) = 1. From our definitions, the sampling period Δt1 is suffi-
cient, since |pathfindt(v1, v2,Δt1)| = |pathfindt(v1, v5,Δt1)|
= 1;Δt2 is optimal, since |pathfindt(v1, v3,Δt2)| = 1 while
|pathfindt(v1, v4,Δt2 + 1)| = 2; Δt3 is too long, since
|pathfindt(v1, v4,Δt3)| = 2.

3.2 Markers

To increase the sampling period which will reduce the monitoring
overhead, we introduce the concept of markers and extend a sample
with state information. A marker can be a system element such as
the program counter, very useful, because a vertex in the control-
flow graph is a basic block in the source code. Besides, a marker
can also be a newly introduced variable solely used for the purpose
of monitoring the software.For the remainder of this paper, we will
only use this extended sample and thus s := 〈state, v, t〉 where
state is also a tuple defined as state := 〈m1, . . . ,mk〉 with mi

representing a marker of a system state such as memory, processor
word, I/O registers, or our introduced variables.

We thus refine the pathfind function as
pathfinds(vi, vj , statei, statej,Δt) where statei and statej are
the state elements of the corresponding samples. Using the function
pathfinds, a sampling period T is optimal, if
|pathfinds(vi, vnext, statei, statenext, Ti)| = 1 while∣∣∣pathfinds(vi, v

′
next, statei, state

′
next, Ti + ε)

∣∣∣ > 1.
As stated above, markers are special variables that can be used

for extending the optimal sampling period.We introduce such new
markers and increment their values at strategically well-placed
locations. We give the following example to show how the markers
work.

Example 2. Figure 2 shows a program control flow. All basic
blocks have the same execution time c(vi) = 1.

Without introducing a monitoring variable a, we use function
pathfindt(vi, vj ,Δt) to find the optimal sampling period. Starting
from vertex v1, there are three possible paths afterwards. If we
take the sample after time 1, then |pathfindt(v1, vi, 1) | = 1 with
i = 2, 3, 4. However, if we take the sample after time 2, then
|pathfindt(v1, v5, 2)| = 2. Figure 3 shows this mechanism. Thus,
the optimal sampling period for node v1 is T1 = 1. Applying the
same mechanism, for every other vertex vi with i = 2, 3, 4, 5
in the control-flow graph, the optimal sampling period Ti with
i = 2, 3, 4, 5 is 4, 3, 3, 2 respectively. Thus, for the whole control-
flow graph G = 〈V,E〉, the optimal sampling period Topt is 1.

Using the monitoring variable a, Figure 4 shows the resulting
optimal sampling period. We will use function
pathfinds(vi, vj , statei, statej,Δt) to select the optimal sam-

135

v1

v2 v3

v4
v5

*

……
static int a=0;

……
a++;
…...

Figure 2. Control-flow graph with marker instrumented

v3v1
v3v2
v5

Δt 1 2

v4 v5
Figure 3. pathfindt(vi, vj ,Δt)

v3v1

v3v2

v4

v5

Δt 1 2

v1
v4

v3

v2 v3

v5 v1
v5v4

v3

v2 v3

v5 v1 v2

v5

v5

v5

3 4 5

0 0 0 0 0

0 0 0

0

0

0

0

0

1

0 1 1

1

1

1

1

1

2

a = 0

Figure 4. pathfinds(vi, vj , statei, statej ,Δt)

pling period. Starting from vertex v1, the mechanism is shown
in Figure 4. While |pathfinds(v1, vi, state1, statei, 4)| = 1 with
i = 2, 3, 4, 5 and state := 〈a〉,
|pathfinds(v1, v5, state1, state5, 5)| = 2. Thus, for vertex v1, the
optimal sampling period is 4. Applying the same mechanism, for
every other vertex vi with i = 2, 3, 4, 5 in the control-flow graph,
the optimal sampling period Ti with i = 2, 3, 4, 5 is 7, 6, 6, 5 re-
spectively. Thus, for the whole control-flow graph G = 〈V,E〉,
the optimal sampling period Topt is 4. Compared with the previ-
ous example, introducing marker a increases the optimal sampling
period Topt by a factor of 4.

4. Theoretic Optimum
By using markers we can increase the sampling period without
losing any essential information about the execution paths. We call
the process of inserting such markers into vertices instrumentation.

An important problem is to understand the limitations of such
marker-based instrumentation. We therefore provide theorems to
find the theoretic sampling period and decide termination condi-
tions.

We require two additional definitions for the theorems. A path-
pair pp can be defined as two paths which have the same entrance
vertex and the same exit vertex with their exit vertices overlapping
in time, but no other vertices between the entrance vertex and the
exit vertex overlap in time. That is,
|pathfinds(ven, vex, stateen, stateex,Δtex)| = 2 while
|pathfinds(ven, vnext, stateen, statenext,Δtnext)| = 1, where
0 < Δtnext < Δtex. A path set is defined as a set of paths of
which any two paths constitute a pathpair as defined above.

Lemma 1. In a pathpair pp, a path which starts from the
entrance vertex ven and ends at any other vertex
except the exit vertex vex is unique. Formally,

|pathfinds(ven, vnext, stateen, statenext,Δt)| = 1, where
vnext ∈ Vpp and vnext �= vex.

From the definition of a pathpair, we can draw the following
conclusion:

Lemma 2. (Optimal Vertex Sampling Period)
In a control-flow graph, all pathpairs starting at vertex vi

constitute a vector PPvi〈pp1, pp2, . . . , ppk, . . . , ppm〉, with each
pathpair starting at time tien and ends at time tkex, with k =
1, 2, . . . ,m. The optimal sampling period of this vi is defined as
Topti = min |(tkex − tien)| − ε, with k = 1, 2, . . . ,m.

Therefore, to calculate the theoretic optimal sampling period,
it is essential to find pathpairs for every vertex in the control-
flow graph. We propose the following approach to find pathpairs
starting from vi: we construct an array of vertex states ordered
by time; starting from vi, we search vi’s child vertices and their
corresponding states; then, we compare the state of child vertex
vj with that of vk in the state array. If they meet the pathpair
conditions, we will say that the path which starts from vi and ends
at vj and the path which starts from vi and ends at vk constitute
a pathpair; if the conditions are not met, we will treat that child
vertex as a father vertex, add it to the state array after sorting and
continue to search for pathpair.

Theorem 1 (Optimal Sampling Period). For a control-flow graph
with N vertices, the optimal sampling period of the whole graph
is the minimum sampling period of all sampling periods for all
vertices. Formally, Topt = min(Topt1 , . . . , ToptN).

By choosing a proper strategy to find the vertices which are in-
strumented with markers and thus making the states of overlapping
exit vertices different, we can extend the pathpair and therefore in-
crease the sampling period. However, the number of markers to
instrument with is limited. With increasing the number of mark-
ers, the following situation would occur: After the number of the
markers reaches a certain value, no matter how to instrument the
vertices with markers, we can not extend pathpair any further. In
other words, we cannot increase the sampling period any more. In
this situation, regardless how many markers are available, we can
no longer distinguish the two paths in the pathpair. Obviously, we
should terminate the instrumentation process at this point. We pro-
pose the following theorem to draw this termination condition:

Theorem 2 (Pathpair Termination). For two paths p1 and p2 in a
pathpair, if they meet the following conditions:

• they have the same vertices with the same number of appear-
ances but possibly different order in time respectively

• the states of the corresponding vertices are the same

we can no longer instrument vertices with markers to differentiate
these two paths, thus reach the theoretical optimum sampling pe-
riod for this pathpair.

Proof. We use “reductio ad absurdum” to prove our theorem. Sup-
pose that when reaching a pathpair with its two paths (p1 and p2)
violating the above conditions in Theorem 2. For example, the
two paths have different vertices between them or the two paths
have exactly the same vertices but the numbers of their appear-
ances in these two paths differ. We assume that the sampling period
Tfalseopt we get here is the theoretic optimum sampling period.
However, if we instrument the distinct vertices of the two paths or
the identical vertices having different numbers of appearances in
two paths with markers, we can still extend this pathpair and form
a new pathpair whose sampling period is larger than Tfalseopt. This
contradicts the assumption that Tfalseopt is the theoretic optimum
sampling period, because we can still distinguish these two paths.
In this way, we can prove that our theorem is correct.

136

va vc ve vd
vb vc

ve vb
Figure 5. Scenario when theoretical optimum is reached using
only one marker

When a pathpair satisfies the condition in Theorem 2, we can
terminate the instrumentation process since we can no longer dis-
tinguish the two paths through instrumenting vertices with markers.

Theorem 3 (Single Marker Termination). The instrumentation of
a path set with a single marker is essentially an SAT problem.

Proof. For a path set of n paths, there are N = C2
n pathpairs which

share the same entrance and exit vertices. For a pathpair ppk, all the
vertices except the entrance and exit vertices constitute an internal
vertices set Ωk. In Ωk, all vertices that can be used to instrument
with markers constitute the set Φk , with all the other vertices
which can not be instrumented constituting the set Ψk. Apparently,
Ωk = Φk + Ψk. When condk = (vk1 ∨ vk2∨, . . . ,∨vkj) ∧
(vkj+1 ∨ vkj+2∨, . . . ,∨vkj+m),with Φk = {vk1, . . . , vkj} and
Ψk = {vkj+1, . . . , vkj+m}, is satisfiable, we can distinguish the
two paths in pathpair k.

The theoretical optimum for a graph using only one marker is
reached, when we get to a path set, where Υ = cond1 ∧ cond2 ∧
. . . ∧ condN can never be satisfied.

Example 3. As shown in Figure 5 we get to a path set S =
{p1, p2, p3} with p1 = va → vb → vc → vd, p2 = va →
vc → ve → vd and p3 = va → ve → vb → vd. For pathpair
pp12 = {p1, p2}, the two paths p1 and p2 can be distinguished
using only one marker, because cond12 = (vb ∨ ve) ∧ vc is
satisfiable. So do pathpairs pp13 = {p1, p3} and pp23 = {p2, p3},
with cond13 = (vc ∨ ve) ∧ vb and cond23 = (vb ∨ vc) ∧
ve satisfiable. However, cond12, cond13 and cond23 can not be
satisfied at the same time using only one marker, in other words,
Υ = cond12 ∧ cond13 ∧ cond23 can never be satisfied. At this
point, we reach the theoretic optimum using only one marker.

5. Calculating the Sampling Period
From Theorem 3, we know that calculating the theoretical optimum
for a path set using one marker is actually an NP-hard problem.
However, in practice, we encounter pathpairs much more often than
path set as the likelihood is quite small for three or more paths to
have the same entry and exit vertices with the same time span. Thus,
it is both practical and important to develop an algorithm that has
a polynomial runtime complexity to calculate the sampling period
for pathpairs.

Given a control-flow graph G = 〈V,E〉, to calculate the optimal
sampling period for a vertex in the pathpair, we propose the follow-
ing algorithm based on the breath-first-search(BFS) (Cormen et al.
2001) to implement pathfinds.

This algorithm is based on breadth-first search (BFS). Firstly,
we pick a starting vertex vertex by setting its state as OPEN. We
also build a set Vopen which contains all vertices that are adjacent
to vertex vertex and set it to OPEN as well. In set Vopen, we
choose the vertex which has the least execution time tmin as the
next starting vertex vnext to move to. At the same time, we update
the sampling period by increasing it by tmin and the execution
time of all vertices in set Vopen by decrementing them by tmin.
We build another set Vtoopen which contains all the vertices that
are both adjacent to and reachable from vnext. At last, we check

Vertex v := 〈state, time〉,
Edge e := 〈vsrc, vdst, cond, updates〉
for all v ∈ V do

v.state ⇐ CLOSED
end for
ven.state ⇐ OPEN
tResult ⇐ 0
Vtoopen ⇐ {}
Vopen ⇐ {}
loop

if Vopen is empty then
for all v ∈ Vtoopen do

v.state ⇐ OPEN
end for
Vopen

⋃{v|v ∈ V andv.state = OPEN}
Vtoopen ⇐ {}

end if
tmin ⇐ min(v.time) of all v ∈ Vopen

vnext ⇐ v where v ∈ Vopen with v.time = tmin

tResult ⇐ tResult + tmin

for all v in Vopen do
v.time ⇐ v.time − tmin

end for
for all e ∈ E with e.vsrc = vnext and eval(e.cond) = T do

if e.vdst.state = OPEN and e.vdst.time > 0 then
break from loop

else
create state for e.vdst and execute updates (e.updates) on this
state
Vtoopen ⇐ Vtoopen

⋃
e.vdst

end if
end for
vnext.state ⇐ CLOSED

end loop
return tResult− 1

Algorithm 1: Find optimal sampling period for a vertex

the set Vtoopen. If it contains a vertex whose state is OPEN and
execution time is greater than zero, we say the optimum sampling
period for that vertex is reached and return the current sampling
period as optimum. If not, we repeat the above procedure until we
reach the optimum conditions stated above.

Since the algorithm uses BFS, the runtime complexity for our
algorithm is O(|V |+ |E|).

6. Instrumenting Control Flows
As stated above, in order to increase the sampling period, we
introduce markers into the control-flow graph. In this section, we
present our instrumentation approaches, analyze the related issues
caused by the instrumentation and give our strategies to resolve
these issues.

6.1 Increment VS Assignment

Instrumentation algorithms can use markers in different ways. One
method is to increment the value of the marker each time the marker
is hit. The other assigns absolute number to the marker. We provide
the following two examples to prove that neither of these two
options is better than the other.

Figure 5 shows a path set. By adding the marker with a different
assignment to the last vertex before the exit vertex (e.g., vc ← a =
1, ve ← a = 2 and vb ← a = 3) in each path, we can distinguish
these three paths in a sample taking at vd. However, according to
Theorem 3, we cannot distinguish these three paths by increment-
based marker methods. Thus, the assignment-based marker method
can instrument cases that the increment-based one cannot.

Figure 6 shows another case. We can instrument v4 or v7 with
increment-based markers and distinguish the two paths in pathpair

137

v1

…...

…...
v14

v2 v4v3
v5

v6 v8 v9
v10 v7

Figure 6. Scenario where increment works but not assignment

pp(6,8). However, since v4 and v7 are also the exit vertices of two
other pathpairs pp(1,4) and pp(10,7), instrumenting these two ver-
tices by assignments renders any previous instrumentations invalid,
because several paths will share the same marker value and can in-
validate another instrumentation at a later point. As shown, if we
use increment instead, we will be able to solve this problem and
distinguish the paths. Thus, the increment-based method can in-
strument cases that the assignment-based method cannot.

Since each method can instrument at least one case that the other
cannot instrument, both methods have their justification as they can
instrument different sets of control-flow problems.

6.2 Interference

Greedy instrumentation suffers from the problem that the instru-
mentation at a subsequent step may influence the instrumentations
of previous steps. This can happen in either a direct or an indirect
way. In direct interference, the subsequent instrumentation adds a
marker to a vertex which is already part of a previous pathpair or
path set and this breaks the original instrumentation for that partic-
ular pathpair. In indirect interference, the subsequent instrumenta-
tion adds a marker to a vertex which reveals a new pathpair with a
shorter time span. The following two examples show these effects.

Example 4 (Direct interference). We assume a control-flow graph,
a greedy instrumentation strategy with only one available marker,
and that each vertex has an execution time of one time step. Fig-
ure 7(a) shows the initial state of a pathpair pp(1,4). Any greedy
strategy will pick either v2 or v5 to instrument with a marker. Here
we assume that the strategy picks v2 as shown in Figure 7(b).

v5 is also part of another pathpair pp(6,11) with a longer time
span as shown in Figure 7(c). In this example, there will be a prob-
lem, if the greedy strategy picks v5 in the subsequent instrumenta-
tion step instead of v10, v7, or v8. By instrumenting v5, it breaks
the original instrumentation for pathpair pp(1,4), since both paths
in pathpair pp(1,4) are then instrumented and can not be distin-
guished from each other.

Example 5 (Indirect interference). We make the same assumptions
as that in Example 4. As shown in Figure 8, the greedy algorithm
first discovers the pathpair pp(1,4) and instruments v5 to distin-
guish the two paths. By instrumenting v5, the greedy algorithm also
distinguishes the pathpair pp(6,11), so the algorithm will not notice
it—we now call it hidden—and instead see the pathpair pp(12,14)
as the next pathpair with the shortest time span. If the algorithm
now instruments v8, the hidden pathpair will cause a decrease in
the sampling period.

While a greedy algorithm can eliminate direct interference—
see our SAT-based algorithms—eliminating indirect interference
is hard, because it requires the algorithm to search for hidden
pathpairs with all possible marker configurations.

6.3 Algorithms

We design seven different greedy algorithms (strategies) to find a
suitable instrumentation. In our algorithms, the potential candidate

v1
v2 v4
v5

(a) Initial state

v1
v2 v4
v5

*

(b) Greedy pick

v1
v2 v4
v5

v9
v10v6 v7 v8

v11

*

(c) Problem if next greedy pick is v5

Figure 7. The problem of interference during greedy instrumenta-
tion

v1
v2 v4
v5

v9
v10v6 v7 v8

v11

v12
... v14

…
...

*

Figure 8. The indirect interference caused by greedy pick

vertex to instrument with markers to distinguish the two paths in a
pathpair is the one that is distinct in either of the two paths or is
contained in both paths but has different numbers of appearances.

The seven strategies can be divided into three categories:

• Degree-Based: The algorithms make decisions based upon the
largest or smallest sum of in-degree and/or out-degree of the
vertices in the context of the whole directed graph.

• Frequency-Based: The algorithms make decisions based upon
the the occurrence frequency in the pathpair, such as the most
or least frequently occurring vertex.

• SAT-Based: The algorithms transform the instrumentation into
an SAT problem and compute a solution to find the instru-
mentation. The weighted SAT algorithm tries to combine the
frequency-based with the SAT-based ideas.

7. Experimental Method
To validate the theorems and the concepts of this work, we build an
instrumentation engine that instruments control flow graphs. The
engine provides the framework to test different heuristics but also
computes the theoretic optimum following Theorem 2. The outputs
are the instrumentation vertices, the required execution time, and
the resulting sampling period.

Our inputs are realistic and statistically significant. The input
data consist of 5 000 control flow graphs which model typical C
program flows (Thorup 1998). We generate these control flows with
a customized version of Task Graphs For Free (Dick et al. 1998).
Regarding the SAT-based heuristic, we implement it using a sat
solver called SAT4J (09: 2009a) in our instrumentation engine.
One experiment run works as follows: we select a control flow
graph, a heuristic (or the optimum algorithm), and the number
of available markers and pass these values to the instrumentation
engine. The engine computes the input control-flow graph and

138

Non−monotonic Increase of Test Case 2620

Instrumentation step

S
am

pl
in

g
pe

rio
d

1500

2000

2500

3000

3500

●
●

● ●
●

●

● ●
● ●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
● ● ●

●
●

●

● ● ●

●

●

●

●

● ●
●

●

● ●

●

10 20 30 40 50

● test case 2620

Figure 9. Example of interference of greedy instrumentation

returns the sampling period, vertex to instrument, and the required
execution time. Since the computational work is quite intensive,
we perform our simulation through the Canadian super computing
cluster called SHARCNET (09: 2009b) collecting about 3.2 million
instrumentation data points from up to 50 instrumentation steps,
seven strategies, and several multi-marker configurations.

Our data successfully pass these integrity checks: (1) the execu-
tion time of the heuristic increases with the number of instrumen-
tation steps, (2) no sampling period found by a heuristic is greater
than the optimal sampling period, and (3) on average, the sampling
period increases with the increase in the number of instrumentation
steps.

The data distribution differs from a normal distribution (Shapiro-
Wilk normality test for the data series varies around p = 1−15).
Thus, we rely on median values and testing procedures free of the
normality assumption.

7.1 Instrumentation Performance Metric

To compare the performances of the algorithms, we take the maxi-
mum sampling period achieved in each run per algorithm and sum
them up; see Eq. (1). This metric is robust against direct and indi-
rect interference outlined in Section 6.2.

P =
∑

max(Ti) (1)

7.2 Monotonicity Metric

Interference in the greedy instrumentation algorithms has an un-
pleasant effect on the monotonicity of the algorithms: a subsequent
instrumentation may decrease the sampling period. This is con-
trary to what the user expects as each instrumentation increases the
overhead and thus should increment the sampling period. Figure 9
shows an example of this behavior.

We use the following monotonicity metric to evaluate the algo-
rithms:

M =
N∑
di

(2)

with

di =

{
0 if runi − runi+1 ≤ 0,
runi − runi+1 otherwise

In the metric, we use di to denote the decrement between two in-
strumentation steps runi and runi+1, if the sampling period of one
instrumentation step runi is greater than that of its subsequent in-
strumentation step runi+1.

∑
di denotes the sum of decrements in

the entire instrumentation steps for a test case. N denotes the num-
ber of the total instrumentation steps. This monotonicity describes
the reciprocal of average decrement across the entire process of
instrumentation steps for a test case using a specific strategy and

gives a general assessment of that strategy, since the decrement rep-
resents the interference introduced by instrumenting vertices with
markers.

7.3 Execution time

We measure the execution time by comparing the time stamp when
the execution of heuristic starts with the time stamp after the instru-
mentation step is completed. The sum of all these times for one run
provides the total execution time for that run. While we will not be
able to compare quantitative results, because of the heterogeneity
of SHARCNET, we will draw conclusions based on similarity of
the algorithms.

8. Results and Discussion
Following the experimental methods presented, we give our exper-
iment results which are sound and show statistically integrity. We
also discuss the results and give the corresponding interpretation.

8.1 Instrumentation Performance

We follow the recommended guidelines for multiple testing (Ben-
jamini and Hochberg 1995). We check that all input data for calcu-
lating the performance metric have roughly the same shape (single
bell-like shape with a cut-off left tail) for all algorithms. The instru-
mentation performance differs significantly among the algorithms
(Kruskal-Wallis Rank Sum Test returns p = 2−6). Using a Bonfer-
roni correction for multiple testing among our algorithms, we test
an individual algorithm with a p ≤ 0.05

91
to be accepted.

Figure 10 shows the result of the performance measurements for
up to 50 instrumentation steps and compares it with the theoretic
maximum achievable following Theorem 3. The higher the per-
formance value, the better. For the single-marker algorithms—the
right part of the figure—the degree-based algorithms outperform
the others except the ‘max impact’ algorithm. We use the Wilcoxon
rank sum test with continuity correction and it shows that the dif-
ferences among the degree-based algorithms are insignificant while
it shows a difference between all degree-based algorithms and the
‘min impact’ as well as the SAT-based algorithms. An interesting
point is that the SAT-based algorithms perform significantly worse
than any of the other algorithms. Part of this is, because bad early
decisions in the SAT algorithm cannot be undone by a later instru-
mentation. While, for example, the degree-based algorithms may
break a previous instrumentation and causes direct interference, the
SAT-based ones cannot do this, because they preserve all previous
instrumentations.

Using multiple markers improves the performance and asymp-
totically approaches the optimum. The middle part of Figure 10
shows the ‘max impact’ algorithm with different markers. Since
‘max impact’ performs similarly to other degree-based algorithms,
if we were using a different algorithm, it would result in the same
data. The gains achieved with low marker increases are significant.
However, once the number of markers grows beyond ten, the results
no longer differ using the Wilcoxon rank sum test with the adjusted
significance level.

8.2 Monotonicity

Besides instrumentation performance, we also investigate mono-
tonicity by the monotonicity metric defined in Section ??. Figure ??
shows the monotonicity of all heuristics normalized to SAT. The
higher the monotonicity value, the better. The left part of the fig-
ure shows the results of using only one marker. We use the same
statistical test procedures as mentioned above to establish statisti-
cal significance. The SAT-based algorithms clearly outperform all
other algorithms. The reason is that the SAT-based heuristics al-
ways carry forward the previous pathpairs and thus guarantee that a

139

Instrumentation Performance Relative to Optimum

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

0.0

0.2

0.4

0.6

0.8

1.0 Multiple markers Single marker

Th
eo

re
tic

 m
ax

im
um

M
ax

 im
pa

ct
(2

5
m

ar
ke

rs
)

M
ax

 im
pa

ct
(1

6
m

ar
ke

rs
)

M
ax

 im
pa

ct
(1

2
m

ar
ke

rs
)

M
ax

 im
pa

ct
(1

0
m

ar
ke

rs
)

M
ax

 im
pa

ct
(5

 m
ar

ke
rs

)

M
ax

 im
pa

ct
(4

 m
ar

ke
rs

)

M
ax

 im
pa

ct
(2

 m
ar

ke
rs

)

O
ut

 d
eg

re
e

m
ax

M
ax

 im
pa

ct

In
/o

ut
de

gr
ee

 m
ax

O
ut

 d
eg

re
e

 m
in

M
in

 im
pa

ct

S
AT

W
ei

gh
te

d
 S

AT

Figure 10. Instrumentation performance of all algorithms.

Non−monotonic Increase of Test case 2620

Instrumentation step

S
am

pl
in

g
pe

rio
d

2000

3000

4000

5000

6000

7000

● ●

● ● ● ●
● ● ● ●

●

● ● ● ●
●

● ●
●

●

●

●

●

●
●

●

● ● ●
● ● ● ●

● ●

●

● ● ●

●

●

●

●

● ● ●

●

● ●

●

10 20 30 40 50

name
● Single marker

10 markers

25 markers

5 markers

4 markers

Figure 12. Improving monotonicity with multiple markers

subsequent instrumentation avoids interfering with a previous one.
The remaining monotonicity only originates from indirect interfer-
ence. We can also conclude that in general approximately 20% of
the interference in the instrumentation is indirect interference while
80% is direct interference.

Using multiple markers, we try to: (1) increase the achieved
sampling period, and (2) improve monotonicity. We try to increase
the sampling period, because if one marker is no longer sufficient
(Theorem 3), we can use another marker until we hit the optimum
for pathpairs (Theorem 2). Figure 10 shows that we have achieved
this. We also hoped to improve monotonicity by reducing the inter-
ference between subsequent instrumentation steps. Whenever we
switch to a new marker, we avoid interfering with a previous in-
strumentation.The results are quite surprising.

The right part of Figure 11 shows monotonicity with multiple
markers. While using multiple markers improves the monotonicity
of the heuristics, the improvements are still rather limited, and at
some point become insignificant in general. However, individual
cases can benefit significantly, as Figure 12 shows. The SAT-based
heuristics still shows a better overall monotonicity than the ‘max
impact’ heuristic with 25 markers.

8.3 Execution Time

We use SHARCNET to compute the results and collected the exe-
cution time of each instrumentation step. Based on the differences
in the available computation time and platforms on SHARCNET,
the results are purely informal and allow us to draw only conclu-
sions when we can justify them algorithmically. For example, the
weighted SAT algorithm bases on the SAT algorithm and uses a
timeout to bound the execution time. Its execution time is about
three orders of magnitudes greater than the SAT-based test. How-

ever, the complexity of the weighted SAT algorithm yields no im-
provement as seen in the performance and monotonicity analysis
before.

9. Conclusion
Determining the execution path of a program helps locate bugs in
a program. However, for real-time systems the developer needs to
bound the instrumentation overhead.

In our paper, we proposed a framework for sampling-based
monitoring to determine the execution path of the program and an-
alyzed different algorithms for instrumenting a control-flow graph.
We defined the system model and proposed two theorems based on
it to determine when to stop instrumentation. While all heuristics
worked to increase the sampling period, the degree-based heuris-
tics outperformed the SAT-based ones, but the SAT-based ones
achieved a higher monotonicity. Through normalized comparison,
SAT-based heuristic proved to be superior to others in terms of
monotonicity based on which we further concluded that only 20%
of interference was from indirect interference.

We showed how to increase the sampling period by using multi-
ple markers. However, this method had limitation in that overusing
markers did not pay off as much as we expected in the long run.

The presented work fills the first pieces in a holistic framework
for sampling-based execution monitoring. There is room for opti-
mization by improving the algorithms to achieve both longer sam-
pling periods and better monotonicity. However, we also need to
investigate decision criteria when to switch markers before moving
on to industrial case studies.

10. Acknowledgements
We would like to thank Byoung-gi Lee for his help with imple-
menting the test case generator based on Task Graphs For Free.
We would also like to thank the SHARCNET, Canada’s shared hi-
erarchical academic research computing network, that permitted
us to use their vast computing resources for simulations. This re-
search was supported in part by NSERC DG 357121-2008 and ORF
RE03-045.

References
IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990, Dec 1990.

SAT4J. web page, Oct 2009a. www.sat4j.org.

SHARCNET: Shared Hierarchical Academic Research Computing Net-
work. web page, Oct. 2009b. www.sharcnet.ca.

140

Monotonicity of Heuristics Relative to SAT

N
or

m
al

iz
ed

 m
on

ot
on

ic
ity

0.0

0.2

0.4

0.6

0.8

1.0

Single marker Multiple markers

S
AT

W
ei

gh
te

d
S

AT

M
in

 im
pa

ct

M
ax

 in
/o

ut
de

gr
ee

M
ax

 o
ut

de
gr

ee

M
in

 o
ut

de
gr

ee

M
ax

 im
pa

ct

M
ax

 im
pa

ct
(2

5
m

ar
ke

rs
)

M
ax

 im
pa

ct
(1

6
m

ar
ke

rs
)

M
ax

 im
pa

ct
(1

2
m

ar
ke

rs
)

M
ax

 im
pa

ct
(1

0
m

ar
ke

rs
)

M
ax

 im
pa

ct
(5

 m
ar

ke
rs

)

M
ax

 im
pa

ct
(4

 m
ar

ke
rs

)

M
ax

 im
pa

ct
(2

 m
ar

ke
rs

)

Figure 11. Monotonicity of heuristics

M. Arnold and B. G. Ryder. A framework for reducing the cost of instru-
mented code. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 con-
ference on Programming language design and implementation, pages
168–179, New York, NY, USA, 2001. ACM. ISBN 1-58113-414-2. doi:
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/378795.378832.

T. Ball and J. R. Larus. Optimally profiling and tracing programs. In
POPL ’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 59–70, New York, NY,
USA, 1992. ACM. ISBN 0-89791-453-8. doi: http://doi.acm.org.proxy.
lib.uwaterloo.ca/10.1145/143165.143180.

T. Ball and J. R. Larus. Optimally profiling and tracing programs. ACM
Trans. Program. Lang. Syst., 16(4):1319–1360, 1994. ISSN 0164-0925.
doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/183432.183527.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A
practical and powerful approach to multiple testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57(1):289–300, 1995.
ISSN 00359246. URL http://www.jstor.org/stable/2346101.

M. Biberstein, V. C. Sreedhar, B. Mendelson, D. Citron, and A. Giammaria.
Instrumenting annotated programs. In VEE ’05: Proceedings of the
1st ACM/USENIX international conference on Virtual execution envi-
ronments, pages 164–174, New York, NY, USA, 2005. ACM. ISBN
1-59593-047-7. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/
1064979.1065002.

B. Bouyssounouse and J.Sifakis, editors. Embedded Systems Design:
The ARTIST Roadmap for Research and Development, volume 3436 of
LNCS. Springer, first edition, May 2005.

A. Cheung and S. Madden. Performance profiling with endoscope, an
acquisitional software monitoring framework. Proc. VLDB Endow., 1
(1):42–53, 2008. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/
1453856.1453866.

I. Chun and C. Lim. Es-debugger : the flexible embedded system debug-
ger based on jtag technology. Advanced Communication Technology,
2005, ICACT 2005. The 7th International Conference on, 2:900–903,
0-0 2005. doi: 10.1109/ICACT.2005.246099.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

R. Dick, D. Rhodes, and W. Wolf. Tgff: task graphs for free. In Hard-
ware/Software Codesign, 1998. (CODES/CASHE ’98) Proceedings of
the Sixth International Workshop on, pages 97–101, Mar 1998. doi:
10.1109/HSC.1998.666245.

S. Elbaum, H. N. Chin, M. Dwyer, and M. Jorde. Carving and replaying
differential unit test cases from system test cases. Software Engineering,
IEEE Transactions on, 35(1):29–45, Jan.-Feb. 2009. ISSN 0098-5589.
doi: 10.1109/TSE.2008.103.

S. Fischmeister and I. Lee. Handbook on Real-Time Systems, chapter
Temporal Control in Real-Time Systems: Languages and Systems, pages
10–1 to 10–18. Information Science Series. CRC Press, 2007.

P. Frankl and E. Weyuker. An applicable family of data flow testing criteria.
Software Engineering, IEEE Transactions on, 14(10):1483–1498, Oct
1988. ISSN 0098-5589. doi: 10.1109/32.6194.

M. Gallaher and B. Kropp. The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing. National Institute of Standards & Technologg
Planning Report 02–03, May 2002.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria.
In ICSE ’94: Proceedings of the 16th international conference on Soft-
ware engineering, pages 191–200, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press. ISBN 0-8186-5855-X.

Learning From Software Failure. IEEE Spectrum, September 2005.

M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. Ward. System
monitoring with metric-correlation models: problems and solutions. In
ICAC ’09: Proceedings of the 6th international conference on Autonomic
computing, pages 13–22, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-564-2. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/
1555228.1555233.

S. H. Kirani, I. A. Zualkernan, and W.-T. Tsai. Evaluation of expert system
testing methods. Commun. ACM, 37(11):71–81, 1994. ISSN 0001-0782.
doi: http://doi.acm.org/10.1145/188280.188373.

N. Kumar, B. R. Childers, and M. L. Soffa. Low overhead program
monitoring and profiling. In PASTE ’05: Proceedings of the 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, pages 28–34, New York, NY, USA, 2005. ACM. ISBN
1-59593-239-9. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/
1108792.1108801.

J. J. Labrosse. MicroC OS II: The Real Time Kernel. CMP Books, 2002.

E. Lee and C. Zilles. Branch-on-random. In CGO ’08: Proceedings of the
sixth annual IEEE/ACM international symposium on Code generation
and optimization, pages 84–93, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-978-4. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.
1145/1356058.1356070.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. In PLDI ’03: Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation,
pages 141–154, New York, NY, USA, 2003. ACM. ISBN 1-58113-
662-5. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/781131.
781148.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In PLDI ’05: Proceedings of the 2005 ACM

141

SIGPLAN conference on Programming language design and implemen-
tation, pages 15–26, New York, NY, USA, 2005. ACM. ISBN 1-59593-
056-6. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/1065010.
1065014.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI ’05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 190–200, New York, NY, USA, 2005.
ACM. ISBN 1-59593-056-6. doi: http://doi.acm.org/10.1145/1065010.
1065034.

E. Metz, R. Lencevicius, and T. F. Gonzalez. Performance data collec-
tion using a hybrid approach. In ESEC/FSE-13: Proceedings of the
10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software en-
gineering, pages 126–135, New York, NY, USA, 2005. ACM. ISBN
1-59593-014-0. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/
1081706.1081729.

J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L. Soffa.
Demand-driven structural testing with dynamic instrumentation. In
ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 156–165, New York, NY, USA, 2005. ACM. ISBN
1-59593-963-2. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/
1062455.1062496.

W. Orme. Debug and Trace for Multicore SoCs. ARM, September 2008.
http://www.arm.com/pdfs/CoresightWhitepaper.pdf.

R. Santelices and M. J. Harrold. Efficiently monitoring data-flow test cov-
erage. In ASE ’07: Proceedings of the twenty-second IEEE/ACM in-
ternational conference on Automated software engineering, pages 343–
352, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4. doi:
http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/1321631.1321682.

A. Shye, M. Iyer, V. J. Reddi, and D. A. Connors. Code coverage testing us-
ing hardware performance monitoring support. In AADEBUG’05: Pro-
ceedings of the sixth international symposium on Automated analysis-
driven debugging, pages 159–163, New York, NY, USA, 2005. ACM.
ISBN 1-59593-050-7. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.
1145/1085130.1085151.

A. Srivastava and A. Eustace. Atom: a system for building customized
program analysis tools. SIGPLAN Not., 39(4):528–539, 2004. ISSN
0362-1340. doi: http://doi.acm.org/10.1145/989393.989446.

D. Tennenhouse. Proactive computing. Commun. ACM, 43(5):43–50, 2000.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/332833.332837.

M. Thorup. All structured programs have small tree width and good register
allocation. Inf. Comput., 142(2):159–181, 1998. ISSN 0890-5401. doi:
http://dx.doi.org/10.1006/inco.1997.2697.

B. L. Titzer and J. Palsberg. Nonintrusive precision instrumentation of
microcontroller software. In LCTES ’05: Proceedings of the 2005 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems, pages 59–68, New York, NY, USA, 2005. ACM.
ISBN 1-59593-018-3. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.
1145/1065910.1065919.

T. Zhang, X. Zhuang, S. Pande, and W. Lee. Anomalous path detection with
hardware support. In CASES ’05: Proceedings of the 2005 international
conference on Compilers, architectures and synthesis for embedded sys-
tems, pages 43–54, New York, NY, USA, 2005. ACM. ISBN 1-59593-
149-X. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/1086297.
1086305.

A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical
debugging: simultaneous identification of multiple bugs. In ICML ’06:
Proceedings of the 23rd international conference on Machine learning,
pages 1105–1112, New York, NY, USA, 2006. ACM. ISBN 1-59593-
383-2. doi: http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/1143844.
1143983.

142

