Sampling Bounds for Sparse Support Recovery in
the Presence of Noise

Galen Reeves and Michael Gastpar
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA, 94720, USA
Email: {greeves, gastpp@eecs.berkeley.edu

Abstract— It is well known that the support of a sparse signal on perfect support recovery [1], [2], there exists a gap: the
can be recovered from a small number of random projections. sufficient conditions require that the SNR grows withoutiu
However, in the presence of noise all known sufficient condans i, 1, whereas the necessary conditions are satisfied with non-
require that the per-sample signal-to-noise ratio (SNR) gows increasing SNR. This paper makes the following contrimsio

without bound with the dimension of the signal. If the noise )
due to quantization of the samples, this means that an unbouted o Perfect support recovery is hard: In Theorem 1 we
show that if the SNR does not increase with the dimen-

rate per sample is needed. In this paper, it is shown that an
unbounded SNR is also a necessary condition for perfect regery, sion of the signal, then exact recovery of the support is

but any fraction (less than one) of the support can be recovexd
with bounded SNR. This means that a finite rate per sample is
sufficient for partial support recovery. Necessary and suffiient
conditions are given for both stochastic and non-stochastisignal
models. This problem arises in settings such as compressive

impossible.

Fractional support recovery is not as hard: We intro-
duce a notion of partial support recovery and show that
even if the SNR does not increase with the dimension

sensing, model selection, and signal denoising. of the signal, it is still possible to recover sorfraction

(less than one) of the support. Under standard signal as-
sumptions the fraction of errors is inversely proportional
to the SNR, and Theorems 2 and 3 give necessary and
sufficient conditions. If the noise is due to quantization
of the samples, this means that a finite rate per sample is
sufficient.

Stochastic versus worst-case analysi®revious results
require a (lower) bound on the smallest non-zero signal
component. This paper considers both stochastic and
non-stochastic sparse signal models. Thus, we can give
performance guarantees even when the smallest non-zero
signal component is arbitrarily small.

Section Il describes our observation model, discusses rele
vant research, and specifics our recovery task. Sectionividbkg

our main results and Section 1V outlines the proofs.

I. INTRODUCTION

The task of support recovery (also known as recovery of
sparsity [1], [2] or model selection [3]) is to determine wini
elements of some unknown sparse signaé R™ are non-
zero based on a set of noisy linear observations. This proble
arises in areas, such as compressive sensing, graphical mod
selection in statistics, and signal denoising in regressio *
Typically, the number of observations is far less than the
signal dimensiom.

The observation model can be generally formulated as a
sampling problem where each “sample” consists of a noisy
inner product ofx and some predetermined measurement
vectorg; € R™

yi = (¢i,x) +w; for i=1,--- m, Q)

wherew; is noise. Whenm is less tham, general inference Il. PROBLEM FORMULATION AND RELATED WORK
problems are challenging. Typically, optimal estimatia i |et denote a class of sparse real signals andjetienote
computationally hard but for certain tasks, such as approthe sub-class of signals with length In general, the signal
matingz in the /> sense, efficient relaxations have been showglasst’ may be stochastic or non-stocastic (specific examples
to produce near optimal solutions [4], [5]. are discussed in Section I1I-B). Far e X,, we consider the
The task considered in this paper is estimation of the supppfiear observation model in which samplgs R™ are taken

K={ie{l,---n} : z; #0} 2 *

where k. = |K]| is the number of non-zero elements of
Our goal is to give fundamental (information-theoreticihds where® € R™*" is a sampling matrix and ~ N(0,02 I,,,).

on the degree to which the support can be recovered in We assume that the has exactlyk non-zero elements which
under-sampledn¢ < n) large system settinga(k,m — o) are indexed by the suppoi’, and that K is distributed
with linear sparsity £ = Qn for someQ € (0,1)). Under uniformly over the(Z) possibilities. We further assume that
reasonable assumptions, one may consider a natural definithe sampling matrixp is randomly constructed with i.i.d. rows
of the per-sample signal-to-noise ratio SNR. In previossiits ¢; ~ A(0, %In).

y =Pz +w, ®3)



We defineQ? = k/n to be the sparsity and = m/n to At one extreme, minimization of
be the sampling rate. We exclusively consider the setting of X K| - |f{| KK
linear sparsity wher& € (0,1) does not depend on, and deu( K, K) = { N
we are interested in which sampling tasks can (and cannot) be o0 KoK

solved in the under-sampled setting<{ 1) asn — 0. ayempts to find the largest subsétthat is contained ink.

We find it convenient to consider a sampling matrix thagh . results of [4], [11]-[13] can be interpreted in terms of
preserves the magnitude of Our choice of® means that is metric. Roughly speaking, their results guaranted tha
E[(¢:,z)?] = ||z||?>/n, and we consider signals whose average i k) < |K| but cannot say much more because no
energy||z||?/n does not depend on. We caution the readerguaran’tees are given on the sike

that these choices are in contrast to some of the related Worky; the other extreme. one may want to find the smallest
[1], [2] where & is chosen such that[(¢:, 2)%] = |l2]|* and  ggtimate & such that K D K, and in general one may
hence® amplifies the signak. formulate a Neyman-Pearson style tradeoff between the two
Section II-A gives a brief summary of relevant research @nes of errors. The focus of this paper is reconstruction at
more more extensive summary is given in [6]), Section Iy noint where the number of false positives is equal to
B describes our error metric, and Section 1I-C describes g{b number of false negatives. Since we assume |iifatis
optimal estimation algorithm. known a priori, we can impose this condition by requiringttha
|K| = |K|. We use the following metric which is proportional

A. Related Work (by a factor of two) to the total number of errors

In the noiseless setting, perfect _support recovery reguire d(K,K) — K| - |K N ff|-
m = k + 1 samples using optimal, but computation- K
ally expensive, recovery algorithms [7], and requires= Partial recovery corresponds t{K, K) < a* for some

O(klog(n/k)) samples using linear programming [8]-[10]. a* > 0. There are several interesting choices for the scaling
In the presence of noise, Compressive Sensing [4], [6f a* andn. For instance, if recovery is possible witti =

shows that form = O(klog(n/k)) samples, quadratic pro-O(logn) then asn — oo the average distortiopd(K, k') —

gramming can provide a signal estimatehat is stable; that 0 although the allowable number of errat&y, f{) — o0. Our

is, ||# — || is bounded with respect thw||. The papers [4], results pertain to a linear scaling wheté = ok for some

[11]-[13] give sufficient conditions for the support dfto be fixed o € [0, 1] that does not depend om. The parameter

contained inside the support of « is the fractional distortion, and the requirement= 0
The work in [1], [3], [14] addresses the asymptotic perfolcorresponds to perfect recovery. R

mance of a particular quadratic program, thesso Results  To characterize the performance of an estimdtdy) we

are formulated in terms of scaling conditions for, k,m) recall thaty is a function ofz and thus the performance

and the magnitude of the smallest non-zero component ofdepends on the signal class. X, is non-stochastic, the

denotedzmin. For the observation model considered in thiprobability of error is defined as

paper, Wainwright [1] shows that perfect recovery (using th -

Lasso) is possible if and only if2/n — oo OF Zmin — 0. Pe(a, Xn) = max P {d(K’ K(y)) > o‘k} ’ )
Another line of research has considered informatiofghere the probability is ovek’, w, and®. If X, is stochastic,

theoretic bounds on the asymptotic performance of optimgla,

support recovery algorithms. For perfect support recqvery .

Gastpar et al. [15] lower bound the probability of success, Pe(a, X,) = P{d(K,K(y)) > Oék}7 (5)

and Wainwright [2] gives necessary and sufficient condiiioremt]ere the probability is over, &, w, and®. An estimator
(

for an exhaustive search algorithm. Since the submissiong - ; ; ; -
) _ s said to beasymptotically reliabldor a classY if there
this paper, Fletcher et al. [16] have generalized the nacgss y) ! ymproncaly fe1 !

dit . bel in Th 1f I i (éxists some constant > 0 such thatP.(a, X,,) < e "¢
conk |t|onsMg|ven eOV\lll in_theorem or ai hscalngs 0 onversely, an estimataK (y) is said to beasymptotically
(n, ’m?' ore generaiy, support recovery V\_"t respect @ reliable for a class if there exists some constant> 0
some distortion measure has also been considered [17]-[

| 119] derive bounds simil h 2 and d integerN such thatP.(«, X,,) > c for all n > N.
Aeron et al. [19] derive bounds similar to Theorems 2 and 3 \ye remark that a weaker notion of reliable recovery is

in this paper f_or_ the special setting in which each element RI constrain the expected distortion, that is to require tha
= has only a finite number of values. Ex[d(K,K(y))] < ak. Although such a statement means
that on average the fractional distortion is less thait is still
possible that a linear fraction of all possible supportsehia¢
Given the true supporfs and any estimatés there are sulting distortion greater tham. Our notion of asymptotically

several natural measures for the distortit§’, K). One may reliable recovery implies more. It says that although theay
consider recovery ol as a target recognition problem wheréde a set of “bad” supports with resulting distortion gredtan

for each index € {1,--- ,n} we want to determine whetherq, the size of this set is very small relative to the total numbe
or nots is in the supportx. of possible supports.

B. Partial Support Recovery



C. ML Estimation Finally, we define an extended version of the binary entropy

Our sufficient (achievable) conditions correspond to tHENctiona(p) = —plog(p) —(1—p)log(l—p). For0 < Q <1
performance of a maximum likelihood (ML) decoder whictfnd0 < a <1 —€ we have
uses no information about the assumed signal clsd his o
is the same estimator studied (for the special case ©f0) h(, @) = Qh(a) + (1 - Q) h(w) - (6)
in Wainwright [2] and is given by

K (y) = arg min [|[I,, — 2u(®[Pr) ' 7]y, _ _ _
U=k We now present our main results which characterize the
where®; corresponds to the columns @f indexed byU. tradeoff between the sampling rateand the fractional dis-
We remark that ML decoding is computationally expensivi@rtion . All theorems pertain to linear sparsitf € (0, 1))
for any problem of non-trivial size. However, the resultingn the under-samplep(< 1), and asymptoticr(, k, m — oc)
achievable bound is interesting because it shows where theetting.
is potential for improvement in current sub-optimal reagve As a baseline, it is straightforward to show (see Lemma
algorithms. Furthermore, if one is able to lower bound th21 in [6]) that randomly choosing ank indices gives an
performance of some efficient estimator with respect to tlestimate that is asymptotically reliable for any> 1 — Q2 and
optimal decoder, then an achievable result is automaticaisymptotically unreliable for any < 1—. Thus we consider
attained. the ranged < a < 1 — Q.
We first address the task of perfect support recovery=(
0). In the paper [2], Wainwright gives a necessary conditian fo
This section gives our main results. Section IlI-A provide'gerfect support recovery. With respect to our sampling rhode
necessary definitions, Section IlI-B states the theoremd, &his condition is satisfied WithB,, (X') < oo. In the following
Section I1I-C gives discussion. Theorem, we show that; (X') must be infinite.
A. Definitions Theorem 1:For perfect recoveryo = 0) any estimator
(y) is asymptotically unreliable iB,(X') < oo.
Theorem 1 is very general in that it depends only on the
behavior of the smallest non-zero elementzofThis means
SNR(z) = E [||<I>a:||2] _ 1 2|2 that perfect recovery is not possible unless the per-saSigk
E [||w][?] no2, ’ grows without bound witm.
We next address the task of fractional support recoverg (
(0,1—9)). For a given SNR, the following theorems provide
both upper and lower bounds on the fraction of the support

B. Sampling Rate vs. Fractional Distortion

IIl. RESULTS

For a given signat we define two quantities: the per-sampIeK
signal-to-noise ratio (SNR) is given by

and the normalized magnitude of smallest non-zero ele-
ments is given by

1 2 .
gla,z) = min L ||$U|l : that can be reliably recovered. N _
UCK : |[Ul=ak  a ||z]| Theorem 2 (Necessary ConditionsAsymptotically
wherez is the vector of elements indexed by the &et reliable recovery is impossible if

Performance guarantees for a given classequire good
bounds on the above quantities. In our analysis, we may use
any boundsnr(&X) andg(«, X) which satisfy the following
requirements: ifY’ is non-stochastic then

h(Q) — h(Q, ) + 2I(z;y|K)
3 log (14 sNR(X))

: (@)

where I(z;y|K) is mutual information between: and y
SNR(X) < sNR(z) and g(a, X) < g(a, z) conditioned onk.

o ) ] The conditional mutual informatiod(x; y|K) is zero for
for all 2 € X, and if X' is stochastic then there exists SOM@sn_siochastic signal classes, but is positive for stdihas
¢ >0 such that signal classes. As demonstrated in Section 11I-B.2 thister

P {SNR(X,) < SNR(z)} > 1 — e "¢ and can be given explicitly for some classes.
P “ne Theorem 3 (Sufficient ConditionsJhe estimatorKyy (y)
< — . . . : :
Piglo, 4n) < gla,2)} > 1 —e is asymptotically reliable ify(a, X') > 1 and
We also need an upper bound;(X), on the relative

magnitude of the smallest elementaoflf X' is non-stochastic p>0+ max 2h(Q, u) . (8
then u€lo,1-0] log (y(u, X)) + 1/7(u, X) — 1
Br(X) = lim inf inf 2?/02, where~y(u, X') = SNR(X) u g(u, X).

n—oo zeX ieK

Note that for a given signal clas&, the above bound
and if X' is stochastic then there must exist some constafépends only on the functiorssir(X) and g(u, X).

¢ > 0 such that In the following two sections we refine Theorems 2 and 3
P{BL() > minal/o2} > 1— en¢ for two particular signal classes: one stochastic and ome no
Lidtn) = B i/ Ow ' stochastic.



1) Bounded SignalsOften it is appealing to have signal
models that do not assume a distribution. Such models maya simplified (an necessarily weakened) sufficient condition
arise naturally when we need a worst-case analysis. AI$§,3NR(g) ad > et and

resulting claims are robust in that they do not depend on the 2 h(Q)

choice or parameters of an assumed distribution. We define p>0 . (13)
B,, to be the set of alk € R® whose non-zero elements are log (SNR(g) adfet)
bounded from below in magnitude. Specifically;| > zmin This means that if we sep = Q + 24(Q), then with

for all 7 € K, wherezmi, is @ known constant that doesg,honentially high probability im, the fractional distortion
not dependn. Previous work on support recovery [1], [3],5f the estimatorf(ML(y) obeys

[14] has focused on this class, and by definition, we have

Br(B) = x2,,/0%, SNR(B) = QB.(B), and g(a, B) = 1. a < (e*/SNR(G))Y3. (14)
Since the bounded signal class does not necessary have a .

distribution the conditional mutual informatiof(z; y|K) is C. lllustration of Results

zero. The bounds in Theorems 2 and 3 are shown in Figure 1 for
A simplified (an necessarily weakened) sufficient conditiotiie bounded and Gaussian signal classes. In light of Thebrem
is SNR(B) a > e and we see the necessary bounds are overly conservative-as).
2h(Q) For both sigljal cla_lsse_s, we see that recovery in the under-
p>0+ . (9) sampled setting with fixed SNR is possible over a range of
log (SNR(B) ar/e) «. However, asy becomes small, the sampling rate increases
This means that if we sep = Q + 2h(Q2), then with without bound. Also, we see that the upper and lower bond are
exponentially high probability im, the fractional distortion reasonably tight for values af that are not neap or 1 — (2.
of the estimatoriy, (y) obeys These results show that if we accept a small fraction of efror

only a small number of samples is needed.
a < e*/SNR(B). (10)

. . IV. ANALYSIS
2) Gaussian SignalsSupport recovery becomes more chal-

lenging when the non-zero elements wofcan be arbitrarily The_section provides proof outlines. The full proofs can be
close to zero. In this setting, stochastic signal classils stound in [6].
allow performance guarantees. We consider the special case,

. A Proof of Theorem 1
of a zero mean Gaussian distribution and defineto be the . - . . _
set of allz € R whose non-zero elements are i.id(0, 02) We consider a modified problem in which the estimator has
Y

We defines = 62 /2. access to additional information abauand show that optimal

SincesNR(z) is a random variable that obeys concentratiofi¢Covery is asymptotically unreliable. For a given signalet
of measure, standard large deviation boundsyfovariables @ = argminicr [2;], and assume that the decoder knows the
(Lemma A.1 in [6]) show that we may choosR(G,) signalz i and the sef; = K\ iy, th_at is every elem_ent of t_he
arbitrarily close ta23. Also, we may trivially choosg,, (G) = SuPport except foiy. All that remains is to determine which
3 although much tighter bounds are possible. A suitable ghoigf the remaining: — £ + 1 indices belongs ink'. Note that
for g(,G) is given by the following lemma which is provedy —~ ®xo%x, ~ N (ioas, o;,1) and thus the MAP estimate of
in [6] in Section 4.4.3. io is given by

Lemma 1:For the Gaussian signal cla§swe may choose

g, G) = =W (—e=C/an@=1) > a2set (1)

io = arg min ||y — Ok, 2k, — 24005
JEK{

= arg min lw + i ai, — xiga ]|

where the Lambert-W functiof’(z) is the inverse function JERI

of f(z) = ze*. For this decoder, an error occurs if there exists K-+ such
Furthermore, the asymptotic spectrum of the random matiixat

ol @y is given by the Marcenko-Pastur law [21], and the

2 2
following lemma follows from results in [22]. lw + ziyai, — iga;]|” < [Jw]|”.

Lemma 2:For the Gaussian signal clags Using properties of chi squared random variables, it isiptess
L(z;y|K) — V(SNR(G); p/Q) as n — oo, (12) to lower bound the probability of the above event with some
" positive constant when?, /o2 < occ.

where
V log (1 F 1 B. Proof of Theorem 2
(y;7) = ogl( +7 = F(v,7) + 55 F(v.7) The ey step is {0 note thaf©)  h(€.a) is the bi rate
*los (1 Ty Fo r)) and required to describe the support to within distortian The

2 rest of the bound follows from the bound given by Gastpar
Pl = (VIIEVIPFT - AT VP FT) . e er 18] glven by =aste

/N
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class (a) and the Gaussian signal class (b).

C. Proof of Theorem 3

The main technical result underlying the proof is the foHow
ing lemma which relates the desired error probability to th !
large deviations behavior of multiple independent chissgd
variables.

Lemma 3:For given parameterén, k, m, «), signal class

X’n.l

whe

and any scalat > 0 we have

sz/fﬂ —nc
a=|ak| [6

) ("R {3 (m — k) < T(a)t}],

rer(a) = [SNR(X)(a/k)g(a/k, X)]_l andyx?(d) denotes

P.(o, X)) <P{X?(m—k) >t} + >
+(*

a

a chi-squared variable witti degrees of freedom.
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