
Sampling Cube: A Framework for Statistical OLAP Over
Sampling Data∗

Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, Yizhou Sun
Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana, IL, USA

xli10@uiuc.edu, hanj@uiuc.edu, zyin3@uiuc.edu, jaegil@uiuc.edu, sun22@uiuc.edu

ABSTRACT
Sampling is a popular method of data collection when it is
impossible or too costly to reach the entire population. For
example, television show ratings in the United States are
gathered from a sample of roughly 5,000 households. To use
the results effectively, the samples are further partitioned in
a multidimensional space based on multiple attribute values.
This naturally leads to the desirability of OLAP (Online
Analytical Processing) over sampling data. However, unlike
traditional data, sampling data is inherently uncertain, i.e.,
not representing the full data in the population. Thus, it
is desirable to return not only query results but also the
confidence intervals indicating the reliability of the results.
Moreover, a certain segment in a multidimensional space
may contain none or too few samples. This requires some
additional analysis to return trustable results.

In this paper we propose a Sampling Cube framework,
which efficiently calculates confidence intervals for any mul-
tidimensional query and uses the OLAP structure to group
similar segments to increase sampling size when needed.
Further, to handle high dimensional data, a Sampling Cube
Shell method is proposed to effectively reduce the storage
requirement while still preserving query result quality.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Algorithms, Design, Experimentation

∗This work was supported in part by the U.S. National Sci-
ence Foundation NSF IIS-05-13678 and BDI-05-15813, and
by the Boeing company. Any opinions, findings, and con-
clusions or recommendations expressed here are those of the
authors and do not necessarily reflect the views of the fund-
ing agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1. INTRODUCTION
Data warehousing and online analytical processing (OLAP)

are the primary components of decision support systems.
Typically, the source data of OLAP are complete and con-
solidated historical data collected from many parts of the
organization. This means that the OLAP query processor
has access to all the relevant data and can produce an accu-
rate answer anywhere in the multidimensional space. Data
cubes [10] are often used to pre-compute multidimensional
aggregates and thus provide faster runtime performance.

In many applications, however, the complete source data
is not available. Only a sample of the population is avail-
able for study. Consider the following example.

Example 1 (Sampling Data). Nielsen Television Rat-
ings in the United States are the primary source of measur-
ing a TV show’s popularity. Each week, a show is given a
rating, where each point represents 1% of the US population.
There are over 100 million televisions in the United States,
and it is impossible to detect which shows they are watching
every day. Instead, the Nielsen ratings rely on a statisti-
cal sample of roughly 5000 households across the country.
Their televisions are wired and monitored constantly, and
the results are extrapolated for the entire population.

This example shows a typical use of sampling data. In
many real world studies about large populations where the
data collection is required, it would be too expensive and
often simply impossible to gather the relevant information
from everyone in the population. Nonetheless, multidimen-
sional analysis must be performed with whatever data is
available.

Example 2 (OLAP on Sampling Data). Advertisers
are major users of TV ratings. Based on the rating, they can
estimate the viewership of their advertisements and thus pay
appropriate prices. In order to maximize returns, advertis-
ers want the maximum viewership of their target audience.
For example, if the advertised product is a toy, the adver-
tiser would want a TV show with children as its main audi-
ence. As a result, advertisers demand ratings be calculated
in a multidimensional way. Popular dimensions include age,
gender, marital status, income, etc.

To accommodate the multidimensional queries, attributes
are recorded at the sampling level, e.g., a recorded viewer-
ship for television show X might be attached to a “married
male with two children.” This leads directly to OLAP on
multidimensional sampling data. Compared to tradi-
tional OLAP, there is a subtle and yet profound difference.

In both cases, the intent or final conclusion of the analysis
is on the population. But the input data are very different.
Traditional OLAP has the complete population data while
sampling OLAP only has a minuscule subset. Table 1 shows
a summary of the differences.

Input Data Analysis Target Analysis Tool

Population Population Traditional OLAP
Sample Population Not Available

Table 1: Two models of OLAP application

The question is then “Are traditional OLAP tools suffi-
cient for multidimensional analysis on sampling data?” The
answer is “No” for several reasons. First is the lack of
data. Sampling data is often “sparse” in the multidimen-
sional sense. When the user drills down on the data, it is
very easy to reach a point with very few or no samples even
when the overall sample is large. Traditional OLAP simply
uses whatever data is available to compute an answer. But
to extrapolate such an answer for the population based on
a small sample could be dangerous. A single outlier or a
slight bias in the sampling can distort the answer signifi-
cantly. For this reason, the proper analysis tool should be
able to make the necessary adjustments in order to prevent
a gross error. Second, in studies with sampling data, sta-
tistical methods are used to provide a measure of reliability
on an answer. Confidence intervals are usually computed to
indicate the quality of answer as it pertains to the popu-
lation. Traditional OLAP is not equipped with such tools.
And lastly is the challenge of high dimensionality in the in-
put data. While common to many other problems, sampling
data analysis offers some new challenges such as the relation-
ship between the quality of samples and an extremely large
number of subspaces.

Example 3 (Usage Example). To give a more con-
crete application of multidimensional sampling data, con-
sider a retail outlet trying to find out more about its cus-
tomers’ annual income levels. In Table 2, a sample of the
survey data collected is shown1. In the survey, customers are
segmented by four attributes, namely Gender, Age, Education,
and Occupation.

Gender Age Education Occupation Income

Female 23 College Teacher $85,000
Female 40 College Programmer $50,000
Female 31 College Programmer $52,000
Female 50 Graduate Teacher $90,000
Female 62 Graduate CEO $500,000
Male 25 Highschool Programmer $50,000
Male 28 Highschool CEO $250,000
Male 40 College Teacher $80,000
Male 50 College Programmer $45,000
Male 57 Graduate Programmer $80,000

Table 2: Sample survey data

First, the manager tries to figure out the mean income
level of programmers in their customer base (i.e., Occupation

1For the sake of illustration, ignore the fact that the sample
size is too small to be statistically meaningful.

= Programmer). The mean income for them is $55,400
with a 95% confidence interval of ± $12,265. This seems
like a reasonable answer to the manager. Next, the manager
queries for the mean income of teachers in the 30–40 age
range. Although the data only contains one sample matching
this criterion, an “expanded” answer of $85,000 ± $5,657
with 95% confidence is returned and the manager is satis-
fied.

1.1 Contributions
To this end, this work proposes a new framework, called

Sampling Cube, which adds the following features to the
traditional OLAP model: (1) Calculations of point estimates
and confidence intervals for all queries are provided. Alge-
braic properties of the measures are exploited to make the
calculations efficient. (2) When a query reaches a cell with
too few samples, the query is “expanded” to gather more
samples in order to improve the quality of the answer. The
expansion takes advantage of the OLAP structure to look
for semantically similar segments within the queried cuboid
and also nearby cuboids. Two sample hypothesis tests are
performed for expansion candidates, and the ones that pass
are merged with query segment to produce the final answer.
(3) Lastly, to handle the high dimensionality problem, a
Sampling Cube Shell method is proposed. Instead of ma-
terializing the full sampling cube, only a small portion of it
is constructed. But unlike other cube compression schemes,
the selection is based on the quality of sampling estimates.
In tests with real world sampling data, the framework is
shown to be efficient and effective at processing various kinds
of queries.

1.2 Paper Organization
The rest of the paper is organized as follows. In Section

2, formal definitions of the problem are given. Section 3
describes the whole sampling cube framework of efficient
aggregation and query expansion. Section 4 describes the
sampling cube shell with optimizations for high dimensional
data. Section 5 shows experimental results with respect to
query efficiency and effectiveness. Related work is discussed
in Section 6, and the paper concludes in Section 8.

2. DEFINITIONS

2.1 Data Cube Definitions
Before giving the proper problem definitions, we will re-

view the data cube model. Given a relation R, a data cube
(denoted as CR) is the set of aggregates from all possible
group-by’s on R. In an n-dimensional data cube, a cell
c = (a1, a2, . . . , an : m) (where m is the cube measure on
some value) is called a k-dimensional group-by cell (i.e., a
cell in a k-dimensional cuboid) if and only if there are k
(k ≤ n) values among (a1, a2, . . . , an) which are not ∗ (i.e.,
all). Given two cells c1 and c2, let V1 and V2 represent the
set of values among their respective (a1, a2, . . . , an) which
are not ∗. c1 is the ancestor of c2 and c2 is a descendant of
c1 if V1 ⊂ V2. c1 is the parent of c2 and c2 is a child of c1 if
V1 ⊂ V2 and |V1| = |V2|−1. These relationships also extend
to cuboids and form a structure called the cuboid lattice.
An example is shown in Figure 1. The “All” or apex cuboid
holds a single cell where all its values among (a1, a2, . . . , an)
are ∗. On the other extreme, the base cuboid at the bottom
holds cells where none of its (a1, a2, . . . , an) values is ∗.

BC

B

ABC

ACAB

A C

All

Figure 1: Cuboid lattice

Table 2 is an example of R. Each tuple corresponds to
a person being sampled. The four attributes: Gender, Age,
Education, and Occupation, segment the person. And fi-
nally, the value of the data is the Income of the person.

The query model follows the semantics of a data cube be-
ing constructed on the input relation R. More specifically,
the user can pick any cell in CR and ask for information
about V for that cell. The measure of the cube (e.g., av-
erage, sum) is computed on V and returned. In the moti-
vating example, the first query of Occupation=Programmer
is essentially a cell in the Occupation cuboid with all other
dimensions set to ∗ or “don’t care.” The measure of the
cube is the average of Income.

2.2 Problem Definition
As Example 3 showed, there are a few additional features

than traditional OLAP. First, given α as a confidence level
(e.g., 95%), all cell queries to CR should return a confidence
interval of α confidence in addition to the measure as an
answer. In comparison to traditional OLAP, the confidence
level indicates the reliability of the measure to the user.
Second, given minsup as a minimum support on the number
of samples, if a cell’s sample size does not satisfy minsup
(i.e., sample size < minsup), “similar” cells in the data cube
will be used to “boost” the confidence interval if certain
criteria are satisfied. Lastly, if there is insufficient space to
materialize the full data cube, a new methodology is needed
to answer queries.

2.3 Confidence Interval
To make future discussions easier, a quick review of con-

fidence interval calculation is given here [13].
Let x be a set of samples. The mean of the samples is

denoted by x̄, and the number of samples in x is denoted by
l. Assuming that the standard deviation of the population
is unknown, the sample standard deviation of x is denoted
by s. Given some desired confidence level, the confidence
interval for x̄ is

x̄ ± tcσ̂x̄ (1)

where tc is the critical t-value associated with the confi-
dence level and σ̂x̄ = s√

l
is the estimated standard error of

the mean. To find the appropriate tc, one has to know the
desired confidence level (e.g., 95%) and also the degree of
freedom, which is just l − 1.

3. THE SAMPLING CUBE FRAMEWORK
This section will describe the full framework of providing

OLAP to sampling data. Specifically, it will describe how to

store the sample data in a data cube structure named Sam-
pling Cube, how to efficiently aggregate the data, and how
to use similar neighboring cells to boost confidence. For now,
only full materialization of this sampling cube is discussed.
In other words, all cuboids and cells are constructed. The
next section will discuss alternatives when full materializa-
tion is unrealizable.

3.1 Materializing the Sampling Cube
Given the base relation (base cuboid) in R, it is straight-

forward to construct CR. There are many algorithms to
efficiently do this [3, 22]. They all essentially provide an
efficient way of traversing the cuboid lattice space in order
to minimize the scanning of the data. In the sampling cube,
the new question is how to efficiently calculate the confi-
dence interval at high-level cells. The näıve way is to gather
all the corresponding raw samples in the original input data
and calculate the sample mean, sample standard deviation,
and then the confidence interval. However, this is not very
efficient since many cells contain a large number of samples.
To repeat the computation for every cell in CR is expensive
and also redundant since the samples are shared between
cells.

In traditional OLAP, this problem is solved by exploit-
ing certain properties of the cube measure. There are two
popular properties: distributive and algebraic. A mea-
sure is distributive if it can be computed solely based on
the measures of its subsets, and a measure is algebraic if it
can be computed based on a bounded number of measures
of its subsets. Sum is an example of a distributive measure
and mean is an example of an algebraic measure. These two
properties are desirable because they facilitate very efficient
aggregation. In this work, the measures of the cube are mean
and confidence interval. Mean is known to be algebraic. The
attention now turns to confidence interval. It is easy to see
that it is definitely not distributive. But is it algebraic?

Lemma 1. The confidence interval measure is algebraic.

Proof. There are three terms in the confidence interval
computation. First is the mean of the sample set, x̄. This
was shown to be algebraic already. Second is the critical
t-value, which is calculated by a lookup. With respect to
x, it depends on l (count) and it is easy to see that count
is distributive. The final term is σ̂x̄ = s√

l
, which also turns

out to be algebraic if one records the linear sum (
Pl

i=1 xi)

and squared sum (
Pl

i=1 x2
i).

To summarize, the mean and confidence interval measures
of the data cube are algebraic. At every cell, exactly three
values are sufficient to calculate them; all of which are either
distributive or algebraic. They are the following:

1. l

2. sum =
Pl

i=1 xi

3. squared sum =
Pl

i=1 x2
i

With this knowledge in hand, constructing the sampling
cube is very clear now. Any of the previously developed
cubing algorithms can be used with just aggregating the
three above values in each cell. At query time, the three
values are then used to compute the mean and confidence
interval.

3.2 Boosting Confidence for Small Samples
Now that the sampling cube is materialized, the next step

is to use it. Recall that queries are point or range queries
posed against the cube. Without loss of generality, consider
the case of a point query, which corresponds to a cell in CR.
The goal is to provide an accurate point estimate (in the
example, the sample mean of Income) for the samples in that
cell. Because the cube also reports the confidence interval
associated with the sample mean, there is some measure
of “reliability” to the answer. If the confidence interval is
small, the reliability is deemed good. But if the interval is
large, the reliability is questionable.

Consider what affects the size of the confidence interval.
There are two main factors. The first is the variance of the
sample data. A rather large variance in the cell may in-
dicate that the chosen cube cell is not good for prediction
and a better solution is probably to drill down on the query
cell to a more specific one, i.e., asking more specific queries.
Second, a small sample size can cause a large confidence in-
terval. When there are very few samples, the corresponding
tc is large because of the small degree of freedom. This in
turn could cause a large confidence interval. Intuitively this
makes sense. Suppose one is trying to figure out the average
income of people in the United States. Just by asking 2 or
3 people does not give much confidence to the answer.

The best way to solve this small sample size problem is
to simply get more data. This, however, is easier said than
done. Gathering data is often the most expensive part of the
analysis. So what can be done instead? Fortunately, there is
an abundance of additional data available already. They do
not match the query cell exactly, but they are conveniently
organized in a structured data cube. Perhaps they can be
used if certain criteria are met.

Figure 2 shows the two possible methods to “expand” the
query and get more data to boost confidence. They both
expand the original query in the data cube, just in different
directions.

(Age, Occupation) cuboid

(a) Intra-Cuboid Ex-
pansion

Age cuboid Occupation cuboid

(Age, Occupation) cuboid

(b) Inter-Cuboid Expansion

Figure 2: Query expansion within sampling cube

3.2.1 Intra-Cuboid Query Expansion
In the intra-cuboid case, the expansion occurs by looking

at nearby cells in the same cuboid as the queried cell. But
as mentioned before, careful consideration is needed before
expansion. The new samples should only serve the purpose
of increasing the confidence in the answer and not change

the semantic of the query. There are two primary questions
to answer. First, “Which dimension(s) should be allowed
to expand?” And second, “Which value(s) within those di-
mension(s) should the expansion use?”

To answer the first question, dimensions which are uncor-
related or weakly correlated with the measure value (i.e., the
value to be predicted) are the best candidates for expansion.
Expanding within these dimensions will likely increase the
sample size and not shift the answer of the query. Consider
an example of a 2D query specifying Education = “Col-
lege” and Birth Month = “July”. Let the cube measure be
average Income. Intuitively, education has a high correla-
tion to income while birth month does not. As a result, it
would be harmful to expand the Education dimension to
include values such as “Graduate” or “High School.” They
are likely to alter the final result. However, expansion in
the Birth Month dimension to include other month values
could be helpful, because it is unlikely to change the result
but will increase sampling size.

To mathematically measure the correlation of a dimen-
sion to the cube value, the correlation between the dimen-
sion’s values and their aggregated cube measures is com-
puted. Pearson’s correlation coefficient for numerical data
and χ2 value for categorical data are popularly used corre-
lation measures (although there are many other measures,
such as covariance, can be used) [13]. A dimension that is
strongly correlated with the value to be predicted should not
be a candidate for expansion. Notice that since the corre-
lation of a dimension with the cube measure is independent
of a particular query, it should be precomputed and stored
with the cube measure to facilitate efficient online analysis.

Now that the possible dimension(s) for expansion have
been selected, the next step is to select the values within
those dimensions. This relies on the semantic knowledge of
the dimensions in question. The goal should be to select
semantically similar values in order to minimize the risk of
altering the final result. Consider the Age dimension, simi-
larity of values in this dimension is clear. There is a clear or-
der to the values. For dimensions with numerical or ranked
data (e.g., Education), such an ordering is clear and one
should select values closer to the instantiated query value.
For categorical data with its dimension organized in a multi-
level hierarchy in a data cube (such as location), one should
select those values located in the same branch of the tree
(such as in the same district or city).

When such domain knowledge exists, semantically simi-
lar cells maybe used to boost the confidence interval of the
query cell. Figure 2(a) shows an illustration. But when such
knowledge does not exist, one has to be very careful in how
other cells are used. A näıve approach could be to simply
compare the query cell vs. all other cells in the dimension
and use the most similar. But this could easily fall into the
trap of “self-fulfilling prophecy.” This is a term used in soci-
ology where pre-existing beliefs about a false outcome evoke
behavior that actually brings the outcome to fruition. In the
case of intra-cuboid expansion with no domain knowledge,
one has to be careful of this problem. Just blindly using
cells that contain similar values may bring about an answer
that does not semantically meaningful.

Even though strongly correlated dimensions are precluded
from expansion, yet another precaution should be taken to
ensure that expansion does not alter the answer of the query.
In other words, the new samples should share the same cube

value (e.g., mean income) as the existing samples in the
query cell. A method in statistics to determine whether two
samples have the same mean (or any other point estimate)
is the Two Sample T-Test [13]. This is a relatively simple
and statistically sound test used in many applications. Due
to space restrictions, we will skip its definitions. At a high
level, the test will determine whether two samples have the
same mean (the null hypothesis) with the only assumption
being that they are both normally distributed. The test
fails if there is evidence that the two samples do not share
the same mean. Furthermore, the tests can be performed
with a confidence level as an input. This allows the user
to control how strict or loose the query expansion will be.
As it turns out, the aforementioned three values recorded at
each data cube cell are sufficient to perform the two sample
t-test. This allows the test to be performed efficiently given
any two cells in the data cube.

Example 4 (Intra-Cuboid Expansion). Given the in-
put relation in Table 2, let a query be “Age = 25” at 95%
confidence. This returns an Income of $50,000 with a rather
large confidence interval2. Since this confidence interval is
larger than the preset threshold and the Age dimension was
found to have little correlation with Income in this dataset,
intra-cuboid expansion starts within the Age dimension. The
nearest cell is “Age = 23,” which returns an Income of $85,000.
The two sample t-test at 95% confidence passes so the query
expands; it is now “Age = {23, 25}” with a smaller confi-
dence interval than initially. However, it is still larger than
the threshold so expansion continues to the next nearest cell:
“Age = 28”, which returns an Income of $250,000. The two
sample t-test between this cell and the original query cell
fails; as a result, it is ignored. Next, “Age = 31” is checked
and it passes the test. The confidence interval of the three
cells combined is now below the threshold and the expansion
finishes at “Age = {23, 25, 31}.”

In summary, dimensions not correlated with the cube mea-
sure are chosen as candidates for intra-cuboid expansion.
Semantic similarity of the dimension’s values are used to
slowly expand a neighborhood of candidate cells around the
query cell. For each candidate cell, the two sample t-test
is performed to decide whether the candidate cell should
be included in the expansion. When there is no semantic
knowledge available, it might be unwise to expand unless
the particular application calls for it.

3.2.2 Inter-Cuboid Query Expansion
The choices in inter-cuboid query expansion are slightly

easier. Figure 2(b) shows an illustration. The expansion
occurs by looking to a more general cell (drawn in black).
In the figure, the cell in cuboid Age, Occupation can either
use its parent in Age or Occupation. One can think of inter-
cuboid as just an extreme case of intra-cuboid where all the
cells within a dimension are used in the expansion. This
essentially sets the dimension to ∗ and thus generalizes to a
higher level cuboid.

Given a k-dimensional cell, there are k possible direct par-
ents in the cuboid lattice. Though there are many more
ancestor cells in the data cube if multiple dimensions are

2For the sake of the example, suppose this is true even
though there is only one sample. In practice, there should
be a few more points to calculate a legitimate value.

allowed to be rolled up simultaneously, only one is allowed
here to make the search space tractable and also to limit the
change in the semantics of the query. Using similar tests as
the last section, correlated dimensions are not allowed in
inter-cuboid expansions. Within the uncorrelated dimen-
sions, the two sample t-tests can be performed to confirm
that the parent and the query cell share the same sample
mean. If multiple parent cells pass the test, the confidence
level of the test can be adjusted progressively higher until
only one passes. Alternatively, multiple parent cells can be
used to boost the confidence simultaneously. The choice is
application dependent.

Example 5 (Inter-Cuboid Expansion). Given the in-
put relation in Table 2, let the query be “Occupation =
Teacher ∧ Gender = Male.” There was only one match-
ing sample in Table 2 with Income = $80,000. Suppose
the corresponding confidence interval is larger than the pre-
set threshold. There are two parent cells in the data cube:
“Gender = Male” and “Occupation = Teacher.” By mov-
ing up to “Gender = Male” (and thus setting Occupation to
∗), the mean Income is $101,000. A two sample t-test re-
veals that this parent’s sample mean is not the same as the
original query cell’s. So it is ignored. Next, “Occupation =
Teacher” is tried. It contains a mean Income of $85,000 and
passes the two sample t-test. As a result, this new value is
used and the query is expanded to “Occupation = Teacher.”

Though the above method will work for inter-cuboid ex-
pansion, there is another method which makes more sense
computationally. Instead of looking at the problem as ex-
panding from the query cell up to a more general cell, one
could look at it as the more general cell looking down at the
query cells (i.e., its children) and making its determinations
about expansion. This method leads directly into the next
section about the sampling cube shell.

3.2.3 Expansion Method Selection
Before moving on, some discussion is needed about intra-

cuboid expansion vs. inter-cuboid expansion. This is a dif-
ficult question to answer a priori without knowing the data
and the application. The first guideline in choosing between
the two should be what is the tolerance for change in the
semantics of the query. This depends on the specific di-
mensions chosen in the query. For instance, the user might
tolerate a bigger change in semantics for the Age dimension
than Education. The difference in tolerance could be so
large that he/she is willing to set Age to ∗ (i.e., inter-cuboid
expansion) than letting Education change at all.

If no domain knowledge is available, the main quantitative
guides are the correlation coefficients and the two sample t-
test between the query cell and the possible expansion cells.
The value of the correlation coefficient is an indication of
expansion’s safety. And by progressively setting higher con-
fidence levels in the test, one could choose between the two
expansion methods by seeing which one passes the higher
confidence level test. This offers a numerical way of compar-
ing between the two choices, but in a real world application,
domain knowledge is definitely a better method of making
the ultimate choice.

4. THE SAMPLING CUBE SHELL
So far, the discussion has only focused on the full material-

ization of the sampling cube. In many real world problems,

this is often impossible. Even given a modest number of di-
mensions in the base data, constructing the whole data cube
can be prohibitive. Recall that the number of cuboids in a
data cube is exponential with respect to the number of di-
mensions. So even with just 20 dimensions, 220 cuboids can
be quite a pain to handle. The real world survey data used
in this work’s experiments contains over 600 dimensions!

Clearly, another methodology is needed. Ideally, this new
methodology should be able to provide the same or close
to the same answers as the full sampling cube with a much
smaller computation and storage requirement.

To motivate the proposal, first imagine what a typical
query will be. An analyst will select some specific val-
ues in some dimensions and ask for the confidence inter-
val in that cell. But most likely, the number of dimensions
specified in the query will be low (≤ 5: e.g., Age, Gender,
Marital Status, Income Level, etc.). To specify a high
dimensional cell is to target a very specific segment of the
population. One that is probably too specific to be of any
value. This means that high dimensional cuboids are prob-
ably not needed.

Second, consider what would happen if Birth Month were
a dimension in Table 2. Clearly, there should not be any
correlation between the month of a person’s birth date and
his or her income level. This can be statistically verified
by checking the standard deviation or the confidence level
(both of which should be large) of the cells in the Birth

Month cuboid. Now recall the ultimate goal of the user. It
is to extract meaningful information about the cube value
(e.g., Income). If the sample standard deviation of the value
is high for many cells in a cuboid, it indicates that there
is little information to be found in this cuboid. Therefore,
there is probably little utility in presenting the cuboid to
the user. Furthermore, additional higher level cuboids that
combine with Birth Month can probably be skipped, too.
This drastically cuts down on the size of the sampling cube
since it essentially removes one dimension.

This motivation leads directly to the proposal of the Sam-
pling Cube Shell. As the name suggests, it is a “shell”
around the complete sampling cube that only computes some
of the outer layers. Figure 3 shows a sample illustration. In
it, only a portion of the cuboids are materialized (the shaded
ones). They are the shell around the data cube and will be
used to answer the queries.

BC

B

ACAB

A C

All

ABC

Figure 3: Sampling Cube Shell

4.1 Building the Sampling Cube Shell
The algorithm to build the sampling cube shell is top-

down. It starts at the apex cuboid and proceeds down the
cuboid lattice towards the base cuboid. The search in this
space is iterative and greedy: in each iteration, the best can-

didate cuboid is chosen and added to the shell. This process
halts until some stopping condition is met. The condition
could be a space constraint, i.e., number of cuboids built
cannot exceed some value. Or it could be an information
constraint, i.e., the gain in building a new cuboid must ex-
ceed some minimum.

4.1.1 Cuboid Standard Deviation
The first question is how to compare cuboids (in order to

get to the greedy selection). This requires a measure on the
“goodness” of a cuboid.

Definition 1 (Cuboid Standard Deviation). Given
a cuboid B with m cells {c1, . . . , cm}, the Cuboid Standard
Deviation (CSD) is defined as

CSD(B) =

Pm
i=1 s(ci) × n(ci)

n(B)

1 −
Pm

i=1 small(ci)

m

where s(ci) is the sample standard deviation of the samples
in ci, n(ci) is the number of samples in ci, n(B) is the total
number of samples in B, and small(ci) is a function which
returns 1 if n(ci) ≥ minsup and 0 otherwise. If the denom-
inator is 0, CSD is defined to be ∞.

The CSD of a cuboid measures the amount of variance
with respect to the cube value in its cells. Obviously, the
lower the value of CSD, the better the cuboid is at capturing
the correlation between its cells and the value. The defini-
tion of CSD achieves this using a linear combination of its
cells’ standard deviations. In the final summation, the stan-
dard deviations are weighted by the sizes of the cells. As a
result, if only a small percentage of the cells have low stan-
dard deviation but they hold the majority of the sampled
data, they will have a large effect on the CSD of the cuboid.

For practical reasons, two minor adjustments are made to
the CSD calculation. First, if s(ci) is very small (< minsd),
it is set to 0. In other words, if the standard deviation of the
cube values in a cell is already quite small, it is unnecessary
to further examine that cell’s subsets since they would con-
tain the same behavior. Setting the s(ci) to 0 reflects this
notion. Second, if n(ci) < minsup, ci is ignored. In such
cases with so few samples in the cell, it is meaningless to
measure any information from them. But, a situation could
arise where a large portion of the cuboid’s cells have small
n(ci). For example, consider a dimension storing unique IDs
of samples. In this case, the standard deviation of all cells
would be 0 since each cell contains exactly one sample. The
CSD is low at 0, but the cuboid is actually useless since its
cells do not offer any generalization power. To penalize this
type of situation, the denominator in the CSD calculation
is set to reweigh the standard deviation calculations in the
numerator by the percentage of so called “small” cells in the
cuboid. Both these adjustments will come in handy later on
during the construction of the cube shell.

4.1.2 Cuboid Standard Deviation Reduction
Given CSD as a measure of a cuboid’s cells’ correlation

with the cube value, it is now possible to compare differ-
ent cuboids quantitatively. However, in order to use it in
the construction algorithm, another definition is needed to
measure the incremental gain of a cuboid.

Definition 2 (Cuboid Standard Deviation Reduction).
Given a cuboid B and parents(B) as the set of B’s parents

in the cuboid lattice, the Cuboid Standard Deviation Reduc-
tion (CSDR) is defined as

CSDR(B) =

»
min

B′ ∈ parents(B)
CSD(B′)

–
− CSD(B)

The CSDR of a cuboid measures the reduction in CSD
from one of its parents. Because the data cube is a lattice
and not a tree, a cuboid can have multiple parents. To
maximize the gain, the reduction is measured from the best
parent.

4.1.3 Cube Shell Construction
Building the sampling cube shell is a top-down and greedy

process. It uses CSDR to select the best cuboid in each step
of growing the cube shell. Initially, only the All or apex
cuboid exists. By definition, it contains exactly one cell and
the standard deviation of it is the standard deviation of all
the samples put together. The child cuboids of the apex
cuboid are then added into a candidate set. The CSDR of
each cuboid is computed. The candidate cuboid with the
best CSDR is chosen and added to the shell. Its children
in the cuboid lattice are added to the candidate set. This
process iterates until a stopping criterion is met. Note that
the final data structure is not strictly a tree since a node
could have multiple parents. It is just a portion (i.e., shell)
of the complete data cube lattice.

Two pruning methods are used in order to improve both
the efficiency and the effectiveness of the resultant shell.
They are directly related to the two adjustments made to
the CSD calculation earlier.

First, if a cell’s standard deviation is very low (< minsd),
its descendant cells are removed from future consideration.
The reason for this is that if the samples in a cell already
share basically the same value for the point estimate, it is
pointless to examine its sub-segments since most likely they
will just produce the same values. This, in effect, achieves
inter-cuboid query expansion. At runtime, if the query cell
is one of the pruned descendant cells, it will not be found
but the parent cell will be. The point estimate from the
parent cell will then be used in substitute, but it will be
fairly accurate since the standard deviation in its samples is
so low. In essence, the query cell has been expanded to the
parent cell a priori. Detailed discussion of query processing
will be given in the next section.

Second, for every cell, if its sample size does not satisfy a
minimum support threshold (< minsup), its descendant cells
in the descendant cuboids are removed from future consid-
eration. Intuitively, this supports the idea that if a segment
is already very small, it is fruitless in analyzing its sub-
segments, which could only get smaller. This is essentially
the idea of the iceberg cube [3].

Algorithm 1 shows the shell construction algorithm in
pseudo-code.

Algorithm 1 (Cube Shell).
Input: (1) Input table R; (2) minsup; (3) minsd

Output: Sampling cube shell S

Method:
1. Candidates = {apex cuboid of R}
2. while Candidates �= ∅ or halting criteria not met
3. B = cuboid in Candidates with largest CSDR
4. remove B from Candidates
5. add B to S

6. add B’s descendant cuboids to Candidates
7. update CSD values in Candidates
8. return S

There are two possible ways the algorithm could halt, and
the choice between them depends on the application. The
first is the size of the shell. This is a natural halting criterion
if storage space is the primary concern. As the next section
and also later experiments will show, the bigger the shell, the
higher the quality of query processing. The second criterion
could be a minimum CSDR. At each iteration, if the largest
CSDR in the candidate set does not exceed some minimum,
the algorithm halts.

Example 6 (Shell Construction). To make the al-
gorithm more concrete, consider how it will work on the
example data in Table 2. Initially, the candidate set only
includes the apex cuboid of R. The CSD of this cuboid is
simply the standard deviation of all rows in R, which is
143,760. Next, since it is the only cuboid in the candidate
set, it is added to the shell. Its four descendants, which are
the one-dimensional cuboids, Gender, Age, Education, and
Occupation are added to the candidate set. Table 4(a) shows
the CSD and CSDR of each candidate cuboid. For the sake
of this example, values in the Age cuboid are binned into 4
ranges: 21–30, 31–40, 41–50, and 51+. This produces a
more reasonable CSD value for the Age cuboid. Since these
cuboids all share the same parent, their CSDR are all calcu-
lated with respect to the apex. This ends the first iteration
of the algorithm.

In the second iteration, the best candidate cuboid accord-
ing to its CSDR value in Table 4(a), the Occupation cuboid,
is added to the shell. Its descendants, which are all the 2D
cuboids that extend from Occupation, are added to the can-
didate set. Their CSDR values are calculated with respect to
Occupation. Figure 4(b) shows the structure of the shell
after the addition, and Table 4(c) shows the new candidate
set with CSD and CSDR values.

In the next iteration, the cuboid with the best CSDR, Age,
is added to the shell. Figure 4(d) shows the result of this
addition. Its descendants are added to the candidate set and
the algorithm continues.

4.2 Query Processing
The final step is to process queries using the sampling

cube shell. Recall that the query model consists of point
queries in the data cube of the input relation. Because the
sampling cube shell is not the complete data cube and does
not contain all possible cuboids, there are three possibilities
at query time.

4.2.1 Exact Dimension Match
First, the queried dimensions match one of the cuboids in

the shell. In this case, the answer to the query exists in the
shell already and it is simply returned.

4.2.2 Subset Dimension Match
Second, the queried dimensions are a subset of one of the

cuboids in the shell. For instance, the queried dimension
could be Gender and only the (Age, Gender) cuboid (and
not the Gender cuboid) exists in the shell. This is entirely
possible due to the build order of the construction algorithm.
In this case, the exact answer is produced by scanning the
superset cuboid in the shell for the appropriate rows and
computing the necessary values on the fly.

Candidate Cuboid CSD CSDR

Gender 139,196 4,564
Age 102,836 40,924
Education 109,485 34,275
Occupation 43,852 99,908
(a) Candidate set after first iteration

Apex

Occupation

(b) Cube shell after first iter-
ation

Candidate Cuboid CSD CSDR

Gender 139,196 4,564
Age 102,836 40,924
Education 109,485 34,275
(Gender, Occupation) 13,338 30,514
(Age, Occupation) 45,287 -1,435
(Education, Occupation) 6,261 37,591

(c) Candidate set after second iteration

Age

Apex

Occupation

(d) Cube shell after second iteration

Figure 4: Sampling cube shell construction example

4.2.3 Superset Dimension Match
So far, the answers produced have been lossless with re-

spect to the full sampling cube. They either exist in the
shell or can be computed in the shell from more specific
cells. The last case to handle is when the queried dimen-
sions are a superset of all cuboids in the shell. Though
technically the query model allows any cell in the data cube
to be queried, most likely it will be in the low dimensional
ones (≤5 dimensions). This was one of the motivations of
the sampling cube shell in the first place. In other words,
if this case occurs, most likely the sampling cube shell will
contain a cuboid that is not very far off from the queried
dimensions. For example, the queried dimensions could be
(Age, Gender, Occupation), and the largest cuboid in the
shell only contains two dimensions.

In this case, a careful assessment is needed. In general,
the queried dimensions could have a superset relationship to
multiple cuboids in the shell. In the example above, both
(Age, Gender) and (Age, Occupation) could exist in the
shell and be used to answer the query. This raises two ques-
tions. First, which cuboid in the shell should be used? And
second, how will the cuboid be used to answer the query?

In general, let there be k cuboids, B1 . . . Bk, in the sam-
pling cube shell whose dimensions are subsets of the queried
dimensions. Other than scanning base table, these k cuboids
are the only sources of information about the query cell in
the shell. But since they are all more general than the query
cell, the final answer will have to be approximated from
them.

The question is then which of the k cuboids should be
used. The first goal should be to pick the cuboid that is
closest to the query cuboid in the cuboid lattice. Semanti-
cally, this is the closest source of information. In general,
multiple cuboids could tie for being the closest. Let there
be k0 of these where k0 ≤ k. Within these k0 cuboids, the
average of the point estimates at the relevant cells is then
the point estimate answer for the query. In testing, several
methods were tried, including weighted average by sampling
size, weighted average by confidence interval size, choosing
the cuboid with the highest confidence, and choosing the
cuboid with the smallest sampling size. The simple average

turns out to be the best due to the fact that it is not affected
by any biases in sampling which could place an uneven num-
ber of samples in different cuboid cells. In testing, this was
also confirmed to be the best on average.

Figure 5 shows a sample query in the (Age, Occupation)

cuboid. Suppose that cuboid does not exist in the cube
shell, but Age, Occupation, and the apex do. As a result,
there are 3 ancestor cells in the cube shell. The cells in Age

and Occupation are 1 hop away from the query cell in the
cuboid lattice and the apex cell is 2 hops away. Age and
Occupation tie for being closest to the query cell; the apex
is ignored. The average of the Age and Occupation cells is
then the answer to the (Age, Occupation) query.

Apex

Occupation Age

Age, Occupation
Query cuboid

Figure 5: (Age, Occupation) query

5. PERFORMANCE EVALUATIONS
This section shows various evaluations of the sampling

cube shell with real world data. Everything is implemented
in C++ and compiled with GCC. Experiments were per-
formed on a Linux machine with an Intel Pentium4 2.4GHz
CPU and 2GB of memory.

Real sampling data from a Fortune 100 company was ob-
tained for the tests. For confidentiality reasons, the name of
the company, the names of products, or actual values can-
not be revealed. The data contains over 750,000 samples
and nearly 600 dimensions. Each sample is a record of a
sale of a particular product to a single customer. The cus-
tomer is then surveyed on various dimensions such as age,
marital status, employment status, education level, etc.

Two subsets are extracted from the full data. One is a
21-dimensional dataset with the number of children (under
age 16) as the cube value. The other is a 22-dimensional
dataset with the household income as the cube value. In
the original input data, income was already binned into 12
ranges. In testing, a random income value within the range
is generated. As a result, some of the subtle patterns might
have been lost but the big correlations should still hold.

In all tests, shell size indicates the size of the sampling
cube shell (i.e., number of cuboids). It is the halting cri-
terion for shell construction. Unless mentioned differently,
minsup and minsd are both set to 0.

5.1 Shell Construction Efficiency
As mentioned previously, materializing the full sampling

cube is often unrealistic in real world scenarios. It is known
to be exponential in the number of dimensions. But what
about the sampling cube shell? Figure 6 shows the time
to compute cube shells of shell size 20 and 50 as dimen-
sionality increases from 5 to 20. For comparison, the full
data cube (as computed by BUC [3]) is also shown. As
expected, BUC explodes when the number of dimensions
reaches higher than 15. In comparison, the cube shells grow
linearly. This is not surprising because the time is con-
strained by shell size. The reason the time does increase;
however, is because the number of candidates to be exam-
ined increases as the number of dimensions does. For exam-
ple, with the number of dimensions at 19 and shell size at
50, the total number of candidates generated is 778. This is
far smaller than the full cube (215) but it is also much larger
than shell size.

 2000

 1500

 1000

 500

 20 15 10 5

R
un

ni
ng

 T
im

e
(s

)

Number of Dimensions

BUC
Cube Shell: shell_size=20
Cube Shell: shell_size=50

Figure 6: Materialization time vs. dimensionality

Next, efficiency with respect to the number of tuples in
the input relation is checked. In traditional OLAP, this
usually has a linear relationship to running time due to a
linear increase in the number of overall cells. Figure 7 shows
that this is also the case with the sampling cube shell. As
the number of tuples increases from 20,000 to 100,000 in a
22 dimensional data set, the time to compute a cube shell
(regardless of shell size) is linear to the size of the input.

5.2 Query Effectiveness
Experiments in this section will address the two major

claims on the effectiveness of the proposed framework. First,
they will show that query expansion increases the reliability
of the query answer. Second, they will show that query
processing with the sampling cube shell produces negligible
errors while reducing the space requirement significantly.

 700

 600

 500

 400

 300

 200

 100

 100 80 60 40 20

R
un

ni
ng

 T
im

e
(s

)

Number of Input Tuples (1000s)

Cube Shell: shell_size=10
Cube Shell: shell_size=20

Figure 7: Materialization time vs. number of tuples

5.2.1 Query Expansion
To test the effectiveness of query expansion, the full input

data of 750,000 tuples is taken to be the population and a
random sample is taken from it. A full sampling cube is
constructed on the sample, and query results are compared
to the population in order to measure the accuracy.

In the first experiment, a sampling cube measuring the
average Number of Children is built from a random 0.1%
sample of the full input. Three dimensional point queries
consisting of the Gender, Marital, and Age dimensions are
given to the (1) full data, (2) sampling cube without query
expansion, and (3) sampling cube with query expansion.
The age dimension is allowed to expand to at most ± 2
years of the query age. The output below shows a sample
query for Gender = Female, Marital = Married and Age =
36.
> q GENDER FEMALE MARITAL MARRIED AGE 36

Population: 1.66 from 4783 points

Sample w/o expansion: 2.33 +/- 1.12 from 6 samples

Sample w/ expansion: 1.51 +/- 0.34 from 47 samples

Difference in mean w/o expansion: 0.67

Difference in mean w/ expansion: 0.15

As the output shows, 1.66 is the “correct” answer from
(1). 2.33 ± 1.12 is the answer from (2) and 1.51 ± 0.34
is the answer from (3). Here, query expansion results in a
significant improvement in the query answer. 1.51 is much
closer to 1.66 than 2.33. The sample size also increases from
6 to 47, which reduces the 95% confidence interval.

Table 3(a) shows the full effect of intra-cuboid expansion
in the Age dimension over many queries, similar to the above
example. The first two columns of each line show the query
values of the Gender and Marital dimensions. In each line,
the Age dimension is enumerated over all possible values (ap-
proximately 80 distinct values), and each combination forms
a distinct 3 dimensional point query in the sampling cube.
The third and fourth columns show the average absolute er-
ror in the query results of the sampling cube without and
with query expansion. As the fourth and fifth columns show,
turning on intra-cuboid query expansion in the Age dimen-
sion improves the accuracy significantly. The last row in the
table shows an average of 26% improvement from nearly 500
different queries. The last three columns in the table show
the effect of query expansion on sampling size. Without ex-
pansion, the number of samples per query is only 1.4. With
expansion, it increases to 13.4.

Table 3(b) shows a similar experiment with the Age di-

mension and the average Household Income as the cube
measure. In this experiment, 0.05% of the input data is
loaded into the sampling cube, and the age dimension is
again allowed to expand ± 2 years from the query age. The
two dimensions queried in addition to Age are Gender and
Education. The result of this experiment is similar to the
last one. In the nearly 650 queries executed, the average er-
ror reduction from no expansion to intra-cuboid expansion
is 51%. Average sampling size also increases significantly.

Lastly, Table 3(c) shows another experiment. In this one,
the average Household Income is still the cube measure.
But the expansion is now within the Number of Children

dimension, which is allowed to expand to ± 1 child. Three
other dimensions were specified in the query, namely Gender,
Marital, and Education. Due to limited space, only the fi-
nal average is shown in Table 3(c). Again, both query accu-
racy and sampling size are improved. The experiment also
shows the average reduction in the size of the confidence
interval as a result of query expansion. With more sam-
pling points, it is easy to see why the interval size would
decrease. This, in addition to the reduction in the mean’s
error, improves the overall quality of the query results.

5.2.2 Sampling Cube Shell
Next, the query accuracy of the sampling cube shell is

measured. The same query is given to the sampling cube
shell and the full sampling cube, and the difference between
the answers is the “error.” The full sampling cube is simu-
lated by scanning the input relation repeatedly since it was
not possible to full materialize it.

First, a sanity check is performed by looking at the cuboids
chosen by the cube shell according to CSD and CSDR. In
the dataset measuring the number of children, the Age, Age
Cohort, and Generation cuboids are chosen as the first
three. Intuitively, these checkout to be sensible choices.

Figure 8 show the effect of shell size on query accuracy
using the dataset of average household income. 1000 random
queries ranging anywhere from 1D to 5D were processed
both by the sampling cube and the sampling cube shell. The
absolute percent error is shown, which is defined as (|query
answer from the shell cube − query answer from full cube|)
÷ query answer from the full cube.

 30

 20

 10

 0
 100 90 80 70 60 50 40 30 20 10 0

A
ve

ra
ge

 %
 E

rr
or

 o
ve

r
10

00
 Q

ue
rie

s

Shell_Size

All Ancestor(s) Avg
Nearest Ancestor(s) Avg

Nearest Ancestor(s) Weighted Avg

Figure 8: Query accuracy vs. shell size for average
household income dataset

In Figure 8, there are three curves. They show different
methods of calculating the superset queries mentioned in
Section 4.2.3. In “All Ancestor(s) Avg,” the answer at the
query cell is computed by taking the average of all ances-

tors in the cuboid lattice. In “Nearest Ancestor(s) Avg,”
the answer is computed by taking the average of the nearest
ancestors in the cuboid lattice. And lastly, in “Weighted
Nearest Ancestor(s) Avg,” the answer is computed by tak-
ing the average of the nearest ancestors inversely weighted
by the size of the sampling set. As all three curves show,
as shell size increases, the error decreases. This is expected
because there are more cuboids in the shell to accurately an-
swer queries. Amongst the three curves, “All Ancestor(s)”
gives the largest amount of error while “Nearest Ancestor(s)
Avg” gives the least. “Weighted Nearest Ancestor(s) Avg”
is close but just slightly worse. The reason is that most
of the time, there was only one nearest ancestor; thus the
method of averaging only had a small effect.

Clearly, there is a tradeoff between storage space require-
ment and query processing quality. But considering that
the full sampling cube size contains 222 cuboids, a sampling
cube shell with shell size set to 100 uses less than 0.01% of
the space required while producing less than 1% error. Even
if one does not compute the full sampling cube and materi-
alizes only 5D or smaller cuboids, a sampling cube shell with
shell size set to 100 still uses less than 1% (100/35,442) of
the space required.

Figure 9 shows an experiment testing the effect of a query’s
dimensionality on the error of the cube shell. The average
household income dataset is used with shell size fixed at
50. As expected, as the query drills further down into the
data cube, the error increases. This is because the query
cells are further away from the boundaries of the cube shell.
As a result, the error in the parent cells’ approximation of
the answer increases. But most OLAP queries will not drill
down very far. In most real world situations, the analyst
will only specify 1D to 5D queries. In these cases, the aver-
age error is very low (< 5%) while using less than 0.01% of
the space required by the full sampling cube.

 20

 10

 0
 10 9 8 7 6 5 4 3 2 1

A
ve

ra
ge

 %
 E

rr
or

 o
ve

r
10

00
 Q

ue
rie

s

Number of Queried Dimensions

All Ancestor(s) Avg
Nearest Ancestor(s) Avg

Nearest Ancestor(s) Weighted Avg

Figure 9: Query accuracy vs. query dimensionality
for average household income dataset

6. RELATED WORK
Many algorithms have been proposed in traditional data

cubes [10, 3, 22]. In comparison to this work, they only
focus on full materialization and do not address the needs
of sampling data. Selective materialization of the data cube
has been studied before [12], but the criteria for selection
was to simply reduce I/O in answering simple aggregation
queries. Compression of data cubes [14, 15, 20], either lossy
or lossless, also address the issue of selective computation.
But again, the goal is to reduce I/O or storage space. The

Table 3: Query expansion experimental results
(a) Intra-Cuboid Expansion with Age dimension and Average Number of Children cube measure

Query Average Query Answer Error Sampling Sizes
Gender Marital No Expand Expand % Improve Population Sample Expanded

FEMALE MARRIED 0.48 0.32 33% 2473.0 2.2 28.3
FEMALE SINGLE 0.31 0.21 30% 612.6 0.6 6.4
FEMALE DIVORCED 0.49 0.43 11% 321.1 0.3 3.4
MALE MARRIED 0.42 0.21 49% 4296.8 4.4 37.6
MALE SINGLE 0.26 0.21 16% 571.8 0.5 3.6
MALE DIVORCED 0.33 0.27 19% 224.7 0.2 1.2

Average 0.38 0.27 26% 1416.7 1.4 13.4

(b) Intra-Cuboid Expansion with Age dimension and Average Household Income cube measure

Query Average Query Answer Error Sampling Sizes
Gender Education No Expand Expand % Improve Population Sample Expanded

FEMALE HIGH SCHOOL $55622 $31580 43% 641.4 0.3 3.9
FEMALE SOME COLLEGE $61526 $28822 53% 980.0 0.5 4.5
FEMALE COLLEGE $73309 $14504 80% 1132.8 0.5 6.8
FEMALE POSTGRADUATE $88658 $57907 34% 689.6 0.3 2.2
MALE HIGH SCHOOL $55671 $23503 57% 857.0 0.4 2.6
MALE SOME COLLEGE $63821 $34944 45% 1219.0 0.6 4.4
MALE COLLEGE $71120 $28913 59% 1511.0 0.9 7.4
MALE POSTGRADUATE $103619 $61191 40% 1191.8 0.6 4.2

Average $71668 $35170 51% 1027.8 0.5 4.5

(c) Intra-Cuboid Expansion with Number of Children dimension and Average Household Income
cube measure

Average Query Answer Error Sampling Sizes
No Expand Expand % Improve CI Reduce Population Sample Expanded

Average $60873 $32458 51% 18% 713.9 3.6 12.3

question of how selectivity relates to confidence intervals is
not addressed. Further, the question of how to handle sparse
cells is not studied either. For high dimensional data, the
shell fragment data structure was proposed [16] to compute
only portions of the data cube. But compared to this work,
there is no criterion for choosing which cuboids to build.

More recently, the prediction cube [7], was proposed. It
integrates OLAP with machine learning by placing a learn-
ing model in each data cube cell. An optimal subspace, with
respect to classification accuracy, is then discovered through
OLAP operations. In comparison to this work, the pre-
diction cube requires full materialization of the data cube,
which is prohibitive in high dimensional data. Further, the
prediction cube does not address the problem of sparse cells
when there is no enough data available for effective learning.

Regression trees and decision trees [17, 21] are algorithms
that are similar to the sampling cube shell. Both aim to
model a value (either a class label or a numerical value)
with a tree-like data structure. However, in regression trees
and decision trees, nodes split the data into disjoint sets.
The union of all leaf nodes in the final tree is the input
data, and the intersection of all leaf nodes is empty. In the
sampling cube however, nodes do not split data; they are
simply projections of the same data into different subspaces.
As a result, the criteria for node selection and the data in
the nodes are very different.

Related to the modeling trees are feature selection algo-
rithms [11]. Given either labeled or unlabeled data, such
algorithms can find the most effective features (dimensions)

for the particular problem, e.g., classification, clustering. In
the sampling cube, one could view the samples as being
some kind of label, and the sampling cube shell essentially
chooses the best dimensions. However, because of the OLAP
space, the combinations of features are uneven. In feature
selection, one simply chooses the m best features out of n
where m < n. In the sampling cube shell, different combi-
nations within the n features has to be considered because
the query can be in any subspace. As a result, the search
space is substantially larger than simple feature selection.

One area of study where subspace projections are specif-
ically considered is subspace clustering or outlier detection
[18, 1]. The goal is to find clusters or outliers in arbitrary
subspaces of a high-dimensional space. This is a very dif-
ferent goal from the sampling cube shell. In sampling data,
the distance between two data points, with respect to their
dimension values, is irrelevant. If the dimensions are cate-
gorical, there might not even be distance functions defined.
Rather, it is the “distance” between the samples held by the
points that is at question.

Querying over uncertain data is another related field. In
the OLAP context, there has been work [4, 5] that address
the problem of uncertain values in the input data. The
model generates multiple “worlds” with different probabili-
ties, and the query essentially returns a combination of all
possible worlds. This kind of uncertainty is very different
from the case in the sampling cube. Sampling data’s un-
certainty is inherent in the data even though the collection
might be 100% correct. In the relational data context, un-

certainty has also been addressed by extending the relational
database [2]. The lineage (where the data came from) and
the uncertainty (possibly different values in the data) are
incorporated into a relational system. Again, these uncer-
tainty issues are different than the ones found in sampling
data. In relational data, an attribute value has uncertainty
in the sense that it could take on several different values. In
sampling data, the uncertainty comes from that the value
might not represent the full population, which is unseen.
These are two very different uncertainties.

Query expansion in information retrieval is a major area
related to the sampling cube’s expansion of cube queries.
In the context of information retrieval, query expansion ex-
pands the set of query terms in order to retrieve better doc-
uments [9, 8]. The underlying assumption is that the user
is not aware of the optimal query terms and needs some as-
sistance. The same reason exists in the sampling cube but
the execution is very different. In information retrieval, the
set of documents is view as one flat set. In sampling cube,
there is a multidimensional structure to many different sets.
This leads to a very different expansion process.

And finally, data cleaning is another related field. When
attribute values in the input relation are missing or incor-
rect, various techniques can be used to correct them [19,
6]. This is somewhat like intra-cuboid query expansion in
the sampling cube in the sense that other tuples are used to
determine something about one particular tuple. But, the
relationship between the tuples and sampling data is unique
to the sampling cube.

7. REPEATABILITY ASSESSMENT RESULT
Figures 6, 7 and 8 have been verified by the SIGMOD

repeatability committee.

8. CONCLUSIONS
In this paper we introduce a Sampling Cube framework

along with an efficient Sample Cube Shell structure for ana-
lyzing multidimensional sampling data. Based on an OLAP
framework, the sampling cube efficiently returns confidence
intervals for multidimensional queries against the input data.
One common problem in multidimensional data is that one
can easily reach a cell with very few points even if the overall
data size is large. This causes problems in analysis because
small sample sizes results in confidence intervals that are too
broad to be useful. The sampling cube exploits the struc-
ture of the dimensional space to expand the query when
there is not enough data to answer the query confidently.
Finally, the sampling cube shell solves the problem of high
dimensional data. When there is a medium or large num-
ber of dimensions in the input, it becomes impossible to
fully materialize the sampling cube since the size grows ex-
ponentially with the number of dimensions. To solve this
problem, the shell only computes a subset of the full sam-
pling cube. The subset consists of relatively low dimensional
cuboids (common to be queried) and also cuboids that offer
the most benefit to the user. In tests with both real world
and synthetic data, the proposed framework is both efficient
and effective in answering queries.

Extensions of the Sampling Cube framework with uncer-
tainty reasoning, data cleaning, and data integration could
be interesting themes in future research.

9. REFERENCES

[1] C. C. Aggarwal and P. S. Yu. Outlier detection for
high dimensional data. In SIGMOD’01.

[2] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J.
Widom. Uldbs: Databases with uncertainty and
lineage. In VLDB’06.

[3] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. In
SIGMOD’99.

[4] D. Burdick, P. Deshpande, T. S. Jayram, R.
Ramakrishnan, and S. Vaithyanathan. Olap over
uncertain and imprecise data. In VLDB’05.

[5] D. Burdick, A. Doan, R. Ramakrishnan, and S.
Vaithyanathan. Olap over imprecise data with domain
constraints. In VLDB’07.

[6] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti,
and Rajeev Motwani. Robust and efficient fuzzy
match for online data cleaning. In SIGMOD’03.

[7] Bee-Chung Chen, Lei Chen, Yi Lin, and Raghu
Ramakrishnan. Prediction cubes. In VLDB’05.

[8] P.-A. Chirita, C. S. Firan, and W. Nejdl. Personalized
query expansion for the web. In SIGIR’07.

[9] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Query
expansion by mining user logs. IEEE TKDE’03.

[10] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational operator generalizing
group-by, cross-tab and sub-totals. In ICDE’96.

[11] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. In Journal of Machine Learning
Research, 2003.

[12] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD’96.

[13] W. L. Hays. Statistics. CBS College Publishing, New
York, NY, 1981.

[14] L. V. S. Lakshmanan, J. Pei, and J. Han. Quotient
cube: How to summarize the semantics of a data
cube. In VLDB’02.

[15] L. V. S. Lakshmanan, J. Pei, and Y. Zhao. QC-Trees:
An efficient summary structure for semantic OLAP. In
SIGMOD’03.

[16] X. Li, J. Han, and H. Gonzalez. High-dimensional
OLAP: A minimal cubing approach. In VLDB’04.

[17] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[18] L. Parsons, E. Haque, and H. Liu. Subspace clustering
for high dimensional data: A review. SIGKDD
Explorations, 2004.

[19] V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In VLDB’01.

[20] Y. Sismanis and N. Roussopoulos. The complexity of
fully materialized coalesced cubes. In VLDB’04.

[21] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques, Second
Edition. Morgan Kaufmann, 2005.

[22] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing:
Computing iceberg cubes by top-down and bottom-up
integration. In VLDB’03.

