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Abstract

The Teaching-Learning-Based Optimization (TLBO) algorithm of Rao et al. has been presented in recent years,

which is a population-based algorithm and operates on the principle of teaching and learning. This algorithm is

based on the influence of a teacher on the quality of learners in a population. In this study, TLBO is extended for

constrained and unconstrained CAD model sampling which is called Sampling-TLBO (S-TLBO). Sampling CAD

models in the design space can be useful for both designers and customers during the design stage. A good sampling

technique should generate CAD models uniformly distributed in the entire design space so that designers or customers

can well understand possible design options. To sample N designs in a predefined design space, N sub-populations

are first generated each of which consists of separate learners. Teaching and learning phases are applied for each

sub-population one by one which are based on a cost (fitness) function. Iterations are performed until change in

the cost values becomes negligibly small. Teachers of each sub-population are regarded as sampled designs after the

application of S-TLBO. For unconstrained design sampling, the cost function favors the generation of space-filling and

Latin Hypercube designs. Space-filling is achieved using the Audze and Eglais’ technique. For constrained design

sampling, a static constraint handling mechanism is utilized to penalize designs that do not satisfy the predefined

design constraints. Four CAD models, a yacht hull, a wheel rim and two different wine glasses, are employed to

validate the performance of the S-TLBO approach. Sampling is first done for unconstrained design spaces, whereby

the models obtained are shown to users in order to learn their preferences which are represented in the form of

geometric constraints. Samples in constrained design spaces are then generated. According to the experiments in this

study, S-TLBO outperforms state-of-the-art techniques particularly when a high number of samples are generated.
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1. Introduction

Engineering and industrial product design is a goal-oriented, constraint-based decision making process. The

product obtained after this process should satisfy the consumers’ needs, not just in its functional performance, but also

its external appearance. The design process becomes more complex and time consuming if the products appearance is

valuable to the consumers. At the initial stage of the design process, there may be no or few CAD models available for

prototyping or design validation analysis. Design engineers form the design space for the CAD model using design

specifications. The CAD model is modified to obtain geometric variations, some of which are inspected visually and

validated based on the computer simulations or customer preferences. We think that a CAD model sampling technique

can be beneficial for the designers during the design and validation stages. Moreover, CAD models sampled uniformly

throughout the design space can form a better response surface, which can alleviate the computational burden of the

computer-aided analysis (CAE) at the design validation stage[1].

The design space of a CAD model is defined by a set of design parameters, each with lower and upper bounds.

Each design parameter represents a dimension in the design space. CAD model sampling is a high-dimensional
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Nomenclature

n Number of subjects/parameters

N Number of designs to be sampled in the design space

Xk kth learner

M j Mean result of the learner in the jth subject (dimension)

Xbest Teacher (learner with the best fitness when considering all the subjects)

TF Teaching factor

xl
m, j

Lower bound for the jth design parameter for the design m

xu
m, j

Upper bound for the jth design parameter for the design m

P Population

pg gth sub-population of P

s Size of each sub-population

T Vector consists of teachers of sub-population

xp, j, xq, j Scaled parameter values for the jth subject of the teachers p and q in T

U(T ) Cost function

U1(T ) Potential energy (term for obtaining space-filling design)

U2(T ) Term for obtaining non-collapsing designs

U3(T ) Term for constraint handling mechanism

α User-define parameter adjusting weight for the U2(T ) term

λpq Number of coordinates that two designs, p and q share

β Weight for the U3(T ) term

φt tth geometric constraint

nc Number of geometric constraints

constrained optimization problem as there are generally a high number of design parameters and design constraints

(i.e., relations between the parameters).

In this work, the space-filling criterion [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 13, 14, 15] is considered during

sampling; this criterion favors the generation of CAD models spreading throughout the design space. Such sampling

can give a better understanding of the design options in the design space for the designers. However, it tends to

place a large portion of the designs at the corners and on the boundaries of the design space [5], especially in the

case of high-dimensional sampling problems. To overcome this issue, designs are searched as far as possible in the

class of Latin hypercube (LH) designs [16, 17, 4, 18, 6, 7, 8, 19, 11, 20, 21]. Therefore, the non-collapsingness

criterion is also considered, so that the sampled designs do not share any design parameter values. Furthermore, non-

collapsing designs are preferable in sampling CAD models, which are further tested in the validation step via computer

simulations (i.e., CAE). The designs of experiments are crucial in CAE, which has the major goal of determining

which design parameters have the greatest effects on the simulation results. Most CAE analyses are computationally

expensive, and running the analysis for collapsing designs would ultimately result in unnecessary computational costs

[4, 18]. As a result, this work takes the space-filling and non-collapsing properties into account while sampling CAD

models. The degree of non-collapsingness is controlled with a weight term, which gives the designer the ability to

create either completely non-collapsing or semi-non-collapsing designs.

Teaching-Learning-Based Optimization (TLBO) [22, 23] is a recently proposed evolutionary optimization tech-

nique which mimics the classic teaching learning philosophy of a class. In the past few years, TLBO became the

rising star among the meta-heuristics optimization algorithms (such as genetic algorithm (GA) [24], particle swarm

optimization (PSO) [25], artificial bee colony (ABC) [26], differential evolution [27] and CMA-ES [28], etc). Accord-

ing to the experiments done by Rao [23] and Rao and Waghmare [29], TLBO outperforms the optimization techniques

such as GA, ABC, PSO and CMA-ES. Therefore, due to the effective performance and simplicity of the TLBO, the

authors of the current research extend TLBO to generate space-filling designs for high-dimensional constrained de-

sign spaces. A new technique called Sampling-TLBO (S-TLBO) is proposed for the automatic search and generation

of design variations for a CAD model in its predetermined design space. The criterion of space-filling enables the

maintenance of the diversity of the sampled designs. Figure 1 shows the illustration of the outcomes of the proposed
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S-TLBO technique.

Four major contributions are made into the standard TLBO approach in order to extend its ability for design

sampling which are listed below:

(1) The population is divided into N number of sub-populations. Teachers of sub-populations will be regarded as the

sampled designs, which are obtained by the S-TLBO approach.

(2) A cost (fitness) function is integrated into the TLBO technique in order to sample designs that spread evenly in

the design space.

(3) A penalization technique is introduced in the TLBO to obtain designs having non-collapsing (NC) property as

much as possible.

(4) A static constraint handling mechanism [30] is utilized in the S-TLBO technique to sample designs in the con-

strained design space so that sampled designs satisfy the predefined design constraints.

Figure 1: Illustration of the outcomes of proposed S-TLBO

The remainder of this paper is organized as follows: Section 1.1 reviews relevant literature. Formulation of original

TLBO algorithm is described in Section 2. Section 3 discusses the proposed approach for generating new designs.

Section 4 illustrates test models that are used for the experiments. The numerical results of the proposed approach are

given in Section 5. Concluding remarks and opportunities for future work are presented in Section 6.

1.1. Related works

Our approach mainly depends on Teaching-Learning-Based Optimization (TLBO) and on the sampling of space-

filling designs. Below, we discuss some previous works done by different researchers in these fields.

TLBO: TLBO was proposed by Rao et al. [22] and several improvements have been made on the technique in

order to improve its performance and to expend its application in different fields. Rao and Patel [31] introduced the

concept of elitism in the original TLBO to solve a series of constrained optimization problems. Another variation

of TLBO called OD-based TLBO was introduced by Satapathy et al. [32]. OD-based TLBO combines the concept

of traditional TLBO and orthogonal designs to improve its convergence performance. Chen et al. [33] enhanced the

search ability of TLBO by introducing the concept of local learning and self-learning. A perturbation based scheme

was introduced by Ouyang et al. [34] in order to prevent TLBO from getting trapped in the local optima. Patel and

Savsani [35] and Yu et al. [36] incorporated the concept of Pareto dominance into TLBO to solve multi-objective

constrained-based optimization problems.

TLBO and its variations have also been implemented to different fields such as science and engineering, includ-

ing manufacturing and mechanical engineering, data clustering [37] and feature selection [38] and combinatorial

optimization [39, 40, 41]. In manufacturing and mechanical engineering, TLBO has been used for cloud manu-

facturing [42], advanced finishing processes [43], heat exchangers [44], parameter optimization of selected casting

processes [45], optimization of aerodynamic shapes [46] and mechanical design optimization [22].

Space-filling designs: There are several approaches proposed by different researchers for the optimal and space-

filling designs. Johnson et al. [10] proposed a technique to obtain space-filling designs. In this method, designs to

be sampled using LH are obtained while maximizing the minimum distance between designs (maximin criterion).

Sacks et al. [47] introduced a method for the minimization of the integrated mean square error (IMSE). Shewry and

Wynn [12] performed selection of designs based on entropy maximization. Bates et al. [21] and Husslage et al. [8]

used an approach for potential energy minimization of designs.
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Another algorithm for space-filling designs was proposed by Cioppa and Lucas [11]. However, their algorithm is

computationally expensive because it requires long run times. A sliced space-filling design technique was introduced

by Qian and Wu [9], where the design space is further sub-divided into small design spaces and sampling is then

performed in the sub-spaces. Prescott [20] performed complete and partial enumeration searches to investigate the

space-filling properties of orthogonal-column Latin Hypercube. Lekivetz and Jones [3] introduced an algorithm for

contracting non-collapsing space-filling designs for higher dimension unconstrained input regions. Grosso et al. [18]

proposed heuristic algorithms based on the Iterated Local Search (ILS) to create the maximin LH designs. Khan et

al. [48] developed a spatial simulated annealing based sampling technique, and Khan and Gunpinar [49] proposed

an Extended Latin Hypercube Sampling (ELHS) technique for automatic sampling and generation of CAD models.

In ELHS to sample designs in the class of Latin Hypercube enumeration is preformed in each stratum of hypercube

and variety of designs are selected based on a similarity constraint. ELHS has the ability to perform sampling in

constrained and unconstrained spaces but it does not have good space-filling property.

There is a considerable amount of research that has been done on optimal selection of space-filling designs.

However, most works done by researchers are proposed for the unconstrained design spaces. The research problem

becomes more complicated when a selection of designs has to be performed in a constrained and high-dimensional

design space like in the research of this paper. Myšáková and Lepš [50] proposed a technique to perform sampling

for constrained spaces. This technique is based on the triangulation of admissible space by Delaunay Triangula-

tion method. Although this technique has good space-filling property, it is just applicable to only two dimensional

constraint problems. A constrained Latin Hypercube technique to solve constrained problems was demonstrated by

Petelet et al. [19] and Benková et al. [14]. Draguljić et al. [17] proposed a CoNcaD algorithm for constructing non-

collapsing and space-filling designs for bounded nonrectangular design spaces. Trosset [15] and Stinstra et al. [13]

used maximin criterion for the construction of space-filling designs in the constrained 10-dimensional design space.

The technique proposed by Stinstra et al. [13] does not guarantee the sampled designs to be non-collapsing. Fuerle

and Sienz [4] proposed a method to produce Latin Hypercube designs in constrained spaces. This method has some

drawbacks such that it cannot be implemented for high-dimensional sampling problems more than 3D. Furthermore,

it does not produce good results for a design space where infeasible designs are spread irregularly. S-TLBO, proposed

in this paper, has the ability to obtain space-filling designs in more than 3D design spaces. S-TLBO also ensures

sampling space-filling designs in the constrained design spaces where distribution of infeasible designs is highly

irregular.

2. Teaching-Learning-Based Optimization (TLBO)

TLBO starts the optimization process by randomly generating a population of initial solutions for a given size

within the defined design space. The solution is improved by undergoing two phases: teacher phase and learner

phase. A population denoted by P is considered as a class of learners. Design variables are analogous to the subjects

offered to learners in the class. In the teacher phase, the best solution in the entire class is selected as a teacher and this

teacher tries to improve the quality of learners by sharing his/her knowledge with them. The quality of the teacher has

significant influence on the quality of learners. In the learner phase, learners try to improve their quality by interacting

with other learners. The detailed description of TLBO can be found in [22, 51]. The teacher and learner phases of

TLBO are summarized in the subsequent sections.

2.1. Teacher phase

In the teacher phase, the teacher is selected based on the fitness value of cost function and attempts to increase the

mean result of the entire class. Suppose there are n number of subjects (i.e. design parameters) offered to s number of

learners. The kth learner is denoted by Xk = [xk,1, xk,2, xk,3, . . . , xk,n]. At any sequential teaching or learning iteration,

i, M j,i is the mean result of the learners in a particular subject j ( j = 1, 2, . . . , n). The learner with the best fitness when

considering all the subjects is chosen as a teacher (denoted by Xbest,i) for that iteration. The position of each learner in

the ith iteration is updated using Equation (1).

x′k, j,i = xk, j,i + ri × (xbest, j,i − TF×M j,i) (1)
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x′
k, j,i

is the updated value of xk, j,i, and xbest, j,i is the result of the best learner (i.e., teacher) in the subject j. ri is a

random number in the range [0 − 1]. TF denotes the teaching factor whose value can be either 1 or 2 and computed

using the following formula: TF = round[1 + rand(0, 1){2 − 1}]. X′
k,i

is accepted if it gives a better fitness value than

Xk,i in the ith iteration.

2.2. Learner phase

In the learner phase, learners increase the quality of their knowledge by interacting with each other. A learner

learns from other learners if the other learner has better knowledge than him/her. Two learners, S and R, are randomly

selected such that X′
S ,i
, X′

R,i
, where X′

S ,i
and X′

R,i
denote the updated values for XS ,i and XR,i, respectively, at the end

of the teacher phase. Learners S and R at the ith iteration can be donated as XS ,i = [xS ,1,i, xS ,2,i, xS ,3,i, . . . , xS ,n,i] and

XR,i = [xR,1,i, xR,2,i, xR,3,i, . . . , xR,n,i], respectively, where xS , j,i and xR, j,i donates the jth coordinate of the learners S and

R, respectively.

If X′
S ,i

gives a better fitness value, the position of the learner S is updated using Equation (2). Otherwise, Equation

(3) is used to update its position.

x′′S , j,i = x′S , j,i + ri × (x′S , j,i − x′R, j,i) (2)

x′′S , j,i = x′S , j,i + ri × (x′R, j,i − x′S , j,i) (3)

3. Proposed Algorithm

This section presents details of the proposed S-TLBO technique that samples N designs for a given design space.

We first outline the core idea behind the S-TLBO approach. Sampling designs in constrained and unconstrained spaces

using S-TLBO will be then explained.

3.1. The S-TLBO approach

Basic terminologies are described first in relation to problem setting. A design or CAD model can be represented

by design parameters. Let xm,1, xm,2, xm,3, . . . , xm, j be the design parameters for the design m. Lower and upper bounds

for the jth design parameter are denoted by [xl
m, j

] and [xu
m, j

], respectively. Design space is formed by the design

parameters and their bounds. Each design parameter defines a dimension in the design space.

The standard TLBO provides a single optimal solution by guiding the initial population of learners to an optimum

position. The objective of S-TLBO is to obtain N optimum solutions (or designs). The search process of S-TLBO

starts by creating the random initial population P consisting of N sub-populations (see Equation (4)). pg denotes

the gth sub-population of P (i.e., g = 1, 2, 3, . . . ,N). Each sub-population consists of s learners which is shown in

Equation (5).

P =
[

(p1)s× j (p2)s× j (p3)s× j . . . (pN)s× j

]T
(4)

with

pm =
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(5)

The population P can be considered as a school which consists of p1, p2, p3, . . . , pN number of classes. The

ranking of a school mainly depends upon the quality of its teaching staff (i.e. teachers) and the quality of the students

(i.e., learners). The school consisting of N classes should have N teachers, one for each class. Like standard TLBO,

teachers are the best learners in the school having a minimum cost (fitness) value among all the learners.

The cost utilized in S-TLBO, which is given in Equation 15 and will be explained in the next section, is computed

based on the teachers of sub-populations. Let T = [T1,T2, . . . ,TN] denotes a set of teachers and Tp is the teacher for

the pth sub-population. For the selection of N initial teachers, there are sN number of teacher combinations, which
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can result in a high computational cost if N and s are assigned to a larger value. Therefore, a greedy-selection strategy

is chosen for the selection of N initial teachers. In this strategy, N is first set to 2 in the cost function, and the best

two learners of the first two sub-population which minimizes the cost function are selected as teachers T1 and T2.

Afterwards, a learner, which minimizes the cost function, is selected as teacher T3 from the third sub-population

under the consideration of the preselected teachers T1 and T2 by setting N = 3. The selection process is repeated in a

similar manner until N teachers for the N number of sub-populations are determined. Note that the greedy-selection

strategy checks s2 +
∑N

2 s learners’ combinations to select N initial teachers.

In S-TLBO, the learning process in any iteration is completed by performing N number of sub-iterations, one for

each sub-population. Each sub-population goes through the teacher and learner phases individually while keeping the

teachers of other sub-populations the same. During these phases, a new position for a learner is found using Equations

(1), (2) and (3). Let Xk and X′
k

be the current and new positions of a learner in the first sub-population, respectively.

The new position is accepted if the cost value T ′
k
= [X′

k
,T2, . . . ,TN] is less than Tk = [Xk,T2, . . . ,TN]. The teachers

T are updated after each sub-iteration for the sub-population. The teacher is a learner having a minimum cost value

(computed with the teachers of other sub-populations) among the other learners in the same sub-population. Sub-

iterations in other sub-populations are performed in the same way. S-TLBO is terminated when change in the cost

values after two consecutive iterations performed in the population become negligibly small. Figure 2 shows the flow

chart for the S-TLBO algorithm.

Figure 2: Flow chart of S-TLBO

3.2. Sampling designs with S-TLBO in unconstrained spaces

Our objective, as stated before, is to generate different design variations of a given CAD product in a predetermined

design space. During sampling, the sampled designs should be in different positions in the design space. Therefore, a

cost function based on the technique of Audze and Eglais [2] is utilized, which follows a physical analogy: Molecules

in a space exert repulsive forces on each other that lead to potential energy in a space. These molecules are in

equilibrium in case of minimum potential energy. The designs in the design space can be considered as molecules and

the cost function (see Equation (6)) for the S-TLBO is formulated as follows:
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U1(T ) =

N−1
∑

p=1

N
∑

q=p+1

1
∑n

j=1(xp, j − xq, j)2
(6)

xp, j and xq, j are the scaled parameter values for the jth subject (dimension) of the teachers (designs) p and q in

T which are computed by scaling parameter values between 0 (i.e., lower bound for the parameter) and 1 (i.e., upper

bound for the parameter). These bounds form the design space, which is called scaled design space. Recall that N

is the number of designs to be sampled and n is the number of dimensions in the design space. The potential energy

in Equation (6) has to be minimized. Figure 3 (a) shows 25 samples (i.e., N = 25) generated using Equation (6) for

a two-dimensional problem. It is seen that samples spread evenly in the design space, therefore space-filling designs

can be obtained.

Figure 3: (a) Space-filling designs (b) Non-collapsing designs (c) Space-filling and non-collapsing designs.

Minimization of the potential energy U1(T ) favors placement of the designs at the maximum separating distance

from each other. However, this energy function itself locates designs at the corners and on the boundaries of the

design space particularly for the high-dimensional sampling problems [5]. For the CAD model sampling, it is desired

to spread designs evenly also in the inner portions of the design space. Therefore, non-collapsing property (i.e.,

designs not sharing same parameter values) for the sampled designs should be satisfied as much as possible. Figure

3 (a) and (b) show collapsing and non-collapsing designs, respectively. Sampling designs with only considering non-

collapsing property for the constrained design spaces may result in designs with poor space-filling property as seen in

Figure 3 (b). When both space-filling and non-collapsing properties are considered, better sampling can be achieved

(see Figure 3 (c)). Note that the samples in Figure 3 are obtained using the S-TLBO approach with N = 25 and s = 10.

A penalization technique is introduced in order to sample non-collapsing designs in the design space. A new term,

U2(T ), is included in the cost function, which is as follows:

U(T ) = U1(T ) + α × U2(T ) (7)

where

U2(T ) =

N−1
∑

p=1

N
∑

q=p+1

λpq (8)

λpq =

n
∑

j=1

f1(yp, j, yq, j) (9)

f1(yp, j, yq, j) = 1 if yp, j = yq, j

f1(yp, j, yq, j) = 0 otherwise
(10)

α is a user-defined parameter adjusting weight for the U2(T ) term. The parameter values for designs are first

converted into integer values. yp, j and yq, j in Equation (9) are the corresponding integer coordinate values for xp, j

and xq, j in the jth dimension (subject), respectively. λpq denotes the number of coordinates that two designs, p

and q share. The range of each design parameter is partitioned into N equal intervals (levels) as follows: [xl
m, j
=

x1
m, j
, x2

m, j
, . . . , xN

m, j
= xu

m, j
]. Parameter values are converted to the integer values using Equation (11) where r is an
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integer number varying from 1 to N. λpq for the designs p and q is then computed using the piecewise function f1
shown in Equation (10).

if xr
p, j ≤ xp, j < xr+1

p, j then yp, j = r

if xr
q, j ≤ xq, j < xr+1

q, j then yq, j = r

with 1 ≤ r ≤ N

(11)

The term U2(T ) is based on the degree of violation for the non-collapsing property. Maximum value for this term

can be j × NC2. NC2 represents the combinations between designs which is as follows: NC2 =
N!

2!(N−2)!
. Setting the

parameter α to larger values will lead to producing more non-collapsing designs. On the other hand, the designs

sampled may have poor space-filling as seen in Figure 3 (b). As a result, α should be tuned carefully which will be

discussed in the ”Results and Discussion” section.

3.3. Sampling designs with S-TLBO in constrained spaces

Design space consists of feasible and infeasible regions in the case of constrained spaces. Feasible regions con-

sist of feasible designs that satisfy the predefined design constraints. Infeasible designs are located in the infeasible

regions. We transform the constrained problem to an unconstrained one by using a static constraint handling mech-

anism. This concept was introduced in genetic algorithms by Homaifar et al. [30] and has been utilized in many

works [52, 53, 54, 55]. In this mechanism, designs are penalized if they violate any constraint. The cost function

U(T ) is utilized for constrained spaces which is written below:

U(T ) = U(T ) + β × U3(T ) (12)

where

U3(T ) =

N
∑

p=1

nc
∑

t=1

f2(p, t) (13)

f2(p, t) = 1 if the constraint φt is violated by the design p

f2(p, t) = 0 otherwise
(14)

The cost function U(T ) consists of the terms U(T ), U3(T ) and a parameter, β that adjusts the weight of U3(T ). Let

nc be the number of geometric constraints and φt represent a constraint, where t = 1, . . . , nc. The piecewise function

f2 gets a value of 1 if a design, p, violates the constraint φt (see Equation (14)). Otherwise, it is 0. The term U3(T ) is

computed using Equation (13).

The cost function U(T ) is overall composed of three terms, U1(T ), U2(T ) and U3(T ) and two parameters; α and

β, which is shown below:

U(T ) =

N−1
∑

p=1

N
∑

q=p+1

1
∑n

j=1(xp, j − xq, j)2
+

α ×

N
∑

p=1

N
∑

q=p+1

λpq + β ×

N
∑

p=1

nc
∑

t=1

f2(p, t)

(15)

In case of constrained design space, where there exists a infeasible region in the design space and no design

is allowed to be selected from that region, some designs might not be able to satisfy geometric constraints and be

non-collapsing at the same time, especially when the infeasible region is large or spread irregularly in the design

space.
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Figure 4: CAD model of a yacht hull (a), a sherry-type wine glass without base (glass-1) (b), a pinot noir-type wine glass (glass-2) (c) and a wheel

rim (d) with their design parameters.

4. CAD Models for Study’s Experiments

S-TLBO can generate a variety of designs for a given CAD model in the constrained and unconstrained design

spaces. Both the design specifications and user preferences can be represented by constraints. To validate the per-

formance of S-TLBO, four different CAD models were utilized, as follows: a yacht hull, wheel rim, sherry-type

wine glass without a base (glass-1), and pinot noir-type wine glass (glass-2). These models are shown in Figure 4.

The constraints for the yacht hull and glass-1 models were formulated by incorporating the user preferences. For

the glass-2 model, the design specifications, such as the glasss capacity to store a certain amount of liquid, were

given as constraints. The constraints for the yacht hull and glass-1 models were determined via one-to-one interviews

with the participants; thus, to some extent, they reflect customer preferences related to the product. We call this

customer-centered design sampling. A customer-centered design is developed considering the customers perspectives

by understanding their preferences [56, 57, 58]. The design sampling is first carried out without constraints, and the

sampled designs are shown to the participants to learn their preferences. By including these preferences as S-TLBO

constraints, sampling can be performed in the constrained space.

For higher design variations, we divided the yacht hull model into three regions, as follows: the entrance, middle,

and run. The glass-1 model had lower and upper regions, while the profiles of the wheel rim and glass-2 models

were divided into three curves. The 3D surface models for these models were obtained by lofting between the Bezier

curves separately in each region, and the design parameters were defined on the curves. The surface modification of

the models was performed using the technique proposed by Khan et al. [59]. The design parameters Le, Lm, and Lr

represent the lengths of the entrance, middle, and run regions, respectively, of the yacht hull. Moreover, Be,Bm,Br and

De,Dm,Dr denote the beams and widths of regions, respectively, while θ is the entrance angle and β is the bow angle.

For the glass-1 model, the heights of the lower and upper regions are denoted by Hl and Hu, respectively. Moreover,

Wl and Wu are the widths of the lower and upper regions, respectively, while Wm denotes the width at the connection

between the upper and the lower regions. For the wheel rim model, parameters L1,L2 and B1,B2 denote the length

and width of curves 1 and 2, respectively. The parameter θ adjusts the position of curve 3 on the outer circle of the

wheel rim. The minimum radii of the curvature of curves 1, 2, and 3 are represented by parameters R1, R2, and R3,

respectively. The design parameters H1,H2,H3 and W1,W2,W3 denote the lengths and widths, respectively, of curves

1, 2, and 3, and H0 is the vertical length of glass-2’s stem. Each design parameter described represents a dimension

in the design space. Therefore, 11-, 5-, 7-, and 8-dimensional design spaces were formed for the yacht hull, glass-1,

glass-2, and wheel rim, respectively. Tables 1, 2, and 3 show the parameter ranges (i.e., lower and upper bounds for
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the design parameters) that were used in this study’s experiments for the yacht hull, glass, and wheel rim models,

respectively.

The design constraints for the yacht hull and glass-1 can be seen in Tables 1 and 2, respectively. S-TLBO first

sampled designs in an unconstrained space; following this, participants’ preferences concerning the appearance of

these designs were learned via comprehensive one-to-one interviews. There were 30 and 50 samples obtained for

the yacht hull and glass-1 models, respectively, as shown in Figures 5 (a) and 6 (a). Three participants attended the

interview for the yacht hull model, whereas only one participant was interviewed for the glass-1 model. The CAD

models generated by S-TLBO were shown to the participants one by one to learn whether they liked or disliked the

models. Next, they were asked about the reasons for their preferences concerning the models. The following questions

were asked when a model was shown to the participants:

• Familiarize yourself with this model by viewing it from different perspectives.

• Do you like or dislike it?

• If you like it, which features of this model do you like?

• If you dislike it, which features of this model do you dislike?

In this way, the participants’ preferences were quantized and represented by geometric constraints. For instance, the

participant disliked the designs in Figure 6 (a), numbered in red as 1, 7, 11, 13, 14, 16, 20, 27, 28, 29, 31, 35, 41, 47, 48,

and 50. When these models are visually inspected, it can be recognized that the parameter Wm is approximately equal

to or higher than Wu. The participant preferred designs with Wu parameter values of at least twice the Wm parameter

values. As the objective of this study was to perform sampling in a predetermined design space, the constraints in

Tables 1 and 2 are not all explained here in detail. Based on the predetermined constraints, S-TLBO was utilized once

again in constrained design spaces for the generation of customer-centered designs.

Table 1: Parameter bounds and geometric constraints for the yacht hull model

Parameter Bounds (in meters)

6 ≤ Le ≤ 12 6 ≤ Lm ≤ 12 2.5 ≤ Lr ≤ 8

4.80 ≤ Be ≤ 10.8 4.64 ≤ Bm ≤ 10.64 3 ≤ Br ≤ 9.0

2.34 ≤ De ≤ 4.34 2.21 ≤ Dm ≤ 4.21 1.75 ≤ Dr ≤ 3.50

30 ≤ β ≤ 120 25 ≤ θ ≤ 70

Geometric Constraints

No. Participant 1 Participant 2 Participant 3

φ1 Lr ≥ 2Lm/3 −1.2 ≤ Le − Lm ≤ 2.4 −2.4 ≤ Le − Lm ≤ 3.6

φ2 Be ≥ Bm/2 Lr ≥ Lm/2 Lm ≥ Lr ≥ Lm/2

φ3 Bm ≥ Br 0 ≤ Be − Bm ≤ 2.4 −1.8 ≤ Be − Bm ≤ 3

φ4 De ≥ Dm ≥ Dr Bm ≥ Br Bm ≥ Br

φ5 50 ≤ β ≤ 120 0 ≤ De − Dm ≤ 0.7 0 ≤ De − Dm ≤ 0.7

φ6 Dm ≥ Dr Dm ≥ Dr

φ7 40 ≤ β ≤ 70 110 ≤ β ≤ 80

φ8 45 ≤ θ ≤ 70 if (β ≥ 110) then θ ≥ 55

5. Results and Discussion

In this study, S-TLBO was tested for both constrained and unconstrained design sampling. Figures 5 (a), 6

(a), 7 (a), and 8 show the yacht hull, glass-1, glass-2, and wheel rim models generated by S-TLBO without using

any geometric constraints, respectively. The models in Figures 5 (b, c, d), 6 (b), and 7 (b) were obtained after the

application of S-TLBO with the geometric constraints. The designs in Figure 7 (b) were generated based on the

geometric constraint of volume ≤ 200. As stated above, the designs in Figures 5 (b, c, d) and 6 (b) were generated

10



Figure 5: (a) Designs obtained using S-TLBO without the geometric constraints. Designs obtained with the geometric constraints, quantified for

participants 1 (b), 2 (c) and 3 (d) for the yacht hull model. (The participants disliked the designs numbered in red).

based on user preferences, which were learned via one-to-one interviews. We also measured the success rate of S-

TLBO for the yacht hull in terms of the model satisfaction of the interviewed participants. They were asked again

whether they like the generated models. The satisfaction rate is the percentage rate of the number of CAD models

that the participants liked over the number of sampled models. Satisfaction rates of 96.6%, 93.3%, and 86.6% were

achieved for participants 1, 2, and 3, respectively.
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Figure 6: Designs obtained using S-TLBO without (a) and with (b) the geometric constraints quantified for the participant for the glass-1 model.

(The participant disliked the designs numbered in red).

Figure 7: Glass-2 designs obtained using S-TLBO without (a) and with (b) the geometric constraint.

Figure 8: Designs obtained for the wheel rim models using S-TLBO.

5.1. Computational Time

A PC with an i7 6700 Intel Core, 3.4-GHz processor, and 16-GB memory was used for the experiments in this

study; the C++ programming language was employed for the implementation of the S-TLBO algorithm. The compu-

tational times taken to obtain the sampling results in Figures 5, 6, 7, and 8 are shown in Table 4; they varied between

1.73 and 29.36 minutes. It has been observed that the processing time mainly depends on the number of designs to
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Table 2: Parameter bounds and geometric constraints for glass-1 and glass-2

Wine Glass-1 Wine Glass-2

Parameter Bounds (in millimeters)

40 ≤ Hu ≤ 120 90 ≤ Hl ≤ 170 50 ≤ H0 ≤ 100 90 ≤ H1 ≤ 115

130 ≤ Wu ≤ 170 15 ≤ Wm ≤ 160 130 ≤ H2 ≤ 155 175 ≤ H3 ≤ 200

15 ≤ Wl ≤ 65 17.5 ≤ W1 ≤ 60 37.5 ≤ W2 ≤ 60

32.5 ≤ W3 ≤ 60

Geometric Constraints

φ1 Hl ≥ Hu volume ≤ 200

φ2 Wm ≤ Wu/2

φ3 Wm ≤ Wl

Table 3: Parameter bounds for the wheel rim model

Parameter Bounds (in millimeters)

50 ≤ B1 ≤ 100 120 ≤ L1 ≤ 270 0.5 ≤ B2 ≤ 210

280 ≤ L2 ≤ 400 3.5 ≤ θ ≤ 30 0 ≤ R1 ≤ 10

0 ≤ R2 ≤ 50 0 ≤ R3 ≤ 50

be sampled (N), dimensionality of the design space (n), and size of the subpopulations (s). Increases in the values

of these parameters will increase the S-TLBO’s processing time. Due to the larger value of s, the sampled designs

in Figure 5 (d) had the highest computational time compared with the sampled designs in Figure 5 (a), (b), and (c).

Furthermore, S-TLBO takes more time when it is used in constrained spaces. For instance, the designs in Figure 5

(b) were obtained after a higher processing time of S-TLBO than those obtained in Figure 5 (a), even with the same

parameter settings for N, n, and s. The computational complexity of TLBO for a single iteration is O(s · n). Since

S-TLBO has N subpopulations, its computational complexity for a single iteration is O(s · n · N). Let imax be the total

number of iterations after the termination of S-TLBO; the computational complexity of S-TLBO is O(s · n · N, imax).

Table 4: Processing time taken to obtain the sampling results in Figures 5, 6, 8, and 11

N n s U(T ) U1(T ) Number of Collapsing Models Computational Time (minute)

Results in Figure 5 (a) 30 11 60 241.78 245.31 0 16.08

Results in Figure 5 (b) 30 11 60 23113.49 269.62 16 16.46

Results in Figure 5 (c) 30 11 70 13127.32 261.00 18 21.50

Results in Figure 5 (d) 30 11 80 11111.18 250.61 16 29.36

Results in Figure 6 (a) 50 5 30 1885.94 1734.16 0 10.63

Results in Figure 6 (b) 50 5 30 6757.20 2071.37 30 10.91

Results in Figure 7 (a) 20 7 20 167.04 137.85 20 3.60

Results in Figure 7 (b) 10 7 20 372.22 42.22 10 1.73

Results in Figure 8 10 8 20 28.91 30.62 0 3.28

Results in Figure 11 30 11 – – 421.86 28 2.58

5.2. Algorithm Convergence

The S-TLBO stops the optimization process when there is no improvement in the cost function U(T ) for some

consecutive iterations (i); at this point, the design reaches the optimal position, and the algorithm is considered to

converge to its optimality. The plots in Figure 9 show the cost value versus the number of S-TLBO iterations for
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the designs in Figures 5, 6, 7, and 8. Many iterations were performed for the models in Figures 5, 6, 7, and 8 to

analyze the convergence of the S-TLBO algorithm (see the plots in Figure 9). No improvements were observed in the

cost function (U(T )) after some consecutive iterations. There was no change in the cost function after approximately

the 60th iteration for the models in Figures 5 (a), 5 (d), 5 (c), 6, 7, and 8. For the models in Figure 5 (b), S-TLBO

converged at i = 80. The convergence rate depends on the number of designs that are sampled (N), dimensionality

of design space (n), and total number of constraints (nc). Due to its low dimensionality and the presence of fewer

geometric constraints, S-TLBO converges faster for the sampling problem in Figure 6 than that in Figure 5.

Figure 9: (a), (b), (c), (d) Plots showing the cost value versus number of S-TLBO iterations for the models in Figure 5 (a), (b), (c), and (d),

respectively. (e), (f), (g), (h) Plots showing the cost value versus number of S-TLBO iterations for the models in Figures 6 (a), 6 (b), 8, and 7 (a),

respectively.

5.3. Comparison with Existing Works

We compared the performance of S-TLBO with the existing state-of-the-art techniques in the literature that have

been proposed to generate optimal space-filling designs in experiments. First, we compared the performance of S-

TLBO with Fuerle and Sienz’s [4] technique. For the comparison, we utilized the two-dimensional examples 2 and 7

in the paper [4], which are also shown in Figure 10 (a) and (c), respectively. Examples 2 and 7 utilize Equations 16

and 17, respectively, as constraints.

(x1 − 0.5)2 + (x2 − 0.5)2 ≥ 0.25

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

(16)
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(x1 − 0.5)2 + (x2 − 0.5)2 ≥ 0.1

(x1)2 + (x2 − 1)2 ≥ 1/3

(x1 − 1)2 + (x2)2 ≥ 1/3

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

(17)

Fifteen design points (i.e., N = 15) were sampled under the above constraints via S-TLBO. These points are

shown in Figure 10 (b) and (d), which are plotted after conversion into integer coordinates using Equation 11. The

designs in Figure 10 (b) were obtained with the α = 50, β = 2000, and s = 40 settings. The designs in Figure 10

(d) were obtained with the following settings: α = 30, β = 2000, and s = 40. The sampled designs generated using

Fuerle and Sienz’s [4] method are shown in Figure 10 (a) and (c). The values of potential energy U1(T ) for the design

points in Figure 10 (a), (b), (c), and (d) are were about 610, 555, 618, and 518, respectively. The potential energies of

the sampled design points generated by S-TLBO were lower than those produced by Fuerle and Sienz’s technique.

Figure 10: Design points are generated based on the constraints defined in Equation 16 using (a) Fuerle and Sienz’s [4] technique and (b) S-TLBO.

The design points are obtained based on the constraints defined in Equation 17 using (c) Fuerle and Sienz’s [4] method and (d) S-TLBO (images

(a) and (c) are taken from [4]).

We also compared the performance of S-TLBO with random sampling and other techniques, such as the Lp

optimization technique proposed by Torsset [15], recently proposed CoNcaD technique of Draguljić et al. [17], and

NPL algorithms SFDP* and SFDP** proposed by Stinstra et al. [13]. These techniques utilized the maximin distance

proposed by Johnson et al. [10] for creating space-filling designs (see Equation 18). Therefore, we used Equation 18

instead of Equation 6 to allow comparison of our work with these methods. Equation 18 spreads out the designs in

the design space by maximizing the minimum interpoint distance between the pair of designs, which is expressed as

follows:

max
T

min
Xp,Xq∈T

√

√

n
∑

j=1

(xp, j − xq, j)2 (18)

The quadrant/ball region example was also tested; this was defined by the following constraints: x j ≥ 0 where

j = 1, 2, . . . , n and
∑n

j=1(x2
j
) ≤ 0. For n = 2 and n = 10, the designs were obtained using S-TLBO’s constrained

formulation with the maximin distance in Equation 18 for the settings of α = 0, β = 2000, and i = 500. Table 5 shows

the maximin distances for the design points produced by Lp optimization, SFDP* and SFDP**, CoNcaD , and random

sampling. It should be noted that the data in Table 5 are taken from Table 2 in Draguljić et al. [17] except for random
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sampling, S-TLBO, and S-TLBO (α = 0) . To compare the S-TLBO results with those of random sampling for

the quadrant/ball region example, the designs were randomly selected from the design space. The samples violating

the constraint(s) were rejected, and random sampling was repeated until all N samples satisfied the constraints. As

mentioned in [13], SFDP* cannot be used for sampling problems with a high number of constraints. As shown in

Table 5, except for n = 10 and N = 10, the design points generated by S-TLBO have a higher maximin distance value

(i.e., better sampling quality) than those produced by the SFDP** and CoNcaD techniques. It should be noted that

random sampling and Lp produced the poorest results compared with the other techniques. Especially, Lp generated

the worst samples in high-dimensional design spaces (i.e., n = 10). According to the experiments, we observed that

S-TLBO generated samples with better sampling quality, especially for large values of n and N. It is noteworthy that

SFDP* and SFDP** do not consider the non-collapsing property during sampling, and therefore, these techniques

should also be compared with S-TLBO when the parameter α is set to zero. In Table 5, S-TLBO (α = 0) is the

S-TLBO algorithm when α = 0. It is shown in Table 5 that S-TLBO (α = 0) produces better results than SFDP* and

SFDP**.

Table 5: The maximin distance (in Equation 6) of the designs produced by different algorithms for n = 2 and n = 10 using the quadrant/ball

example (NA: Not Applicable)

n N Random Sampling SFDP* SFDP** LP CoNcaD S-TLBO S-TLBO( α = 0)

2 10 0.0444 0.3587 0.3522 0.2554 0.3400 0.3565 0.3630

2 20 0.0537 0.2394 0.1966 0.2212 0.2124 0.2292 0.2391

2 50 0.0063 0.1403 0.1188 0.1336 0.1204 0.1283 0.1409

2 100 0.0046 NA 0.0486 0.0660 0.0789 0.0822 0.0893

2 200 0.0037 NA 0.0259 0.0070 0.0539 0.0566 0.0584

10 10 0.3606 1.4142 1.2167 0.5017 1.3027 1.0882 1.4358

10 20 0.3095 1.0323 0.9591 0.4138 0.8364 0.9877 1.0461

10 50 0.2658 0.8811 0.7588 0.2952 0.6747 0.7917 0.8852

10 100 0.2203 NA 0.6248 0.2753 0.5838 0.6770 0.7095

10 200 0.1367 NA 0.5235 0.2559 0.5160 0.5689 0.5817

To compare the results of S-TLBO with random sampling, we generated the yacht hull model in Figure 4 (a) via

random sampling under the constraints quantified from participant 1. Thirty yacht hull models were generated via

random sampling. A model violating the constraint(s) was rejected, and a new model was sampled. The sampling

was repeated until all 30 models satisfying the constraints were obtained, as shown in Figure 11. These 30 randomly

sampled models were compared with the models in Figure 5. It can be seen from Table 4 that the random sampled

models have a poorer space-filling property than those obtained from S-TLBO.

5.3.1. Statistical Analysis of Results in Table 5

We also analyzed the statistical performance of the proposed approach over the other techniques in Table 5. The

Shapiro-Wilk and Kolmogorov-Smirnov normality tests were performed to check the distribution of the data in the

table 5. The significance values for these tests were smaller than 0.05, which implies that the data have a non-normal

distribution. The histogram plot in Figure 12 also confirmed this, which is obtained using the results of the proposed

and benchmark techniques in Table 5. The data distribution is left-skewed with a skewness value of 1.032, therefore

the data have a non-normal distribution. Thus, the Friedman test [60], a nonparametric statistical test, was used. It

should be noted that the nonparametric approaches have been employed by researchers to compare the performance

of swarm and evolutionary algorithms [61, 62, 63].

In the Friedman test, two hypotheses–the null hypothesis H0 and alternative hypothesis H1–are defined. The

null hypothesis states that there is no significant difference between the algorithms, whereas the alternative hypothesis

anticipates the presence of a significant difference between the algorithms [61]. chi2 and p-Values provide information

about whether a statistical hypothesis test is true. If the p-value is less than 0.05 and the value of chi2 is greater than

the critical value of chi2, then there is strong evidence against H0. To carry out this test, two datasets were formed,

one by excluding (the first dataset) and other by including (the second dataset) the results of SFDP* as some results

16



Figure 11: Yacht hull models generated via random sampling under the constraints quantified from participant 1

Figure 12: Histogram plot for the data in Table 5

in Table 5 were not provided due to the incapability of SFDP*.

We performed two types of Friedman test using the datasets, namely multiple and pairwise comparison. The

multiple comparison examined the multiple algorithms at once, including S-TLBO and other techniques in Table

5. On the other hand, individual comparisons between two different algorithms were performed in the pairwise

comparison in which each algorithm was compared to all other algorithms. The p-value and chi2 of the first dataset

were 5.156e − 08 and 42.286, respectively, for the multiple comparison. The values were 1.38e − 06 and 37.543,

17



respectively, for the second dataset. The critical chi2 was 12.59 for both datasets. As the p-values were less than

0.05, and the chi2 values were greater than the critical chi2 (12.59), these results indicated strong evidence against H0.

Similarly, the results showed strong evidence against H0 for the pairwise comparison.

Furthermore, pairwise comparison analyses were also performed for the first and second datasets, and their results

can be seen in Tables 6 and 7, respectively. It should be noted that only S-TLBO and CoNCaD consider the non-

collapsing criterion. Therefore, results of these techniques should be compared. On the other side, the results of

random sampling, SFDP*, SFDP** and Lp should be compared with S-TLBO (α = 0) as these techniques do not

consider the non-collapsing criterion. The computed p-values for S-TLBO-CoNcaD and S-TLBO(α = 0)-others

(others include random, SFDP*, SFDP ** and Lp) are all less than 0.05, and the chi2 values are greater than the

critical chi2 (3.84) in Table 6. This proves that the null hypothesis H0 is rejected for the present analysis. Similarly,

the computed p- and chi2 values for S-TLBO-CoNcaD and S-TLBO(α = 0)-others in the second dataset are shown

in Table 7, which are again less than 0.05 and the critical chi2 value, respectively. These results imply that the null

hypothesis H0 is rejected. This concludes that the results shown in Table 5 obtained using S-TLBO are significantly

different from those obtained using the other alternative techniques. Consequently, S-LTBO has statistically better

performance (i.e., space-fillingness) than the other alternative techniques.

Consequently, the Friedman test shows that the results given in Table 5 obtained using S-TLBO are significantly

different from those obtained using the other alternative techniques. As S-TLBO has better performance (i.e. better

space-filling property) according to the experiments in Table 5, it can be concluded that S-TLBO has statistically

better performance than the other alternative techniques.

Table 6: p-values and chi2 values for the first dataset obtained from the Friedman test in pairwise comparison

Random Sampling SFDP** Lp CoNcaD S-TLBO S-TLBO (α = 0)

p-values

Random Sampling NaN 0.001 0.001 0.001 0.001 0.001

SFDP** 0.001 NaN 0.205 1 0.011 0.001

Lp 0.001 0.205 NaN 0.057 0.011 0.001

CoNcaD 0.001 1 0.057 NaN 0.011 0.001

S-TLBO 0.001 0.011 0.011 0.011 NaN 0.001

S-TLBO(α = 0) 0.001 0.001 0.001 0.001 0.001 NaN

chi2 values

Random Sampling NaN 10 10 10 10 10

SFDP** 10 NaN 1.6 0 6.4 10

Lp 10 1.6 NaN 3.6 6.4 10

CoNcaD 10 0 3.6 NaN 6.4 10

S-TLBO 10 6.4 6.4 6.4 NaN 10

S-TLBO(α = 0) 10 10 10 10 10 NaN

5.3.2. Comparison of S-TLBO with NSGA-II’s non-dominated sorting and crowding distance phenomenon

We compared the weighted combination of objectives (U1(T ), U2(T ), and U3(T )) with nonparameterized ap-

proaches, such as NSGA-II [64], which relies on the Pareto dominance and crowding distance to prioritize solutions.

Zou et al. [65] proposed an improved TLBO called multi-objective teaching-learning-based optimization (MOTLBO).

In MOTLBO, Zou et al. [65] used an external archive to retain the best solutions. The concept of nondominated sorting

and the mechanism of crowding distance computation are incorporated into the algorithm, specifically in the teacher

phase. Like in Zou et al.s [65] work, we incorporated the nondominated sorting concept and mechanism of crowding

distance in S-TLBO, and we call the revised approach S-TLBO*.

S-TLBO* first sorts each subpopulation based on the nondominated sorting and crowding distance. The sorted

subpopulations are then placed in an external archive. Following this, S-TLBO* applies the teacher and learner phases

to each subpopulation to create a new one. It then combines the new subpopulation with its respective external archive.

Note that after this combination, the total size of each population becomes 2s. Then, s solutions are selected from the
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Table 7: p-values and chi2 values for the second dataset obtained from the Friedman test in pairwise comparison

Random Sampling SFDP* SFDP** Lp CoNcaD S-TLBO S-TLBO (α = 0)

p-values

Random Sampling NaN 0.527 0.001 0.001 0.001 0.001 0.001

SFDP* 0.527 NaN 0.527 0.527 0.527 0.527 0.011

SFDP** 0.001 0.527 NaN 0.205 1 0.011 0.001

Lp 0.001 0.527 0.205 NaN 0.057 0.011 0.001

CoNcaD 0.001 0.527 1 0.057 NaN 0.011 0.001

S-TLBO 0.001 0.527 0.011 0.011 0.011 NaN 0.001

S-TLBO (α = 0) 0.001 0.011 0.001 0.001 0.001 0.001 NaN

chi2 values

Random Sampling NaN 0.4 10 10 10 10 10

SFDP* 0.4 NaN 0.4 0.4 0.4 0.4 6.4

SFDP** 10 0.4 NaN 1.6 0 6.4 10

Lp 10 0.4 1.6 NaN 3.6 6.4 10

CoNcaD 10 0.4 0 3.6 NaN 6.4 10

S-TLBO 10 0.4 6.4 6.4 6.4 NaN 10

S-TLBO (α = 0) 10 6.4 10 10 10 10 NaN

2s solutions based on the nondominated sorting and crowding distance for the next generation. In S-TLBO*, each

initial teacher is selected from its external archive, and a nondominated solution in the first Pareto front can be used

as the teacher. If there are two or more nondominated solutions in the first Pareto front, then the solution with the

highest crowding distance value is selected as the teacher.

A solution X1 is said to be Pareto dominated by the other solution X2 if U1(X1) ≤ U1(X2) ∧ U2(X1) ≤ U2(X2) ∧

U3(X1) ≤ U3(X2) andU1(X1) < U1(X2) ∨ U2(X1) < U2(X2) ∧ U3(X1) < U3(X2). This dominating criterion is initiated

to make designs that guarantee the validation of the geometric constraints in each iteration. During the teacher and

learner phases, a new learner, X′
1
, replaces the previous learner X1 if X′

1
dominates X1. Moreover, X′

1
is rejected if

X1 dominates. When X′
1

and X1 do not dominate each other, we randomly select one to add to the population. As in

S-TLBO, teachers are selected as the sampled designs at the end of the last iteration.

The performance of S-TLBO* was compared with that of S-TLBO for the wheel rim, glass-1, and yacht hull

models for the settings of i = 30, s = 10, and N = 10. Table 8 shows that the values of U1(T ) for the wheel rim and

yacht samples in the case of S-TLBO were lower than those obtained using S-TLBO*. For all the test models, the

values of U2(T ) and U3(T ) for the samples obtained using S-TLBO were less than those generated by S-TLBO*. The

computational cost of S-TLBO* is approximately two times higher than that of S-TLBO.

5.4. User Study

We conducted a new user study that included 14 participants to compare the results obtained from S-TLBO and

random sampling. Four participants had more than 3 years of professional design experience, and the others were

chosen from the Amazon Mechanical Turk platform. First, designs were generated for the glass-2 model, which are

shown in Figure 13. These designs were compared with the designs in Figure 7 (a), which are generated using S-

TLBO. We asked the participants to rate designs based on a Likert scale, with anchors ranging from ”very poor” to

”very good” (1: very poor, 2: poor, 3: fair, 4: good, 5: very good). It should be noted that the survey participants

did not have any information about the techniques used to generate the models. Table 9 summarizes the user study

results. It was observed that the average ratings given by the users to the designs generated with random sampling

were mostly lower than those obtained using S-TLBO. Ten out of 14 participants preferred the designs generated

using S-TLBO, including the four experienced designers. Furthermore, the designs generated using random sampling

had poor space-filling and non-collapsing compared to those generated using S-TLBO. When visually inspected, the

designs generated using random sampling looked extremely similar. In contrast, the designs generated using S-TLBO

looked highly different, as these designs were well spread in the design space (i.e., better space-filling designs).
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Table 8: Comparison of S-TLBO with S-TLBO* for the wheel rim, glass, and yacht hull models.

Wheel Rim Wine Glass Yacht Hull

STLBO

U1(T ) 28.70 58.90 22.40

U2(T ) 0 9 8

U3(T ) – 0 0

Computational Time (minutes) 3.28 1.72 3.09

S-TLBO*

U1(T ) 33.34 56.20 29.20

U2(T ) 36 13 34

U3(T ) – 12 15

Computational Time (minutes) 7.38 3.83 5.95

Figure 13: Glass-2 models generated using random sampling.

A t-test was also utilized to statistically examine the S-LTBO performance. The users data were normally dis-

tributed, as the skewness value was close to zero, and their mean/median values were approximately equal. The null

hypothesis states that the ratings given to the designs generated using random sampling and S-LTBO will be similar.

The p-value obtained from the t-test was less than the significance level of 0.05, so the null hypothesis was rejected.

5.5. Parameter Tuning

S-TLBO utilizes the static constraint handling method to favor the sampling of feasible designs. Here, β is a

parameter in the cost function U(T ) that adjusts the weight of the term U3(T ), while α is a parameter in the cost

function U(T ) that adjusts the weight of the term U2(T ). Experiments were conducted to observe the behavior of

S-TLBO at different values of α.

Figure 14 (a), (b), and (c) show plots of the number of designs violating the geometric constraints versus β for

the yacht hull model for participants 1, 2, and 3. Figure 14 (d) shows a plot for the number of designs violating the

geometric constraints versus β for the glass-1 model. No generated CAD models violated any design constraint when

parameter β was set to values greater than 600. Therefore, β was set to 2, 000 in this study’s experiments. Figure 15

(a) and (b) show plots of the number of collapsing designs versus α. There were 49 collapsing designs when α was set

to 0. When α increased, the number of collapsing designs decreased, and this reached zero when α = 40. Therefore,

α was set to 100 in this study, except for the designs in Figure 7.

A 3D surface plot, shown in Figure 16, was also obtained to validate the ideal values for α and β. It can be observed

that the value of U1(T ) was minimal when α and β were equal to zero. When α was zero, most of the sampled designs

were collapsing, and thus, they spread more uniformly in the design space. When α increased, the sampled designs

tended to be non-collapsing, and therefore, U1(T ) increased. According to the plot, U1(T ) started to increase rapidly

until α = 40; after this point, it became almost constant. A similar trend was observed for the parameter β. When

β was zero, no geometric constraints were considered in the S-TLBO algorithm, and thus, the designs spread more

uniformly in the design space. With the increase in β (i.e., favoring the satisfaction of the geometric constraints), the

designs could not spread freely in the design space due to the presence of the constraints. It can be observed from the

plot that U1(T ) increased until β = 600.
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Table 9: Results of the second user study

Random Sampling S-TLBO

User Average Grade

1 2.85 3.50

2 3.65 4.15

3 3.75 4.40

4 2.65 4.30

5 2.25 2.55

6 3.10 2.70

7 4.15 3.85

8 3.45 3.55

9 4.15 3.85

10 3.15 2.9

11 2.85 3.20

12 2.60 2.80

13 3.35 3.55

14 2.70 3.00

U1(T ) 226.23 137.84

U2(T ) 88.00 32.00

σ 1.024 1.070

µ 3.190 3.450

Median 3.00 3.00

S kewness -0.04 -0.180

p-value 0.003365

The size of the subpopulations (s) also plays an important role for the generation of space-filling designs. Higher

values of s create a diverse initial solution for S-TLBO, which facilitates its search of the design space for the global

optimum solution. In contrast, the application of S-TLBO with higher values of s can result in a higher computational

cost. We recommend setting s to a value higher than 20. Table 4 provides values of s, U(T ), and the number of

collapsing designs for the designs in Figures 5, 6, 7, 8, and 11.

6. Conclusions and Future Works

This paper proposes a sampling method for CAD models. Teaching-Learning-Based Optimization (TLBO) is

extended for design sampling in constrained and unconstrained spaces. The S-TLBO approach randomly generates

sub-populations and improves learners in these sub-populations using teaching and learning phases. To obtain distinct

designs in the design space, designs with space-filling and non-collapsing properties are favored during sampling.

Designs, that do not satisfy predefined design constraints are penalized using a constraint handling mechanism. After

S-TLBO terminates, teachers of sub-populations are regarded as the sampled designs.

As a future work, we would like to integrate simulated annealing approach [66] into the S-TLBO algorithm.

We believe that this can enable the generation of better samples (i.e., space-filling and non-collapsing samples).

Furthermore, the application of teaching and learning phases via teachers and learners in different populations will

be investigated. Finally, Jaya Algorithm [67], and CMA-ES [28] will be studied in order to enhance their abilities to

sample CAD models and a separate user preference learning system will also be integrated in the proposed approach.
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Figure 14: (a), (b), (c), (d) Plots showing the number of designs violating the geometric constraints versus β for the models in Figures 5 (b), (c),

and (d) and 6 (b), respectively.

Figure 15: Plot of the number of collapsing designs versus α when β = 0 (a) and β = 2, 000 (b).
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