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Abstract. Acoustic sensors can be used to estimate species richness for vocal species such
as birds. They can continuously and passively record large volumes of data over extended
periods. This data must subsequently be analyzed to detect the presence of vocal species.
Automated analysis of acoustic data for large numbers of species is complex and can be
subject to high levels of false positive and false negative results. Manual analysis by
experienced surveyors can produce accurate results, however the time and effort required to
process even small volumes of data can make manual analysis prohibitive.

This study examined the use of sampling methods to reduce the cost of analyzing large
volumes of acoustic sensor data, while retaining high levels of species detection accuracy.
Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a
range of sampling frequencies and methods including random, stratified and biologically
informed.

We found that randomly selecting 120 one-minute samples from the three hours
immediately following dawn over five days of recordings, detected the highest number of
species. On average, this method detected 62% of total species from 120 one-minute samples,
compared to 34% of total species detected from traditional area search methods. Our results
demonstrate that targeted sampling methods can provide an effective means for analyzing
large volumes of acoustic sensor data efficiently and accurately. Development of automated
and semi-automated techniques is required to assist in analyzing large volumes of acoustic
sensor data.
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INTRODUCTION

Acoustic sensors provide an effective means for

monitoring biodiversity at large spatial and temporal

scales (Haselmayer and Quinn 2000, Penman et al. 2005,

Acevedo and Villanueva-Rivera 2006, Celis-Murillo et

al. 2009, Thompson et al. 2009). They can record large

volumes of acoustic data continuously and passively

over extended periods. However, these recordings must

be analyzed to detect the presence of vocal species.

Acoustic recordings can be analyzed automatically by

call-recognition software, or manually by humans to

identify species-specific calls (Brandes 2008, Acevedo et

al. 2009, Celis-Murillo et al. 2009, Wimmer et al. 2013).

Automated analysis of acoustic sensor data for large

numbers of species is complex and can be subject to high

levels of false positive and false negative results (Swiston

and Mennill 2009, Towsey et al. 2012). Manual analysis

can produce accurate results, however the time and

effort required to process recordings can make manual

analysis prohibitive (Rempel et al. 2005, Swiston and

Mennill 2009). Continuous acoustic sensor deployments

are restricted practically only by data storage capacity,

which continues to increase in size and decrease in price.

Therefore, the volume of data that we are now able to

collect far outweighs our present ability to process it

efficiently and accurately. The result is that many

scientists are employing acoustic sensors to monitor

biodiversity and subsequently finding that it is difficult

to analyze the data efficiently.

Many studies have identified the issues of efficiently

analyzing large amounts of acoustic data collected in the

field (Corn et al. 2000, Haselmayer and Quinn 2000,

Acevedo and Villanueva-Rivera 2006, Collins et al.

2006, Brandes 2008, Mason et al. 2008). The amount of

effort required to analyze acoustic data depends on the

objective of the analysis. These objectives fall broadly

into two categories: single-species surveys that analyze

acoustic recordings of the vocalizations of a single

species to assess aspects of that species’ ecology or

behavior and species richness surveys that analyze

acoustic recordings and identifying all taxa to generate

a measure of species richness for a study area.

These objectives differ subtly in terms of the analysis

methods and effort required to process large data sets.

Single species analyses may be undertaken manually

(due to the smaller number of potential vocalizations),

or automatically using custom developed software or

existing tools such as Raven (Charif et al. 2006).
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Automated detectors for species with distinctive vocal-

izations such as the koala (Phascolarctos cinereus) and

cane toad (Bufo marinus) have been developed and used

successfully for a number studies (Grigg et al. 2006, Ellis

et al. 2010, 2011). Due to the larger number of species

(and therefore range of vocalizations), species richness

analyses typically require much greater time and effort.

Irrespective of the objective, efficient analysis methods

are required that can deal with the volumes of data that

result from large-scale deployments of acoustic sensors.

Automated analysis tools use software development

techniques borrowed from speech recognition to detect

the vocalizations of individual species in recordings.

Perhaps due to the importance of birds as indicator

species of environmental health (Carignan and Villard

2002), there is a significant body of literature relating to

the automated detection of bird vocalizations (Anderson

et al. 1996, McIlraith and Card 1997, Kwan et al. 2004,

Chen and Maher 2006, Somervuo et al. 2006, Cai et al.

2007, Juang and Chen 2007, Kasten et al. 2007, Brandes

2008, Sueur et al. 2008, Acevedo et al. 2009, Bardeli et

al. 2010). Some approaches, focusing on limited

numbers of species or single species surveys, have

produced promising results by extracting sets of specific

features to classify calls (Farnsworth et al. 2004,

Schrama et al. 2008). Other approaches have focused

on cataloguing and characterizations of acoustic diver-

sity and disturbance (Kasten et al. 2012). Automated

analysis techniques are evolving quickly, however, due

to the inherent complexity of acoustic environmental

data, it will be some time before automated methods are

capable of detecting all species likely to be found at a

location (Mundinger 1982, Baker and Logue 2003,

Brandes 2008).

Manual analysis typically involves listening to record-

ings and identifying individual species vocalizing in the

recordings. This can be assisted by the use of tools to

visualize the audio in the form of spectrograms, and by

providing ‘‘reference calls’’ of species, which can be used

to assist in species identification (Wimmer et al. 2013).

Manual analysis can be very accurate if experienced

observers are involved, however it is time consuming,

expensive and ultimately fails to scale over large spatial

and temporal frames (Rempel et al. 2005).

To take advantage of the benefits of acoustic sensing

in the near-term, users of this technology require

effective methods to analyze large volumes of acoustic

data to make estimates of species richness. It is rare that

all species occupying an area are identified in any

ecological survey. Temporal and spatial patterns of

species abundance or diversity are often compared using

relative measures that are based on surveys, where

equivalent sampling effort has been applied at different

times or locations. Given that sampling is a common

and well-established method for estimating species

richness for an area (Krebs 1999), the same approach

can be applied to acoustic surveys.

The aims of this study were to determine if random

sampling of acoustic sensor data could provide a

reasonable estimate of species richness for birds found

in woodland habitats of south east Queensland,

Australia. We compared subsamples of acoustic data

with a fully analyzed set of 480 hours of acoustic

recording. We also compared subsamples of acoustic

data with results of traditional surveys to assess if

reasonable estimates of species richness could be

obtained with effort comparable to traditional surveys.

MATERIALS AND METHODS

Study site

Traditional avian area searches modified from (Loyn

1985) and acoustic sensor surveys were conducted

simultaneously in four locations over five days at the

51-ha Queensland University of Technology (QUT)

Samford Ecological Research Facility (SERF). SERF is

located in the Samford valley in south east Queensland,

Australia (27.3889928 S, 152.8781038 E).

The main vegetation at SERF is open-forest to

woodland comprised primarily of Eucalyptus tereticor-

nis, E. crebra (and sometimes E. siderophloia), and

Melaleuca quinquenervia in moist drainage. There are

also small areas of gallery rainforest with Waterhousea

floribunda predominantly fringing the Samford Creek to

the west of the property, and areas of open pasture

along the southern border.

Sites were located in the eastern corner within open

woodland, the northern corner in closed forest along a

creek line, in the western corner within Melaleuca

woodland, and in the southern corner where open

woodland borders open pasture (Fig. 1).

Samford Valley has a sub-tropical climate and

experiences approximately 1020 mm of rainfall per year.

Maximum and minimum mean temperatures are 268 and

138C, respectively (Australian Government Bureau of

Meteorology 2012). During the month of the survey

period (October 2010), the site experienced rainfall of

296 mm, compared to an average of 116 mm. During the

actual survey period however (13–17 October), only 1

mm of rainfall was recorded.

Acoustic sensors

Acoustic sensors were located at the center of each

survey site and configured to record continuously for

five consecutive days. There was at least 300 m between

the center of each survey site, and therefore between any

two sensors. Sensors used for this study were custom

developed using commercially available, low-cost digital

recording equipment: Olympus DM-420 digital record-

ers (Olympus, Center Valley, Pennsylvania, USA) and

external omni-directional electret microphones. Data

were stored internally in stereo MP3 format (128 Kbit/s,

22.05 KHz) on high-capacity 32GB Secure Digital

memory cards (Sandisk Corporation, Milpitas, Califor-

nia, USA). The units were stored in weatherproof
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enclosures and powered by four D cell batteries,

providing up to 20 days of continuous recording.

Acoustic sensor data analysis

At the completion of the survey, sensor recordings

were analysed manually by two experienced bird

surveyors to identify each unique species vocalising in

each one-minute segment. Surveyors analysed five days

from two sites each, processing one-minute segments

sequentially starting from midnight on day one. To

ensure calls were annotated consistently and accurately,

a call library was compiled, which contained exemplar

calls for each species identified. All calls in the library

were agreed upon by surveyors and crosschecked with

reference material (Morcombe 2004). In addition,

surveyors were randomly allocated 1440 one-minute

segments (10% of the data allocated to each surveyor)

from each other’s sites to audit. Results from the audit

indicated that less than 5% of total annotations were

incorrectly identified.

Calls were annotated using a custom online acoustic

workbench designed to manage the process of acoustic

data analysis (Wimmer et al. 2013). The workbench

played audio and displayed spectrograms, which al-

lowed the observers to visualize and hear audio

simultaneously. Bird vocalizations were identified aural-

ly and visually by listening to the recording with

headphones and observing the corresponding spectro-

gram. To mark species vocalizations within recordings,

the workbench provided the ability to annotate spectro-

grams. Annotation involved selecting the portion of the

spectrogram image that contained the specific vocaliza-

tion, using a rectangular marquee tool. A tag was then

assigned to the selection, which identified the species.

The upper and lower frequency bounds, start time, end

time, duration and species tag were associated with each

selection.

To simplify data management and analysis, sensor

recordings were split into one-minute segments. Each

one-minute segment was played and assessed for species

vocalizations, and a single vocalization from each

species in that minute was tagged. To reduce overall

effort, once a species had been identified in a one-minute

segment, all further calls for that species in that minute

were disregarded. Therefore, the data derived from the

five days of recording at the four sites comprises the

number of different species calling in each one-minute

segment. Species richness measures are species calling

per unit time (minute, hour, day). The information

obtained from one-minute segments was considered an

adequate compromise between the time-consuming task

of identifying every call made over the five day period,

and the need to have detailed information on the

number of species calling at a particular time of the day.

The amount of time taken to analyze each one-minute

segment was also recorded for each observer.

Following manual analysis of the sensor data, species

list reports were generated for each one-minute segment

of recordings from the four sites over five days. These

data were subsequently used to test the effectiveness of

five sampling methods.

Sampling methods

Five sampling methods were investigated to determine

the method that returned the highest estimate of species

richness for the least amount of manual analysis effort.

FIG. 1. Samford Ecological Research Facility (SERF) with survey site positions.
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These sampling methods were: full day, one-minute

samples selected randomly from the full 24-hour

periods; dawn, one-minute samples selected randomly

from 3 hours after dawn (05:15–08:14); dusk, one-

minute samples selected randomly from 3 hours before

dusk (14:55–17:54); dawn þ dusk, one-minute samples

selected randomly from dawn þ dusk periods; system-

atic, one minute every half hour on the half hour, from

the full 24-hour periods.

The full day sampling method included all data from

all days for each site. In total, this constituted 7200 one-

minute segments per site. The dawn sampling method

included 900 one-minute segments over the five-day

period per site. The dusk sampling method also included

900 one-minute segments over the five-day period per

site. The dawn and dusk sampling method included both

dawn and dusk periods, and hence comprised 1800 one-

minute segments over the five-day period.

Many users of acoustic sensors have adopted a

systematic sampling method as a means of reducing

the data collected overall and hence the manual analysis

effort (Ellis et al. 2010). The systematic sampling

method selected one-minute every half-hour, on the

hour and half-hour (total of two minutes every hour).

This constituted 240 one-minute segments over the five-

day survey period for each site.

For each sampling method, the required numbers of

one-minute samples were randomly selected from the

pool of one-minute samples corresponding to the

sampling method. For example, applying the full day

sampling method to Site 1 involved taking n random

one-minute samples (without replacement) from 7200

one-minute recordings over five days, and counting the

unique species detected in the n samples. This sampling

was repeated 1000 times for each sampling method and

sampling frequency at each site to obtain a mean

number of species detected for n samples.

For each of these sampling strategies the mean

number of species detected per 1000 samples was

examined in relation to sampling effort (number of

one minute segments examined). These data were

compared with the number of species detected from full

analysis (of all 7200 one minute samples from a site),

and from traditional survey methods.

Traditional area search surveys

Traditional bird surveys were conducted at each site

using a modified area search survey method (Loyn

1985). A 200 3 100 m plot was searched systematically

over a 20-minute period and all species detected were

recorded as seen, heard, or seen and heard.

During the study period, a total of 60 surveys were

conducted at dawn, noon and dusk by two experienced

bird surveyors with over 20 years of combined bird

watching experience in the south east Queensland area.

Observations for each survey were verified and agreed

by both surveyors. In total, each survey constituted 40

minutes of effort (two surveyors3 20 minutes) and each

day constituted 120 minutes of effort (two surveyors 3

20 minutes3 three surveys). Over the five-day period at

each site, the traditional surveys constituted 10 person

hours of effort.

Statistical analysis

The main questions of interest were whether the

number of species detected varied between different

sampling methods, and how the number of species

detected changed with increases in sampling effort

(number of minutes sampled). The mean proportion of

total species detected by each sampling method and

number of samples were compared using a one-way

ANOVA with sites as replicates. Because sites were used

as replicates, the number of species detected with a given

sampling approach was expressed as a proportion of the

total number of species detected at that site. These

proportions were arcsine transformed to satisfy assump-

tions of normality and minimize the risk of hetero-

scedasticity.

The EstimateS 8.2 package was used to calculate the

Chao2 species richness estimate for each site (Chao

1987, Colwell 2009). Chao2 is a nonparametric richness

estimator, which can estimate total species richness

based on occurrence data. Chao2 species richness

estimates were calculated to provide an estimate of

species richness at each site for both survey methods and

for comparison with estimates obtained from the

different sampling methods.

RESULTS

Survey results

Acoustic data from the survey period were analysed in

full to detect all species calling in each one-minute

segment. Across the four sites and five days, a total of

28 800 one-minute segments were manually analysed.

Fifty-six percent (16 019) of total segments contained

calls, and from these, 63 089 birdcalls were identified

and annotated (;2.2 call types per minute).

Over the five-day survey period, across all sites, a total

of 96 species were identified from the acoustic sensor

survey and 66 species from the traditional survey. The

total species detected through analysis of acoustic data

at each site ranged from 75 to 80 species, while

traditional surveys ranged from 34 to 49 species (Fig.

2). Chao2 species richness estimates from acoustic

sensor data indicated that most detectable species were

being identified at each site, with estimates ranging from

77 (Site 3) to 101 (Site 1; Fig. 2). Chao2 estimates from

traditional surveys varied considerably, with estimates

ranging from 41 (Site 3) to 110 (Site 2; Fig. 2)

The mean number of species recorded per site, per day

across the five-day period from sensor surveys ranged

from 57 to 59, however there was some variation

recorded between days, particularly at Site 1 (Fig. 3).

The mean number of species recorded per site per day

from traditional surveys across the five-day period

ranged from 15 to 20 (Fig. 3).
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Fig. 4 shows the mean number of species detected

from sensor data analysis per hour across all sites for all

hours of the day. The dawn period had the greatest

number of species, with a lull around midday and a less-

pronounced peak toward dusk. A smaller number of

species were detected at night. On average, more than

80% of total species from each site were detected during

the three-hour dawn period over five days. This

compares with an average of 64% of all species at a

site calling in the three-hour dusk period.

Although there was some day-to-day variation in the

number of species detected, on average, acoustic sensor

surveys detected 78% of total species in the first day. In

addition, an average of 75% of species were detected by

07:00 on the first day. Traditional surveys detected an

average of 50% of species in the first day, with 30% of

total species detected during the first dawn survey

period.

Results from the sensor survey showed very little

variation in species composition across the four sites,

with 93% of species found at all sites. In contrast, 27% of

species detected from traditional surveys were common

to all sites.

Five species were detected only once over the five-day

period at all sites: Pale-vented Bush-hen (Amaurornis

moluccana), Glossy Black Cockatoo (Calyptorhynchus

lathami ), Forest Kingfisher (Todiramphus macleayii ),

Collared Sparrowhawk (Accipiter cirrhocephalus), and

Azure Kingfisher (Alcedo azurea). Having vocalized in

one out of 28 800 one-minute segments, these species

had a very low probability of detection. In contrast, the

most frequently detected species was Rufous Whistler

FIG. 2. Total number of unique bird species detected and Chao2 species richness estimates for full acoustic sensor data analysis
and traditional survey for each site over the five-day survey period.

FIG. 3. Number of bird species detected (species richness estimates; mean and 95% CI) daily from full acoustic sensor data
analysis and traditional survey for each site over the five-day survey period.
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(Pachycephala rufiventris), which was detected in 6941

one-minute segments over the five-day period at all sites.

Acoustic data sampling results

To compare the number of species detected by each of

the sampling methods with the results from full analysis

of all acoustic sensor data, the maximum number of

species detectable in the time periods corresponding to

each sampling method was calculated from the manually

analysed acoustic data. This represents the maximum

number of species detectable from the periods corre-

sponding to each of the sampling methods (Table 1).

The minimum number of one-minute segments

required (theoretically) to detect all species for each

sampling method at each site, was calculated using a

greedy optimization algorithm (Cormen et al. 2009)

(Table 1). This algorithm first calculated and selected the

one-minute segment from each site with the highest

number of unique species. These species were then

removed from analysis and the number of unique species

per minute recalculated. The next one-minute segment

with the highest number of unique species was then

selected and the species removed from the analysis, and

so on, until all species were recorded.

The results of the greedy algorithm analysis provide

the theoretical minimum number of samples required to

achieve the maximum number of species that were

detected through full manual analysis for each of the

sampling methods. This is theoretical because it assumes

prior knowledge of the data set, from full analysis of the

data. For example, for the dawn þ 3 hours sampling

method for Site 1 (column 2, row 3 of Table 1), 66

species (80% of total species detected at Site 1) were

detected through full manual analysis, and a minimum

of 28 one-minute samples are required to detect all 66

species. This represents the near-optimum result obtain-

able from sampling of the Site 1 data in the dawn þ 3

hours period. These data are included for comparison

with actual sampling results, and provide the minimum

number of samples that would theoretically be required

to detect all species for each sampling method.

Fig. 5 shows the mean percentage of total species that

were detected by each sampling method in relation to

the number of one-minute samples examined. The

relative difference in number of species detected by each

sampling method changed in relation to sample size.

This is because different numbers of species were

detected calling during each sampling methods, and

because the sampling methods reached their maximum

after a different number of samples. For example,

systematic sampling had a total of 240 one-minute

samples (2 samples per hour 3 24 hours 3 5 days per

site), whereas dawn sampling had 900 samples (180

minutes per day 3 5 days per site). Dawn plus dusk

sampling had 1800 minutes of sampling available

(combined dawn 180 minutes and dusk 180 minutes

per day3 5 days per site). Only sampling from the full

day method did not reach its maximum in Fig. 5 as this

did not occur until 7200 minutes were sampled (24 hours

3 60 minutes per hour3 5 days).

Systematic sampling detected an average of 63% of

species, and the dusk sampling period comprised 64% of

species (Fig. 5). An average of 82% of species were

detected at dawn, compared to 87% from the combined

dawn and dusk sampling period (Table 1; i.e., an

additional 5% of total species were detected by

combining the dawn and dusk periods).

Sampling from the dawn period detected the highest

mean proportion of species until 1080 samples were

selected, at which point the dawn and dusk period took

over, with an average of 83% of species. Detecting the

remaining 4% of species present in the dawn and dusk

period required a further 600 samples (one-third of the

FIG. 4. Number of species detected each hour (species richness estimates; mean and 95% CI) from full analysis of acoustic
sensor data across all sites.
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total number of one-minute samples in the dawn and

dusk period; Fig. 5).

Comparison with traditional surveys

To evaluate the relative effectiveness of acoustic

sensor data sampling, results were compared with

observations from traditional bird surveys, which were

carried out concurrently over the same period as the

acoustic sensor survey. A greater amount of effort was

required to manually analyze acoustic sensor data than

to conduct traditional bird surveys. For traditional

surveys, every minute of survey effort yielded one

minute of survey observations. For acoustic data

analysis however, on average, it took approximately

two minutes of effort to analyze one-minute of acoustic

data (2:1 ratio). This is because there was a tendency for

analysts to replay recordings to distinguish individual

species, and because of the time taken to load and

annotate vocalizations. Hence, one minute of effort to

analyze observations from acoustic sensor data is

equivalent to two minutes of traditional survey obser-

vation effort.

For traditional surveys, each site had 120 person-

minutes of effort per day (three 20-minute surveys3 two

surveyors), and 600 person-minutes of effort in total

over the duration of the 5-day survey period. Based on

the 2:1 ratio of effort, the equivalent sensor data analysis

effort is therefore 60 one-minute samples per day (half of

120 person-minutes of traditional survey effort), and 300

minutes over the duration of the survey (half of 600

person-minutes of traditional survey effort).

Fig. 6 shows the average per cent of species detected

using different levels of sampling (from 60 to 300

minutes), and for traditional surveys that had equivalent

effort (e.g., 60 one-minute samples ¼ one day of

traditional survey [120 person-minutes]). At all levels

of sampling effort there was a significant difference in

the number of species detected in relation to the

sampling method (60 minutes F5,18 ¼ 21.32, P , 0.001;

120 minutes F5,18¼ 16.145, P , 0.001; 180 minutes F5,18

¼ 12.783, P ¼ 0.000; 240 minutes F5,18 ¼ 9.956, P ¼

0.000); 300 minutes F5,18¼ 10.461, P , 0.001). Post hoc

tests (Tukey; P , 0.05) indicated that traditional

surveys detected significantly lower numbers of species

TABLE 1. The maximum number (Max) and percentage (PS) of species detected for each sampling method from full manual
analysis of sensor data, along with the minimum number (Min) of samples required to detect the maximum number of species
(greedy algorithm).

Sampling
method

Site 1 Site 2 Site 3 Site 4 Mean

Max PS (%) Min Max PS (%) Min Max PS (%) Min Max PS (%) Min Max PS (%) Min

Full day 83 100 43 82 100 39 77 100 30 81 100 38 81 100 38
Dawn 66 80 28 68 83 26 65 84 27 65 80 29 66 82 28
Dusk 51 61 26 50 61 26 54 70 25 51 63 26 52 64 26
Dawn þ dusk 73 88 33 72 88 30 69 90 28 67 83 29 70 87 30
Systematic 48 58 48 50 61 48 55 71 48 50 62 48 51 63 48

Note: Results are presented for each site, and the mean of all sites.

FIG. 5. Percentage of total species detected for each sampling method (species richness estimates; means) for the associated
number of minutes sampled (Data combined over sites).
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than all acoustic sampling methods at 60 minutes

sampling effort, and all sampling methods/sampling

effort with the exception of dusk (Table 2).

DISCUSSION

Acoustic sensors are being used increasingly to

augment traditional field survey methods. They can

increase the spatial and temporal scales of observations

(Parker 1991, Brandes 2008), however, analysis of

acoustic sensor data is complex and time consuming

(Rempel et al. 2005, Swiston and Mennill 2009).

Methods for the analysis of acoustic sensor data will

continue to mature and improve, but there is currently a

significant gap in analysis capability. Manual analysis,

which is expensive and time consuming, contrasts with

fully automated analysis, which though potentially

cheaper, cannot currently cater for large numbers of

species and lacks verifiable high detection accuracy.

Our results demonstrate that reasonable estimates of

bird species richness can be obtained through targeted

sampling combined with manual analysis of acoustic

sensor data. Specifically, randomly selecting 120 one-

minute segments from dawn over a five-day period can

detect up to 62% of total species, compared to 34% of

species from the equivalent amount of traditional survey

effort. Similarly, systematic sampling (i.e., recording one

minute every half hour) can detect over 50% of species

from 120 recordings while reducing the volume of data

collected.

All sampling methods investigated, with the exception

of the dusk method, detected a higher number of species

on average than traditional survey methods, when

compared using the equivalent amount of analysis/

traditional survey effort. This supports other research

comparing traditional survey methods and acoustic

sensors (Haselmayer and Quinn 2000, Penman et al.

2005, Acevedo and Villanueva-Rivera 2006, Celis-

Murillo et al. 2009, Swiston and Mennill 2009), however

there are issues relating to the detection range of

acoustic sensors that should be considered. When

conducting traditional surveys, surveyors disregard

species seen or heard outside the survey area, whereas

with acoustic sensor analysis, all species heard (regard-

less of potential distance from the sensor) are included.

Given the close proximity of sites (approximately 300

m), species with loud calls may have also been detected

by more than one sensor.

Ignoring the travel time to and from sites (which were

deemed to be approximately equivalent for both

traditional and acoustic sensor survey methods), the

ratio of two traditional survey minutes to one acoustic

data analysis minute is possibly higher than necessary.

This ratio was initially observed when each species was

annotated once per minute over the duration of the

survey period. For species richness studies, one annota-

tion per species over the duration of the survey period

would be sufficient to establish presence. This would

therefore reduce the time taken to analyze data

considerably. In addition, improvements in the graph-

ical user interface design of annotation systems could

reduce repetitive tasks, assist in rapid identification of

species and automate manual documentation tasks.

These results are promising, but they fall considerably

short of the maximum number of species detectable

from full manual acoustic data analysis. Theoretically,

FIG. 6. Percentage of total species detected by each
sampling method (species richness estimates; mean and 95%
CI) for the associated number of minutes sampled. Error bars
for each group of samples have been offset for clarity.

TABLE 2. Tukey post hoc test results for traditional survey against each sensor survey sampling
method, and sampling effort up to 300 samples.

Number of samples

Sampling method 60 120 180 240 300

Full day 0.001 0.002 0.005 0.011 0.012
Dawn 0.000 0.000 0.000 0.000 0.000
Dusk 0.008 0.093 0.032 0.545 0.846
Dawn þ dusk 0.000 0.000 0.000 0.001 0.001
Systematic 0.000 0.001 0.002 0.005 0.029

Notes: Results are significant (P � 0.05) for all sampling methods and sampling effort with the
exception of dusk at 120 samples and higher.
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all species at each site could be detected in less than 50

samples (see greedy algorithm results; Table 1). This

represents the optimum result obtainable with the

highest return for effort. Even at 720 samples, the

best-performing random sampling method (dawn) de-

tected a maximum of 80% of species. In practice,

manually analyzing more than 240 minutes is prohibi-

tively expensive and impractical in most cases.

To take full advantage of the capability of acoustic

sensors, automated methods are required that can assist

in reducing manual analysis by selecting samples most

likely to contain vocalizations. This also means finding

cryptic species, which call very infrequently or not at all

during targeted periods, such as dawn. Here automated

analysis does not attempt to identify individual species;

rather it attempts to identify segments of recordings with

potential calls, or removes from analysis, segments that

contain ‘‘noise,’’ such as rain or wind. Segments

containing potential calls can then be analysed manually

to identify individual species. Considering approximate-

ly 18% of species were detected only 10 times or less

across the five-day period, the probability of detecting a

significant proportion of species by random sampling

alone is very low (0.0014). By using automated methods

to target periods that contain potentially unique species

vocalizations, and removing extraneous noise, we can

significantly reduce the amount of manual analysis

required to process large volumes of data, and improve

the chance of detecting cryptic or rare species.

Ultimately, analysis of large volumes of acoustic

sensor data is a trade-off between analysis cost and

detection accuracy. At one extreme, manual analysis of

acoustic data is costly with high levels of detection

accuracy. At the other, automated analysis can be less

costly, but with less certainty in the confidence of

detection accuracy. Methods that combine the strengths

of both approaches may help to make acoustic sensing

for monitoring biodiversity feasible at larger spatial and

temporal scales.
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