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Sampling Design of Synthetic Volume Arrays for

Three-Dimensional Microwave Imaging
Jianping Wang and Alexander Yarovoy, Fellow, IEEE

Abstract—In this paper, sampling design of three-dimensional
(3-D) synthetic array (i.e., synthetic volume array) for microwave
imaging is considered. Generally, the spatial sampling criteria for
one- or two-dimensional arrays can be determined based on some
narrowband/ultrawideband array theories. However, for 3-D ar-
rays, where antennas are located in a volume instead of over a
surface, these existing array theories are no longer straightfor-
wardly applicable. To address the spatial sampling problem of 3-D
arrays, we formulate it as a sensor/observation selection problem in
this paper. Although some selection approaches exist and are con-
veniently applicable to small-scale problems, they are either less
efficient or provide less optimal results for selection problems with
data dimensions of hundreds or even thousands which is typical
for microwave imaging. To get the (near-) optimal spatial sam-
pling scheme for 3-D arrays, a greedy algorithm named clustered
maximal projection on minimal eigenspace (CMPME) is proposed
to select the most informative sampling positions based on some
optimality criteria. This algorithm attempts to select the fewest
sampling positions by considering an error threshold for the es-
timated images. Moreover, it has higher computational efficiency
compared to the existing approaches. Finally, its effectiveness and
selection performances are demonstrated through some imaging
examples.

Index Terms—Sensor selection, sampling design, synthetic aper-
ture radar (SAR), three-dimensional (3-D) array, linear inversion.

I. INTRODUCTION

S
YNTHETIC aperture radar (SAR) technique provides a

compact and cost-efficient solution to a broad range of

imaging applications. For short-range 3-D forward-looking

imaging, many SAR imaging modalities have been proposed

and developed. Among them, Circular SAR (CSAR), Elevation

Circular SAR (E-CSAR) [1] and Radial-scanned SAR (Rad-

SAR) are three popular ones. CSAR collects signals by moving

an antenna along a circular trajectory on a cross-range plane,

thus effectively synthesizing a ring array. It provides very limited

down-range resolution for 3-D imaging. By contrast, RadSAR

rotates a linear array around its center on a plane and forms a

planar circular aperture [2], [3]. Compared to CSAR, RadSAR

extends the region of k-space spectra of the acquired signals
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Fig. 1. Illustration of the E-RadSAR formed by taking advantage of synthetic
aperture radar technique in the both cross- and down-range directions.

and significantly improves the down-range resolution [4]. On

the other hand, on top of CSAR, E-CSAR provides another

possibility to get a higher down-range resolution by further ex-

ploiting the SAR technique in the down-range direction, which

extends the signal acquisition domain from a single circular tra-

jectory to a surface along the down-range direction. Although

both RadSAR and E-CSAR increase the down-range resolution,

only one antenna is needed for E-CSAR in contrast to a linear

array for RadSAR.

Then, an interesting and meaningful question arises: How can

we combine both the RadSAR and the forward motion in the

down-range direction so as to reduce the number of antennas

needed compared to the traditional RadSAR? To answer this

question, we propose a new SAR modality, named as Elevation-

RadSAR (E-RadSAR, see Fig. 1). This new SAR modality is

very attractive for cost-tight and/or space-limited applications,

such as the cardiac catheter used for intravascular imaging [5]

and ground prediction radar (GPR) system for tunnel boring

machine (TBM) [6]. The latter is actually our motivation of

this study, where the GPR antennas mounted on the cutter-head

of a TBM acquire signals with its rotation but the available

space for GPR antennas is extremely limited due to mechanical

constraints. So reducing the number of antennas needed is very

significant for TBM design.

Since E-RadSAR exploits the SAR technique in both cross-

and down-range directions, it takes spatial samples of scat-

tered electromagnetic fields in a volume domain and effec-

tively synthesizes a volume array. Thus, designing a proper 3-D

sampling scheme is crucial for E-RadSAR to reduce antennas

needed. However, the unique 3-D sampling scheme, which is
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substantially distinct from that of conventional arrays, makes

no longer applicable traditional array analysis and design meth-

ods developed based on the projection-slice theorem [7]. On the

other hand, the Number of Degrees of Freedom (NDF) of scat-

tered field related to an observation domain provides a general

insight for sampling representation, which closely relates to the

spectra of scattering/radiation operators [8]. This concept has

been used to reduce sampling data over a planar observation

domain by investigating the singular spectrum of the scattering

operator [9]. In [10], the impact of spatial diversity on the sin-

gular spectrum of the radiation operator was analyzed for an

extended two-dimensional observation domain, but no practical

sampling scheme was given [10]. Beyond spatial diversity, for

short-range applications, ultrawideband signals not only pro-

vide high-range resolution but also give the potential for sparse

spatial sampling (i.e. sparse array) [11]. In addition, the ori-

entations of antennas of E-RadSAR constantly change with its

rotation, thus diversifying the polarizations of acquired signals

within the aperture. Therefore, how to properly account for the

effects of bandwidth and polarization on the signal acquisition

of E-RadSAR makes the sampling problem even complicated.

To tackle the sampling problem of E-RadSAR, we formu-

late it as a sensor/observation selection problem in this paper.

Specifically, we assume the antennas can take measurements

within a volume over some grids which form a candidate set

of spatial samples. Then for a synthetic volume array, sampling

design is converted to select a subset of antennas and their spatial

sampling positions. In a more general sense, it becomes a subset

selection problem. The subset selection has been used for mag-

netic resonance imaging observation selection [12]–[15], sensor

selection/management [16]–[22], array optimization for remote

image formation [23], [24], sampling design for detection prob-

lem [25], etc. Many selection methods have been developed

based on heuristic optimization algorithms (e.g., genetic algo-

rithm, particle swarm), convex optimization, and greedy search

approaches with various selection criteria.

However, most of these selection methods are dedicated to

sensor selection where one sensor takes one measurement and

thus contributes to one row of the observation matrix. In prac-

tice, in an imaging system, one antenna usually acquires mul-

tiple measurements at a position by utilizing frequency and/or

polarization diversities. Therefore, selecting one sensor affects

a number of rows in the observation matrix. This was consid-

ered as the vector measurement selection in [17] and tackled

by relaxing the boolean representation of the selection problem

onto a convex set. Then a convex optimization method was used

to search a near-optimal solution. Due to the relaxation, the

searched solution can be only guaranteed within a certain dis-

tance from the truly optimal one. In [23], Sharif et al. explored

the similar problem and provided a greedy method, i.e., Clus-

tered Sequential Backward Selection (CSBS) to optimize the

imaging array for remote sensing. As an inversion of a large ma-

trix is needed for each selection, CSBS becomes less efficient or

intractable when the number of candidate sensors/observations

is very large. Actually, for imaging applications, the measure-

ments are typically of hundreds or even thousands. In [22] and

[24], the traditional frame potential (FP, a performance metric

of orthogonality) based greedy algorithm has been extended

to optimize the topology of a radar network for localization

and GPR spatial sampling for inversion, where each sensor col-

lects a vector measurement over time or space. Although the

extended frame-potential based algorithms are very efficient,

their performances are degraded for observation vectors with

unequal norms. Moreover, a Maximum Projection on Minimum

Eigenspace (MPME) method greedily examines the incremental

impact of a new observation vector on the singular value spec-

trum of the observation matrix formed by existing ones, which

accounts for both orthogonalities among observation vectors

and their norms. MPME is computationally efficient but it only

considers the “single sensor single measurement” case.

In this paper, we further develop the MPME [19] to select sen-

sors with vector (or cluster) measurements, named as clustered

MPME (CMPME). In the proposed CMPME, at each time the

clustered subset of observation vectors is selected by consider-

ing not only the extra information brought by the corresponding

measurements/observations as a cluster relative to the existing

ones but also the correlations among them within the cluster so

as to get overall optimal/near-optimal selections. The proposed

method is applicable to any linearized measurement scheme. In

the paper, we apply it to the Born-based imaging.

The rest of the paper is organized as follows. In Section II,

a linear inversion model for microwave imaging is introduced

based on the Born approximation, and the related sensor/sample

selection problem is formulated. Then the proposed CMPME

algorithm and its efficient implementation are presented in

Section III. After that, Section IV shows some imaging ex-

amples to demonstrate the performance of CMPME. Finally,

conclusions are drawn in Section V.

II. SIGNAL MODEL

A. Linear Inversion Problem

Assuming the Born approximation is applicable for the elec-

tromagnetic (EM) field scattering process from objects, then the

scattered field can be linearly represented as [26]

Es
αβ (xt ,xr , ω) =

∫

V

Gαℓ (xr ;xs , ω) χ (xs)

Gℓβ

(

xs ;xt , ω
)

w(ω) dV

=

∫

V

Dαβ

(

xt ,xr ;xs , ω
)

χ (xs) w (ω) dV

(1)

where ω is the angular frequency, w(ω) is the spectrum of

the radiated wavelet, subscripts α and β indicate the polariza-

tions of receiving and transmitting antennas, ℓ ∈ {1, 2, 3} repre-

sents three orthogonal components of the electric field, and the

Einstein summation convention is used to repeated subscripts.

Gℓβ (xs ;xt , ω) and Gαℓ(x
r ;xs , ω) are Green’s functions rep-

resenting the propagation processes of the EM wave from a

β-polarized transmitting antenna at xt to a scatterer at xs and

from the scatterer at xs to a α-polarized receiving antenna at
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xr , respectively. χ(xs) denotes the EM scattering properties of

a scatterer at xs . Dαβ is defined as the inner product of Gαℓ and

Gℓβ , which is given by

Dαβ = Gαℓ (xr ;xs , ω) Gℓβ

(

xs ;xt , ω
)

(2)

For numerical processing, (1) can be written in the discrete

form as

Es
αβ

(

xt ,xr , ω
)

= w (ω) ∆V

m
∑

i=1

Dαβ

(

xt ,xr ;xs
i , ω

)

χ (xs
i )

(3)

where m is the number of discrete cells in the imaging domain,

and ∆V is the volume of each cell. Considering all the measure-

ments acquired at p discrete frequencies within the operational

bandwidth by L transceivers/transmitter-receiver pairs, one can

obtain

s = D · x (4)

where

s = vec ([s1 , s2 , . . . , sL ]) (5)

sl =
[

Es
α l β l

(xr
l ,x

t
l , ω1), E

s
α l β l

(xr
l ,x

t
l , ω2),

. . . , Es
α l β l

(xr
l ,x

t
l , ωp)

]T
(6)

D = [D1 ,D2 , . . . ,DL ]T (7)

Dl = [D
(1)
l , D

(2)
l , . . . , D

(p)
l ] (8)

D
(n)
l =

[

Dα l β l
(xr

l ,x
t
l ;x

s
1 , ωn ), Dα l β l

(xr
l ,x

t
l ;x

s
2 , ωn ),

. . . , Dα l β l
(xr

l ,x
t
l ;x

s
m , ωn )

]T
(9)

x = [χ(xs
1), χ(xs

2), . . . , χ(xs
m )]T (10)

and l = 1, 2, . . . , L, n = 1, 2, . . . , p. In the above equations,

vec(·) stacks the columns of an m × n matrix as an mn × 1
column vector, and (·)T denotes the transpose of a matrix.

The subscripts αl and βl indicate the polarizations of the

l-th transceiver/transmitter-receiver pairs. Moreover, the term

w(ω)∆V is suppressed for simplification in (4). According to

(4)–(10), one can see that the measurement vector s ∈ CL ·p , and

the vector of scattering coefficients x ∈ Cm . D ∈ C(L ·p)×m is

the sensing matrix and each row is an observation vector re-

lated to a measurement. Theoretically, to accurately reconstruct

contrast functions of targets, a great number of measurements

should be collected by transceivers at various positions, which

is usually determined by the Nyquist criteria and L · p ≫ m.

However, due to some practical constraints (i.e., cost, space

and bandwidth) of the imaging systems, only a small number

of measurements of scattered EM fields can be acquired. The

measured signals can be represented as

y = Hs = Ax + n (11)

where H ∈ RM ×(L ·p) is the selection matrix whose rows are the

standard bases eT
si

s (here the subscript si indicates the index of

the non-zeros entry in a standard basis), i = {1, 2, . . . ,M}, and

M is the number of the selected rows of D. The M selected rows

from D indexed by {s1 , s2 , · · · , sM } form the observation ma-

trix A ∈ CM ×m . n ∈ CM is the measurement errors and noise

of Gaussian distribution with zero mean and σ2I the variance.

Assuming M ≥ m measurements are acquired by the imaging

system, the least squares estimate of the contrast function is

given by

x̂ = A†y = (AH A)−1AH y (12)

where (·)H represents the conjugate transpose of a matrix, and

A† = (AH A)−1AH is the pseudo-inverse of A. The accuracy

of the reconstructed x̂ with the observation matrix A can be

examined via the metrics:
� Mean square error (MSE)

MSE(x̂) = E[‖x̂ − x‖2
2 ]

= σ2 tr(Γ−1) = σ2
m

∑

i=1

1

λi
= σ2‖A†‖2

F (13)

where Γ = AH A, and λ1 ≥ λ2 ≥ · · · ≥ λm are its non-

increasing eigenvalues. tr(·) and ‖ · ‖F denote trace and the

Frobenius norm, respectively.
� Worst case error variance (WCEV)

WCEV(x̂) = λmax(σ
2Γ−1) = σ2 1

λm
= σ2‖A†‖2

2 (14)

where λmax(·) represents the maximum eigenvalue of a

matrix and ‖ · ‖2 is the 2-norm operator.

From (13) and (14), One can see that MSE and WCEV are

closely related as MSE(x̂) ≤ m · WCEV(x̂). So minimizing the

WCEV equivalently reduces the upper bound of MSE. Besides,

the condition number of the observation matrix A is often used

to indicate the sensitivity of x̂ with respect to the error of the

measurement data and defined by

CondNo (A) =
√

λ1/λm (15)

As λ1 ≥ λm , the condition number of A is not less than one.

If the condition number is small, then small changes in the

measurement data will result in small errors in the estimation of

x. Otherwise, small changes in the measurement data will lead

to large errors in the estimation of x.

According to (13)–(15), MSE, WCEV and the condition num-

ber are all dependent on the eigenvalues of the matrix Γ, thus

fully depending on the observation matrix A. As indicated in

(11), A is a function of antenna positions, polarizations and

frequencies. So its recovery performance can be optimized by

properly designing antenna positions, polarizations and frequen-

cies used in an imaging system. Hence, the above linear system

formulation provides a unified framework to explore spatial-,

polarization- and frequency-diversities for microwave imaging

system design.

B. Problem Statement

Here we assume the imaging system works at a certain band-

width and the antenna polarizations are fixed (but could be
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different) at each position. Only spatial sampling of synthetic

volume array, i.e., E-RadSAR, for 3-D imaging is considered.

In principle, the 3-D spatial sampling problem of E-RadSAR

can be handled by transforming to a sensor/observation selection

problem. As E-RadSAR exploits the rotation of a linear array

in cross-range and its forward motion in down-range direction,

the related sensor/observation selection procedure is naturally

divided into two steps: (1) selecting a specific number of sensors

(antennas); (2) determining the spatial sampling strategy for

each antenna. On the other hand, the selection procedure can

also be organized as: (1) first selecting (near-)optimal sampling

configuration for a volume array; (2) then determining antenna

positions to implement such configuration. These two selection

schemes determine the antenna positions and spatial samples in

different orders and could lead to different selection results. The

first selection scheme implicitly confines the number of antennas

used by the imaging system while the second one could get better

spatial sampling configuration but more antennas are probably

needed. In practice, the selection scheme can be decided based

on the resource constraints of imaging systems.

However, as the radar system operates at a certain bandwidth,

multiple measurements can be acquired at different frequen-

cies in each spatial sampling position. Thus, in either selection

scheme above, a vector-measurement subset selection prob-

lem is involved. Actually, besides the E-RadSAR, sampling

designs for general microwave imaging systems can be formu-

lated as a vector-measurement selection problem. For conve-

nience of description, we denote the set of the N candidate

positions as N = {1, 2, . . . , N} and the set of M selected po-

sitions S = {s1 , s2 , . . . , sM }. The initial sensing matrix Ã =
[Φ1 ,Φ2 , . . . ,ΦN ]T ∈ C

(N ·Q)×m , where ΦT
i ∈ CQ×m is a sub-

matrix formed by Q observation vectors associated with the

i-th candidate position. Then, the sensor/observation placement

problem with vector measurement can be formally expressed as

follows.

Problem 1: Giving the initial sensing matrix Ã =
[Φ1 ,Φ2 , . . . ,ΦN ]T ∈ C(N ·Q)×m , where ΦT

i ∈ CQ×m , select

M submatrices of Ã indexed with [s1 , s2 , . . . , sM ] in N to

construct an observation matrix A = [Φs1
,Φs2

, . . . ,ΦsM
]T ∈

C(M ·Q)×m , such that the estimation error satisfies certain re-

quirements and the number of selected submatrices is mini-

mized.

It can be found that the difference of Problem 1 from the

one addressed in [19] is that submatrices instead of individual

rows are selected here. By consecutively tackling the Problem 1

for antenna and their spatial observation selection, the sampling

strategy of the E-RadSAR can be determined.

III. CLUSTERED MAXIMAL PROJECTION ON

MINIMAL EIGENSPACE

In this section, the Clustered Maximal Project on Minimal

Eigenspace (CMPME) is proposed to address the aforemen-

tioned vector measurement selection problem. Moreover, an

iterative implementation scheme is suggested to accelerate the

CMPME algorithm.

A. CMPME

CMPME further develops the MPME algorithm for select-

ing sensors/observations with vector measurement. Similar to

MPME, the objective of the CMPME algorithm is in essence to

select the minimum number of sensors such that their observa-

tion vectors form an observation matrix A with m significant

singular values. The basic idea of the CMPME algorithm is to

select the sensor that brings the most information complemen-

tary to that of the existing ones at a time.

Assume an observation matrix Ak−1 ∈ C(k−1)Q×m is formed

by the observation vectors related to the first k − 1 selected

sensors with Q measurements for each. Its singular value de-

composition (SVD) can be denoted as Ak−1 = UΣVH , where

U ∈ C(k−1)Q×(k−1)Q and V ∈ Cm×m are left and right unitary

matrices and Σ ∈ R(k−1)Q×m is a diagonal matrix with non-

negative real numbers in the diagonal. The column vectors of U

and V span the data space and the object’s space, respectively.

To get an observation matrix for unambiguous reconstruction of

the object, the most efficient observations are those that gradu-

ally expand the dimension of the data space to be close or equal

to that of the object’s space. So it is better to select as the kth

sensor the one that brings the most complementary information

with respect to the existing k − 1 ones.

To determine the kth optimal sensor to be selected, the com-

plementary information brought by a new sensor can be evalu-

ated by checking the effects of its associated observation vectors

on the singular value system of the observation matrix Ak−1

(equivalently, the effects on the eigenvalue system of the “dual

observation matrix” AH
k−1Ak−1). Specifically, when the num-

ber of observation vectors related to the k − 1 sensors is less

than that of the unknowns in the beginning, i.e., (k − 1)Q ≤ m,

the Q observation vectors associated with a new sensor that

have the largest component (i.e., projection) in the null space

of the observation matrix Ak−1 expand the dimension of the

data space and contribute the most complementary information.

Thus, the corresponding sensor should be the kth selection. In-

serting the Q newly selected observation vectors into Ak−1 , a

new observation matrix Ak is constructed with the row dimen-

sion increased by Q. Accordingly, the number of significant

singular values of Ak also increases compared to Ak−1 . When

(k − 1)Q > m and all the singular values are positive, the rows

of Ak−1 form an over-complete set of bases for its row space.

To reduce the estimation errors of the solution [see (13) and

(14)], the observation vectors of a new sensor should increase

the minimum singular value of the updated observation matrix

Ak (equivalently, to increase the minimum eigenvalue of the

“dual observation matrix” AH
k Ak [19]). Then the kth selected

sensor is the one whose observation vectors have the largest

projection onto the minimum eigenspace which is spanned by

the eigenvector(s) associated with the minimum eigenvalue(s)

of AH
k−1Ak−1 .

However, for vector measurement selection, selecting one

sensor results in choosing Q observation vectors at a time,

which is distinct from the traditional “single sensor single mea-

surement” case. By examining the projection of the Q newly

selected vectors onto the minimum eigenspace of AH
k−1Ak−1 ,
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we only consider their “orthogonalities” with respect to the ex-

isting row vectors of Ak−1 . However, to guarantee that each

measurement brings the most complementary information rel-

ative to the rest, to what extent the Q observation vectors of

a sensor for the kth selection are mutually orthogonal should

be evaluated as well. Specifically, when the observation vec-

tors associated with two sensors have equal projections onto the

minimum eigenspace of AH
k−1Ak−1 , the one whose associated

observation vectors are more mutually orthogonal is preferred.

This can be derived as follows. If we allow the Q observation

vectors associated with a sensor to be selected individually, each

time the observation vector that has the largest projection onto

the minimum eigenspace of AH
k−1Ak−1 is picked. If the number

of the rows of Ak−1 is smaller than m, the minimum eigenspace

of AH
k−1Ak−1 is the null space of Ak−1 . So the newly selected

observation vector is always to the largest extent “orthogonal” to

the existing rows in the observation matrix. This is also true for

the last Q selected observation vectors. However, now we have

to select Q vectors as a group at a time. So it is natural that the

Q newly selected observation vectors should not only have the

largest projection onto the minimum eigenspace of AH
k−1Ak−1

but also be to the largest extent mutually “orthogonal”.

To quantitatively assess the orthogonality among the Q ob-

servation vectors of a sensor, the inner products among their

corresponding normalized vectors are conducted. As we prefer

the sensors whose observation vectors are more close to orthog-

onal, the inner products among them should be more close to

zeros. By considering both the projection of the new observa-

tion vectors onto the minimum eigenspace and their orthogonal-

ity, the optimal sensor can be selected by maximizing the cost

function

Cost(Φsk
) = ‖Pk−1Φsk

‖2
F − η

⎛

⎝

Q
∑

i,j=1

|〈ϕ̃i , ϕ̃j 〉|
2

⎞

⎠ (16)

where Φsk
is the small matrix formed by the Q observation vec-

tors ϕi , i = 1, 2, . . . , Q, and ϕ̃i is the normalized vector of ϕi .

Pk−1 is the projection operator onto the minimum eigenspace

of AH
k−1Ak−1 . 〈·〉 and | · | are the inner product and the abso-

lute value, respectively. η is a constant parameter that controls

the importance of the orthogonality among the new observa-

tion vectors, which should be chosen based on the correlations

among the observation vectors for specific scenarios. Actually,

the second term in (16) is related to the inverse frame potential

of the new sensor. Therefore, the cost function in (16) is, to some

extent, a combination of the projection and the frame potential.

The projection operator at each step can be obtained in a

similar way as in [19]. When (k − 1)Q ≤ m, the minimum

eigenspace of AH
k−1Ak−1 is the null space of Ak−1 . Then

the projection matrix Pk−1 onto the minimum eigenspace of

AH
k−1Ak−1 can be given by

Pk−1 = Im×m − Rk−1R
H
k−1 (17)

where Im×m is the m × m identity matrix and Rk−1 =
orth(AH

k−1) whose column vectors are obtained from the Gram-

Schmidt Orthonormalization of all the column vectors of AH
k−1

[27]. When (k − 1)Q > m, the projection matrix Pk−1 is

Algorithm 1: Clustered Maximal Projection on Minimum

Eigenspace.

1: Input: Ã = {Φ1 ,Φ2 , . . . ,ΦN }T ∈ C(N ·Q)×m ,

where ΦT
i ∈ CQ×m

2: Output: A ∈ C(M ·Q)×m , S, M
3: 1) Initialization: N = {1, 2, . . . , N},S = ∅.

4: 2) Determine the first n = ⌈m
Q ⌉ sampling positions:

5: (a) Set A0 = [],P0 = In×n and k = 1.

6: (b) ŝk = arg maxi∈N\SCost(Φi).

7: (c) Update: S = S ∪ {ŝk}, Ak = [AT

k−1 Φŝk
]T,

Rk = orth(AH
k ), Pk = Im×m − RkR

H
k .

8: (d) Set k = k + 1 and repeat step (b-c) until k = n.

9: 3) Determine the remaining sampling positions:

10: (a) ŝk = arg maxi∈N\SCost(Φi).

11: (b) Update: S = S ∪ {ŝk},Ak = [AT

k−1 Φŝk
]T,

AH
k = U(k)Σ(k)(V(k))H , Pk = U

(k)
m×µm

(U
(k)
m×µm

)H .

12: (c) If λ
(k)
m > γ return S, M = k and A = Ak ; else set

k = k + 1 and repeat step (a-b).

expressed as

Pk−1 = U
(k−1)
m×µm

(U
(k−1)
m×µm

)H (18)

where U
(k−1)
m ×µm

= [u
(k − 1)
m−µm + 1 , u

(k−1)
m −µm + 2 , . . . ,u

(k − 1)
m ] ∈

Cm×µm . u
(k−1)
m−µm +1 ,u

(k−1)
m−µm +2 , . . . ,u

(k−1)
m are the eigenvectors

of the smallest eigenvalue of AH
k−1Ak−1 with multiplicity µm .

After getting the projection matrix in each iteration, the

cost function (16) can be evaluated for the selection. The de-

tailed CMPME operations are shown in Algorithm 1. In its

implementation, the cost function evaluation causes the domi-

nant computational cost. To determine the kth spatial sample

position, it costs O(m2(N − k + 1)Q + mQ2(N − k + 1)).
Therefore, the total complexity cost can be estimated as

O((m2 + mQ)NQM).

B. Efficient Implementation

In Algorithm 1, two most computationally expensive steps

are to evaluate the cost functions with respect to the observation

vectors of each candidate sample (line 6 or 10 in the algorithm),

and to compute and update the set of orthonormal bases (line 7 or

11). As the cost function of each candidate sample is evaluated

with respect to the same set of orthonormal bases, it can be

implemented by parallel computing.

For the update of the orthonormal bases and projection op-

erator, the computation load can be significantly reduced by

iterative computing. More specifically, the orthonormal bases

Rk−1 (in line 7) are computed through the orthonormalization

of the column vectors of AH
k−1 and then expanded to Rk after

appending new observation vectors Φŝk
to Ak−1 , which can be

expressed as Rk = orth(AH
k ) = orth([AH

k−1 Φ∗
ŝk

]), and the su-

perscript ∗ represents the complex conjugate. As in the previous

iteration Rk−1 = orth(AH
k−1) has been computed and orthonor-

mal column vectors are obtained, Rk can be updated by only

orthonormalizing Φ∗
ŝk

relative to Rk−1 via Gram-Schmidt (G-
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S) process. After obtaining Rk , the projection operator Pk can

also be updated. This update process can be expressed as

Pk = Im×m − RkR
H
k

= Im×m − Rk−1R
H
k−1

− orth(Φ∗
ŝk

;Rk−1)orth(Φ∗
ŝk

;Rk−1)
H

= Pk−1 − orth(Φ∗
ŝk

;Rk−1)orth(Φ∗
ŝk

;Rk−1)
H . (19)

where orth(Φ∗
ŝk

;Rk−1) denotes the new orthonormal bases of

Φ∗
ŝk

relative to Rk−1 . So one can see that the cost function

can be updated by just computing the projections of the ob-

servation vectors of the remaining sensors with respect to the

second term in the last line of (19). As the column dimension of

orth(Φ∗
ŝk

;Rk−1) is much smaller than that of Rk , i.e., Q ≪ m,

so the computational load for the cost function evaluation in

line 6 is substantially reduced through sequential update in each

iteration.

In line 11, the column vectors of U form a set of or-

thonormal bases, which is obtained through SVD: AH
k =

U(k)Σ(k)(V(k))H . As the dimensions of matrix Ak are typ-

ically of hundreds and thousands in the imaging case, the SVD

of AH
k is very computationally expensive. Considering the fact

that Ak is obtained by appending a small matrix Φŝk
to the row

space of Ak−1 , then its SVD can be obtained by consecutively

performing Q times rank-1 update to the SVD of Ak−1 [28],

[29]. Finally, we want to mention that these efficient implemen-

tation methods can also be used to accelerate the traditional

MPME algorithm.

IV. IMAGING EXAMPLES

This section presents some examples to show the imaging

performance of sensor arrays optimized with the proposed al-

gorithm. For comparison purposes, the simulations were also

carried out with the clustered FrameSense (CFS) method, CSBS

[23] and the convex relaxed method [17]. The convex re-

laxed method was implemented with a MATLAB software

for semidefinite-quadratic-linear programming, i.e., SDPT3

software package [30].

A. Planar Array Imaging

Firstly, a circular planar array based imaging is presented to

demonstrate the performance of the four methods for antenna

array topology optimization. Assume a circular planar array of

radius 0.5 m was used for signal acquisition and it was located on

the xoz plane. The y-axis pointed towards the illuminated region

and formed a right-hand coordinate system with the x and z axes.

The operational bandwidth was from 2 to 6 GHz. The scene of

interest was a volume with the closest distance of 0.5 m from the

array and its dimensions were 0.6 m× 0.2 m× 0.6 m in the x, y,

and z axes, respectively. So the cross-range and down-range res-

olution can be estimated as 2.25 cm and 3.75 cm. Considering

the computational time for the simulation, we divided the scene

of interest as the voxels with dimensions of 5 cm× 5 cm× 5 cm.

So the whole imaging volume contains 845 voxels. In the circu-

lar antenna array, the candidate spatial samples of the antennas

lie on a series of concentric circles with radii ranging from

0.05 m to 0.5 m with steps of 5 cm. In azimuth, the sampling in-

terval was 6◦. Therefore, we have 600 candidate spatial samples

within the aperture in total. Moreover, at each spatial sampling

position an antenna takes 41 measurements with the frequencies

sweeping from 2 to 6 GHz with steps of 100 MHz.

In the simulation, for each measurement the following signal

model was used

s(xa , f) =

∫

V

χ(x) ·
exp(−j4πfR/c)

4πR
dV (20)

where xa and x represent the antenna’s and the scatterers’

positions, respectively. c is the wave propagation speed, f
is the signal frequency, χ(·) is the reflectivity function and

R = |x − xa | is the distance between the antenna and the scat-

terer. Note that in (20) a monostatic radar configuration is con-

sidered; thus the positions of each transmitter and receiver pair

in (1) are simply denoted by the antenna position xa . The sec-

ond term exp(−j4πfR/c)/4πR represents the round-trip wave

propagation model.

Setting χ(x) = 1 and applying the spatial box window at each

voxel in (20), the initial sensing matrix Ã ∈ C24600×845 asso-

ciated with all the candidate spatial samples can be constructed.

Based on the aforementioned simulation setup and signal

model, the spatial samples for circular planar array were selected

with CMPME, CFS, CSBS, and the convex relaxed method.

Here as long as a spatial sampling position was selected, the ob-

servation vectors corresponding to all the 41 frequencies were

chosen. Assume n is independent and identically distributed

(i.i.d.) Gaussian noise, with the variance σ2 = 1. Then the MSE,

WCEV and condition numbers achieved by the observation ma-

trices constructed with the observation vectors selected by the

four methods are presented in Fig. 2.

From Fig. 2(a), it can be seen that the spatial samples se-

lected with CMPME achieve smaller MSE, WCEV and condi-

tion numbers compared to the CFS. Moreover, with sufficient

spatial samples (more than 60 spatial samples), the CMPME

also leads to slightly better selection than the CSBS. However,

when the number of selected spatial samples is small (less than

50), the CSBS performs slightly better than the CMPME. This

is because CSBS is, similar to the CFS, a greedy ‘worst-out’

algorithm, which gradually removes the least informative spa-

tial samples. Then the most informative ones are selected in

terms of MSE. By contrast, the CMPME takes a sequential for-

ward selection scheme. It gradually adds to the selection set

the sample that is most complementary to the existing ones.

So the spatial samples selected by CMPME could be less op-

timal than that selected by CSBS when the number of samples

is small. Nevertheless, 50 spatial samples are not sufficient as

the MSEs achieved by the observation matrices obtained with

both methods are larger than 105 . With the increase of the num-

ber of selected spatial samples, the CMPME and CSBS achieve

equivalent performance in terms of MSE. Meanwhile, the CFS

reaches the comparable but slightly larger MSE compared to

CMPME and CSBS. This is due to the fact that in the simula-

tion scenario the distances from different antenna positions to

scatterers have very small differences. Namely, the observation

vectors associated with different spatial samples have more or

less similar norms, in which case the frame potential can lead
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Fig. 2. Criteria comparison of the three selection approaches. (a) Shows the
MSEs achieved by the observation matrices with different number of selected
spatial sampling positions; (b) for WCEV, and (c) for condition number.

to the optimal selection. Therefore, the CFS achieves compa-

rable performance as CMPME and a similar phenomenon was

also observed for FrameSense and MPME [19]. Furthermore, it

is obvious that the observation matrices selected by CMPME,

CSBS and CFS arrive at much smaller MSE than that obtained

with the convex relaxed method. So all the CMPME, CSBS,

Fig. 3. Array topologies of 90 selected spatial samples with (a) CMPME,
(b) CFS, (c) CSBS, and (d) convex optimization.

and CFS outperform the convex relaxed method in this case in

terms of MSE.

The variations of the WCEVs and condition numbers of the

observation matrices obtained with the four methods are shown

in Fig. 2(b) and (c). Similar to the MSE in Fig. 2(a), the WCEVs

and condition numbers rapidly decrease with the growth of the

number of spatial samples. Overall, CMPME and CSBS ar-

rive at better performances than CFS and the convex relaxed

method in terms of both WCEVs and the condition numbers.

Moreover, with sufficient spatial samples, CMPME results in

smaller WCEVs and condition numbers compared to CSBS. If

we set the WCEV threshold as 1.5, the numbers of the spatial

samples selected by CMPME, CSBS, and CFS are 90, 98 and

118, respectively. Meanwhile, the convex relaxed optimization

method leads to more than 150 samples to be selected. There-

fore, among the four methods, CMPME selects the minimum

number of spatial samples.

To further compare the imaging performance of the arrays

obtained with the four methods, we take arrays of 90 spatial

samples as an example. The topologies of the circular arrays ac-

quired with the four methods are shown in Fig. 3. Intuitively, the

arrays selected with CMPME and CSBS have relatively uniform

distributions of the spatial samples within the aperture while the

samples of the array obtained with the CFS are mainly located

on the circles close to the edge of the aperture. Although the

spatial samples selected by the convex relaxed method are also

mainly distributed on two circles, they form a smaller effective

aperture compared to those acquired with the other three greedy

algorithms. Therefore, it would result in, according to the ar-

ray theory, lower cross-range resolution than that with the other

three arrays.
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Fig. 4. Measurement setup for numerical simulations with the four arrays.
(a) 3-D view of the imaging configuration, where the shaded circular area on y =
0 indicates the antenna aperture, (b) slice at y = 0.5 m, and (c) slice at y = 0.7 m.

Imaging simulations were performed for the four arrays with

the measurement setup shown in Fig. 4. Ten point targets were

placed on two planes y = 0.5 m and y = 0.7 m [see Fig. 4(b) and

(c)] and the magnitudes of their reflectivity functions were set

to two. The measurement errors and noise were assumed to be

the zero-mean Gaussian distribution with the variance equal to

one, i.e., n ∼ N (0, 1) (correspondingly, the signal to noise ratio

≤ 5.6 dB). Taking 50 Monte Carlo runs each with a different

noise realization, the average of the imaging results on the two

target planes are presented in Fig. 5 and Fig. 6 in the logarithmic

scale. For comparison, the truths of the target setting at the two

slices are also shown in Fig. 5(a) and Fig. 6(a), respectively.

It is obvious that the arrays selected with CMPME, CFS, and

CSBS result in much better estimations of the imaging scenes in

contrast to the array acquired with the convex relaxed method.

In the images estimated by the three greedy algorithms, some

fluctuations are noticed in the “floor” region compared to their

corresponding truths but the differences among them are hard

to be distinguished visually. The quantitative metrics, i.e., MSE

and WCEV, of the reconstructed 3-D images were examined and

listed in Table I. One can see that the array selected by CMPME

achieves the smallest MSE and WCEV for the estimated images

while the array obtained with the convex relaxed method leads

to the worst estimation of the image. As the WCEV = 1.5 (the

solid line in Fig. 2(b)) was used as a threshold to determine

the number of spatial samples (i.e., 90 samples), it is indeed

achieved with the array designed by CMPME.

Although the variance of the noise was set to one in the above

numerical simulation, it should be noted that the noise has no in-

fluence on the performance of the proposed CMPME selection

approach. CMPME selects the sensors/samples by assessing

the contributions of their observation vectors to the minimum

eigenspace of AH A, where observation vectors are assumed to

be known. The selected observation vectors gradually expand

the row space or increase the minimum singular value(s) of

the constructed observation matrix, thus reducing its condition

number and improving the stability of the inversion. However,

if the observation matrix constructed with the selected observa-

tion vectors still has very small singular values (equivalently, a

large condition number), data errors caused by the noise would

lead to much larger errors in the inversion results. In such cir-

cumstances, regularization methods should be used to suppress

the effects of the noise on image reconstruction.

Finally, the computational complexities of the four algorithms

are compared. As indicated in [17] and [19], the computa-

tional complexity of the convex relaxed method for selecting

sensors with vector measurements is O(icN
3Q3), where ic is

the iterative number of the convex optimization. Meanwhile,

the computational cost of CSBS is given as O(mN 3Q2)[23].

For the CFS, N − M spatial samples are removed one by

one. The computational cost to remove the kth sensor is

O(2m[(N − k + 1)Q]2). Therefore, the total computational

cost can be expressed as O(2m
∑N −M

k=1 [NQ − (k − 1)Q]2) ≈

O( 2
3 mQ2(N 3 − M 3)). If the matrix ÃÃH can be stored, then

the computational cost of CFS would be further reduced to

O(2mN 2Q2). For the convenience of comparison, the com-

putational complexities of the four methods are summarized

in Table II where L̃ = N · Q is used to simplify the notation.

As typically L̃ ≫ m,N,Q, so one can see among the four al-

gorithms CMPME has the lowest computational complexity

followed by CFS. This results from the fact that the CMPME

is a sequential forward selection approach instead of the se-

quential backward selection schemes used in CSBS and CFS.

This advantage could be even remarkable when the number of

selected samples is substantially smaller than that of the candi-

date samples. For the planar array imaging simulations above,

the computational time of the four algorithms also proves this

conclusion, as shown in Table III. In this simulation, the sen-

sor selection simulations were performed on a PC with an Intel

Core i5-3470 CPU of 3.2 GHz and 8 GB RAM. All the four

methods were implemented in Matlab code. For the convex re-

laxed method, 21 iterations were automatically performed by

SDPT3 optimization engine. From Table III, one can see that

in this simulation CFS and CMPME are more than 100 times

faster than the convex relaxed method and CSBS. Moreover,

the circular array selected by CMPME achieves the comparable

imaging performance as that obtained by CSBS.

B. Optimization of 3-D Synthetic Array

In this section, we present the sampling design and optimiza-

tion of a 3-D array (i.e., E-RadSAR) for 3-D imaging by using

the proposed algorithm.

A 3-D GPR imaging simulation was performed for illustration

of the proposed algorithm for the E-RadSAR sampling design.

The simulation configuration is shown in Fig. 7. Two perpen-

dicularly orientated dielectric cylinders were buried in the soil
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Fig. 5. Comparison of imaging results at the slice y = 0.5 m obtained with the arrays optimized by four different approaches. (a) Shows the truth of the target
configuration, (b)–(e) are the slice images obtained with the arrays selected by CMPME, CFS, CSBS, and convex relaxed optimization method, respectively.

Fig. 6. Comparison of imaging results at the slice y = 0.7 m obtained with the arrays optimized by four different approaches. (a) Shows the truth of the target
configuration, (b)–(e) are the slice images obtained with the arrays selected by CMPME, CFS, CSBS, and convex relaxed optimization method, respectively.

as the objects and they were joined at one end. The radius of

the cylinders is 10 cm and their lengths are 60 cm and 80 cm.

The conductivity and relative permittivity of the cylinders are

0.05 S/m and 5.0, respectively. In addition, the permittivity of

the background soil is 9.0 and its conductivity 0.01 S/m. The

elementary dipole antennas were placed along a radius of a cir-

cle centered at the origin on the ground surface (i.e., xoz-plane

in Fig. 7). The orientations (i.e., polarizations) of the dipole

antennas were also along the radius. The Ricker wavelet with

a center frequency of 900 MHz was used as the excitation sig-

nal. To simulate the operation of the GPR system used in the

TBM, the GPR signals were acquired over several concentric

circles with the rotation of the antennas around the origin. To

get properly focused images of targets at a distance of 0.4 m,
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TABLE I
MSES AND WCEVS OF THE ESTIMATED IMAGES WITH THE ARRAYS

OPTIMIZED BY THE FOUR ALGORITHMS

TABLE II
COMPUTATIONAL COMPLEXITIES OF THE FOUR ALGORITHMS

TABLE III
COMPUTATION TIME OF CMPME, CSBS, CFS, AND THE CONVEX RELAXED

METHOD TO SELECT 90 SPATIAL SAMPLES FROM 600 CANDIDATES FOR

PLANAR CIRCULAR ARRAY OPTIMIZATION

∗ 21 iterations were taken.

Fig. 7. Geometrical configuration of GPR numerical simulation. (a) Is the
3-D illustration of the simulation setup, and (b) is its xoz-view along the y axis.

a circular planar array aperture of the radius 0.5 m should be

used. Based on the polar sampling criteria, eight antennas were

placed along a radial direction on eight concentric circles with

the radius ranging from 0.15 m to 0.5 m with steps of 5 cm.

In azimuth, the signals were measured every 3◦. Therefore, in

total 960 spatial samples were acquired over the circular planar

array.

To explore the possibility to reduce the number of antennas

by taking advantage of the forward motion for 3-D array synthe-

size, three different depths of the objects, i.e., 0.3 m, 0.4 m, and

0.5 m, relative to the ground surface (i.e., antenna array) were

considered to simulate the E-RadSAR. Taking the aforemen-

tioned sampling criteria, 2880 spatial samples were acquired

over three planar circular arrays at the three depths, which form

the candidate set for the E-RadSAR sampling design and opti-

mization.

For convenience of description, let us set y = 0 at the clos-

est position, i.e., 0.3 m in depth, of the antenna array rela-

tive to the objects. The imaging volume is a cuboid defined by

[−0.4, 0.4]m × [0.1, 0.5)m × [−0.5, 0.5]m along the x, y and z
directions. The whole volume is partitioned into 41820 voxel

cells of the dimensions 2 cm × 2 cm × 2 cm in which the

values of voxels represent the reflectivity functions at the cor-

responding positions. Then the observation vectors of the an-

tenna at each position at different signal frequencies relative

to the imaging volume can be obtained via half-space Green’s

functions for the scattering process based on the Born approx-

imation [31]. The signal frequencies sweep from 557.8 MHz

to 1546.6 MHz with steps of 12.7 MHz to cover the effective

bandwidth of the Ricker wavelet. So considering different fre-

quencies, 79 observation vectors are obtained at each sampling

position. Stacking all the observation vectors associated with all

the candidate sampling positions at all the discrete frequencies, a

candidate sensing matrix Ã ∈ C(2880·79)×41820 is obtained. The

candidate sensing matrix corresponds to the volume array syn-

thesized by using eight antennas, and each antenna contributes

28440 (i.e., 120 × 3 × 79) candidate observation vectors.

To design and optimize the sampling strategy of the 3-D

synthetic array, we take two steps: the first step is to select

a certain number of antennas from eight candidate antennas;

the second step is to optimize the spatial sampling positions of

the selected antennas. Considering the number of voxel cells in

the imaging volume and slight redundancy for signal acquisition,

at least three antennas should be selected. That is to say, at least

three sub-matrices of the dimensions 28440 × 41820 should

be chosen. Accounting for the enormous size of the candidate

sensing matrix Ã and computational time, the first step was

implemented by using CFS [24]. The outer-most three antennas

within the circular aperture were selected, as shown in Fig. 8(a).

Next, the spatial sampling positions of the three selected an-

tennas are selected. Considering both the selection performance

and the computational time, CMPME and CFS were used to

select the (near-)optimal spatial samples, and the imaging per-

formances of their selected arrays were compared. In this exam-

ple, 350 spatial sampling positions were selected for the three

antennas. The selected results are shown in Fig. 8(b) and (c).

Comparing Fig. 8(b) and (c), one can see that the CFS selects

mainly the spatial samples that are far from the imaging volume

while CMPME selects the nearer ones. This can be explained

as follows. CFS gradually eliminates the spatial samples whose

observation vectors have the largest frame potential (i.e., corre-

lations) with those of the rest samples, which works optimally

for observation vectors with equal ℓ2 norms. But for obser-

vation vectors with unequal norms, the performance of CFS is

degraded. Considering attenuation and spread loss of wave prop-

agation, the observation vectors at the spatial sampling positions

closer to the imaging volume have larger ℓ2 norms than those

at a longer distance. So when evaluating the frame potential

via inner product, the observation vectors with larger ℓ2 norms

could lead to larger frame potentials. Thus, the corresponding

spatial samples, i.e., those at short range, are discarded, which

has also been indicated for the traditional FrameSense method

[16]. By contrast, CMPME evaluates the complementary infor-

mation introduced by the observation vectors associated with a

new spatial sample relative to the existing ones, which takes into

account the effects of the magnitudes of the observation vectors.

The spatial sampling positions at a shorter distance form rela-

tively diverse observation angles with respect to the imaging

volume and their observation vectors have larger magnitudes,
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Fig. 8. Spatial sample selection for 3-D synthetic array. (a) Shows the candidate spatial samples of the selected antennas; (b) and (c) show the 350 spatial samples
selected for the three antennas with CFS and CMPME, respectively.

Fig. 9. Point spread functions of the 3-D arrays selected with CFS and CMPME as well as a reference circular array. (a) Shows the 3-D point spread functions
of the 3D array selected with CFS at (−0.3, 0.3,−0.2) m, (0, 0.4, 0) m, and (0.3, 0.5, 0.2) m and their projections on the xoy, yoz, and zox planes; (b) the related
point spread functions of the 3-D array selected with CMPME and their projections on three planes; and (c) the point spread functions and three projections of a
RadSAR which is synthesized at y = 0 by using all eight candidate antennas and acquires 960 spatial samples.
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thus resulting in large projections onto the minimum eigenspace.

Consequently, the spatial samples closer to the imaging volume

are preferably selected by CMPME algorithm.

To show the imaging performance of the 3-D arrays selected

with the two methods, their point spread functions (PSF) are

firstly evaluated at three positions, i.e., (−0.3, 0.3,−0.2) m,

(0, 0.4, 0) m, and (0.3, 0.5, 0.2) m within the imaging volume

and the obtained 3-D PSFs and their 2-D projections on the xoy-

, yoz- and zox-planes are presented in Fig. 9(a) and (b). One

can see both 3-D arrays provide well-focused PSFs. However,

the 3-D array selected with CMPME achieves better cross-range

resolution than that of the 3-D array obtained with CFS, which

can be obviously observed from the PSFs at (0, 0.4, 0) m. This

is due to the fact that the 3-D array selected by CMPME con-

tains more spatial samples (i.e., the ones at y = 0) closer to the

imaging volume and forms a broad range of observation aspects

relative to objects, thus resulting in higher cross-range resolu-

tion compared to that selected with CFS. In terms of the down-

range resolution, both arrays perform comparably as the signal

bandwidths, which play a major role in determining the down-

range resolution, are equal. In addition, for comparison, Fig. 9(c)

shows the corresponding PSFs of a RadSAR synthesized by all

eight candidate antennas on the plane y = 0 which took 960 spa-

tial samples within the aperture. Comparing Fig. 9(a) and (b)

with (c), some degradation of spatial resolutions, especially the

cross-range resolutions of the 3-D E-RadSAR arrays selected

with CFS and CMPME, is observed compared to that of the

RadSAR. However, this loss in spatial resolution is very tinny

or acceptable in contrast to the reduction of almost two-thirds of

antennas and spatial samples needed for signal acquisition. So

E-RadSAR provides an effective approach to reduce antennas

needed by the traditional RadSAR.

The 3-D images of the extended cylindrical objects mentioned

above were also reconstructed to further demonstrate the imag-

ing performance of the 3-D E-RadSAR arrays selected with the

two methods and the focused images are shown in Fig. 10. One

can see that the images of the cylinders are well reconstructed

with both 3-D arrays [Fig. 10(a) and (c)]. From the top-views

of the 3-D images [Fig. 10(b) and (d)], it can be observed that

the artifacts in the image obtained with the 3-D array selected

with CMPME are considerably suppressed compared to that

in the image with the array selected with CFS. So in terms of

the overall image quality, the 3-D array selected with CMPME

outperforms that obtained with CFS. Moreover, some other dif-

ferences are also noticed in the focused images with the two

3-D arrays. From Fig. 10(d), it seems that the focused images of

the cylinders are slightly distorted, i.e., curved. This is because

the antennas in the array selected with CMPME form relatively

large observation angles from the broadside of the antennas.

Then due to the weighting effects of the antenna radiation pat-

tern, reflected signals from some scatterers are not well acquired

or even missing. Thus it causes slight distortion in the focused

images.

Here we have to mention that 350 spatial samples selected in

this example lead to an observation matrix A ∈ C
27650×41820

whose rank is still smaller than the number of voxel cells. This

could also be a reason for the distortion of the focused image

Fig. 10. Imaging results of the selected 3-D synthetic arrays with CFS and
CMPME algorithms. (a) and (c) are the reconstructed 3-D images with the
3-D arrays selected by CFS and CMPME; (b) and (d) display their top-views,
respectively.

with the array selected with CMPME. By increasing the number

of selected spatial samples, the imaging performance of the 3-D

array obtained with CMPME could be further improved.

V. CONCLUSION

In this paper, the clustered MPME approach has been devel-

oped to select sensors/spatial samples with vector measurements

so as to get a near-optimal observation matrix for microwave

imaging. As the CMPME selects a group of observation vec-

tors related to the same sensor at a time, the selection criterion

evaluates not only the projection of each group of candidate

observation vectors onto the minimum eigenspace related to

the subspace spanned by the existing observation vectors but

also their “orthogonality” among elements within each group

compared to the MPME.

The analyses of the computational complexity and the selec-

tion performance reveal that the CMPME is not only one of

the most efficient algorithms but also achieves the near-optimal

selection in terms of both MSE and WCEV of the reconstructed

images in contrast to the state of the art. Moreover, as a for-

ward greedy algorithm, CMPME gradually expands the sub-

space spanned by the observation vectors. It guarantees the

constructed observation matrix to be well conditioned, which

is inherited from the MPME. These have been demonstrated

through a planar imaging array design and an E-RadSAR sam-

pling design. Furthermore, we have to mention that CMPME

is a generic selection algorithm and applicable to general lin-

earized measurement scheme for imaging systems. In the paper,

it has been applied to the Born-based linear inversion, but the ap-

proach itself is not limited to the area of applicability of the Born

approximation itself. For more complicated non-linear imag-

ing/inversion formulations, the related sensor selection problem

should be further studied in future.
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