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Abstract— We present a forward-modeling-based sampling of
diffusion-tensor imaging (DTI) integral curves. This work has
the potential to generate accurate brain neural fiber models
that fit the data well with an economic number of curves.

DTI integral curves are integrated from the first eigenvector
field of the DTI field. Usually the seed points are generated
randomly or from a regular grid in the data volume. The
resulting set of integral curves are dense around the long and
skinny neural fiber structures and sparse around the short
and fat structures. There is currently a lack of quantitative
indication of how well various models fit the data.

We build a forward model that simulates diffusion-weighted
images (DWIs) from the DTI integral curves based on a multi-
tensor model. We employ the sum of the difference between the
simulated DWIs and the acquired DWIs as the goal function
and optimize the placement of the DTI integral curves with
a greedy algorithm and a simulated annealing algorithm. The
results show that with the same number of curves, the optimized
set of DTI integral curves fit better to the data than randomly
seeded integral curves.

I. INTRODUCTION

Diffusion tensor imaging reveals neural fiber structures in
the brain’s white matter [2]. The major eigenvectors of the
diffusion tensors point to the direction of the fastest diffusion,
which often correlates with the fibrous directions in coherent
white matter [7]. Tractography methods track integral curves
in the major eigenvector field of the diffusion tensor field in
order to generate models that correlate with the underlying
anatomy [2].

To generate a set of integral curves that accurately depict
the brain white matter anatomy, we need to solve the inverse
problems for both generating a single curve and generating a
set of curves in the brain white matter volume. The solution
for a single integral curve in both coherent and incoherent
white matter regions is well-explored by employing high
angular resolution [8], regularization [5], Bayesian model-
ing [4], etc. For the whole-brain model, the placement of
the integral curves also affects the quality of the model. This
paper proposes a new method for placing an economic set
of integral curves that fit the data well.

Previously, Turks and Banks have studied the placement
of streamlines to generate an evenly spaced streamline
set [9]. We have used a jittered grid sampling combined
with distance culling to generate a set of representative
streamtubes [11]. Vilanova et al. have used a seeding method
for 2D steady flow [8] to generate an evenly spaced set of
DTI tracts [10].
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We extend the idea of image-guided streamline place-
ment [9] to the DTI integral curves. We develop a forward
model that generates DWIs from the integral curves with a
multi-tensor model. We then use the difference between the
simulated DWIs and acquired DWIs to guide the placement
of the integral curves. A greedy algorithm and simulated
annealing are used to optimize the configuration of the
curves.

II. METHODS

A. DATA PREPARATION

The Siemens MDDW protocol was used to collect
three co-registered sagittal double spin-echo, echo-planar
diffusion-weighted volumes of the entire brain. The subject
provided written informed consent to participate in a DTI
research project approved by the Institutional Review Board
at Butler Hospital in Providence, RI.

The volumes were spatially offset in the slice direction
by 0.0mm, 1.7mm and 3.4mm. Parameters for each acqui-
sition were as follows: 5mm thick slices, 0.1mm inter-slice
spacing, 30 slices per acquisition, matrix = 128 × 128,
FOV = 21.7cm × 21.7cm, TR = 7200, TE = 156, no
partial echoes, NEX = 3. Diffusion encoding gradients
(b = 0, 1000mm/s2) were applied in 12 non-collinear
directions. The three acquisitions were interleaved to achieve
true 1.7mm3 resolution images.

Diffusion tensors were calculated with a non-linear se-
quential quadratic programming (SQP) method [1].

B. DTI INTEGRAL CURVES

The integral curves that comprise our tractography models
were generated by solving the following equation:

p(t) =

∫ t

0

�v(p(s))ds (1)

where p(t) is the generated streamline and �v corresponds to
the vector field generated from the major eigenvector �e1 of
the diffusion tensor D. p(0) is set to the initial point of the
integral curve, often called the seed point. The integration
goes into two opposite directions from the seed point.

Given the diffusion tensor field, an integral curve is
determined once a seed point is selected.

C. FORWARD MODELING

We developed a forward model that simulates the DWI
signals from the DTI integral curves model and use the
difference between the simulated DWIs and acquired DWIs
to guide the placement of the integral curves.
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The forward-modeling problem in diffusion imaging mod-
eling can be stated as: given the voxel-based partial volume
model Vp and a set of integral curves Ci representing the
coherent neural fiber bundles, how do we get the diffusion
MR signal for each voxel in the data volume? We begin by
the equation that relates DWI signal to the tensor model [3]:

I = I0e
−b:D (2)

I0 is the intensity with no encoding (for a given material
type typically a constant within a dataset), b is the diffusion
encoding tensor, D is the tensor model for the diffusion.

Integrating over a whole voxel, we get:

Iv =

∫
x∈v

Ixdx =

∫
x∈v

I0xe−b:Dxdx (3)

To simplify, we make the following assumption:
Assumption 1: The diffusion tensor in gray matter or CSF

are constant. The diffusion tensor is also constant over any
voxel for a single fiber bundle.

With assumptions listed in the last section, we can rewrite
equation 3 as:

Iv = I0csfe−b:Dcsf vcsf+I0gme−b:Dgmvgm+
∑

i

I0wme−b:Divi

(4)
i indexes over all the DTI fiber bundles intersecting the

voxel. We assume that each fiber bundle is a integral curve
with a constant radius; the fiber bundles that intersect v
provide a natural set of coherent white matter compartments.

We segment the brain into white matter
∑

vi, gray matter
vgm and CSF vcsf compartments using the FAST [12]
segmentation tool. We proximate the partial volume for each
fiber bundle in a voxel by calculating the distance from the
center of the voxel to the fiber bundle curve di and let

vj =
dj∑
i di

∑
i

vi (5)

Assuming that the data measurements are normally dis-
tributed around the true value with the same variance, and
that the data measurements are independent in different
locations, in order to get the maximum likelihood of the
data, we need to minimize the quantity:

χ2 =

m∑
q=1

n∑
v=1

(
Iv,q − Îv,q

σ

)2

(6)

called χ2 [6], where q denotes the set of magnetic gradient
directions. I and Î are the scanned and simulated signals. σ
is the variance of the distribution of the error between the
two signals. We use the noise value in the scanned image
for σ.
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Fig. 1. This plot shows the integral curves optimization processes for the
greedy algorithm and the simulated annealing. For both algorithms the χ2

value converges to around 77, 600. The greedy algorithm converges faster,
and it does not appear to get trapped in the local minimum.

D. OPTIMIZATION

For a fixed number of DTI integral curves N , we optimize
the configuration of the curves by minimizing the goal
function χ2.

We define three kinds of rearrangement:

• Addition: add an integral curve with a randomly se-
lected seed point P .

• Removal: remove an randomly selected integral curve
C from the current configuration.

• Addition and removal: a combination of one addition
and one removal.

The χ2 difference Δχ2 = χ2
2−χ2

1 is calculated after each
step.

The greedy algorithm works as follows:

1) If the number of curves is less than N , try addition. If
Δχ2 < 0, accept the addition.

2) If the number of curves is equal to N , try addition and
removal. If Δχ2 < 0, accept the addition and removal.

3) Repeat 2 until the decrease in χ2 becomes discourag-
ing.

To avoid the local minimum, we also implemented a
simulated annealing algorithm as follows:

1) If the number of curves is less than N , try addition. If
Δχ2 < 0, accept the addition. If Δχ2 >= 0, accept
with probability exp(−Δχ2

kT
).

2) If the number of curves is equal to N , try addition and
removal. If Δχ2 < 0, accept the addition and removal.
If Δχ2 >= 0, accept with probability exp(−Δχ2

kT
).

3) Repeat 2 until the number of reconfigurations reaches
NR or the number of steps reaches NS . Reduce T by
10% if any of the two conditions are met.

4) Repeat 3 until T becomes close to 0.
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a) S = 150, χ2 = 609, 121 b) S = 250, χ2 = 410, 972 c) S = 600, χ2 = 191, 847 d) S = 18, 000, χ2 = 77, 664

e) N = 150 f) N = 250 g) N = 600 h) N = 600

Fig. 2. a), b) ,c) and d) show the snapshots of the value χ2
v =

∑m

q=1

(
Iv,q−Îv,q

σ

)
2

for each voxel v in the data volume during different stages of the

simulated annealing. S is the number of accepted moves. e), f), g) and h) show the integral curves model generated at these stages. N is the number of
curves. Note that g) and h) both have 600 curves, but the optimization of the configuration lowered the χ2 value from g) to h) significantly.

III. RESULTS AND DISCUSSION

We ran the two optimization algorithms on the brain data
set. Since we are interested in the white matter structures,
we limit our χ2 calculation to the voxels with more than
50% white matter. There are 84, 025 such voxels. The seed
points for a new integral curve were selected within these
voxels. We set the target number of the curves to 600. The
k in simulated annealing was set to 1. The temperature T
was originally set to 1000. NR was set to 300 and NS was
set to 600.

Fig. 1 shows the optimization processes for the greedy al-
gorithm and the simulated annealing. For both algorithms the
χ2 value converges to around 77, 600. The greedy algorithm
converges faster, and it does not appear to get trapped in the
local minimum.

Fig. 2 shows the snapshots of the value χ2
v =∑m

q=1

(
Iv,q−Îv,q

σ

)2

for each voxel v in the data volume
during different stages of the simulated annealing. While the
addition of the curves quickly fills in large high χ2

v area, the
repeated addition and removal steps gradually decrease the
overall χ2 value by reconfiguration.

For comparison, we also performed random seed point
sampling for generating 600 integral curves and calculated
χ2 values for these models. The experiment was repeated
five times and χ2 = 197, 840± 9, 166.

IV. CONCLUSIONS AND THE FUTURE WORK

We present a forward-modeling-based sampling of
diffusion-tensor imaging (DTI) integral curves. We build a

forward model that generates DWIs from the DTI integral
curves based on multi-tensor modeling. We employ the
sum of the difference between the simulated DWIs and
the acquired DWIs as the goal function and optimize the
placement of the DTI integral curves with a greedy algorithm
and a simulated annealing approach. The results show that
with the same number of curves, the optimized set of DTI
integral curves fit better to the data than randomly seeded
integral curves. With the proposed moves of random addition,
random removal and their combination, the greedy algorithm
converges faster and does not seem to get trapped in local
minimums.

This work has the potential to generate accurate represen-
tation of the white matter anatomy with economic number
of curves.

Note that we made several simplifications in our forward
model such as the white matter partial volumes calcula-
tion, or the constant radius of the fiber bundles. Future
improvement on the precision of the forward model may
help increase the accuracy of the optimized model.
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