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Abstract— It is well known that the support of a sparse signal
can be recovered from a small number of random projections.
However, in the presence of noise all known sufficient conditions
require that the per-sample signal-to-noise ratio (SNR) grows
without bound with the dimension of the signal. If the noise is
due to quantization of the samples, this means that an unbounded
rate per sample is needed. In this paper, it is shown that an
unbounded SNR is also a necessary condition for perfect recovery,
but any fraction (less than one) of the support can be recovered
with bounded SNR. This means that a finite rate per sample is
sufficient for partial support recovery. Necessary and sufficient
conditions are given for both stochastic and non-stochastic signal
models. This problem arises in settings such as compressive
sensing, model selection, and signal denoising.

I. I NTRODUCTION

The task of support recovery (also known as recovery of
sparsity [1], [2] or model selection [3]) is to determine which
elements of some unknown sparse signalx ∈ R

n are non-
zero based on a set of noisy linear observations. This problem
arises in areas, such as compressive sensing, graphical model
selection in statistics, and signal denoising in regression.
Typically, the number of observationsm is far less than the
signal dimensionn.

The observation model can be generally formulated as a
sampling problem where each “sample” consists of a noisy
inner product ofx and some predetermined measurement
vectorφi ∈ R

n

yi = 〈φi, x〉 + wi for i = 1, · · · , m, (1)

wherewi is noise. Whenm is less thann, general inference
problems are challenging. Typically, optimal estimation is
computationally hard but for certain tasks, such as approxi-
matingx in theℓ2 sense, efficient relaxations have been shown
to produce near optimal solutions [4], [5].

The task considered in this paper is estimation of the support

K = {i ∈ {1, · · ·n} : xi 6= 0} (2)

where k = |K| is the number of non-zero elements ofx.
Our goal is to give fundamental (information-theoretic) bounds
on the degree to which the support can be recovered in the
under-sampled (m < n) large system setting (n, k, m → ∞)
with linear sparsity (k = Ω n for someΩ ∈ (0, 1)). Under
reasonable assumptions, one may consider a natural definition
of the per-sample signal-to-noise ratio SNR. In previous results

on perfect support recovery [1], [2], there exists a gap: the
sufficient conditions require that the SNR grows without bound
with n whereas the necessary conditions are satisfied with non-
increasing SNR. This paper makes the following contributions:

• Perfect support recovery is hard: In Theorem 1 we
show that if the SNR does not increase with the dimen-
sion of the signal, then exact recovery of the support is
impossible.

• Fractional support recovery is not as hard: We intro-
duce a notion of partial support recovery and show that
even if the SNR does not increase with the dimension
of the signal, it is still possible to recover somefraction
(less than one) of the support. Under standard signal as-
sumptions the fraction of errors is inversely proportional
to the SNR, and Theorems 2 and 3 give necessary and
sufficient conditions. If the noise is due to quantization
of the samples, this means that a finite rate per sample is
sufficient.

• Stochastic versus worst-case analysis:Previous results
require a (lower) bound on the smallest non-zero signal
component. This paper considers both stochastic and
non-stochastic sparse signal models. Thus, we can give
performance guarantees even when the smallest non-zero
signal component is arbitrarily small.

Section II describes our observation model, discusses rele-
vant research, and specifics our recovery task. Section III gives
our main results and Section IV outlines the proofs.

II. PROBLEM FORMULATION AND RELATED WORK

LetX denote a class of sparse real signals and letXn denote
the sub-class of signals with lengthn. In general, the signal
classX may be stochastic or non-stocastic (specific examples
are discussed in Section III-B). Forx ∈ Xn we consider the
linear observation model in which samplesy ∈ R

m are taken
as

y = Φx + w, (3)

whereΦ ∈ R
m×n is a sampling matrix andw ∼ N (0, σ2

wIm).
We assume that thex has exactlyk non-zero elements which
are indexed by the supportK, and thatK is distributed
uniformly over the

(

n
k

)

possibilities. We further assume that
the sampling matrixΦ is randomly constructed with i.i.d. rows
φi ∼ N (0, 1

nIn).



We defineΩ = k/n to be the sparsity andρ = m/n to
be the sampling rate. We exclusively consider the setting of
linear sparsity whereΩ ∈ (0, 1) does not depend onn, and
we are interested in which sampling tasks can (and cannot) be
solved in the under-sampled setting (ρ < 1) asn → ∞.

We find it convenient to consider a sampling matrix that
preserves the magnitude ofx. Our choice ofΦ means that
E[〈φi, x〉2] = ||x||2/n, and we consider signals whose average
energy||x||2/n does not depend onn. We caution the reader
that these choices are in contrast to some of the related work
[1], [2] where Φ is chosen such thatE[〈φi, x〉2] = ||x||2 and
henceΦ amplifies the signalx.

Section II-A gives a brief summary of relevant research (a
more more extensive summary is given in [6]), Section II-
B describes our error metric, and Section II-C describes an
optimal estimation algorithm.

A. Related Work

In the noiseless setting, perfect support recovery requires
m = k + 1 samples using optimal, but computation-
ally expensive, recovery algorithms [7], and requiresm =
O(k log(n/k)) samples using linear programming [8]–[10].

In the presence of noise, Compressive Sensing [4], [5]
shows that form = O(k log(n/k)) samples, quadratic pro-
gramming can provide a signal estimatex̂ that is stable; that
is, ||x̂ − x|| is bounded with respect to||w||. The papers [4],
[11]–[13] give sufficient conditions for the support ofx̂ to be
contained inside the support ofx.

The work in [1], [3], [14] addresses the asymptotic perfor-
mance of a particular quadratic program, theLasso. Results
are formulated in terms of scaling conditions for(n, k, m)
and the magnitude of the smallest non-zero component ofx
denotedxmin. For the observation model considered in this
paper, Wainwright [1] shows that perfect recovery (using the
Lasso) is possible if and only ifm/n → ∞ or xmin → ∞.

Another line of research has considered information-
theoretic bounds on the asymptotic performance of optimal
support recovery algorithms. For perfect support recovery,
Gastpar et al. [15] lower bound the probability of success,
and Wainwright [2] gives necessary and sufficient conditions
for an exhaustive search algorithm. Since the submission of
this paper, Fletcher et al. [16] have generalized the necessary
conditions given below in Theorem 1 for all scalings of
(n, k, m). More generally, support recovery with respect to
some distortion measure has also been considered [17]–[20].
Aeron et al. [19] derive bounds similar to Theorems 2 and 3
in this paper for the special setting in which each element of
x has only a finite number of values.

B. Partial Support Recovery

Given the true supportK and any estimatêK there are
several natural measures for the distortiond(K, K̂). One may
consider recovery ofK as a target recognition problem where
for each indexi ∈ {1, · · · , n} we want to determine whether
or not i is in the supportK.

At one extreme, minimization of

dsub(K, K̂) =

{

|K| − |K̂| K̂ ⊆ K

∞ K̂ ⊃ K

attempts to find the largest subsetK̂ that is contained inK.
The results of [4], [11]–[13] can be interpreted in terms of
this metric. Roughly speaking, their results guarantee that
dsub(K̂, K) ≤ |K| but cannot say much more because no
guarantees are given on the sizeK̂.

At the other extreme, one may want to find the smallest
estimateK̂ such thatK̂ ⊇ K, and in general one may
formulate a Neyman-Pearson style tradeoff between the two
types of errors. The focus of this paper is reconstruction at
the point where the number of false positives is equal to
the number of false negatives. Since we assume that|K| is
known a priori, we can impose this condition by requiring that
|K̂| = |K|. We use the following metric which is proportional
(by a factor of two) to the total number of errors

d(K, K̂) = |K| − |K ∩ K̂|.
Partial recovery corresponds tod(K, K̂) ≤ a∗ for some

a∗ ≥ 0. There are several interesting choices for the scaling
of a∗ and n. For instance, if recovery is possible witha∗ =
O(log n) then asn → ∞ the average distortion1kd(K, K̂) →
0 although the allowable number of errorsd(K, K̂) → ∞. Our
results pertain to a linear scaling wherea∗ = αk for some
fixed α ∈ [0, 1] that does not depend onn. The parameter
α is the fractional distortion, and the requirementα = 0
corresponds to perfect recovery.

To characterize the performance of an estimatorK̂(y) we
recall that y is a function of x and thus the performance
depends on the signal class. IfXn is non-stochastic, the
probability of error is defined as

Pe(α,Xn) = max
x∈Xn

P

{

d(K, K̂(y)) > α k
}

, (4)

where the probability is overK, w, andΦ. If Xn is stochastic,
then

Pe(α,Xn) = P

{

d(K, K̂(y)) > α k
}

, (5)

where the probability is overx, K, w, andΦ. An estimator
K̂(y) is said to beasymptotically reliablefor a classX if there
exists some constantc > 0 such thatPe(α,Xn) < e−n c.
Conversely, an estimator̂K(y) is said to beasymptotically
unreliable for a classX if there exists some constantc > 0
and integerN such thatPe(α,Xn) > c for all n ≥ N .

We remark that a weaker notion of reliable recovery is
to constrain the expected distortion, that is to require that
EK [d(K, K̂(y))] ≤ α k. Although such a statement means
that on average the fractional distortion is less thanα, it is still
possible that a linear fraction of all possible supports have re-
sulting distortion greater thanα. Our notion of asymptotically
reliable recovery implies more. It says that although theremay
be a set of “bad” supports with resulting distortion greaterthan
α, the size of this set is very small relative to the total number
of possible supports.



C. ML Estimation

Our sufficient (achievable) conditions correspond to the
performance of a maximum likelihood (ML) decoder which
uses no information about the assumed signal classX . This
is the same estimator studied (for the special case ofα = 0)
in Wainwright [2] and is given by

K̂ML(y) = arg min
|U|=k

||[Im − ΦU (ΦT
UΦU )−1ΦT

U ] y||2,

whereΦU corresponds to the columns ofΦ indexed byU .
We remark that ML decoding is computationally expensive

for any problem of non-trivial size. However, the resulting
achievable bound is interesting because it shows where there
is potential for improvement in current sub-optimal recovery
algorithms. Furthermore, if one is able to lower bound the
performance of some efficient estimator with respect to the
optimal decoder, then an achievable result is automatically
attained.

III. R ESULTS

This section gives our main results. Section III-A provides
necessary definitions, Section III-B states the theorems, and
Section III-C gives discussion.

A. Definitions

For a given signalx we define two quantities: the per-sample
signal-to-noise ratio (SNR) is given by

SNR(x) =
E

[

||Φx||2
]

E [||w||2] =
1

nσ2
w

||x||2,

and the normalized magnitude of smallestαk non-zero ele-
ments is given by

g(α, x) = min
U⊂K : |U|=αk

1

α

||xU ||2
||x||2 ,

wherexU is the vector of elements indexed by the setU .
Performance guarantees for a given classX require good

bounds on the above quantities. In our analysis, we may use
any boundsSNR(X ) andg(α,X ) which satisfy the following
requirements: ifX is non-stochastic then

SNR(X ) ≤ SNR(x) and g(α,X ) ≤ g(α, x)

for all x ∈ X , and if X is stochastic then there exists some
c > 0 such that

P {SNR(Xn) ≤ SNR(x)} > 1 − e−n c and

P {g(α,Xn) ≤ g(α, x)} > 1 − e−n c.

We also need an upper bound,βL(X ), on the relative
magnitude of the smallest element ofx. If X is non-stochastic
then

βL(X ) = lim
n→∞

inf
x∈X

inf
i∈K

x2
i /σ2

w,

and if X is stochastic then there must exist some constant
c > 0 such that

P
{

βL(Xn) ≥ min
i∈K

x2
i /σ2

w

}

> 1 − e−n c.

Finally, we define an extended version of the binary entropy
functionh(p) = −p log(p)−(1−p) log(1−p). For0 ≤ Ω ≤ 1
and0 ≤ α ≤ 1 − Ω we have

h(Ω, α) = Ωh(α) + (1 − Ω)h

(

α

1/Ω − 1

)

. (6)

B. Sampling Rate vs. Fractional Distortion

We now present our main results which characterize the
tradeoff between the sampling rateρ and the fractional dis-
tortion α. All theorems pertain to linear sparsity (Ω ∈ (0, 1))
in the under-sampled (ρ < 1), and asymptotic (n, k, m → ∞)
setting.

As a baseline, it is straightforward to show (see Lemma
2.1 in [6]) that randomly choosing anyk indices gives an
estimate that is asymptotically reliable for anyα > 1−Ω and
asymptotically unreliable for anyα < 1−Ω. Thus we consider
the range0 ≤ α < 1 − Ω.

We first address the task of perfect support recovery (α =
0). In the paper [2], Wainwright gives a necessary condition for
perfect support recovery. With respect to our sampling model,
this condition is satisfied withβL(X ) < ∞. In the following
Theorem, we show thatβL(X ) must be infinite.

Theorem 1:For perfect recovery (α = 0) any estimator
K̂(y) is asymptotically unreliable ifβL(X ) < ∞.

Theorem 1 is very general in that it depends only on the
behavior of the smallest non-zero element ofx. This means
that perfect recovery is not possible unless the per-sampleSNR
grows without bound withn.

We next address the task of fractional support recovery (α ∈
(0, 1−Ω)). For a given SNR, the following theorems provide
both upper and lower bounds on the fraction of the support
that can be reliably recovered.

Theorem 2 (Necessary Conditions):Asymptotically
reliable recovery is impossible if

ρ <
h(Ω) − h(Ω, α) + 1

nI(x; y|K)
1
2 log

(

1 + SNR(X )
) , (7)

where I(x; y|K) is mutual information betweenx and y
conditioned onK.

The conditional mutual informationI(x; y|K) is zero for
non-stochastic signal classes, but is positive for stochastic
signal classes. As demonstrated in Section III-B.2 this term
can be given explicitly for some classes.

Theorem 3 (Sufficient Conditions):The estimatorK̂ML (y)
is asymptotically reliable ifγ(α,X ) > 1 and

ρ > Ω + max
u∈[α,1−Ω]

2 h(Ω, u)

log
(

γ(u,X )
)

+ 1/γ(u,X ) − 1
, (8)

whereγ(u,X ) = SNR(X )u g(u,X ).
Note that for a given signal classX , the above bound

depends only on the functionsSNR(X ) andg(u,X ).
In the following two sections we refine Theorems 2 and 3

for two particular signal classes: one stochastic and one non-
stochastic.



1) Bounded Signals:Often it is appealing to have signal
models that do not assume a distribution. Such models may
arise naturally when we need a worst-case analysis. Also,
resulting claims are robust in that they do not depend on the
choice or parameters of an assumed distribution. We define
Bn to be the set of allx ∈ R

n whose non-zero elements are
bounded from below in magnitude. Specifically,|xi| ≥ xmin

for all i ∈ K, where xmin is a known constant that does
not dependn. Previous work on support recovery [1], [3],
[14] has focused on this class, and by definition, we have
βL(B) = x2

min/σ2
w, SNR(B) = ΩβL(B), and g(α,B) = 1.

Since the bounded signal class does not necessary have a
distribution the conditional mutual informationI(x; y|K) is
zero.

A simplified (an necessarily weakened) sufficient condition
is SNR(B)α > e and

ρ > Ω +
2h(Ω)

log
(

SNR(B)α/e
) . (9)

This means that if we setρ = Ω + 2h(Ω), then with
exponentially high probability inn, the fractional distortion
of the estimatorK̂ML (y) obeys

α < e2/SNR(B). (10)

2) Gaussian Signals:Support recovery becomes more chal-
lenging when the non-zero elements ofx can be arbitrarily
close to zero. In this setting, stochastic signal classes still
allow performance guarantees. We consider the special case
of a zero mean Gaussian distribution and defineGn to be the
set of allx ∈ R

n whose non-zero elements are i.i.d.N (0, σ2
x).

We defineβ = σ2
x/σ2

w.
SinceSNR(x) is a random variable that obeys concentration

of measure, standard large deviation bounds forχ2 variables
(Lemma A.1 in [6]) show that we may chooseSNR(Gn)
arbitrarily close toΩβ. Also, we may trivially chooseβL(G) =
β although much tighter bounds are possible. A suitable choice
for g(α,G) is given by the following lemma which is proved
in [6] in Section 4.4.3.

Lemma 1:For the Gaussian signal classG we may choose

g(α,G) = −W
(

−e−(2/α)h(α)−1
)

> α2/e3 (11)

where the Lambert-W functionW (z) is the inverse function
of f(z) = z ez.

Furthermore, the asymptotic spectrum of the random matrix
ΦT

UΦU is given by the Marcenko-Pastur law [21], and the
following lemma follows from results in [22].

Lemma 2:For the Gaussian signal classG
1
nI(x; y|K) → V(SNR(G); ρ/Ω) as n → ∞, (12)

where

V(γ; r) = log
(

1 + γ − F (γ, r)
)

+ 1
rγ F (γ, r)

+ 1
r log

(

1 + rγ − F (γ, r)
)

and

F (γ, r) = 1
4

(

√

γ(1 +
√

r)2 + 1 −
√

γ(1 −√
r)2 + 1

)2

.

A simplified (an necessarily weakened) sufficient condition
is SNR(G)α3 > e4 and

ρ > Ω +
2 h(Ω)

log
(

SNR(G)α3/e4
) . (13)

This means that if we setρ = Ω + 2h(Ω), then with
exponentially high probability inn, the fractional distortion
of the estimatorK̂ML(y) obeys

α < (e4/SNR(G))1/3. (14)

C. Illustration of Results

The bounds in Theorems 2 and 3 are shown in Figure 1 for
the bounded and Gaussian signal classes. In light of Theorem1
we see the necessary bounds are overly conservative asα → 0.
For both signal classes, we see that recovery in the under-
sampled setting with fixed SNR is possible over a range of
α. However, asα becomes small, the sampling rate increases
without bound. Also, we see that the upper and lower bond are
reasonably tight for values ofα that are not near0 or 1 − Ω.
These results show that if we accept a small fraction of errors,
only a small number of samples is needed.

IV. A NALYSIS

The section provides proof outlines. The full proofs can be
found in [6].

A. Proof of Theorem 1

We consider a modified problem in which the estimator has
access to additional information aboutx and show that optimal
recovery is asymptotically unreliable. For a given signalx, let
i0 = arg mini∈K |xi|, and assume that the decoder knows the
signalxK and the setK1 = K\i0, that is every element of the
support except fori0. All that remains is to determine which
of the remainingn − k + 1 indices belongs inK. Note that
y −ΦK0

xK0
∼ N (xi0ai, σ

2
wI) and thus the MAP estimate of

i0 is given by

î0 = arg min
j∈K⊥

1

||y − ΦK1
xK1

− xi0aj||2

= arg min
j∈K⊥

1

||w + xi0ai0 − xi0aj ||2.

For this decoder, an error occurs if there existsj ∈ K⊥ such
that

||w + xi0ai0 − xi0aj ||2 < ||w||2.

Using properties of chi squared random variables, it is possible
to lower bound the probability of the above event with some
positive constant whenx2

i0/σ2
w < ∞.

B. Proof of Theorem 2

The key step is to note thath(Ω) − h(Ω, α) is the bit rate
required to describe the support to within distortionα. The
rest of the bound follows from the bound given by Gastpar
and Bresler [15].
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Fig. 1. Sufficient (bold) and necessary (light) sampling densities ρ (log scale) as a function of the fractional distortionα for variousΩ for bounded signal
class (a) and the Gaussian signal class (b).

C. Proof of Theorem 3

The main technical result underlying the proof is the follow-
ing lemma which relates the desired error probability to the
large deviations behavior of multiple independent chi-squared
variables.

Lemma 3:For given parameters(n, k, m, α), signal class
Xn, and any scalart > 0 we have

Pe(α,Xn) ≤ P{χ2(m − k) > t} +
∑⌈k2/n⌉

a=⌊αk⌋

[

e−n c

+
(

k
a

)(

n−k
a

)

P
{

χ2(m − k) < τ(a) t
} ]

,

whereτ(a) =
[

SNR(X )(a/k)g(a/k,X )
]−1

andχ2(d) denotes
a chi-squared variable withd degrees of freedom.
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