
Sampling-Based Sublinear Low-Rank Matrix Arithmetic
Framework for DequantizingQuantum Machine Learning

Nai-Hui Chia

University of Texas at Austin

Austin, Texas, USA

nai@cs.utexas.edu

András Gilyén

California Institute of Technology

Pasadena, California, USA

agilyen@caltech.edu

Tongyang Li

University of Maryland

College Park, Maryland, USA

tongyang@cs.umd.edu

Han-Hsuan Lin

University of Texas at Austin

Austin, Texas, USA

linhh@cs.utexas.edu

Ewin Tang

University of Washington

Seattle, Washington, USA

ewint@cs.washington.edu

Chunhao Wang

University of Texas at Austin

Austin, Texas, USA

chunhao@cs.utexas.edu

ABSTRACT
We present an algorithmic framework for quantum-inspired clas-

sical algorithms on close-to-low-rank matrices, generalizing the

series of results started by Tang’s breakthrough quantum-inspired

algorithm for recommendation systems [STOC’19]. Motivated by

quantum linear algebra algorithms and the quantum singular value

transformation (SVT) framework of Gilyén et al. [STOC’19], we

develop classical algorithms for SVT that run in time independent

of input dimension, under suitable quantum-inspired sampling

assumptions. Our results give compelling evidence that in the cor-

responding QRAM data structure input model, quantum SVT does

not yield exponential quantum speedups. Since the quantum SVT

framework generalizes essentially all known techniques for quan-

tum linear algebra, our results, combined with sampling lemmas

from previous work, suffices to generalize all recent results about

dequantizing quantum machine learning algorithms. In particu-

lar, our classical SVT framework recovers and often improves the

dequantization results on recommendation systems, principal com-

ponent analysis, supervised clustering, support vector machines,

low-rank regression, and semidefinite program solving. We also

give additional dequantization results on low-rank Hamiltonian

simulation and discriminant analysis. Our improvements come from

identifying the key feature of the quantum-inspired input model

that is at the core of all prior quantum-inspired results: ℓ2-norm

sampling can approximate matrix products in time independent of

their dimension. We reduce all our main results to this fact, making

our exposition concise, self-contained, and intuitive.

CCS CONCEPTS
• Theory of computation→ Quantum computation theory;
Machine learning theory; Sketching and sampling.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384314

KEYWORDS
quantum machine learning, low-rank approximation, sampling,

quantum-inspired algorithms, quantum machine learning, dequan-

tization

ACM Reference Format:
Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang,

and Chunhao Wang. 2020. Sampling-Based Sublinear Low-Rank Matrix

Arithmetic Framework for Dequantizing Quantum Machine Learning. In

Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC ’20), June 22–26, 2020, Chicago, IL, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3357713.3384314

1 INTRODUCTION
1.1 Motivation
Quantum machine learning (QML) is a relatively new field of study

with a rapidly growing number of proposals for how quantum com-

puters could significantly speed up machine learning tasks [10, 19].

If any of these proposals yield substantial practical speedups, it

could be the killer application motivating the development of scal-

able quantum computers [38]. Many of the proposals are based

on Harrow, Hassidim, and Lloyd’s algorithm (HHL) for solving

sparse linear equation systems in time poly-logarithmic in input

size [25]. However, QML applications are less likely to admit expo-

nential speedups in practice compared to, say, Shor’s algorithm for

factoring [42], because unlike their classical counterparts, QML al-

gorithms must make strong input assumptions and learn relatively

little from their output [1]. These caveats arise because both loading

input data into a quantum computer and extracting amplitude data

from an output quantum state are hard in their most generic forms.

A recent line of research analyzes the speedups of QML algo-

rithms by developing classical counterparts that carefully exploit

these restrictive input and output assumptions. This began with a

breakthrough 2018 paper by Tang [45] showing that the quantum

recommendation systems algorithm [29], previously believed to be

one of the strongest candidates for a practical exponential speedup

in QML, does not give an exponential speedup. Specifically, Tang

described a “dequantized” algorithm that solves the same problem

as the quantum algorithm and only suffers from a polynomial slow-

down. Tang’s algorithm crucially exploits the structure of the input

assumed by the quantum algorithm, which is used for efficiently

preparing states. Subsequent work relies on similar techniques to

387

https://doi.org/10.1145/3357713.3384314
https://doi.org/10.1145/3357713.3384314

STOC ’20, June 22–26, 2020, Chicago, IL, USA Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang

dequantize a wide range of QML algorithms, including those for

principal component analysis and supervised clustering [44], low-

rank linear system solving [9, 21], low-rank semidefinite program

solving [8], support vector machines [13], nonnegative matrix fac-

torization [7], and minimal conical hull [18]. These results show

that the advertised exponential speedups of many QML algorithms

disappear if the corresponding classical algorithms can use input

assumptions analogous to the state preparation assumptions of the

quantum algorithms. Previous papers [9, 21, 44] have observed that

these techniques can likely be used to dequantize all QML that

operates on low-rank data. Apart from a few QML algorithms that

assume sparse input data [25], much of QML depends on some

low-rank assumption. As a consequence, these dequantization re-

sults have drastically changed our understanding of the landscape

of potential QML algorithm speedups, by either providing strong

barriers for or completely disproving the existence of exponential

quantum speedups for the corresponding QML problems.

Recent works on quantum algorithms use the primitive of sin-

gular value transformation to unify many quantum algorithms

ranging from quantum walks to QML, under a quantum linear al-

gebra framework called quantum singular value transformation

(QSVT) [6, 22, 34]. Since this framework effectively captures all

known linear algebraic QML techniques, a natural question is what

aspects of this framework can be dequantized. Understanding the

quantum-inspired analogue of QSVT promises a unification of de-

quantization results and more intuition about potential quantum

speedups, which helps to guide future quantum algorithms research.

1.2 Main Results
Our work gives a simple framework of quantum-inspired classi-

cal algorithms with wide applicability, grasping the capabilities

and limitations of these techniques. We use this framework to de-

quantize many quantum linear algebra algorithms, including QSVT

with certain input models. We give an overview of our results here,

deferring proofs to the full version of this paper.

Sampling and query access model. Our framework assumes a

specific input model called sampling and query access, which can

be thought of as a classical analogue to quantum state preparation

assumptions, i.e., the ability to prepare a state |v⟩ proportional to
some input vector v . If we have sampling and query access to a

vectorv ∈ Cn , denoted SQ(v), we can efficientlymake the following

kinds of queries (Definition 2.5): (1) given an index i ∈ [n], output
the corresponding entry v(i); (2) sample an index j ∈ [n] with
probability |v(j)|2/∥v ∥2; and (3) output the vector’s ℓ2-norm ∥v ∥.
If we have sampling and query access to a matrix A ∈ Cm×n ,
denoted SQ(A), we have SQ(A(i, ·)) for all rows i and also SQ(a) for
a the vector of row norms (i.e., a(i) := ∥A(i, ·)∥).

To motivate this definition, we make the following observations

about this input model. First, this model naturally admits classical

algorithms with similar properties to the corresponding QML algo-

rithms. Second, as far as we know, if input data is given classically,1

classical algorithms in the sampling and query model can be run

whenever the corresponding algorithms in the quantum model can

1
This assumption is important. When input data is quantum (say, it is gathered experi-

mentally from a quantum system), a classical computer has little hope of performing

linear algebra on it efficiently.

(Remark 2.13). For example, if input is loaded in the QRAM data

structure, as commonly assumed in QML in order to satisfy state

preparation assumptions [10, 37], then we have log-time sampling

and query access to it. Consequently, a fast classical algorithm for

a problem in this classical model implies lack of quantum speedup

for the problem.

Matrix arithmetic. We make a conceptual contribution by defin-

ing the slightly more general notion of oversampling and query ac-
cess to a vector or matrix (Definition 2.7), where we have sampling

and query access to another vector/matrix that gives an entry-wise

upper bound on the absolute values of the entries of the actual

vector/matrix, which we can only query. With this definition comes

the insight that this input model is closed under arithmetic operations.
Though this closure property comes into play relatively little in

applications to dequantizing QML, the essential power of quantum-

inspired algorithms lies in its ability to use sampling and query

access to input matrices to build oversampling and query access

to increasingly complex arithmetic expressions on input, possibly

with some approximation error, without paying the (at least) linear

time necessary to compute such expressions in conventional ways.

As a simple example, if we have oversampling and query access to

matrices A(1), . . . ,A(t), we have oversampling and query access to

linear combinations

∑t
i=1

λiA
(i)

as well (Lemma 2.12).

The “oversampling” input model is also closed under (approxi-

mate) matrix products — the key technique underlying our main

results. Such results have been known in the classical literature for

some time [14]; we now give an example illustrating the flavor of

main ideas. Suppose we are given sampling and query access to two

matrices A ∈ Cm×n and B ∈ Cm×p , and desire (over)sampling and

query access toA†B.A†B is a sum of outer products

∑
A(i, ·)†B(i, ·),

so we can randomly sample them to get a good estimator for

A†B. We can use SQ(A) to pull samples i1, . . . , is according to

the row norms of A, a distribution we will denote p (so p(i) =

∥A(i, ·)∥2/∥A∥2F). Consider Z := 1

s
∑s
k=1

1

p(ik)
A(ik , ·)

†B(ik , ·). Z is

an unbiased estimator of A†B:

E[Z (i, j)] =
1

s

s∑
k=1

n∑
ℓ=1

p(ℓ)
A(ℓ, i)†B(ℓ, j)

p(ℓ)
= [A†B](i, j).

Further, the variance of this estimator is small. In the following

computation, we consider s = 1, because the variance for general s
decreases as 1/s .

E[∥A†B − Z ∥2F] ≤
∑
i , j
E[|Z (i, j)|2] =

∑
i , j ,ℓ

p(ℓ)
|A(ℓ, i)|2 |B(ℓ, j)|2

p(ℓ)2

=
∑
ℓ

1

p(ℓ)
∥A(ℓ, ·)∥2∥B(ℓ, ·)∥2 =

∑
ℓ

∥A∥2F ∥B(ℓ, ·)∥
2 = ∥A∥2

F
∥B∥2

F
.

Due to Chebyshev’s inequality, we can approximate A†B by a rela-

tively small linear combination of outer products of rows of A and

the corresponding rows of B with high success probability. More-

over, if we have SQ(A) and SQ(B), then we also have (over)sampling

and query access to the outer products (Lemma 2.11). Using that

oversampling and query access is closed under taking linear com-

binations (Lemma 2.12), this also yields oversampling and query

access to Z ≈ A†B. In our applications we will keep Z as an outer

388

Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for DequantizingQuantum Machine Learning STOC ’20, June 22–26, 2020, Chicago, IL, USA

product A′†B′ for convenience. Nevertheless, our central tool will
be an approximate matrix product protocol: see the key lemma in

Section 1.4.

Note that the discussion so far suggests that for a matrix A we

need (over)sampling and query access to both A and A†. In fact, we

show in the full version that having either one of them suffices.

So far, we have shown that if we have (over)sampling and query

access to our vectors and matrices, we can perform ordinary linear

algebra operations, i.e. matrix arithmetic. We will leverage our ap-

proximate matrix product protocol to add matrix functions to our

toolkit: given oversampling and query access to an input matrix,

we can get oversampling and query access to an approximation

of a (Lipschitz) function applied to that matrix. Therefore, one

can think about oversampling and query access as a classical ana-

logue to the quantum block-encodings in quantum singular value

transformation [22], which support linear combinations, products,

and low-degree polynomials (that is, approximations of Lipschitz

functions) of input matrices.

Even singular value transformation. Our main result is that, given

(over)sampling and query access to an input matrix A ∈ Cm×n , we
can find a succinct an efficient description of an even singular value
transformation of A. This primitive is based on the even SVT used

by Gilyén et al. [22]: given a function f : [0,∞) → C, the even SVT

is
2 f (
√
A†A), applying f to the singular values of A and replacing

left singular vectors with the corresponding right singular vectors

(so if A =
∑
σiuiv

†
i is the singular value decomposition of A, then

f (
√
A†A) =

∑
f (σi)viv

†
i). The primitive of singular value transfor-

mation has been shown to generalize a large portion of quantum

machine learning algorithms [22]; we bring this observation into

the quantum-inspired landscape.

Main theorem (informal version of Theorem 3.2). Suppose we
are given sampling and query access to a matrix A ∈ Cm×n (that
is, SQ(A)) and a function f : [0,∞) → C such that f and ¯f (x) :=

(f (x) − f (0))/x are L-Lipschitz and L′-Lipschitz, respectively. Then,
for sufficiently small ε, δ > 0, we can find a subset of (normalized)
rows of A, R ∈ Cr×n , and a subset of (normalized) columns of R,
C ∈ Cr×c such that

Pr

[
∥R† ¯f (CC†)R + f (0)I − f (A†A)∥ > ε

]
< δ .

Let T be the time the sampling and query oracle takes to respond.
Then finding R and C and computing ¯f (CC†) takes O

(
r2c + rcT

)
time, where

r = Θ̃
(L2∥A∥2∥A∥2

F

ε2
log

1

δ

)
c = Θ̃

(L′2∥A∥6∥A∥2
F

ε2
log

1

δ

)
.

We call R† ¯f (CC†)R an RUR decomposition because R ∈ Cr×n is a

subset of rows of the input matrix (R corresponds to the ‘R’ of the

RUR decomposition, and
¯f (CC†) ∈ Cr×r corresponds to the ‘U’).

More precisely, an RUR decomposition expresses a desired matrix as

a linear combination of outer products of rows of the input matrix.
3

The matrix U encodes the coefficients in the linear combination.

2
For a Hermitian matrix H and a function f : R 7→ C, f (H) denotes applying f to the

eigenvalues of H . That is, f (H) :=
∑n
i=1

f (λi)viv
†
i , for λi and vi the eigenvalues

and eigenvectors of H .

3
This is the relevant variant of the notion of a CUR decomposition from the randomized

numerical linear algebra and theoretical computer science communities [17].

We want our output in the form of an RUR decomposition, since

we can describe such a decomposition implicitly just as a list of

row indices and some additional coefficients, which avoids picking

up a dependence onm or n in our runtimes. Further, having SQ(A)
implies that we can exploit the RUR structure to gain oversampling

and query access to the output matrix, enabling the evaluation of

matrix-vector expressions. In particular, for an RUR decomposition,

we can get oversampling and query access to approximations of

R†URb and R†URMb, for a matrixM ∈ Cn×n and a vector b ∈ Cn ,
in time independent of n.

More general results follow as corollaries of our main result on

even SVT. For an arbitrary matrix A with SQ(A) and SQ(A†) access
oracles,

4
we can perform generic (non-even) SVT (Theorem 3.4),

where the output is given as an approximate CUR decomposition
expressing the desired matrix as a linear combination of outer prod-

ucts of columns and rows of A. We can also perform eigenvalue

transformation on Hermitian matrices (Theorem 3.5), where the

output is given as an approximate RUR decomposition. Given an

RUR (or CUR) decomposition, one can also approximately diago-

nalize the matrixU in order to recover an approximate eigenvalue

decomposition (or SVD) of the desired matrix, see e.g. Theorem 3.5.

However, using only our main theorem about even SVT, we can

directly recover most existing quantum-inspired machine learning

algorithms without using the more advanced Theorems 3.4 and 3.5

discussed above, yielding faster dequantization for QML algorithms.

In Section 1.3, we outline our results recovering such applications.

For some intuition on error bounds and time complexity, we

consider how the parameters in our main theorem behave in a

restricted setting: suppose thatA has minimum singular value σ and

∥A∥F/σ is dimension-independent.
5
This condition simultaneously

bounds the rank and condition number of A. Further suppose6 that
f ’s Lipschitz constant satisfies

L∥A∥2 < C max

x ,y∈[0, ∥A∥2]
| f (x) − f (y)|

for some dimension-independent C . Note that C must be at least

1, therefore such an f is at most C-times “steeper” compared to

the least possible “steepness”. Under these assumptions, we can get

an RUR decomposition to additive error (ε maxx ,y∈[0, ∥A∥2] | f (x) −

f (y)|) in runtime independent of dimensions (i.e., r , c are dimen-

sionless). The precise runtime is

Õ

(
∥A∥6

F

∥A∥2σ 4

C6

ε6
log

3
1

δ

)
.

Dependence on σ arises because we bound L′ ≤ L/σ 2
: our algo-

rithm’s dependence on L′ implicitly enforces a low-rank constraint

in this case. All of our analyses give qualitatively similar results to

this, albeit in more general settings allowing approximately low-

rank input.

4
Only one of SQ(A) or SQ(A†) suffices, but it is more convenient to assume both.

5
By a dimension-independent or dimensionless quantity, we mean a quantity that is

both independent of the size of the input matrix and is scale-invariant, i.e., does not

change under scaling A← αA.
6
This criterion is fairly reasonable. For example, the polynomials used in QSVT satisfy

it.

389

STOC ’20, June 22–26, 2020, Chicago, IL, USA Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang

Implications for quantum singular value transformation. Gilyén
et al.’s QSVT framework [22] assumes that the input matrix A is

given by a block-encoding, which is a quantum circuit implement-

ing a unitary transformation whose top-left block contains (up to

scaling) A itself [34]. Given a block-encoding of A, one can apply

certain kinds of degree-d polynomials of A to an input quantum

state, incurring only about d times the implementation cost of the

input block-encoding. One can get a block-encoding of an input

matrix A through various methods. If A is s-sparse with efficiently

computable elements and ∥A∥ ≤ 1, then one can directly get a block-

encoding ofA/s [22, Lemma 48]. IfA is in the QRAM data structure

(used for efficient state preparation for QML algorithms [37]), one

can directly get a block-encoding of A/∥A∥F [22, Lemma 50]. This

latter normalization means that QRAM-based QSVT has an im-

plicit dependence on the Frobenius norm ∥A∥F. This dependence
on ∥A∥F suggests lack of exponential speedup for QRAM-based

QSVT, since ∥A∥F is the key parameter in the complexity of our

corresponding classical algorithms. This is in contrast to sparsity-

based QSVT, which instead has dependence on ∥A∥ and the sparsity
s , and generalizes algorithms like HHL that solve BQP-complete

problems.

Our results give compelling evidence that there is indeed no

exponential speedup for QRAM-based QSVT, and show that over-

sampling and query access can be thought of as a classical analogue

to block-encodings in the bounded Frobenius norm regime. Indeed,

if we are given matrices and vectors in the QRAM data structure,

then by converting them to block-encodings, we can apply any func-

tion to the input that can be obtained by composing addition, scalar

multiplication, matrix multiplication, and singular value transfor-

mation. Since this data structure gives us sampling and query access

to input, we can classically approximately evaluate the same types

of expressions.

In particular, we show that we can apply the singular value

transform of a matrix A ∈ Cm×n satisfying ∥A∥F = 1 to b ∈ Cn in

QRAM (Theorem 3.7). Our algorithm simulates sampling and query

access tov := p(QV)(A)b up to ε ∥v ∥ error in poly(d, 1

ε ,
∥b ∥
∥v ∥ , logmn)

time, where p(x) is a degree-d polynomial of the kind QSVT can

apply and p(QV)(A) is the type of SVT that QSVT performs on A
(Definition 3.6). This runtime is only polynomially slower than

the corresponding quantum algorithm, except in the ε parameter.
7

Theorem 3.7 also dequantizes QSVT for block-encodings derived

from (purifications of) density operators [22, Lemma 45] that come

from some well-structured classical data. The situation in this case

is even nicer, since density operators are already normalized. This

gives evidence that QSVT with these kinds of block-encodings do

not give inherent exponential speedups (though, if input prepara-

tion/output analysis protocols have no classical analogues, they

can play a part in an algorithm achieving an exponential speedup).

QSVT using other types of block-encodings (with potentially large

Frobenius norm) remains intact.

7
The QML algorithms we discuss generally only incur polylog(1

ε) terms, but need to

eventually pay poly(1/ε) to extract information from output quantum states. So, we

believe this exponential speedup is artificial. See the open questions section for more

discussion of this error parameter.

1.3 Applications: Dequantizing QML & More
With our main results, we can recover existing quantum-inspired

algorithms for recommendation systems [45], principal component

analysis [44], supervised clustering [44], support vector machines

[13], low-rank matrix inversion [9, 21], and semidefinite program

solving [8]. We also propose new quantum-inspired algorithms

for low-rank Hamiltonian simulation and discriminant analysis

(dequantizing the quantum algorithm of Cong & Duan [11]). Our

framework achieves these results with a conceptually simple anal-

ysis, and often admits faster and more general results.

For the following results, we assume our sampling and query

access to the input takes O(1) time. There are data structures that

can support such queries (Remark 2.13), and if the input is in QRAM,

the runtime only increases by at most a factor of log of input size.

We note here that, though our outputs are often in the form of

oversampling and query access SQϕ (Definition 2.7), via rejection

sampling, one can think about this access as the same as sampling

and query access, except one can only compute the norm up to

some relative error (Lemma 2.8).

Recommendation systems. Our framework gives a simpler and

faster variant of Tang’s dequantization [45] of Kerenidis & Prakash’s

quantum recommendation systems [29]. This result is notable for

being the first result in this line of work and for dequantizing what

was previously believed to be the strongest candidate for practical

exponential quantum speedups for a machine learning problem

[38]. The task is as follows: given sampling and query access to

a matrix A ∈ Rm×n , a row index i ∈ [m], and a singular value

threshold σ , sample from the ith row of some Â ∈ Rm×n , where Â
is a σ -thresholded low-rank approximation of A. Specifically, Â is

ε ∥A∥F-close in additive Frobenius norm error to a singular value

transform of A that is smoothly thresholded to keep only singular

vectors with value at least σ .
We can rewrite our target low-rank approximation as A · t(A†A),

where t is a step function that is zero for x ≤ 5

6
σ 2

, one for x ≥ 7

6
σ 2

,

and a linear interpolation between the two for x ∈ [5
6
σ 2, 7

6
σ 2].

In other words, our low-rank approximation is Amultiplied by a

smoothened projector. We can use our main theorem Theorem 3.2

to approximate t(A†A) by some R†UR. Then, the ith row of our

low-rank approximation is A(i, ·)R†UR, which is a product of a vec-

tor with an RUR decomposition. Thus, using previously-discussed

matrix arithmetic lemmas, we have SQϕ (A(i, ·)R
†UR), so we can

get the sample from this row as desired. The runtime is dominated

by Õ

(
∥A ∥6

F
∥A∥10

σ 16ε6
log

3 1

δ

)
, an improvement on the previous runtime

Õ

(
∥A ∥24

F

σ 24ε12
log

3 1

δ

)
of [45].

Supervised clustering. Because dequantizing Lloyd, Mohseni, and

Rebentrost’s supervised clustering algorithm [32] only requires

simple sampling subroutines (demonstrated by Tang [44]), our al-

gorithm trivially recovers this result. Given a dataset of points

q1, . . . ,qn−1 ∈ R
d
, the goal is to estimate the distance between

their centroid and a new point p ∈ Rd , ∥p − 1

n−1
(q1 + · · ·+qn−1)∥

2
.

We can reduce this problem to estimatingwM(wM)† to ε additive

error, for a certain choice of vectorw ∈ Rn andM ∈ Rn×d . This can

390

Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for DequantizingQuantum Machine Learning STOC ’20, June 22–26, 2020, Chicago, IL, USA

be done with a simple inner product estimation procedure in time

O

(
Z 2

ε2
log

1

δ

)
, where Z = ∥M ∥2

F
∥w ∥2 = 4(∥p∥2 + 1

n−1

∑n−1

i=1
∥qi ∥

2).

Principal component analysis. Our framework improves on Tang’s

dequantization [44] of the quantum principal component analy-

sis (qPCA) algorithm [33]. Since the actual task being solved by

the original quantum algorithm is underspecified, we describe

the task as is performed in the dequantization. Given a matrix

SQ(X) ∈ Cm×n such that X †X has top k eigenvalues {λi }
k
i=1

and

eigenvectors {vi }
k
i=1

, the goal is to compute eigenvalue estimates

{ ˆλi }
k
i=1

such that

∑
| ˆλi−λi | ≤ ε Tr(X †X) and eigenvector estimates

{SQϕ (v̂i)}
k
i=1

such that ∥v̂i −vi ∥ ≤ ε . To avoid degeneracy condi-

tions, we must have a gap assumption granting |λi −λi+1 | ≥ η∥X ∥
2

for all i ∈ [k].
Then, we can approach the problem as follows. First, we use

that an importance-sampled submatrix of X has approximately the

same singular values as X itself to get our estimates { ˆλi }
k
i=1

. With

these estimates, we can define smoothened step functions fi for

i ∈ [k] such that fi (X
†X) = v†i vi . We can then use our main theo-

rem to find an RUR decomposition for fi (X
†X). We use additional

properties of the RUR description to argue that it is indeed a rank-1

outer product v̂†i v̂i , which is our desired approximation for the

eigenvector. We have sampling and query access to v̂i because it

is R†x for some vector x . Altogether, this algorithm runs in time

Õ

(
∥A ∥6

F

∥A ∥2σ 4
ε−6η−6

log
3 k
δ

)
, a major improvement over the original

dequantization’s runtime Õ

(
∥A ∥36

F

σ 24 ∥A∥12
ε−12η−6

log
3 k
δ

)
.

Matrix inversion. Our framework can generalize a pair of results

giving quantum-inspired versions of low-rank matrix inversion

[9, 21]. Given a matrix SQ(A) ∈ Cm×n and a vector SQ(b) ∈ Cm ,

the goal is to obtain SQϕ (A
+
σ ,ηb) where A

+
σ ,η is a pseudo-inverse

of A smoothly thresholded to invert only the singular values that

are at least σ .
We can rewrite A+σ ,ηb = ι(A†A)A†b for ι a function encoding

a thresholded inverse. Namely, ι(x) = 1/x for x ≥ σ 2
, ι(x) = 0

for x ≤ (1 − η)σ 2
, and is a linear interpolation between the end-

points for x ∈ [(1 − η)σ 2,σ 2]. By our main theorem, we can find

an RUR decomposition for ι(A†A), from which we can then get

SQ(R†URA†b) via sampling techniques. Altogether, this algorithm

takes Õ

(
∥A∥6

F
∥A ∥22

σ 28η6ε6
log

3 1

δ

)
time with no restriction on A, whereas

the result of [21] applies to strictly rank-k A and gets the incompa-

rable runtime Õ

(
∥A∥6

F
k6 ∥A ∥16

σ 22η6ε6
log

3 1

δ

)
.

Support vector machines. We use our framework to dequantize

Rebentrost, Mohseni, and Lloyd’s quantum support vector machine

[39], which was previously noted to be possible by Ding, Bao, and

Huang [13]. The idea is to find a hyperplane best explaining m
data points in a matrix SQ(X) ∈ Rm×n with labels SQ(y) ∈ {±1}m .

With regularization, this reduces to approximately solving the linear

system [
0 ®1†

®1 XX † + γ−1I

] [
b
α

]
=

[
0

y

]
.

Call the above matrix F , and let F̂ := F/Tr(F). The quantum al-

gorithm approximately solves the linear system by applying F̂+λ,η
to y. So, our goal is to output SQϕ (v) for v ∈ R

m+1
satisfying

∥v − F̂+λ,η [
0

y]∥ ≤ ε ∥F̂
+
λ,η [

0

y]∥. To do this, we use our matrix arith-

metic techniques in order to get oversampling and query access

to SQφ (F̂) from SQ(X). Then, using SQφ (F̂), we run the quantum-

inspired matrix inversion algorithm discussed above, immediately

giving us the desired v . This takes time Õ

(
λ−28η−6ε−6

log
3 1

δ

)
. We

solve the problem in the same generality as the original quantum

algorithm, unlike the prior dequantization result [13], which also

lacks explicit error bounds or runtime bounds; the paper simply ar-

gues that the algorithm is polynomial time in the right parameters.

Hamiltonian simulation. Our framework can be used to give

a Hamiltonian simulation algorithm for low-rank Hamiltonians.

Given a Hermitian matrix SQ(H) ∈ Cn×n such that ∥H ∥ ≤ t and
∥H+∥ ≤ 1/σ along with a unit vector SQ(b) ∈ Cn , the goal is to
obtain SQϕ (v) where ∥v − e

iHb∥F ≤ ε .
In order to use our even SVT result, we split our desired trans-

formation into even and odd parts: eix = cos(x) + i sin(x) =
cos(x) + i sinc(x)x . We use even singular value transformation to

apply the even functions cos and sinc; for an even function д(x),

let fд(x) := д(
√
x), so that д(H) = fд(H

†H) and we can rewrite

eiHb = fcos(H
†H)b + i fsinc(H

†H)H†b .

Then, using our main theorem, we can find RUR decompositions

for both even SVTs, gaining sampling and query access to the

matrix-vector products for the even and odd parts of the expres-

sion, from which sampling and query access to our estimate of

eiHb follows. This takes Õ

(
∥H ∥6

F
t 10

σ 16
t6ε−6

log
3 1

δ

)
time, which is

dimension-independent if we think of the desired error as tε , the
natural choice for additive error. This algorithm also works if H is

not strictly low-rank, in which case the output will be a version of

eiH where eigenvalues ≤ σ are thresholded away. We also provide

a version of this algorithm that works for allH without a dimension-

independent runtime. This version gets improved runtimes when

t = 1.

Semidefinite program (SDP) solving. We solve the problem of

SDP-feasibility, improving on prior work of Chia et al. [8] dequan-

tizing some versions of quantum SDP solvers [2, 5]. Givenm ∈ N,

b1, . . . ,bm ∈ R, and Hermitian matrices A(1), . . . ,A(m) such that

−I ⪯ A(i) ⪯ I for all i ∈ [m], let Sε be the set of all X satisfying

Tr[A(i)X] ≤ bi + ε ∀ i ∈ [m];

X ⪰ 0;

Tr[X] = 1.

The task is to differentiate whether S0 , � (in which case the

output should be an X ∈ Sε) or Sε = � (in which case the output

should be “infeasible”). Note that general SDPs can be reduced to

this feasibility problem via a simple binary search.

By using the matrix multiplicative weights (MMW) method [3],

SDP ε-feasibility reduces to estimating Tr[A(i)X] up to ε/4 error

given SQ(A(i)) for all i ∈ [m] and X implicitly defined as a Gibbs

391

STOC ’20, June 22–26, 2020, Chicago, IL, USA Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang

state

X :=
exp[−A]

Tr(exp[−A])
where A :=

ε

4

≲ln(n)/ε2∑
τ=1

A(jτ).

To estimate Tr[A(i)X], we first notice that we have SQϕ (A), since
it is a linear combination of matrices that we have sampling and

query access to (Lemma 2.12). Then, we can find approximations

of the Gibbs state by applying eigenvalue transformation (The-

orem 3.5) according to the exponential function to get exp[−A]

as an RUR decomposition. Then the estimation of Tr[A(i)X] can
be performed by the usual SQ sampling techniques. This strategy

solves the feasibility problem and when applicable outputs the ε-
approximate solution of the SDP as an RUR decomposition in time

8

Õ

(
∥A(·) ∥22

F

ε46
ln

23(n) +m
∥A(·) ∥14

F

ε28
ln

13(n)
)
.

For the same feasibility problem, the previous quantum-inspired

SDP solver [8] proved a complexity bound Õ

(
mr57ε−92

ln
37(n)

)
, as-

suming that the constraint matrices have rank at most r . Since the

rank constraint implies that

A(·)

F

≤
√
r , under this assumption

our algorithmhas complexity Õ

(
r11ε−46

ln
23(n) +mr7ε−28

ln
13(n)

)
.

So, our new algorithm both solves a more general problem and also

greatly improves the runtime.

Discriminant analysis. We present a new dequantized algorithm,

a classical analogue to Cong and Duan’s quantum discriminant

analysis algorithm [11]. The high-level idea is to find the vectors

that best explain the way data points are classified. Cong and Duan

reduces this idea to the following task: given matrices SQ(B) and

SQ(W), find eigenvectors and eigenvalues of
√
W †W (B†B)

−1
√
W †W .

They solve a version of this task where one only needs to output

approximate eigenvectors and one can ignore the singular vectors

of B andW that are smaller than a parameter σ .
We achieve this goal by using Theorem 3.2 to approximate

√
W †W ≈ R†WUW RW and (B†B)−1 ≈ R†BUBRB by RUR decom-

positions. Then, we use Lemma 3.1 to approximate RW R†B by small

matrices R′W R′†B by small submatrices. This yields an approximate

RUR decomposition of the matrix whose eigenvalues and vectors

we want to find:

R†W (UW R′W R′†B UBR
′
BR
′†

WUW)RW .

Finding eigenvectors from an RUR decomposition follows from an

observation: for amatrixCW formed by sampling columns fromRW
(using SQ(W)), and [CW]k the rank-k approximation toCW (which

can be computed because CW has size independent of dimension),

(([CW]k)
+RW)

†
is an approximate projective isometry (that is, its

singular values are close to one or zero). This roughly formalizes

the intuition ofCW preserving the left singular vectors and singular

values of RW . We can rewrite R†WURW = R†W (C
+
k)
†C†kUCkC

+
k RW ,

which holds by choosing k sufficiently large and choosing C to

8
Here we use ∥A(·) ∥∗ := maxi∈[m] ∥A(i) ∥∗ . Note that this bound does not appear to

be dimension-independent due to the normalizing assumption ∥A(·) ∥ ≤ 1. If we would

relax this assumption, then we could get a dimension-independent bound correspond-

ing to precision ε ∥A(·) ∥, by replacing ∥A(·) ∥F with the “stable rank” ∥A(·) ∥F/∥A(·) ∥.
Then the resulting runtime bound is dimension-independent apart from the ln(n)
factors, that come from MMW.

be the same sketch used for U . Then, we can compute the SVD

as C+kU (C
+
k)
† = VDV † which gives us an approximate SVD for

R†WURW : the eigenvectors are (C+k RW)
†V , and the eigenvalues are

the diagonal entries of D. We show that this has the approximation

properties analogous to the quantum algorithm. Our algorithm runs

in Õ

((
∥B ∥4 ∥B ∥6

F

ε6σ 10
+
∥W ∥10 ∥W ∥6

F

ε6σ 16

)
log

3 1

δ

)
time.

What else is there? Though we have presented many dequantized

versions of QML algorithms, the question remains of what QML

algorithms don’t have such versions. That is, what algorithms still

have the potential to give exponential speedups?

Because QSVT generalizes essentially all known quantum lin-

ear algebra techniques, we restrict our focus to algorithms in that

framework. As we noted previously, we only demonstrate lack of

exponential speedup for QSVT with block-encodings coming from

QRAM and density operators. Other kinds of block-encodings, such

as those coming from sparsity assumptions, remain impervious

to our techniques. The most well-known quantum linear algebra

algorithms of this “dequantization-resistant” type are HHL [25] and

its derivatives. Sparse matrix inversion is BQP-complete, which

explains why our techniques leave these speedups untouched. Nev-

ertheless HHL has serious caveats, as noted by Aaronson [1]. In par-

ticular, HHL only gives an exponential speedup when the condition

number of the input matrix is poly-logarithmic in dimension, which

doesn’t happen in typical datasets. This constraint hamstrings most

attempts to apply HHL to practical problems, especially when com-

bined with the typical QML constraints that quantum algorithms

need quantum states as input and often can only give quantum

states as output. Work like Zhao et al. on Gaussian process regres-

sion [50] and Lloyd et al. on topological data analysis [31] attempt

to address these issues to get a super-polynomial quantum speedup.

1.4 Techniques
Placing sampling and query access in the sketching context. As

we will see below, the fundamental idea of quantum-inspired al-

gorithms is to reduce dimensionality of input matrices to speed

up linear algebra computations. So, using sketching techniques

is natural here. Recall that the fundamental difference between

quantum-inspired algorithms and traditional sketching algorithms

is that we assume that we can perform measurements of states cor-

responding to input in time independent of input dimension (that

is, we have efficient sampling and query access to input), and in

exchange want algorithms that run in time independent of dimen-

sion. The kind of samples we get from sampling and query access

is usually called importance sampling or length-square sampling in

classical literature.

The quantum-inspired model is weaker than the standard sketch-

ing algorithm model (Remark 2.13): an algorithm taking T time in

the quantum-inspired model for an input matrix A can be con-

verted to a standard algorithm that runs in time O(nnz(A) +T),
where nnz(A) is the number of nonzero entries of A. So, we can
also think about an O(T)-time quantum-inspired algorithm as an

O(nnz(A) +T)-time sketching algorithm, where the nnz(A) portion
of the runtime can only be used to facilitate importance sampling.

This viewpoint could be advantageous in some cases, for example

392

Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for DequantizingQuantum Machine Learning STOC ’20, June 22–26, 2020, Chicago, IL, USA

in some streaming scenario [29]. Nevertheless, our primary moti-

vation here is not to develop better generic sketching algorithms,

but to better understand the scope of problems facilitating large

quantum speed-ups.

A natural question is whether more modern types of sketches

can be used in our model. After all, importance sampling is only

one of many sketching techniques studied in the large literature

on sketching algorithms. Notably, though, other types of sketches
seem to fail in the input regimes where quantum machine learning
succeeds: assuming sampling and query access to input, importance

sampling takes time independent of dimension, whereas other ran-

domized linear algebra methods such as Count-Sketch, Johnson-

Lindenstrauss, and leverage score sampling all still take time linear

in input-sparsity.

Furthermore, importance sampling is highly compatible with

quantum-like algorithms: given the ability to query entries and

obtain importance samples of the input, we can query entries and

obtain importance samples of the output, analogously to the way

quantummachine learning algorithmsmove from an input quantum

state to an output quantum state. This insight unlocks surprising

power in importance sampling. For example, it reveals that Frieze,

Kannan, and Vempala’s low-rank approximation algorithm (FKV)

[20], which, as stated, requires O(kmn) time to output the desired

matrix, actually can produce useful results (samples and entries)

in time independent of input dimension. Our goal is to develop a

framework that demonstrates what can be done with importance

sampling and establishes a classical frontier for quantum algorithms

to push past.

Importance sampling to even singular value transformation. The
fundamental property of importance sampling is its ability to ef-

ficiently approximate matrix products (and by extension, vectors

and higher-order tensors). This is our key lemma, which states that

if we have sufficient access to two matrices, we can approximate

their product by a product of matrices of smaller dimension:

Key lemma [14] (informal version of Lemma 3.1). Suppose we
are given SQ(X) ∈ Cm×n and SQ(Y) ∈ Cm×p . Then we can find
normalized submatrices of X and Y , X ′ ∈ Cs×n and Y ′ ∈ Cs×p , in
O(s) time for s = Θ(1

ε2
log

1

δ), such that

Pr

[
∥X ′†Y ′ − X †Y ∥F ≤ ε ∥X ∥F∥Y ∥F

]
> 1 − δ .

We subsequently have O(s)-time SQ(X ′), SQ(X ′†), SQ(Y ′), SQ(Y ′†).

Prior quantum-inspired algorithms [8, 9, 44, 45] indirectly used

this lemma by using FKV, which finds a low-rank approximation to

the input matrix in the form of an approximate low-rank SVD and

relies heavily on this lemma in the analysis. By using FKV once,

one can gain access to singular values and right singular vectors; by

using it twice, one can gain access to a full SVD. Then, by applying

functions to the approximate singular values, one can argue that the

resulting expression is close to the desired expression. One could

theoretically use this procedure to give a classical algorithm for sin-

gular value transformation, but we prove our main results without

going through the full analysis of the low-rank approximation.

Instead, we use the key lemma twice to get an RUR decomposi-

tion of an even singular value transformation of the input (Theo-

rem 3.2). Notice that, because we wish to run in time independent

of dimension, the best we can do is to express the output based on

the given input, as an RUR decomposition does. The proof of our

main theorem is straightforward. Recall that, given SQ(A) ∈ Cm×n ,

we wish to approximate f (A†A) for f a function that, without loss

of generality, satisfies f (0) = 0.

f (A†A) ≈ f (R†R) = R† ¯f (RR†)R ≈ R† ¯f (CC†)R,

where the first approximation follows from the key lemma with

R ∈ Cr×n normalized rows of A, the equality follows from
¯f (x) =

f (x)/x , and the second approximation follows from the key lemma

with C ∈ Cr×c normalized columns of R. We then take
¯f (CC†) to

be the “U” of our RUR decomposition, finding it by naively comput-

ing the SVD of C in O
(
r2c

)
time. The analysis is straightforward:

we use that f and
¯f are Lipschitz to argue that the error from

approximating our matrix products propagates well. We also use

a variant of the key lemma to give a spectral norm variant of the

main theorem.

Though this analysis is much simpler than FKV, it gives improved

results in our applications. Our approach has several advantages.

The reduction first given by Tang to get an SVT-based low-rank

approximation bound from the standard notion of low-rank ap-

proximation [45, Theorem 4.7] induces a quadratic loss in precision,

which appears to be only an artifact of the analysis. Also, FKV gives

Frobenius norm error bounds, though for applications we often

only need spectral norm bounds; our main theorem can get im-

proved runtimes by taking advantage of the weaker spectral norm

bounds. Finally, we take a reduced number of rows compared to

columns, whereas FKV approximates the input by taking the same

number of rows and columns.

The flexibility of singular value transformation also leads to easy

generalization of results. For example, another important technical

difference from previous work [8, 9, 21] is that our results do not

assume that the input is strictly low-rank. Instead, following [22, 45],

our algorithms work on close-to-low-rank matrices by doing SVTs

that smoothly threshold to only operate on large-enough singular

values. That is, we implicitly take a low-rank approximation of the

input before applying our singular value transformation.

General transformation results. We can bootstrap our algorithm

for even SVT to get results for generic SVT (Theorem 3.4) and

eigenvalue transformation (Theorem 3.5).

For generic SVT: consider a function f : R → C satisfying

f (0) = 0 and a matrix A ∈ Cm×n . Given SQ(A) and SQ(A†), we
give an algorithm to output a CUR decomposition approximating

f (SV)(A). Our strategy is to apply our main result Theorem 3.2

to д(A†A), for д(x) := f (
√
x)/
√
x , and subsequently approximate

matrix products with Lemma 3.1 to get an approximation of the

form A′R′†UR + д(0)A:

f (SV)(A) = Aд(A†A) ≈ AR†UR +A(д(0)I) ≈ A′R′†UR + д(0)A.

Here, A′R′†UR is a CUR decomposition as desired, since A′ is a
normalized subset of columns of A. One could further approximate

д(0)A by a CUR decomposition if necessary (e.g. by adapting the

eigenvalue transformation result below). Some QML applications

of even SVT look similar to this (e.g., matrix inversion and Hamil-

tonian simulation), but we can use the additional structure in these

problems to do this kind of approximation better.

393

STOC ’20, June 22–26, 2020, Chicago, IL, USA Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang

As for eigenvalue transformation, consider a function f : R→
C and a Hermitian matrix H ∈ Cn×n , given SQ(H). We wish to

compute the eigenvalue transform f (H). If f is even (so f (x) =

f (−x)), then f (H) = f (
√
H†H), so the result follows from our main

theorem for even SVT.

For non-even f , we use a different strategy, similar to the one

used for quantum-inspired semidefinite programming [8]: first we

find the eigenvectors and eigenvalues of H and then apply f to

the eigenvalues. Let π (x) be a (smoothened) step function that is a

linear interpolation between 0 and 1 on [0.5ε2, ε2]. Then

H ≈ π (HH†)Hπ (H†H) ≈ R†π̄ (CC†)RHR†π̄ (CC†)R

≈ R†π̄ (CC†)Mπ̄ (CC†)R = R†(CσC
+
σ)
†π̄ (CC†)Mπ̄ (CC†)CσC

+
σR,

where the second approximation follows from Theorem 3.2, the

third approximation follows from the key lemma withM ≈ RHR†,
andCσ is the low-rank approximation ofC formed by transforming

C according to the “filter” function on x that is 0 for x < σ (< ε) and
x otherwise. Û := C+σR ∈ C

c×n
is close to an isometry, which we

argue by showing (C+σR)(C
+
σR)
† ≈ I . We are nearly done now: since

the rest of the matrix expression, C†σ π̄ (CC
†)Mπ̄ (CC†)Cσ ∈ C

c×c
,

consists of submatrices of H of size independent of n, we can di-

rectly compute its unitary eigendecomposition UDU †. This gives

the approximate decomposition H ≈ (ÛU)D(ÛU)†, with ÛU and

D acting as approximate eigenvectors and eigenvalues of H , respec-

tively. Some simple analysis shows that f (H) ≈ (ÛU)f (D)(ÛU)†

in the desired sense. Therefore, our output approximation of f (H)
comes in the form of an RUR decomposition that can be rewritten

in the form of an approximate eigendecomposition.

1.5 Related Work
Our work bridges the fields of randomized algorithms and quantum

algorithms for linear algebra. Thus, we interact with a diverse body

of related work.

Randomized numerical linear algebra. Generally speaking, the

techniques our framework uses belong to randomized linear algebra

algorithms (see the surveys [35, 48]). Our core primitive is impor-

tance sampling: see the survey by Kannan and Vempala [28] for

algorithms using this type of sampling. In addition to the low-rank

approximation algorithms [20] used in the quantum-inspired liter-

ature, others have used importance sampling for, e.g., orthogonal

tensor decomposition [16, 36, 43] (generalizing low-rank approxi-

mation [20]) and support vector machines [26].

Classical algorithms for quantum problems. We are aware of two

important prior results from before Tang’s first paper [45] that con-

nect quantum algorithms to randomized numerical linear algebra.

The first is Van den Nest’s work on using probabilistic methods for

quantum simulation [46], which defines a notion of “computation-

ally tractable” (CT) state equivalent to our notion of sampling and

query access and then uses it to simulate restricted classes of quan-

tum circuits. We share some essential ideas with this work, such as

the simple sampling lemma Lemma 2.9, but dequantized algorithms

critically use low-rank assumptions on the input for “simulating”

QML in a way that would not be possible were we only viewing

such algorithms as large quantum circuits. The second is a paper by

Rudi et al. [41] that uses the Nyström method to simulate a sparse

Hamiltonian H on a sparse input state in time poly-logarithmic in

dimension and polynomial in ∥H ∥F, assuming sampling and query

access to H . Our Hamiltonian simulation results do not require

a sparsity assumption and still achieve a dimension-independent

runtime, but get slightly larger exponents in exchange.

Practical implementation. A work by Arrazola et al. [4] imple-

ments and tests quantum-inspired algorithms for regression and

recommendation systems. This work makes various conclusions,

and for example, suggests that the ε2
scaling in the number of

rows/columns taken in our recommendation systems algorithm is

inherent. However, we are unsure of these results’ implications for

the broader question of whether QML algorithms can achieve prac-

tical speedups, for two reasons. First, our algorithms use a restricted

model of computation in order to get a broad asymptotic result for

generic applications of quantum machine learning. However, if we

wish to compare QML to the best classical algorithm in practice,

other sketching algorithms are more natural to run on a classical

computer and are likely to be faster. For example, Dahiya, Konomis,

and Woodruff [12] conducted an empirical study of sketching algo-

rithms for low-rank approximation on both synthetic datasets and

the movielens dataset, reporting that their implementation “finds

a solution with cost at most 10 times the optimal one . . . but does

so 10 times faster.” For comparison, Arrazola et al. [4] claim that

the running times of quantum-inspired algorithms are worse than

directly computing the singular value decomposition for medium-

sized matrices (e.g. 10
4 × 10

4
). Second, the authors implement the

quantum-inspired algorithms in a simple, non-optimized way in

Python and then compare it to the well-optimized LAPACK library

C implementation of singular value decomposition. These caveats

make it difficult to draw definitive conclusions about the practicality

of quantum-inspired algorithms as a whole from these experimental

results.

Quantum machine learning. As mentioned in Section 1.3, our

work has major implications for the landscape of quantum machine

learning. In particular, our work suggests that the most promis-

ing way to get exponential speedups for algorithms fitting in the

framework of quantum singular value transformation [22] is via

algorithms that use sparse matrices as input (as opposed to those

with input in QRAM), such as HHL [25]. Such algorithms have other

major caveats (mentioned by Aaronson [1]) that make it difficult to

find applications with the potential for practical super-polynomial

speedups. Proposals for such applications include Gaussian process

regression [50] and topological data analysis [31].

Related independent work. Independently from our work, Jeth-

wani, Le Gall, and Singh [27] simultaneously derived similar results.

They implicitly derive a version of our even SVT result, and use it

to achieve generic SVT (approximate SQ(b† f (SV)(A)) for a vector

b) by writing f (SV)(A) = Aд(A†A) for д(x) = f (
√
x)/
√
x and then

using sampling subroutines to get the solution from the resulting

expression b†AR†UR. It is difficult to directly compare the main

SVT results, because the parameters that appear in their runtime

bounds are somewhat non-standard, but one can see that for typical

394

Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for DequantizingQuantum Machine Learning STOC ’20, June 22–26, 2020, Chicago, IL, USA

choices of f , their results require a strictly low-rank A. In compari-

son our results apply to general A, and we also demonstrate how

to apply them to (re)derive dequantized algorithms.

1.6 Open Questions
Our framework recovers recent dequantization results, and we hope

that it will be used for dequantizing more quantum algorithms. In

the meantime, our work leaves several natural open questions.

First, in the quantum setting, linear algebra algorithms [22] can

achieve logarithmic dependence on the precision ε . Can classical

algorithms also achieve such exponentially improved dependence,

when the goal is restricted to sampling from the output (i.e., without

the requirement to query elements of the output)? If not, is there a

mildly stronger classical model that can achieve this? Could this

exponential advantage be exploited in a meaningful way?

Second, our algorithms still have significant slowdown as com-

pared to their quantum counterparts. Can we shave condition num-

ber factors to get runtimes of the form Õ

(
∥A ∥6

F

σ 6ε6
log

3 1

δ

)
(for the

recommendation systems application, for instance)? Can we get

even better runtimes by somehow avoiding SVD computation?

Finally, is there an approach to QML that does not go through

HHL (whose demanding assumptions make exponential speedups

difficult to demonstrate even in theory) or a low-rank assumption

(which, as we demonstrate, makes the tasks “easy” for classical

computers)?

2 PRELIMINARIES
To begin with, we define notation to be used throughout this pa-

per. For n ∈ N, [n] := {1, . . . ,n}. For z ∈ C, its absolute value

is |z | =
√
z∗z, where z∗ is the complex conjugate of z. f ≲ д de-

notes the ordering f = O(д) (and respectively for ≳ and ≂). Õ(д) is
shorthand for O(д poly(logд)). Finally, we assume that arithmetic

operations (e.g addition and multiplication of real numbers) and

function evaluation oracles (computing f (x) from x) take unit time,

and that queries to oracles (like the queries to input discussed in

Section 2.2) are at least unit time cost.

2.1 Linear Algebra
In this paper, we consider complex matricesA ∈ Cm×n form,n ∈ N.
For i ∈ [m], j ∈ [n], we let A(i, ·) denote the i-th row of A, A(·, j)
denote the j-th column of A, and A(i, j) denote the (i, j)-th element

of A. (A|B) denotes the concatenation of matrices A and B and

vec(A) ∈ Cmn
denotes the vector formed by concatenating the rows

of A. For vectors v ∈ Cn , ∥v ∥ denotes standard Euclidean norm

(so ∥v ∥ := (
∑n
i=1
|vi |

2)1/2). For a matrix A ∈ Cm×n , the Frobenius
norm of A is ∥A∥F := ∥vec(A)∥ = (

∑m
i=1

∑n
j=1
|A(i, j)|2)1/2 and the

spectral norm of A is ∥A∥ := ∥A∥Op := supx ∈Cn , ∥x ∥=1
∥Ax ∥.

A singular value decomposition (SVD) of A is a representation

A = UDV †, where for N := min(m,n), U ∈ Cm×N and V ∈ Cn×N

are isometries and D ∈ RN×N is diagonal with σi := D(i, i) and
σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. We can also write this decomposition as

A =
∑N
i=1

σiU (·, i)V (·, i)
†
. We now formally define singular value

transformation:

Definition 2.1. For a function f : [0,∞) → C such
9
that f (0) = 0

we define the singular value transform of A ∈ Cm×n via a singular

value decomposition A =
∑

min(m,n)
i=1

σiuiv
†
i as follows

f (SV)(A) :=

min(m,n)∑
i=1

f (σi)uiv
†
i . (1)

Definition 2.2. For a function f : R → C and a Hermitian

A ∈ Cn×n we define the eigenvalue transform of A via a unitary

eigendecomposition A =
∑n
i=1

λiviv
†
i as follows

f (EV)(A) :=

n∑
i=1

f (λi)viv
†
i . (2)

Since we only consider eigenvalue transformations of Hermitian

matrices, where singular vectors/values and eigenvectors/values

(roughly) coincide, the key difference is that eigenvalue transfor-

mations can distinguish eigenvalue sign. As this is the standard

notion of a matrix function, we will usually drop the superscript in

notation: f (A) := f (EV)(A).
We will use the following standard definition of a Lipschitz

function.

Definition 2.3. We say f : R→ C is L-Lipschitz on F ⊆ R if for

all x,y ∈ F, | f (x) − f (y)| ≤ L|x − y |.

2.2 Sampling and Query Access Oracles
Since we want our algorithms to run in time sublinear in input size,

we must be careful in defining the access model. Our input model is

unconventional, being designed as a reasonable classical analogue

for the input model of some quantum algorithms. The sampling

and query oracle we present below can be thought of as a classical

analogue to a quantum state, and will be used heavily to move

between intermediate steps of these quantum-inspired algorithms.

First, as a warmup, we define a simple query oracle:

Definition 2.4 (Query access). For a vector v ∈ Cn , we have Q(v),
query access to v if for all i ∈ [n], we can obtain v(i). Likewise, for
a matrix A ∈ Cm×n , we have Q(A) if for all (i, j) ∈ [m] × [n], we
can obtain A(i, j). Let q(v) (or q(A)) denote the (time) cost of such

a query.

For example, in the typical RAM access model, we are given our

input v ∈ Cn as Q(v) with q(v) = 1. For brevity, we will sometimes

abuse this notation (and other access notations) and write, for

example, “Q(A) ∈ Cm×n” instead of “Q(A) for A ∈ Cm×n”.

Definition 2.5 (Sampling and query access to a vector). For a

vector v ∈ Cn , we have SQ(v), sampling and query access to v , if
we can:

(1) Query for entries of v as in Q(v);
(2) Obtain independent samples i ∈ [n] following the distribu-

tion Dv ∈ R
n
, where Dv (i) := |v(i)|2/∥v ∥2;

(3) Query for ∥v ∥.

Let q(v), s(v), and n(v) denote the cost of querying entries, sampling

indices, and querying the norm respectively. Further define sq(v) :=

q(v) + s(v) + n(v).
9
The f (0) = 0 requirement ensures that the definition is independent of the (not

necessarily unique) choice of SVD.

395

STOC ’20, June 22–26, 2020, Chicago, IL, USA Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang

We will refer to these samples as importance samples from v ,
though one can view them as measurements of the quantum state

|v⟩ := 1

∥v ∥
∑
vi |i⟩ in the computational basis.

Quantum-inspired algorithms typically don’t give exact sam-

pling and query access to the output vector. Instead, we get a more

general version of sampling and query access, which assumes we

can only access a sampling distribution that oversamples the correct
distribution.

10

Definition 2.6. Forv ∈ Cn ,p ∈ Rn
≥0

is aϕ-oversampled importance
sampling distribution of v (for ϕ ≥ 1) if

∑n
i=1

p(i) = 1 and, for all

i ∈ [n], p(i) ≥ Dv (i)/ϕ =
|v(i) |2

ϕ ∥v ∥2 .

If p is a ϕ-oversampled importance sampling distribution of v ,
any given output i ∈ [n] is nomore thanϕ-times rarer inp compared

to the desired distribution Dv . As a result, intuitively, estimators

that use Dv can also use p, with a factor ϕ increase in the number

of samples necessary. For example, we can convert a sample from p
to a sample from Dv with probability 1/ϕ with rejection sampling:

sample an i distributed as p, then accept the sample with probability

(Dv (i)/p(i))/ϕ.

Definition 2.7 (Oversampling and query access). For v ∈ Cn and

ϕ ≥ 1, we have SQϕ (v), ϕ-oversampling and query access to v , if we
have Q(v) and SQ(ṽ) for ṽ ∈ Cn a vector satisfying β := ∥ṽ ∥2 =
ϕ∥v ∥2 and |ṽ(i)|2 ≥ |v(i)|2 for all i ∈ [n]. Denote p(i) := Dṽ (i),
sϕ (v) := s(ṽ), qϕ (v) := q(ṽ), nϕ (v) := n(ṽ), and sqϕ (v) := sϕ (v) +
qϕ (v) + q(v) + nϕ (v).

SQ
1
(v) is the same as SQ(v), if we take ṽ = v . Note that our

algorithms need to know β (even if ∥v ∥ is known), as β cannot be

deduced from a small number of queries, samples, or probability

computations. So, we will be choosing ṽ (and, correspondingly,

ϕ) such that ∥ṽ ∥2 remains computable, even if potentially some

cṽ satisfies all our other requirements for some c < 1 (giving a

smaller value of ϕ). Finally, note that oversampling access implies

an approximate version of the usual sampling access:

Lemma 2.8. Suppose we are given SQϕ (v) and some δ ∈ (0, 1].
Denote s̃q(v) := ϕsqϕ (v) log

1

δ . We can sample fromDv with proba-
bility ≥ 1 − δ in O(s̃q(v)) time. We can also estimate ∥v ∥ to ν multi-

plicative error for ν ∈ (0, 1] with probability ≥ 1 − δ in O
(

1

ν 2
s̃q(v)

)
time.

Wewill generally compare our algorithms, which output SQϕ (v),

to a quantum algorithm that can output (and measure) |v⟩. So,
s̃q(v) is the relevant complexity measure that we will analyze and

bound: if we wish to mimic samples from the output of the quantum

algorithm we dequantize, we will pay a one-time cost to run our

quantum-inspired algorithm, and then pay s̃q(v) cost per additional
measurements.

Lemma 2.9 (Linear combinations, Proposition 4.3 of [45]). Given
SQ(v1), . . . , SQ(vk) ∈ C

n and λ1, . . . , λk ∈ C, we have SQϕ (
∑
λivi)

for ϕ = k
∑
∥λivi ∥2

∥
∑
λivi ∥2

and sqϕ (
∑
λivi) := maxi ∈[k] s(vi)+

∑k
i=1

q(vi)

10
Oversampling turns out to be the “natural” form of approximation in this setting;

other forms of error do not propagate through quantum-inspired algorithms well, and

the ones that do can usually be translated into oversampling of a desired distribution.

(after paying O
(∑k

i=1
n(vi)

)
one-time pre-processing cost to query

for norms).

So, our general goal will be to express our output vector as a

linear combination of a small number of input vectors that we have

sampling and query access to. Then, we can get an approximate SQ

access to our output using Lemma 2.8, where we pay an additional

“cancellation constant” factor of k
∑
∥λivi ∥2

∥
∑
λivi ∥2

. We introduce some

notation to this: for V ∈ Cn×k the matrix whose columns are vi ’s
and x ∈ Ck the vector whose entries are λi ’s,

CV ,x :=

∑
i |x(i)|

2∥V (·, i)∥2

∥
∑
i x(i)V (·, i)∥

2
≤
∥x ∥2∥V ∥2

F

∥Vx ∥2
.

As we can see, kCV ,x is only large when Vx has significantly

smaller norm than the components vi in the sum suggest. Usually,

in our applications, we can intuitively think about this overhead

being small when the desired output vector mostly lies in a sub-

space spanned by singular vectors with large singular values in our

low-rank input. Quantum algorithms also have similar overheads.

For example, the quantum recommendation systems algorithm [29]

incurs such a cost factor when performing a swap test to project the

input vector on the subspace spanned by the top singular vectors of

the input matrix. Assuming this cancellation is not too large, other

subroutines dominate the runtime in our applications.

We also define oversampling and query access for a matrix.

Though the oversampling approximation is unusual, this model is

also discussed in prior work [15, 20] and is the right notion for the

sampling procedures we will use.

Definition 2.10 (Oversampling and query access to a matrix). For

a matrixA ∈ Cm×n , we have SQ(A) if we have SQ(A(i, ·)) for all i ∈
[m] and SQ(a) for a ∈ Rm the vector of row norms (a(i) := ∥A(i, ·)∥).

We have SQϕ (A) if we have Q(A) and SQ(Ã) for Ã ∈ Cm×n

satisfying β := ∥Ã∥2
F
= ϕ∥A∥2

F
and |Ã(i, j)|2 ≥ |A(i, j)|2 for all

(i, j) ∈ [m] × [n]. Let p and pi denote the distributions on ã and

Ã(i, ·), respectively. The (known upper bounds on the) complexity

of (over)sampling and querying from the matrix A is denoted by

sϕ (A) := max(s(Ã(i, ·)), s(ã)), qϕ (A) := max(q(Ã(i, ·)), q(ã)), q(A) :=

max(q(A(i, ·))), and nϕ (A) := n(ã) respectively. We also use the no-

tation sqϕ (A) := max(sϕ (A), qϕ (A), q(A), nϕ (A)) and sqϕ (A
(†)) :=

sqϕ (A) + sqϕ (A
†) sometimes omitting the subscripts if ϕ = 1.

Observe that SQϕ (A) implies SQϕ (vec(A)): we can take
�
vec(A) =

vec(Ã), and the distribution for vec(Ã) is sampled by sampling i
from Dã , and then sampling j from DÃ(i , ·). This gives the out-

put (i, j) with probability |Ã(i, j)|2/∥Ã∥2
F
. Therefore, SQϕ (A) can be

thought of as SQϕ (vec(A)), with the additional guarantees that we

can compute marginals

∑n
j=1
D

vec(Ã)(i, j) and can sample from the

resulting conditional distributions D
vec(Ã)(i, j)/

∑n
j=1
D

vec(Ã)(i, j).

Lemma2.11. Given vectorsu ∈ Cm,v ∈ Cn with SQφu (u), SQφv (v)

access we have SQϕ (A) for their outer product A := uv† with ϕ =
φuφv and sϕ (A) = sφu (u) + sφv (v), qϕ (A) = qφu (u) + qφv (v),
q(A) = q(u) + q(v), and nϕ (A) = nφu (u) + nφv (v),

The above shows that Definition 2.10 is a faithful generalization

of Definition 2.7, i.e., for a vectorv we get back essentially the same

396

Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for DequantizingQuantum Machine Learning STOC ’20, June 22–26, 2020, Chicago, IL, USA

∥a∥2 = ∥A∥2F

|a1 |
2 = ∥A(1, ·)∥2 |a2 |

2 = ∥A(2, ·)∥2

|A(1, 1)|2 + |A(1, 2)|2 |A(1, 3)|2 + |A(1, 4)|2 |A(2, 1)|2 + |A(2, 2)|2 |A(2, 3)|2 + |A(2, 4)|2

|A(1, 1)|2 |A(1, 2)|2 |A(1, 3)|2 |A(1, 4)|2 |A(2, 1)|2 |A(2, 2)|2 |A(2, 3)|2 |A(2, 4)|2

A(1,1)
|A(1,1) |

A(1,2)
|A(1,2) |

A(1,3)
|A(1,3) |

A(1,4)
|A(1,4) |

A(2,1)
|A(2,1) |

A(2,2)
|A(2,2) |

A(2,3)
|A(2,3) |

A(2,4)
|A(2,4) |

Figure 1: Dynamic data structure for A ∈ C2×4. We compose the data structure for a with the data structure for A’s rows.

definition if we think about it as a row / column matrix. Using the

same ideas as in Lemma 2.9, we can extend sampling and query

access of input matrices to linear combinations of those matrices.

Lemma 2.12. Given SQφ (1) (A
(1)), . . . , SQφ (τ) (A

(τ)) ∈ Cm×n , we

have SQϕ (A) for A :=
∑τ
t=1

λtA
(t) with ϕ =

τ
∑τ
t=1

φ (t) ∥λtA(t) ∥2
F

∥A∥2
F

and

sϕ (A) = maxt ∈[τ] sφ (t) (A
(t)) + qϕ (A), qϕ (A) =

∑τ
t=1

qφ (t) (A
(t)),

q(A) =
∑τ
t=1

q(A(t)), and nϕ (A) = 1 (after paying
∑τ
t=1

nφ (t) (A
(t))

one-time pre-processing cost).

Quantum machine learning algorithms and their corresponding

quantum-inspired algorithms have the potential to achieve expo-

nential speedups when their state preparation procedures run in

time polylog(n). So, the most interesting regime for us is when

our sampling and query oracles take polylogarithmic time. This

assumption can be satisfied in various ways.

Remark 2.13. Below, we list various settings where we have sam-

pling and query access to input matrices and vectors, and whenever

relevant, we compare the resulting runtimes to the time to prepare

analogous quantum states. Note that because we do not analyze

classical algorithms in the bit model, their runtimes may be missing

log factors that should be counted for a fair comparison between

classical and quantum.

Data structure. Given v ∈ Cn in the standard RAM model, the

alias method [47] takes Θ(n) pre-processing time to output a data

structure that uses Θ(n) space and can sample from v in Θ(1) time.

In other words, we can get SQ(v) with sq(v) = Θ(1) in O(n) time,

and by extension, for a matrixA ∈ Cm×n , SQ(A) with sq(A) = Θ(1)
in O(mn) time.

More precisely, the pre-processing time is linear in the number

of non-zero entries of the input vector/matrix (which we denote

nnz(v)/nnz(A)). A direct consequence of this observation is that

the quantum-inspired setting is more restrictive than the typical

randomized numerical linear algebra algorithm setting. With this

data structure, a fast quantum-inspired algorithm (say, one run-

ning in time O(T sq(A)) for T independent of input size) implies

an algorithm in the standard computational model (running in

O(nnz(A) +T) time).

Dynamic data structure. QML algorithms often assume that their

input is in a QRAM data structure [6, 23, 30, 37, 40, 49], arguing that,

with the right type of quantum access, this data structure allows for

circuits preparing input states with linear gate count but polylog

depth. Hardware might be able to parallelize these circuits enough

so that they run in polylog time. In the interest of considering the

best of all possible worlds for QML, we will treat circuit depth as

runtime for QRAM and ignore technicalities.

This data structure (see Fig. 1) admits sampling and query access

to the data it stores with just-as-good runtimes: specifically, for

a matrix A ∈ Cm×n , we get SQ(A) with q(A) = O(1) and s(A) =
O(logmn). So, quantum-inspired algorithms can be used whenever

QML algorithms assume this form of input.

Further, unlike the alias method stated above, this data structure

supports updating entries in O(logmn) time, which can be useful

for applications of QML where data can accumulate over time [29].

Integrability assumption. For v ∈ Cn , suppose we can compute

entries and sums

∑
i ∈I (b) |vi |

2
in timeT , where I (b) ⊂ [n] is the set

of indices whose binary representation begins with the bitstring b.
Then we have SQ(v) where q(v) = O(T), s(v) = O(T logn), and
n(v) = O(T). Analogously, a quantum state corresponding to v
can be prepared in time O(T logn) via Grover-Rudolph state prepa-

ration [24]. (One can think about the QRAM data structure as

pre-computing all the necessary sums for this protocol.)

Uniformity assumption. Given O(1)-time Q(v) ∈ Cn and a β =
ϕ∥v ∥2 such that max |vi |

2 ≤ β/n, we have SQϕ (v) with sqϕ (v) =

O(1), by using the all-1 vector times

√
β/n as an upper bound. As-

suming the ability to query entries ofv in superposition, a quantum

state corresponding to v can be prepared in time O
(√
ϕ logn

)
.

Sparsity assumption. If A ∈ Cm×n has at most s non-zero entries
per row (with efficiently computable locations) and the matrix

elements are |A(i, j)| ≤ c (and efficiently computable), then we have

SQϕ (A) for ϕ = c
2 sm
∥A∥2

F

, simply by using the uniform distribution

over non-zero entries for the oversampling and query oracles. For

example, for SQ(ã) we can set ã(i) := c
√
s , and for Ã(i, ·) we use the

vector with entries c at the non-zeros of A(i, ·) (potentially adding

some “dummy” zero locations to have exactly s non-zeroes).

397

STOC ’20, June 22–26, 2020, Chicago, IL, USA Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang

If A is not much smaller than we expect, ϕ is independent of

dimension. For example, if A has exactly s non-zero entries per

row and |A(i, j)| ≥ c ′ for non-zero entries, then ϕ ≤ (c/c ′)2. This
kind of sparsity assumption is used in some QML and Hamiltonian

simulation problems [25].

CT states. In 2009, Van den Nest defined the notion of a “compu-

tationally tractable” (CT) state [46]. Using our notation, |ψ ⟩ ∈ Cn

is a CT state if we have SQ(ψ) with sq(ψ) = polylog(n). Van den

Nest’s paper identifies several classes of CT states, including prod-

uct states, quantum Fourier transforms of product states, matrix

product states of polynomial bond dimension, stabilizer states, and

states from matchgate circuits.

2.3 Matrix Sketches
Definition 2.14. For a distribution p ∈ Rm , we say that a matrix

S ∈ Rs×m is sampling according to p if each row of S is indepen-

dently chosen to be ei/
√
sp(i) with probability pi .

We call such S’s importance sampling sketches when p comes

from SQ(A) for some A ∈ Cm×n , and we call them ϕ-oversampled

importance sampling sketches if p comes from SQϕ (A).

In the standard algorithm setting, sketching A down to SA with

an importance sampling sketch requires reading all ofA to compute

Da . If we have SQϕ (A), we can efficiently create a ϕ-oversampling

sketch S by pulling samples from p, and SA will be a (normalized)

subset of rows of A. The core technique of our quantum-inspired

algorithms is to use these kinds of sketches to approximate matrix

expressions. Further, we can chain them with a simple observation.

Lemma 2.15. Given SQϕ (A) and S ∈ Rr×m (described in pairs
(i1,p(i1)), . . . , (ir ,p(ir))) sampled according to p with r ≥ 2ϕ2

ln
2

δ ,
then with probability ≥ 1 − δ we have SQ

2ϕ ((SA)
†) with q((SA)†) =

q(A), sϕ ((SA)†) = sϕ (A)+rqϕ (A), qϕ ((SA)†) = rqϕ (A), andnϕ ((SA)†) =
nϕ (A). If ϕ = 1, then for all r , we have SQ((SA)†) with the runtimes
specified above.

When we refer to sketching A down to SAT , we use the above
observation for sampling T .

3 MAIN RESULTS
3.1 Singular Value Transformation
We begin with a fundamental observation: given sampling and

query access to a matrix A, we can approximate the matrix product

A†B by a sum of rank-one outer products. This is the key lemma

we use most in our applications.

Lemma 3.1 (Approximating matrix multiplication to Frobenius

norm error; corollary of [14, Theorem 1])). ConsiderX ∈ Cm×n,Y ∈
Cm×p , and take S ∈ Rs×m to be sampled according to r :=

p+q
2

, where
p,q ∈ Rm are ϕ1,ϕ2-oversampled importance sampling distributions
from X ,Y respectively. Then,

Pr

[
∥X †S†SY − X †Y ∥F <

√
8ϕ1ϕ2 log 2/δ

s
∥X ∥F∥Y ∥F

]
> 1 − δ .

Moreover, ∥SX ∥2
F
≤ 2ϕ1∥X ∥

2

F
and ∥SY ∥2

F
≤ 2ϕ2∥Y ∥

2

F
.

We make a couple remarks. First, the bounds on ∥SX ∥2
F
can be

improved to something like ∥X ∥2
F
for a sufficiently large sketch,

but we will not need such bounds. Second, if X = Y , we can get

an improved spectral norm bound: instead of depending on ∥X ∥2F ,
error depends on ∥X ∥∥X ∥F .

Theorem 3.2 (Even singular value transformation). LetA ∈
Cm×n and f : R+ → C be such that, f and ¯f (x) := (f (x) − f (0))/x
are L-Lipschitz and L′-Lipschitz, respectively, on ∪ni=1

[σ 2

i −d,σ
2

i +d]

for some d > 0. Take parameters ε and δ such that 0 < ε ≲ L∥A∥2∗ ,

δ ∈ (0, 1], and d > ε̄ := ∥A∥∥A∥F

(
ϕ2

log(1/δ)
min(r ,c)

)
1/2
. Choose a norm

∗ ∈ {F,Op}.
Given SQϕ (A), consider the sketch S ∈ R

r×m sampled from p and
the sketchT † ∈ Rc×n sampled from the distribution for SQ

2ϕ ((SA)
†)

(given by Lemma 2.15), where r = Ω̃
(
ϕ2L2∥A∥2∗ ∥A∥

2

F

1

ε2
log

1

δ

)
and

c = Ω̃
(
ϕ2L′2∥A∥4∥A∥2∗ ∥A∥

2

F

1

ε2
log

1

δ

)
. Then, for R := SA and C :=

SAT , we can achieve the bound

Pr

[
∥R† ¯f (CC†)R + f (0)I − f (A†A)∥∗ > ε

]
< δ . (3)

Finding the sketches takes time O
(
(r + c)sqϕ (A)

)
.

We remark that no additional log terms are necessary (i.e., Ω̃
becomes Ω) when Frobenius norm is used. Later we will need some

bounds on the norms of the matrices in our decomposition. The

following lemma gives the bounds we need for our applications.

Lemma 3.3 (Norm bounds for even singular value transformation).
Suppose the assumptions from Theorem 3.2 hold and the event in
Eq. (3) occurs (that is, R† ¯f (CC†)R ≈ f (A†A) − f (0)I). Then we can
additionally assume that the following bounds also hold:

∥R∥ = O(∥A∥) and ∥R∥F = O(∥A∥F), (4)

∥ ¯f (CC†)∥ ≤ max

{
| ¯f (x)|

���x ∈ min(r ,c)⋃
i=1

[σ 2

i − ε̄,σ
2

i + ε̄]
}
, (5)

when ∗ = Op,

R†√ ¯f (CC†)

 ≤ √
∥ f (A†A) − f (0)I ∥ + ε . (6)

While we will primarily use the simple and fast primitive of even

singular value transformation to recover “dequantized QML”-type

results, we can also get generic singular value transformation and

eigenvalue transformation results by bootstrapping Theorem 3.2.

Theorem 3.4 (Generic singular value transformation). Let
A ∈ Cm×n be given with both SQϕ (A) and SQϕ (A

†) and let f : R→

C be a function such that f (0) = 0, д(x) := f (
√
x)/
√
x is L-Lipschitz,

and д̄(x) := д(x)/x is L′-Lipschitz. Then, for 0 < ε ≲ L∥A∥3, we
can output sketches R := SA ∈ Cr×n and C := AT ∈ Cm×c , along

with M ∈ Cr×c , with r = Ω̃
(
ϕ2L2∥A∥2∥A∥4

F

1

ε2
log

1

δ

)
and c =

Ω̃
(
ϕ2L2∥A∥4∥A∥2

F

1

ε2
log

1

δ

)
, such that

Pr

[
∥CMR + д(0)A − f (SV)(A)∥ > ε

]
< δ .

Finding S,M , and T takes time

Õ

(
(L4L′2∥A∥16∥A∥6

F
+ L6∥A∥10∥A∥8

F
)
ϕ6

ε6
log

3
(1

δ

)
sqϕ

(
A(†)

))
.

398

Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for DequantizingQuantum Machine Learning STOC ’20, June 22–26, 2020, Chicago, IL, USA

Theorem 3.5 (Eigenvalue transformation). Suppose we are
given a Hermitian SQϕ (A) ∈ C

n×n , a function f : R → C that
is L-Lipschitz on ∪ni=1

[λi − d, λi + d] for some d > ε
L , and some11

ε ≲ L∥A∥ ∥A∥
∥A∥F

. Then we can output S ∈ Cs×n , N ∈ Cs
′×s , and D ∈

Cs
′×s ′ with s = Õ

(
ϕ2∥A∥4∥A∥2

F

L6

ε6
log

1

δ

)
and s ′ = O

(
∥A∥2

F
L2/ε2

)
,

such that

Pr

[
∥(SA)†N †DN (SA) + f (0)I − f (EV)(A)∥ > ε

]
< δ ,

in time Õ
(
L22ε−22∥A∥16∥A∥6

F

(
log

3 1

δ
)
sqϕ (A)

)
. Moreover, this de-

composition satisfies the following further properties. First, NSA is an
approximate isometry: ∥(NSA)(NSA)† − I ∥ ≤ (ε

L ∥A ∥)
3. Second, D is

a diagonal matrix and its diagonal entries satisfy |D(i, i) + f (0) −
f (λi)| ≤ ε for all i ∈ [s ′] (when eigenvalues λi are appropriately
ordered).

3.2 Dequantizing QSVT
We can use the above results to dequantize the quantum singular

value transformation described by Gilyén et al. [22] in the case of

close-to-low-rank input.

Definition 3.6. For a matrix A ∈ Cm×n and p(x) ∈ C[x] degree-d
polynomial of parity-d (i.e., even if d is even and odd if d is odd),

we define the notation p(QV)(A) in the following way:

(1) If p is even, meaning that we can express p(x) = q(x2) for

some polynomial q(x), then

p(QV)(A) := q(A†A) = p(
√
A†A).

(2) If p is odd, meaning that we can express p(x) = x · q(x2) for

some polynomial q(x), then

p(QV)(A) := A · q(A†A).

Theorem 3.7. Suppose we are given amatrixA ∈ Cm×n satisfying
∥A∥F = 1 via the oracles for SQ(A)with sq(A) = O(log(mn)), a vector
SQ(b) ∈ Cn with ∥b∥ = 1 and sq(b) = O(logn), and a degree-d
polynomial p(x) of parity-d such that |p(x)| ≤ 1 for all x ∈ [−1, 1].

Then with probability ≥ 1 − δ , for ε a sufficiently small constant,
we can get SQϕ (v) ∈ C

n such that ∥v −p(QV)(A)b∥ ≤ ε ∥p(QV)(A)b∥

in poly

(
d, 1

∥p(QV)(A)b ∥
, 1

ε ,
1

δ , logmn
)
time (with s̃q(v) also having

similar runtime bound).

From this result it follows that QSVT, as described in [22, The-

orem 17], has no exponential speedup when the block-encoding

of A comes from a quantum-accessible “QRAM” data structure

as in [22, Lemma 50]. In the setting of QSVT, given A and b in

QRAM, one can prepare |b⟩ and construct a block-encoding for

A/∥A∥F = A in polylog(mn) time. Then one can apply (quantum)

SVT by a degree-d polynomial on A and apply the resulting map to

|b⟩ with d · polylog(mn) gates and finally project down to get the

state |p(QV)(A)b⟩ with probability ≥ 1−δ afterΘ
(

1

∥p(QV)(A)b ∥
log

1

δ
)

iterations of the circuit. So, getting a sample from |p(QV)(A)b⟩ takes
Θ

(
d 1

∥p(QV)(A)b ∥
polylog(mn/δ)

)
time. This circuit gives an exact

11
The correct way to think about ε is as some constant fraction of L ∥A∥. If ε > L ∥A∥

then f (0)I is a satisfactory approximation. The bound we give says that we want an at

least ∥A ∥F/∥A ∥ improvement over trivial, which is modest in the close-to-low-rank

regime that we care about. Similar assumptions appear in applications.

outcome, possibly with some log(1/ε) factors representing the dis-

cretization error in truncating real numbers to finite precision

(which we ignore, since we do not account for them in our classical

algorithm runtimes).

Analogously, by Remark 2.13, having A and b in (Q)RAM im-

plies having SQ(A) and SQ(b) with sq(A) = O(logmn) and sq(b) =
O(logn). Since QSVT also needs to assume maxx ∈[−1,1] |p(x)| ≤ 1,

the classical procedure matches the assumptions for QSVT. Our

algorithm runs only polynomially slower than the quantum algo-

rithm, since the quantum runtime clearly depends on d , 1

∥p(QV)(A)b ∥
,

and log(mn). We are exponentially slower in ε and δ (these errors

are conflated for the quantum algorithm). However, this exponen-

tial advantage vanishes if the desired output isn’t a quantum state

but some fixed value (or an estimate of one), since then the quan-

tum algorithm must also pay
1

ε during the sampling or tomography

procedures (meanwhile the success probability 1-δ can be typically

exponentially boosted on the classical side). Note that, unlike in

the quantum output, we can query entries of the output, which a

quantum algorithm cannot do without paying at least a
1

ε factor.

Theorem 3.7 also dequantizes QSVT for block-encodings of den-

sity operators when the density operator comes from some well-

structured classical data. Indeed, [22, Lemma 45] assumes we can

efficiently prepare a purification of the density operator ρ. The
rough classical analogue is the assumption that we have sampling

and query access to someA ∈ Cm×n with ρ = A†A. Since Tr(ρ) = 1,

we have ∥A∥F = 1. Then, p(QV)(ρ) = r (QV)(A) for r (x) = p(x2) and

∥ρ∥ = ∥A∥2, so we can repeat the above argument to show the lack

of exponential speedup for this input model too.

We can mimic the quantum algorithm with our techniques be-

cause low-degree polynomials are smooth. For example, a degree-d
polynomial bounded on [−1, 1] isd2

-Lipschitz, byMarkov’s inequal-

ity. We use inequalities of this type to prove the statement.

Technically, QSVT can use A† in QRAM instead of A (cf. [22,

Lemma 50]). This does not result in a discrepancy, because in the

full version we describe a method to get SQ(B) and SQ(B†) for a
matrix B satisfying ∥B −A∥ ≤ ε , given only SQ(A).

ACKNOWLEDGMENTS
ET thanks Craig Gidney for the reference to alias sampling. AG

is grateful to Saeed Mehraban for insightful suggestions about

proving perturbation bounds on partition functions. Part of this

work was done while visiting the Simons Institute for the Theory of

Computing. We gratefully acknowledge the Institute’s hospitality.

NHC, HHL, and CW were supported by Scott Aaronson’s Van-

nevar Bush Faculty Fellowship from the U.S. Department of De-

fense. AG acknowledges funding provided by Samsung Electronics

Co., Ltd., for the project “The Computational Power of Sampling on

Quantum Computers”; additional support was provided by the Insti-

tute for Quantum Information and Matter, an NSF Physics Frontiers

Center (NSF Grant PHY-1733907). TL was supported by IBM PhD

Fellowship, QISE-NET Triplet Award (NSF DMR-1747426), and the

U.S. Department of Energy, Office of Science, Office of Advanced Sci-

entific Computing Research, Quantum Algorithms Teams program.

ET was supported by the National Science Foundation Graduate

Research Fellowship Program under Grant No. DGE-1762114.

399

STOC ’20, June 22–26, 2020, Chicago, IL, USA Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang

REFERENCES
[1] Scott Aaronson. 2015. Read the fine print. Nature Physics 11, 4 (2015), 291.
[2] Joran van Apeldoorn and András Gilyén. 2019. Improvements in quantum SDP-

solving with applications. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming (ICALP). 99:1–99:15. arXiv: 1804.05058

[3] Sanjeev Arora and Satyen Kale. 2016. A Combinatorial, Primal-Dual Approach

to Semidefinite Programs. Journal of the ACM 63, 2 (2016), 12:1–12:35. Earlier

version in STOC’07.

[4] Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd.

2019. Quantum-inspired algorithms in practice. arXiv: 1905.10415
[5] Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M.

Svore, and Xiaodi Wu. 2019. Quantum SDP solvers: Large speed-ups, optimality,

and applications to quantum learning. In Proceedings of the 46th International Col-
loquium on Automata, Languages, and Programming (ICALP). 27:1–27:14. arXiv:

1710.02581
[6] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. 2019. The power

of block-encoded matrix powers: improved regression techniques via faster

Hamiltonian simulation. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming (ICALP). 33:1–33:14. arXiv: 1804.01973

[7] Zhihuai Chen, Yinan Li, Xiaoming Sun, Pei Yuan, and Jialin Zhang. 2019. A

quantum-inspired classical algorithm for separable non-negative matrix factor-

ization. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 4511–4517. arXiv: 1907.05568

[8] Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and ChunhaoWang. 2019. Quantum-

inspired classical sublinear-time algorithm for solving low-rank semidefinite

programming via sampling approaches. (2019). arXiv: 1901.03254
[9] Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. 2018. Quantum-inspired

sublinear classical algorithms for solving low-rank linear systems. (2018). arXiv:

1811.04852
[10] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil,

Andrea Rocchetto, Simone Severini, and Leonard Wossnig. 2018. Quantum

machine learning: a classical perspective. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 474, 2209 (Jan. 2018), 20170551.

[11] Iris Cong and Luming Duan. 2016. Quantum discriminant analysis for dimen-

sionality reduction and classification. New Journal of Physics 18, 7 (jul 2016),

073011. arXiv: 1510.00113
[12] Yogesh Dahiya, Dimitris Konomis, and David P Woodruff. 2018. An empirical

evaluation of sketching for numerical linear algebra. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 1292–1300.

[13] Chen Ding, Tian-Yi Bao, and He-Liang Huang. 2019. Quantum-Inspired Support

Vector Machine. arXiv: 1906.08902
[14] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. 2006. Fast Monte Carlo

algorithms for matrices I: Approximating matrix multiplication. SIAM J. Comput.
36, 1 (2006), 132–157.

[15] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. 2002. Competitive

recommendation systems. In Proceedings of the 34th ACM Symposium on the
Theory of Computing (STOC). 82–90.

[16] Petros Drineas and Michael W. Mahoney. 2007. A randomized algorithm for a

tensor-based generalization of the singular value decomposition. Linear Algebra
Appl. 420, 2-3 (2007), 553–571.

[17] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. 2008. Relative-

error CUR matrix decompositions. SIAM J. Matrix Anal. Appl. 30, 2 (Jan. 2008),
844–881.

[18] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. 2019. A quantum-

inspired algorithm for general minimum conical hull problems. arXiv:

1907.06814
[19] Vedran Dunjko and Peter Wittek. 2020. A non-review of Quantum Machine

Learning: trends and explorations. Quantum Views 4 (March 2020), 32.

[20] Alan Frieze, Ravi Kannan, and Santosh Vempala. 2004. Fast Monte-Carlo algo-

rithms for finding low-rank approximations. Journal of the ACM 51, 6 (2004),

1025–1041.

[21] András Gilyén, Seth Lloyd, and Ewin Tang. 2018. Quantum-inspired low-rank

stochastic regression with logarithmic dependence on the dimension. (2018).

arXiv: 1811.04909
[22] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. 2019. Quantum

singular value transformation and beyond: exponential improvements for quan-

tum matrix arithmetics. In Proceedings of the 51st ACM Symposium on the Theory
of Computing (STOC). 193–204. arXiv: 1806.01838

[23] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum random

access memory. Physical Review Letters 100, 16 (2008), 160501. arXiv: 0708.1879

[24] Lov Grover and Terry Rudolph. 2002. Creating superpositions that correspond to

efficiently integrable probability distributions. (2002). arXiv: quant-ph/0208112
[25] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm

for linear systems of equations. Physical Review Letters 103, 15 (2009), 150502.
arXiv: 0811.3171

[26] Elad Hazan, Tomer Koren, and Nati Srebro. 2011. Beating SGD: Learning SVMs in

sublinear time. In Advances in Neural Information Processing Systems 24, J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (Eds.). 1233–

1241.

[27] Dhawal Jethwani, François Le Gall, and Sanjay K. Singh. 2019. Quantum-inspired

classical algorithms for singular value transformation. (2019). arXiv: 1910.05699
[28] Ravindran Kannan and Santosh Vempala. 2017. Randomized algorithms in nu-

merical linear algebra. Acta Numerica 26 (2017), 95–135.
[29] Iordanis Kerenidis and Anupam Prakash. 2017. Quantum recommendation sys-

tems. In Proceedings of the 8th Innovations in Theoretical Computer Science Con-
ference (ITCS). 49:1–49:21. arXiv: 1603.08675

[30] Iordanis Kerenidis and Anupam Prakash. 2020. Quantum gradient descent for

linear systems and least squares. Physical Review A 101, 2 (2020), 022316. arXiv:

1704.04992
[31] Seth Lloyd, Silvano Garnerone, and Paolo Zanardi. 2016. Quantum algorithms

for topological and geometric analysis of data. Nature Communications 7 (2016),
10138. arXiv: 1408.3106

[32] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms

for supervised and unsupervised machine learning. arXiv: 1307.0411
[33] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum principal

component analysis. Nature Physics 10 (2014), 631–633. arXiv: 1307.0401
[34] Guang Hao Low and Isaac L. Chuang. 2017. Optimal Hamiltonian simulation by

quantum signal processing. Physical Review Letters 118, 1 (2017), 010501. arXiv:

1606.02685
[35] Michael W. Mahoney. 2011. Randomized algorithms for matrices and data. Foun-

dations and Trends® in Machine Learning 3, 2 (2011), 123–224.

[36] Michael W. Mahoney, Mauro Maggioni, and Petros Drineas. 2008. Tensor-CUR

decompositions for tensor-based data. SIAM J. Matrix Anal. Appl. 30, 3 (2008),
957–987.

[37] Anupam Prakash. 2014. Quantum algorithms for linear algebra and machine
learning. Ph.D. Dissertation. UC Berkeley.

[38] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (2018), 79. arXiv: 1801.00862

[39] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum support

vector machine for big data classification. Physical Review Letters 113, 13 (2014),
130503. arXiv: 1307.0471

[40] Patrick Rebentrost, Maria Schuld, Leonard Wossnig, Francesco Petruccione, and

Seth Lloyd. 2019. Quantum gradient descent and Newton’s method for con-

strained polynomial optimization. New Journal of Physics 21, 7 (2019), 073023.
arXiv: 1612.01789

[41] Alessandro Rudi, Leonard Wossnig, Carlo Ciliberto, Andrea Rocchetto, Massimil-

iano Pontil, and Simone Severini. 2020. Approximating Hamiltonian dynamics

with the Nyström method. Quantum 4 (2020), 234. arXiv: 1804.02484
[42] Peter W. Shor. 1997. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM Journal on Computing 26, 5

(1997), 1484–1509. Earlier version in FOCS’94. arXiv: quant-ph/9508027
[43] Zhao Song, David Woodruff, and Huan Zhang. 2016. Sublinear time orthogonal

tensor decomposition. In Advances in Neural Information Processing Systems 29.
Curran Associates, Inc., 793–801.

[44] Ewin Tang. 2018. Quantum-inspired classical algorithms for principal component

analysis and supervised clustering. (2018). arXiv: 1811.00414
[45] Ewin Tang. 2019. A quantum-inspired classical algorithm for recommendation

systems. In Proceedings of the 51st ACM Symposium on the Theory of Computing
(STOC). 217–228. arXiv: 1807.04271

[46] Maarten Van den Nest. 2011. Simulating quantum computers with probabilistic

methods. Quantum Information and Computation 11, 9&10 (2011), 784–812. arXiv:

0911.1624
[47] Michael D. Vose. 1991. A linear algorithm for generating random numbers with

a given distribution. IEEE Transactions on Software Engineering 17, 9 (1991),

972–975.

[48] David P. Woodruff. 2014. Sketching as a tool for numerical linear algebra. Foun-
dations and Trends® in Theoretical Computer Science 10, 1–2 (2014), 1–157.

[49] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. 2018. Quantum linear

system algorithm for dense matrices. Physical Review Letters 120, 5 (2018), 050502.
arXiv: 1704.06174

[50] Zhikuan Zhao, Jack K. Fitzsimons, and Joseph F. Fitzsimons. 2019. Quantum-

assisted Gaussian process regression. Physical Review A 99 (May 2019), 052331.

Issue 5. arXiv: 1512.03929

400

https://arxiv.org/abs/1804.05058
https://arxiv.org/abs/1905.10415
https://arxiv.org/abs/1710.02581
https://arxiv.org/abs/1804.01973
https://arxiv.org/abs/1907.05568
https://arxiv.org/abs/1901.03254
https://arxiv.org/abs/1811.04852
https://arxiv.org/abs/1510.00113
https://arxiv.org/abs/1906.08902
https://arxiv.org/abs/1907.06814
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/1806.01838
https://arxiv.org/abs/0708.1879
https://arxiv.org/abs/quant-ph/0208112
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/1910.05699
https://arxiv.org/abs/1603.08675
https://arxiv.org/abs/1704.04992
https://arxiv.org/abs/1408.3106
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1307.0401
https://arxiv.org/abs/1606.02685
https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/1307.0471
https://arxiv.org/abs/1612.01789
https://arxiv.org/abs/1804.02484
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1807.04271
https://arxiv.org/abs/0911.1624
https://arxiv.org/abs/1704.06174
https://arxiv.org/abs/1512.03929

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Main Results
	1.3 Applications: Dequantizing QML & More
	1.4 Techniques
	1.5 Related Work
	1.6 Open Questions

	2 Preliminaries
	2.1 Linear Algebra
	2.2 Sampling and Query Access Oracles
	2.3 Matrix Sketches

	3 Main results
	3.1 Singular Value Transformation
	3.2 Dequantizing QSVT

	References

