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We study random submatrices of a large matrix A. We show how to approximately compute A
from its random submatrix of the smallest possible size O(r log r) with a small error in the spectral
norm, where r = ‖A‖2

F
/‖A‖2

2 is the numerical rank of A. The numerical rank is always bounded
by, and is a stable relaxation of, the rank of A. This yields an asymptotically optimal guarantee in
an algorithm for computing low-rank approximations of A. We also prove asymptotically optimal
estimates on the spectral norm and the cut-norm of random submatrices of A. The result for the
cut-norm yields a slight improvement on the best known sample complexity for an approximation
algorithm for MAX-2CSP problems. We use methods of Probability in Banach spaces, in particular
the law of large numbers for operator-valued random variables.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra;
F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Prob-
lems

General Terms: Algorithms, Theory

1. INTRODUCTION

This paper studies random submatrices of a large matrix A. The study of random
submatrices spans several decades and is related to diverse areas of mathematics
and computer science. Two main reasons for the interest in random submatrices
are:

(1) one can learn properties of A from the properties of its random submatrices;

(2) properties of A may improve by passing to its random submatrices.

We address both aspects of random submatrices in this paper. We show how to
approximate A by its random submatrix in the spectral norm, and we compute the
asymptotics of the spectral and the cut norms of random submatrices. This yields
improvements upon known algorithms for computing low rank approximations, Sin-
gular Value Decompositions, and approximations to MAX-2CSP problems.
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2 · M. Rudelson and R. Vershynin

1.1 The spectral norm: low rank approximations and SVD

Can one approximate A by only knowing a random submatrix of A of a fixed size?
If so, what is the sample complexity, the minimal size of a submatrix which yields
a good approximation with a small error in some natural norm, and with high
probability?

This problem belongs to a class of problems the Statistical Learning Theory is
concerned with. These problems inevitably bear the assumption that the the object
to be learned belongs to a relatively small “target” class. To be able to learn A
from a matrix of small size thus of small rank, we have to assume that A itself
has small rank–or can be approximated by an (unknown) matrix of a small rank.
We thus strive to find a low rank approximation to a matrix A, whenever such an
approximation exists, from only knowing a small random submatrix of A.

Solving this problem is essential for development of fast Monte-Carlo algorithms
for computations on large matrices. An extremely large matrix A – say, of the order
of 105 × 105 – is impossible to upload into the Random Access Memory (RAM)
of a computer; it is instead stored in an external memory. On the other hand,
sampling a small submatrix of A, storing it in RAM and computing its small rank
approximation is feasible.

The crucial assumption that A is essentially a low rank matrix holds in many
applications. For example, this is a model hypothesis in the Latent Semantic In-
dexing (see [Jerry and Linoff 1997], [Papadimitriou et al. 1998], [Berry et al. 1995],
[Deerwester et al. 1990], [Berry et al. 1999], [Azar et al. 2001]). There A is the
“document-term matrix”, which is formed of the frequencies of occurrence of various
terms in the documents of a large collection. The hypothesis that the documents
are related to a small number of (unknown) topics translates into the assumption
that A can be approximated by an (unknown) low rank matrix. Finding such an
approximation would determine the “best” topics the collection is really about.
Other examples where this problem arises include clustering of graphs [Drineas et
al. 2004], DNA microarray data, facial recognition, web search (see [Dineas et al.
2006a]), lossy data compression and cryptography (see [Berry et al. 1999]).

The best fixed rank approximation to A is obviously given by the partial sums
of the Singular Value Decomposition (SVD)

A =
∑

j

σj(A) uj ⊗ vj

where σj(A) is the nonincreasing and nonnegative sequence of the singular values
of A, and uj and vj are left and right singular vectors of A respectively. The best
rank k approximation to A in both the spectral and Frobenius norms is thus APk,
where Pk is the orthogonal projection onto the top k left singular vectors of A. In
particular, for the spectral norm we have

min
B: rankB≤k

‖A − B‖2 = ‖A − APk‖2 = σk+1(A). (1)

However, computing Pk, which gives the first elements of the SVD of a m × n
matrix A, is often impossible in practice because (1) it would take many passes
through A, which is prohibitively slow for a matrix stored in an external memory;
(2) this would take superlinear time in m+n. Instead, it was proposed in [Frieze et
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al. 2004], [Drineas and Kannan 2003], [Dineas et al. 2006a], [Dineas et al. 2006b]
to use the Monte-Carlo methodology: namely, approximate the k-th partial sum of
the SVD of A by the k-th partial sum of the SVD of a random submatrix of A. In
this paper, we show that this can be done:

(1) with almost linear sample complexity O(r log r), that is by sampling only
O(r log r) random rows of A, if A is approximable by a rank r matrix;

(2) in one pass through A if the matrix is stored row-by-row, and in two passes if
its entries are stored in arbitrary order;

(3) using RAM space and time O(n + m) (and polynomial in r and k).

Theorem 1.1. Let A be an m×n matrix with numerical rank r = ‖A‖2
F / ‖A‖2

2.
Let ε, δ ∈ (0, 1), and let d ≤ m be an integer such that

d ≥ C
( r

ε4δ

)

log
( r

ε4δ

)

. (2)

Consider a d × n matrix Ã, which consists of d normalized rows of A picked inde-
pendently with replacement, with probabilities proportional to the squares of their
Euclidean lengths. Then with probability at least 1 − 2 exp(−c/δ) the following
holds. For a positive integer k, let Pk be the orthogonal projection onto the top k
left singular vectors of Ã. Then

‖A − APk‖2 ≤ σk+1(A) + ε ‖A‖2 . (3)

Here and in the sequel, C, c, C1, . . . denote positive absolute constants.

Comparing (3) with the best approximation (1) given by the SVD, we see an
additional error ε ‖A‖2 which can be made small by increasing the size d of the
sample.

Remark 1.2 Optimality. The almost linear sample complexity d = O(r log r)
achieved in Theorem 1.1 is optimal, see Proposition 3.9 below. The best known
previous result, due to Drineas, Kannan and Mahoney, had with the quadratic
sample complexity d = O(r2) ([Dineas et al. 2006a] Theorem 4, see also [Dineas et
al. 2006b] Theorem 3). The approximation scheme in Theorem 1.1 was developed
in [Frieze et al. 2004], [Drineas and Kannan 2003], [Dineas et al. 2006a], [Dineas
et al. 2006b].

Remark 1.3 Numerical rank. The numerical rank r = r(A) = ‖A‖2
F / ‖A‖2

2 in
Theorem 1.1 is a relaxation of the exact notion of rank. Indeed, one always has
r(A) ≤ rank(A). But as opposed to the exact rank, the numerical rank is stable
under small perturbations of the matrix A. In particular, the numerical rank of
A tends to be low when A is close to a low rank matrix, or when A is sufficiently
sparse. So results like Theorem 1.1, which depend on the numerical rather than
exact rank, should be useful in many applications, such as the Principal Component
Analysis.

Remark 1.4 Law of large numbers for operator-valued random variables. The new
feature in our proof of Theorem 1.1 is a use of the first author’s argument about
random vectors in the isotropic position [Rudelson 1999]. It yields a law of large
numbers for operator-valued random variables. We apply it for independent copies
of a rank one random operator, which is given by a random row of the matrix AT A.
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4 · M. Rudelson and R. Vershynin

1.2 The cut-norm: decay, MAX-CSP problems

Alon, Fernandez de la Vega, Kannan and Karpinski [Alon et al. 2002], [Alon et al.
2003] reduced the problem of additive approximation of the MAX-CSP problems
(which are NP-hard) to computing the cut-norm of random submatrices. The cut
norm of an n × n matrix A is the maximum sum of the entries of its submatrix,

‖A‖C = max
I,J

∣

∣

∣

∑

i∈I,j∈J

Aij

∣

∣

∣,

and it is equivalent to the ℓ∞ → ℓ1 operator norm.
The problem is to understand how the cut norm of A decreases when we pass to its

random submatrix. Let Q be a a random subset of {1, . . . , n} of expected cardinality
q. This means that each element of {1, . . . , n} is included into Q independently with
probability q/n. We form a Q × Q random submatrix A|Q×Q = (Aij)i,j∈Q.

Intuitively, A|Q×Q is (q/n)2 times smaller than A if A is diagonal-free, but only
(q/n) times smaller than A if A is a diagonal matrix. We prove a general estimate of
the cut-norm of random submatrices, which combines both of these types of decay:

Theorem 1.5. Let A be an n×n matrix. Let Q be a random subset of {1, . . . , n}
of expected cardinality q. Then

E‖A|Q×Q‖C ≤ O
(( q

n

)2

‖A−D(A)‖C+
( q

n

)

‖D(A)‖C+
( q

n

)3/2

(‖A‖Col+‖AT ‖Col)
)

,

where ‖A‖Col is the sum of the Euclidean lengths of the columns of A, and D(A)
is the diagonal part of A.

Remark 1.6 Optimality. The estimate in this theorem is optimal, see Section 4.2.

We now state a partial case of Theorem 1.5 in the form useful for MAX-CSP
problems. Note that ‖A‖Col ≤

√
n ‖A‖F . Then we have:

Corollary 1.7. Under the hypotheses of Theorem 1.5, let q = Ω(ε−2). Assume
that ‖A‖C = O(εn2), and ‖A‖F = O(n), ‖A‖∞ = O(ε−1), where ‖A‖∞ denotes
the maximum of the absolute values of the entries of A. Then

E‖A|Q×Q‖C = O(εq2).

In solving MAX-2-CSP problems, one approximates the edge-weight matrix W
of the graph on n vertices by a cut approximation W ′, and checks that the the
error matrix A = W − W ′ satisfies the assumptions of Corollary 1.7, see [De la
Vega 1996], [Alon et al. 2002], [Alon et al. 2003]. Hence the Corollary says that
for a random induced graph on q = Ω(ε−2) vertices, the same cut-approximation
(induced on the q vertices of the random subgraph) works. Namely, the error in
cut-norm is at most εq2.

A weaker form of Corollary 1.7 was proved by Alon, Fernandez de la Vega,
Kannan and Karpinski [Alon et al. 2003], Theorem 6. Their result has a bigger

sample complexity q = Ω(ε−4 log(1/ε)) and an extra assumption n = eΩ(ε−2), but it
works for multidimensional arrays rather than for matrices (=2-dimensional arrays).

Using Corollary 1.7 instead of [Alon et al. 2003] Theorem 6 slightly improves the
best known sample complexity for the approximation algorithm for MAX-2-CSP
problems due to [Alon et al. 2003]. The solution to a MAX-2SCP problem on
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n variables can be approximated within the additive error εn2 by the solution of
the problem induced by a randomly chosen q variables. The best known sample
complexity, due to [Alon et al. 2003], is q = O(ε−4 log(1/ε)). Using Corollary 1.7
in the argument of [Alon et al. 2003] Theorem 6 improves the sample complexity
to q = O(ε−4).

Our proof of Theorem 1.5 uses the technique of probability in Banach spaces,
and includes decoupling, symmetrization, and application of a version of Slepian’s
lemma for Bernoulli random variables due to Talagrand.

1.3 The spectral norm: decay

Perhaps the most important matrix norm is the spectral norm. Nevertheless, its
decay under passing to submatrices has not been sufficiently understood.

Let A be an n × n matrix, and Q be a random subset of {1, . . . , n} of expected
cardinality q (as above). We consider a random row-submatrix A|Q = (Aij)i∈Q,j≤n,
which consists of the rows of A in Q.

When one orthogonally projects a vector x ∈ R
n onto R

Q, its Euclidean length
reduces in average by the factor of

√ q
n . So, one should expect a similar type of

decay for the spectral norm – something like E‖A|Q‖2 ≤
√

q
n‖A‖2.

However, similarly to the previous section, the diagonal matrices exhibit a dif-
ferent type of decay. For example, there is no decay at all for the identity matrix.
One can check that the correct order of decay for diagonal matrices is

‖A‖(k) = the average of k biggest Euclidean lengths of the columns of A,

where k = n/q. General matrices again combine both types of decay:

Theorem 1.8. Let A be an n×n matrix. Let Q be a random subset of {1, . . . , n}
of expected cardinality q. Then

E‖A|Q‖2 ≤ O
(

√

q

n
‖A‖2 +

√

log q ‖A‖(n/q)

)

.

Remark 1.9 Optimality. The estimate in this theorem is optimal. The example
considered in the proof of Proposition 3.9 below shows that the coefficient

√
log q

is necessary.

Generalizing an earlier result of Lunin [Lunin 1975], Kashin and Tzafriri [Kashin
and Tzafriri] (see [Vershynin 2001]) essentially proved the existence of a subset Q
of cardinality q and such that

‖A|Q‖2 ≤ O
(

√

q

n
‖A‖2 +

‖A‖F√
n

)

.

Note that ‖A‖F√
n

=
(

1
n

∑n
i=1 |Ai|2

)1/2
is the average of the lengths of all columns of

A. As the example of diagonal operators shows, for random subsets Q this term
has to be replaced by the average of the few biggest columns. Talagrand [Talagrand
1995] proved deep results on the more general operator norms ℓ2 → X , where X
is a 2-smooth Banach space. However, the decay on q

n in his results is logarithmic
rather than polynomial.
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6 · M. Rudelson and R. Vershynin

1.4 Stable matrix results

Many problems on random submatrices, of both theoretical and practical impor-
tance, have functional-analytic rather than linear-algebraic nature. These problems,
like those this paper considers, are about estimating operator norms. We thus see
a matrix A as a linear operator A between finite dimensional normed spaces – say,
between ℓn

2 and ℓn
2 for the spectral norm, and between ℓn

∞ and ℓn
1 for the cut norm.

From this perspective, the dimension n of the ambient normed space should play
a minor role, while the real control of the picture should be held by (hopefully
few) quantities tied to the operator rather than the space. As a trivial example, if
A is not of full rank then the dimension n is useless compared to the rank of A.
Further, we are looking for stable results, those not ruined by small perturbations
of the linear operators. This is a natural demand in applications, and this differs
our analytic perspective from the linear algebraic one. It would thus be natural
to look for stable quantities tied to linear operators, which govern the picture. For
example, operator norms are stable quantities, while the rank is not.

This paper advances such approach to matrices. The low rank approximations in
Theorem 1.1 are only controlled by the numerical rank r(A) = ‖A‖2

F /‖A‖2
2 of the

matrix, which is a stable relaxation of the rank. The norms of random matrices in
Theorems 1.5 and 1.8 are essentially controlled by the norms of the original matrix
(and naturally by the sampling factor, the ratio of the size of the submatrix to the
size of the original matrix). The dimension n of the matrix does not play a separate
role in these results (although the matrix norms may grow with the dimension).

Acknowledgement. This project started when the authors participated in the
PIMS Thematic Programme on Asymptotic Geometric Analysis at the University
of British Columbia in Summer 2002. The first author was a PIMS postdoctoral
fellow at that time. We are grateful to PIMS for its hospitality. The final part
of this research was done when the first authour visited University of California,
Davis. We are grateful for R. Kannan for his comments on the initial version of
this paper, and to M. Karpinski for explaining what was the correct consequence
of Corollary 1.7 for MAX-2-CSP problems. Finally, we thank the referees for their
valuable comments and suggestions.

2. NOTATION

For p ≤ ∞, the finite dimensional ℓp spaces are denoted by ℓn
p . Thus ℓn

p is the

Banach space (Rn, ‖ · ‖p), where ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≤ ∞, and ‖x‖∞ =
maxi |xi|. The closed unit ball of ℓp is denoted by Bn

p := {x | ‖x‖p ≤ 1}.
The canonical basis of R

n is denoted by (e1, . . . , en). Let x, y ∈ R
n. The canonical

inner product is denoted by 〈x, y〉 := xT y. The tensor product is defined as x⊗y :=
y xT ; thus (x ⊗ y)z = 〈x, z〉 y for all z ∈ R

n.
Let A = (Aij)ij be an m×n real matrix. The spectral norm of A is the operator

norm ℓ2 → ℓ2, defined as

‖A‖2 := sup
x∈Rn

‖Ax‖2

‖x‖2
= σ1(A),

where σ1(A) is the largest singular value of A. The Frobenius norm ‖A‖F of A is
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defined as

‖A‖2
F :=

∑

i,j

A2
ij =

∑

j

σj(A)2,

where σj(A) are the singular values of A.
Finally, C, C1, c, c1, . . . denote positive absolute constants. The a = O(b) notation

means that a ≤ Cb for some absolute constant C.

3. LOW RANK APPROXIMATIONS

In this section, we prove Theorem 1.1, discuss the algorithm for finding low rank
approximations, and show that the sample complexity in Theorem 1.1 is optimal.
Our argument will be based on the law of large numbers for operator-valued random
variables.

3.1 Law of large numbers for operator-valued random variables

Theorem 1.1 is about random independent sampling the rows of the matrix A. Such
sampling can be viewed as an empirical process taking values in the set of rows.
If we sample enough rows, then the matrix constructed from them would nicely
approximate the original matrix A in the spectral norm. For the scalar random
variables, this effect is the classical Law of Large Numbers. For example, let X be
a bounded random variable and let X1 . . .Xd be independent copies of X . Then

E

∣

∣

∣

1

d

d
∑

j=1

Xj − EX
∣

∣

∣ = O
( 1√

d

)

. (4)

Furthermore, the large deviation theory allows one to estimate the probability that
the empirical mean 1

d

∑d
j=1 Xj stays close to the true mean EX .

Operator-valued versions of this inequality are harder to prove. The absolute
value must be replaced by the operator norm. So, instead of proving a large de-
viation estimate for a single random variable, we have to estimate the supremum
of a random process. This requires deeper probabilistic techniques. The following
Theorem generalizes the main result of [Rudelson 1999].

Theorem 3.1. Let y be a random vector in R
n, which is uniformly bounded

almost everywhere: ‖y‖2 ≤ M . Assume for normalization that ‖Ey ⊗ y‖2 ≤ 1. Let
y1 . . . yd be independent copies of y. Let

a := C

√

log d

d
· M.

Then
(i) If a < 1 then

E

∥

∥

∥

1

d

d
∑

i=1

yi ⊗ yi − E y ⊗ y
∥

∥

∥

2
≤ a.

(ii) For every t ∈ (0, 1),

P

{∥

∥

∥

1

d

d
∑

i=1

yi ⊗ yi − Ey ⊗ y
∥

∥

∥

2
> t

}

≤ 2 exp(−ct2/a2).
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8 · M. Rudelson and R. Vershynin

Remark 3.2. Part (i) is a law of large numbers, and part (ii) is a large deviation
estimate for operator-valued random variables. Comparing this result with its scalar
prototype (4), we see an additional logarithmic factor. This factor is essential, as
we show in Remark 3.4 below.

Remark 3.3. The boundedness assumption ‖y‖2 ≤ M can be too strong for some
applications. The proof of Theorem 3.1 shows that, in part (i), the boundedness
almost everywhere can be relaxed to the moment assumption E‖y‖q

2 ≤ M q, where
q = log d. Part (ii) also holds under an assumption that the moments of ‖y‖2 have
a nice decay. However, we do not need these improvements here.

Remark 3.4. The estimate in Theorem 3.1 is in general optimal. Indeed, consider
the random vector y taking values

√
ne1, . . . ,

√
nen each with probability 1/n, where

(ei) is the canonical basis of R
n. Then Ey ⊗ y = I. Then

E

∥

∥

∥

1

d

d
∑

j=1

yj ⊗ yj − I
∥

∥

∥

2
= E max

i=1...n

∣

∣

∣

n

d
|{j | yj =

√
nei}| − 1

∣

∣

∣ .

If we want this quantity to be O(1), then it is not hard to check that d should be
of order at least n log n. Therefore, the coefficient

√

log(d)/d in Theorem 3.1 is
optimal.

3.2 Proof of Theorem 3.1.

The proof consists of two steps. First we use the standard symmetrization tech-
nique for random variables in Banach spaces, see e.g. [Ledoux and Talagrand 1991]
Section 6. Then we adapt the technique of [Rudelson 1999] to obtain a bound on
a symmetric random process. To obtain the probability estimate in part (ii), we
shall estimate the high moments rather than the first moment in part (i).

Let ε1 . . . εd denote independent Bernoulli variables taking values 1,−1 with prob-
ability 1/2. Let y1 . . . yd, ȳ1 . . . ȳd be independent copies of y. We shall denote by
Ey, Eȳ and Eε the expectations according to (yi), (ȳi) and (εi) respectively.

Let p ≥ 1. We shall estimate

Ep :=
(

E

∥

∥

∥

1

d

d
∑

i=1

yi ⊗ yi − Ey ⊗ y
∥

∥

∥

p

2

)1/p

. (5)

Note that Ey y ⊗ y = Eȳ ȳ ⊗ ȳ = Eȳ

(

1
d

∑d
i=1 ȳi ⊗ ȳi

)

. We put this into (5). Since

x 7→ ‖x‖p
2 is a convex function on R

n, Jensen’s inequality implies that

Ep ≤
(

EyEȳ

∥

∥

∥

1

d

d
∑

i=1

yi ⊗ yi −
1

d

d
∑

i=1

ȳi ⊗ ȳi

∥

∥

∥

p

2

)1/p

.

Since yi ⊗ yi − ȳi ⊗ ȳi is a symmetric random variable, it is distributed identically
with εi(yi ⊗ yi − ȳi ⊗ ȳi). Thus

Ep ≤
(

EyEȳEε

∥

∥

∥

1

d

d
∑

i=1

εi(yi ⊗ yi − ȳi ⊗ ȳi)
∥

∥

∥

p

2

)1/p

.
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Denote Y = 1
d

∑d
i=1 εiyi ⊗ yi and Ȳ = 1

d

∑d
i=1 εiȳi ⊗ ȳi. Then ‖Y − Ȳ ‖p

2 ≤
(‖Y ‖2 + ‖Ȳ ‖2)

p ≤ 2p(‖Y ‖p
2 + ‖Ȳ ‖p

2), and E‖Y ‖p
2 = E‖Ȳ ‖p

2. Thus we obtain

Ep ≤ 2
(

EyEε

∥

∥

∥

1

d

d
∑

i=1

εiyi ⊗ yi

∥

∥

∥

p

2

)1/p

.

We shall estimate the last expectation using a lemma from [Rudelson 1999].

Lemma 3.5. Let y1 . . . yd be vectors in Rk and let ε1 . . . εd be independent Berno-
ulli variables taking values 1,−1 with probability 1/2. Then

(

E

∥

∥

∥

d
∑

i=1

εiyi ⊗ yi

∥

∥

∥

p

2

)1/p

≤ C0(p + log k)1/2 · max
i=1...d

‖yi‖2 ·
∥

∥

∥

d
∑

i=1

yi ⊗ yi

∥

∥

∥

1/2

2
.

Remark 3.6. We can consider the vectors y1 . . . yd as vectors in their linear span,
so we can always choose the dimension k of the ambient space at most d.

Combining Lemma 3.5 with Remark 3.6 and using Hölder’s inequality, we obtain

Ep ≤ 2C0
(p + log d)1/2

d
· M ·

(

E

∥

∥

∥

d
∑

i=1

yi ⊗ yi

∥

∥

∥

p

2

)1/2p

. (6)

By Minkowski’s inequality we have

(

E

∥

∥

∥

d
∑

i=1

yi⊗yi

∥

∥

∥

p

2

)1/p

≤ d
[(

E

∥

∥

∥

1

d

d
∑

i=1

yi⊗yi−E y⊗y
∥

∥

∥

p

2

)1/p

+‖E y⊗y‖2

]

≤ d(Ep+1).

So we obtain

Ep ≤ ap1/2

2
(Ep + 1), where a = 4C0

( log d

d

)1/2

M.

It follows that

min(Ep, 1) ≤ ap1/2. (7)

To prove part (i) of the theorem, note that a ≤ 1 by the assumption. It thus
follows that E1 ≤ a. This proves part (i).

To prove part (ii), we can Ep = (E Zp)1/p, where

Z =
∥

∥

∥

1

d

d
∑

i=1

yi ⊗ yi − Ey ⊗ y
∥

∥

∥

2
.

So (7) implies that
(

E min(Z, 1)p
)1/p ≤ min(Ep, 1) ≤ ap1/2. (8)

This moment bound can be expressed as a tail probability estimate using the fol-
lowing standard lemma, see e.g. [Ledoux and Talagrand 1991] Lemmas 3.7 and
4.10.

Lemma 3.7. Let Z be a nonnegative random variable. Assume that there exists
a constant K > 0 such that (E Zp)1/p ≤ Kp1/2 for all p ≥ 1. Then

P{Z > t} ≤ 2 exp(−c1t
2/K2) for all t > 0.
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10 · M. Rudelson and R. Vershynin

It thus follows this and from (8) that

P{min(Z, 1) > t} ≤ 2 exp(−c1t
2/a2) for all t > 0.

This completes the proof of the theorem.

3.3 Proof of Theorem 1.1

By the homogeneity, we can assume ‖A‖2 = 1.
The following lemma of Drineas and Kannan [Drineas and Kannan 2003] (see

also [Dineas et al. 2006a]) reduces Theorem 1.1 to a comparison of A and a sample
Ã in the spectral norm.

Lemma 3.8 Drineas, Kannan.

‖A − APk‖2
2 ≤ σk+1(A)2 + 2‖AT A − ÃT Ã‖2.

Proof. We have

‖A − APk‖2
2 = sup

x∈kerPk, ‖x‖2=1

‖Ax‖2
2 = sup

x∈kerPk, ‖x‖2=1

〈AT Ax, x〉

≤ sup
x∈kerPk, ‖x‖2=1

〈(AT A − ÃT Ã)x, x〉 + sup
x∈kerPk, ‖x‖2=1

〈ÃT Ãx, x〉

= ‖AT A − ÃT Ã‖2 + σk+1(Ã
T Ã).

By a result of perturbation theory, |σk+1(A
T A)−σk+1(Ã

T Ã)| ≤ ‖AT A− ÃT Ã‖2.
This proves Lemma 3.8.

Let x1 . . . xm denote the rows of the matrix A. Then

AT A =

m
∑

j=1

xj ⊗ xj .

We shall view the matrix AT A as the true mean of a bounded operator valued
random variable, whereas ÃT Ã will be its empirical mean; then we shall apply the
Law of Large Numbers for operator-valued random variables – Theorem 3.1. To
this end, define a random vector y ∈ R

m as

P

(

y =
‖A‖F

‖xj‖2

xj

)

=
‖xj‖2

2

‖A‖2
F

.

Let y1 . . . yd be independent copies of y. Let the matrix Ã consist of rows 1√
d
y1 . . . 1√

d
yd.

(The normalization of Ã here is different than in the statement of Theorem 1.1: in
the proof, it is convenient to multiply Ã by the factor 1√

d
‖A‖F . However note that

the singular vectors of Ã and thus Pk do not change.) Then

AT A = Ey ⊗ y, ÃT Ã =
1

d

d
∑

i=1

yj ⊗ yj, M := ‖y‖2 = ‖A‖F =
√

r.

We can thus apply Theorem 3.1. Due to our assumption on d, we have

a := 4C0

( log d

d
· r

)1/2

≤ ε2δ1/2

2
< 1.
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Thus Theorem 3.1 yields (with t = ε2/2) that, with probability at least 1 −
2 exp(−c/δ), we have

‖ÃT Ã − AT A‖2 ≤ ε2

2
.

Whenever this event holds, we can conclude by Lemma 3.8 that

‖A − APk‖2 ≤ σk+1(A) +
√

2‖AT A − ÃT Ã‖1/2
2 ≤ σk+1(A) + ε.

This proves Theorem 1.1.

3.4 Algorithmic aspects of Theorem 1.1.

Finding a good low rank approximation to a matrix A amounts, due to Theorem
1.1, to sampling a random submatrix Ã and computing its SVD (actually, only
left singular vectors are needed). The algorithm works well if the numerical rank
r = r(A) = ‖A‖2

F /‖A‖2
2 of the matrix A is small. This is the case, in particular,

when A is essentially a low-rank matrix, because r(A) ≤ rank(A).
First, the algorithm samples d = O(r log r) random rows of A. Namely, it takes

d independent samples of the random vector y whose law is

P

(

y =
Aj

‖Aj‖2

)

=
‖Aj‖2

2

‖A‖2
F

where Aj is the j-th row of A. This sampling can be done in one pass through
A if the matrix is stored row-by-row, and in two passes if its entries are stored in
arbitrary order [Drineas et al. 2004, Section 5.1].

Then the algorithm computes the SVD of the d × n matrix Ã, which consists of
the normalized sampled rows. This can be done in time O(dn)+ the time needed
to compute the SVD of a d×d matrix. The latter can be done by one of the known
methods. This takes significantly less time than computing SVD of the original
m × n matrix A. In particular, the running time of this algorithm is linear in the
dimensions of the matrix (and polynomial in d).

3.5 Optimality of the sample complexity

The sample complexity d = O(r log r) in Theorem 1.1 is best possible:

Proposition 3.9. There exist matrices A with arbitrarily big numerical rank
r = ‖A‖2

F /‖A‖2
2 and such that whenever

d <
1

10
r log r,

the conclusion (3) of Theorem 1.1 fails for k = n and for all ε ∈ (0, 1).

Proof. Let n, m ∈ N be arbitrary numbers such that n < m. We define the
m × n matrix by its entries as follows:

Aij =

√

n

m
δ⌈ n

m
i⌉,j ,

where δij = 1 if i = j and δij = 0 otherwise.
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12 · M. Rudelson and R. Vershynin

Then each row of A contains exactly one entry of value
√

n
m , and each row is

repeated m/n times. The j-th column of A contains exactly one block of values
√

n
m

in positions i ∈ (m
n (j − 1), m

n j] =: Ij . In particular, the columns are orthonormal.
Also, ‖A‖2 = 1, ‖A‖F =

√
n, thus r = n.

Now we form a submatrix Ã as described in Theorem 1.1 – by picking d rows of
A independently and with uniform distribution. If d < 1

10n logn, then with high
probability there exists at least one block Ij from which no rows i are picked. Call

this block Ij0 . It follows that j0-th column of Ã is zero. Consider the coordinate
vector ej0 = (0, . . . , 0, 1, 0, . . . , 0) of n positions, with 1 at position j0. Then ej0 ∈
ker Ã ⊆ kerPk ⊆ ker(APk). Thus ‖(A − APk)ej0‖2 = ‖Aej0‖2 = 1. Hence

‖A − APk‖2 ≥ 1, while σn+1(A) = 0, ‖A‖2 = 1.

Hence (3) fails for k = n and for all ε ∈ (0, 1).

4. THE DECAY OF THE CUT NORM

In this section, we prove Theorem 1.5 on the cut norm of random submatrices and
show that it is optimal. Our argument will be based on the tools of probability in
Banach spaces: decoupling, symmetrization, and Slepian’s Lemma (more precisely,
its version for the Rademacher random variables due to M.Talagrand).

4.1 Proof of Theorem 1.5

It is known and easy to check that

1

4
‖A‖∞→1 ≤ ‖A‖C ≤ ‖A‖∞→1,

where ‖A‖∞→1 denotes the operator norm of A from ℓn
∞ into ℓn

∞:

‖A‖∞→1 := sup
x∈Rn

‖Ax‖1

‖x‖∞
= sup

x∈Bn
∞

‖Ax‖1

(recall that Bn
∞ denotes the unit ball of ℓn

∞). Note also that both these norms are
self-dual:

‖AT ‖C = ‖A‖C , ‖AT ‖∞→1 = ‖A‖∞→1.

So we can prove Theorem 1.5 for the norm ‖ · ‖∞→1 instead of the cut norm.
We shall use the following decoupling lemma due to Bourgain and Tzafriri [Bour-

gain and Tzafriri 1987].

Lemma 4.1. Let (ξi) be a finite sequence of bounded i.i.d. random variables, and
(ξ′i) be its independent copy. Then for any sequence of vectors (xij) in a Banach
space with xii = 0,

E

∥

∥

∥

∑

i,j

ξiξjxij

∥

∥

∥ ≤ 20E

∥

∥

∥

∑

i,j

ξiξ
′
jxij

∥

∥

∥.

Let δ1 . . . δn be independent Bernoulli random variables, which take value 1 with
probability δ := q/n. Let P∆ denote the coordinate projection on the random set
of coordinates {j | δj = 1}.
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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Denote by D(A) the diagonal part of A. Then

P∆AP∆ = P∆(A − D(A))P∆ + P∆D(A)P∆ =
∑

i6=j

δiδjAijei ⊗ ej +
n

∑

i=1

δiAiiei ⊗ ei.

We can use Lemma 4.1 to estimate the first summand, taking xij = Aijei ⊗ ej

if i 6= j and xij = 0 if i = j. To this end, let (δ′j) be an independent copy of
(δj), and let P∆′ denote the coordinate projection on the random set of coordinates
{j | δ′j = 1}. Then by Lemma 4.1 and by the triangle inequality we obtain

E‖P∆AP∆‖∞→1 ≤ 20E‖P∆(A − D(A))P∆′‖∞→1 + δ

n
∑

i=1

|Aii|.

Clearly,
∑n

i=1 |Aii| = ‖D(A)‖∞→1. Thus to complete the proof, we can assume
that the diagonal of A is zero, and prove the inequality as stated in the theorem
for E‖P∆AP∆′‖∞→1, i.e.

E‖P∆AP∆′‖∞→1 ≤ Cδ2‖A‖∞→1 + Cδ3/2(‖A‖Col + ‖AT ‖Col). (9)

Note that

E‖AP∆′‖∞→1 = E sup
x∈Bn

∞

n
∑

i=1

|〈AP∆′x, ei〉|,

hence

E‖P∆AP∆′‖∞→1 = E sup
x∈Bn

∞

n
∑

i=1

δi|〈AP∆′x, ei〉|

= E sup
x∈Bn

∞

n
∑

i=1

(δi − δ)|〈AP∆′x, ei〉| + δ · E‖AP∆′‖∞→1. (10)

We proceed with a known symmetrization argument, which we used in the beginning
of Section 3.2. Since δi − δ are mean zero, we can replace δ by δ′′i , an independent
copy of δi, which can only increase the quantity in (10). Then the first term in (10)
does not exceed

E sup
x∈Bn

∞

n
∑

i=1

(δi − δ′′i )|〈AP∆′x, ei〉|. (11)

The random variable δi − δ′′i is symmetric, hence it is distributed identically with
εi(δi − δ′′i ), where εi are −1, 1-valued symmetric random variables independent of
all other random variables. Therefore the expression in (11) bounded by

E sup
x∈Bn

∞

n
∑

i=1

εiδi|〈AP∆′x, ei〉| + E sup
x∈Bn

∞

n
∑

i=1

εiδ
′′
i |〈AP∆′x, ei〉|

≤ 2E sup
x∈Bn

∞

n
∑

i=1

εiδi|〈AP∆′x, ei〉|. (12)

To estimate this, we use Slepian’s inequality for Rademacher random variables
proved by Talagrand. This estimate allows us to remove the absolute values in
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(12). Precisely, a partial case of Slepian’s inequality due to Talagrand (see [Ledoux
and Talagrand 1991], equation (4.20)) states that, for arbitrary y1, . . . , yn ∈ R

n,
one has

E sup
x∈Bn

∞

n
∑

i=1

εi|〈x, yi〉| ≤ E sup
x∈Bn

∞

n
∑

i=1

εi〈x, yi〉 = E

∥

∥

∥

n
∑

i=1

εiyi

∥

∥

∥

1
.

Therefore

E sup
x∈Bn

∞

n
∑

i=1

εiδi|〈AP∆′x, ei〉| = E sup
x∈Bn

∞

n
∑

i=1

εi

∣

∣

∣〈x, P∆′AT δiei〉
∣

∣

∣

≤ E

∥

∥

∥
P∆′AT

(

n
∑

i=1

εiδiei

)∥

∥

∥

1

= E

n
∑

j=1

δ′j

∣

∣

∣〈AT (

n
∑

i=1

εiδiei), ej〉
∣

∣

∣

= δ · E

n
∑

j=1

∣

∣

∣

n
∑

i=1

εiδiAij

∣

∣

∣

≤ δ ·
n

∑

j=1

(

E

∣

∣

∣

n
∑

i=1

εiδiAij

∣

∣

∣

2)1/2

= δ ·
n

∑

j=1

(

E

n
∑

i=1

|δiAij |2
)1/2

(averaging over (εi))

= δ3/2 ·
n

∑

j=1

(

n
∑

i=1

|Aij |2
)1/2

= δ3/2‖A‖Col.

We have proved that the first term in (10) does not exceed δ3/2‖A‖Col. To estimate
the second term, note that

E‖AP∆′‖∞→1 = E‖P∆AT ‖∞→1 = E sup
x∈Bn

∞

n
∑

i=1

δi|〈AT x, ei〉|.

So we can essentially repeat the argument above to bound this expression by

≤ δ1/2‖AT ‖Col + δ‖AT ‖∞→1 = δ1/2‖AT ‖Col + δ‖A‖∞→1.

Putting this together, we can estimate (10) as

E‖P∆AP∆′‖∞→1 ≤ δ3/2‖A‖Col + δ(δ1/2‖AT ‖Col + δ‖A‖∞→1)

≤ δ3/2‖A‖Col + δ3/2‖AT ‖Col + δ2‖A‖∞→1,

as desired. This completes the proof of Theorem 1.5.

4.2 Optimality

All terms appearing in Theorem 1.8 are necessary. Their optimality can be wit-
nessed on different types of matrices. To see that the first term is necessary, consider
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Sampling from large matrices · 15

a matrix A, all whose entries are equal 1. For this matrix ‖A‖C = n2, and for any
Q ⊂ {1, . . . n}, ‖AQ×Q‖C = |Q|2.

The optimality of the second term can be seen in the case when A is the identity
matrix. In this case ‖A‖C = n, while ‖AQ×Q‖ = |Q|.

To prove that the third term is also necessary, assume that A = (εi,j) is a random
±1 matrix. Then ‖D(A)‖C = n, and ‖A‖Col =

∥

∥AT
∥

∥

Col
= n3/2. It is easy to show

that Eε ‖A‖C ≤ Cn3/2, so for q < n the third term in Theorem 1.8 is dominant.
Indeed, by Azuma’s inequality, for any x, y ∈ {0, 1}n

Pε





∣

∣

∣

∣

∣

∣

1

n

n
∑

i,j=1

εijxiyj

∣

∣

∣

∣

∣

∣

> t



 ≤ Ce−t2/2.

Hence,

Pε

(

‖A‖C > sn3/2
)

≤ 4n · Ce−s2n,

which implies the desired bound for the expectation.
Now fix a ±1 matrix A such that ‖A‖C ≤ Cn3/2. Let Q be any subset of

{1, . . . , n}. Recall that the norms ‖A‖C and ‖A‖∞→1 are equivalent. We claim
that

‖A|Q×Q‖∞→1 ≥ 1√
2
|Q|3/2.

Indeed, let δi, i ∈ Q be independent ±1 random variables. Then by Khinchin’s
inequality

∑

j∈Q

Eδ

∣

∣

∣

∣

∣

∣

∑

i∈Q

εijδi

∣

∣

∣

∣

∣

∣

≥ 1√
2
|Q|3/2.

Choose x ∈ {−1, 1}Q such that
∑

j∈Q

∣

∣

∣

∑

i∈Q εijxi

∣

∣

∣ ≥ 1√
2
|Q|3/2. For j ∈ Q set

yj = sign





∑

i∈Q

εijxi



 .

Then

‖A|Q×Q‖∞→1 ≥

∣

∣

∣

∣

∣

∣

∑

i,j∈Q

εijxiyj

∣

∣

∣

∣

∣

∣

≥ 1√
2
|Q|3/2.

Therefore,

EQ ‖A|Q×Q‖C ≥ 1

4
√

2

( q

n

)3/2

·
(

‖A‖Col +
∥

∥AT
∥

∥

Col

)

.

5. THE DECAY OF THE SPECTRAL NORM

In this section, we prove Theorem 1.8 on the spectral norm of random submatrices.
By homogeneity we can assume that ‖A‖2 = 1. Let δ1, . . . , δn be {0, 1}-valued

independent random variables with Eδj = δ = q
n . So our random set is Q =

{j | δj = 1}.
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Let x1 . . . xn denote the columns of A. Then

A =

n
∑

j=1

ej ⊗ xj , A|Q =

n
∑

j=1

δjej ⊗ xj .

The spectral norm can be computed as

‖A‖2 = ‖AT A‖1/2
2 =

∥

∥

∥

n
∑

j=1

xj ⊗ xj

∥

∥

∥

1/2

2
,

and similarly

‖A|Q‖2 =
∥

∥

∥

n
∑

j=1

δjxj ⊗ xj

∥

∥

∥

1/2

2
.

To estimate the latter norm, we shall first apply the standard symmetrization ar-
gument (see [Ledoux and Talagrand 1991] Lemma 6.3), like we did in the beginning
of Section 3.2 and in Section 4. Then we will apply Lemma 3.5. Set

E = E‖A|Q‖2.

The symmetrization argument yields

E ≤ E

∥

∥

∥

n
∑

j=1

(δj − δ)xj ⊗xj

∥

∥

∥

1/2

2
+
√

δ ‖A‖1/2
2 ≤ 2Eδ

(

Eε

∥

∥

∥

n
∑

j=1

εjδjxj ⊗xj

∥

∥

∥

2

)1/2

+
√

δ.

Now we apply Lemma 3.5 with p = 1 to bound Eε

∥

∥

∥

∑n
j=1 εjδjxj ⊗ xj

∥

∥

∥

2
for fixed

(δj). By Remark 3.6, we can assume k in this Lemma equal

n(δ) := e +
∑

j≤n

δj .

Then using Cauchy-Schwartz inequality we obtain

E ≤ Eδ

(

C
√

log n(δ) · max
j=1...n

δj ‖xj‖2 ·
∥

∥

∥

n
∑

j=1

δjxj ⊗ xj

∥

∥

∥

1/2

2

)1/2

+
√

δ

≤ C
(

Eδ

(

√

log n(δ) · max
j=1...n

δj ‖xj‖2

))1/2(

Eδ

∥

∥

∥

n
∑

j=1

δjxj ⊗ xj

∥

∥

∥

1/2

2

)1/2

+
√

δ.

(13)

To estimate the fist term in the product here, we use the following

Lemma 5.1. Let a1 ≥ a2 ≥ . . . ≥ an ≥ 0 and let δ1 . . . δn be independent
Bernoulli random variables taking value 1 with probability δ > 2/n. Then

δ

4e

√

log δn ·
1/δ
∑

j=1

aj ≤ E

(

√

log n(δ) · max
j=1...n

δjaj

)

≤ 4δ
√

log δn ·
1/δ
∑

j=1

aj .

Proof. To prove the upper estimate note that

max
j=1...n

δjaj ≤
1/δ
∑

j=1

δjaj + a1/δ.
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Hence,

E

(

√

log n(δ) · max
j=1...n

δjaj

)

≤ E

(

√

log n(δ) ·
1/δ
∑

j=1

δjaj

)

+ a1/δ · E
√

log n(δ). (14)

Jensen’s inequality yields

E

√

log n(δ) ≤

√

√

√

√log(E

n
∑

i=1

δi + e) ≤ 2
√

log δn. (15)

By the linearity of expectation, the first term in the right hand side of (14) equals

1/δ
∑

j=1

ajE

(

δj

√

log n(δ)
)

≤
1/δ
∑

j=1

ajE



δj

√

log(
∑

i6=j

δi + 1 + e)



 ,

where we estimated n(δ) replacing δj by 1. Taking the expectation first with respect
to δj and then with respect to the other δi, and using Jensen’s inequality, we bound
the last expression by

δ

1/δ
∑

j=1

aj ·
√

log(δn + 1 + e) ≤ 2δ

1/δ
∑

j=1

aj ·
√

log δn. (16)

Finally, substituting (15) and (16) into (14), we obtain

E

(

√

log n(δ) · max
j=1...n

δjaj

)

≤
(

2δ

1/δ
∑

j=1

aj + 2a1/δ

)

·
√

log δn ≤ 4δ

1/δ
∑

j=1

aj ·
√

log δn.

To prove the lower bound, we estimate the product in Lemma 5.1 from below to
make the terms independent. We have

E

(

√

log n(δ) · max
j=1...n

δjaj

)

≥ E





√

√

√

√log(

n
∑

i=1/δ+1

δi + e) · max
j=1...1/δ

δjaj





= E

√

√

√

√log(

n
∑

i=1/δ+1

δi + e) · E max
j=1...1/δ

δjaj. (17)

These terms will be estimated separately. Since P (
∑n

i=1/δ+1 δi ≥ δn/2) ≥ 1/2,

E

√

√

√

√log(

n
∑

i=1/δ+1

δi + e) ≥ 1

2

√

log
δn

2
.

Let 1 ≤ k ≤ 1/δ. Denote by Ak the event {δk = 1, δj = 0 for 1 ≤ j ≤ 1/δ, j 6= k}.
Then

P(Ak) = δ · (1 − δ)1/δ−1 ≥ δ/e.
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Since the events A1, . . . , A1/δ are disjoint,

E max
j=1...1/δ

δjaj ≥
1/δ
∑

k=1

akP(Ak) ≥ δ

e

1/δ
∑

j=1

aj .

Substituting this estimate into (17) finishes the proof of Lemma 5.1.

Now we can complete the proof of Theorem 1.8. Combining Lemma 5.1 and (13),
we get

E ≤ C
(

4δ
√

log δn

1/δ
∑

j=1

‖xj‖2

)1/2

E1/2 +
√

δ = 2C
(

√

log δn‖A‖(1/δ)

)1/2

E1/2 +
√

δ.

It can be easily checked that E ≤ aE1/2 + b implies E ≤ 4a2 + 2b. Hence, recalling
that δ = q/n, we conclude that

E ≤ 16C2
√

log q · ‖A‖(n/q) + 2
√

q/n.

This completes the proof of Theorem 1.8.

REFERENCES

ALON, N., DE LA VEGA, W., KANNAN, R., AND KARPINSKI, M. 2002. Random Sampling
and approximation of MAX-CSPs. In Proceedings of the 34th ACM Symposium on Theory of
Computing, 232–239.

AZAR, Y. FIAT, A., KARLIN, A., MCSCHERRY, F., AND SAIA, J. 2001. Spectral analysis for
data mining. In Proceedings of the 33rd ACM Symposium on Theory of Computing, 619–626.

ALON, N., DE LA VEGA, W., KANNAN, R., AND KARPINSKI, M. 2003. Random Sampling
and approximation of MAX-CSPs. Journal of Computer and System Sciences 67, 212–243.

BERRY, M.W., DUMAIS, S.T., AND O’BRIAN, S.T. 1995. Using linear algebra for intelligent
information retrieval. SIAM Review 37, 573–595.

BERRY, M.W., DRMAC, Z., AND JESSUP, E.R. 1999. Matrices, vector spaces and information
retrieval. SIAM Review 41, 335–362.

JERRY, M.J., AND LINOFF, G. 1997. Data mining techniques. John-Wiley.

BOURGAIN, J. AND TZAFRIRI, L. 1987 Invertibility of “large” sumatricies with applications
to the geometry of Banach spaces and harmonic analysis. Israel Journal of Mathematics 57,
137–223.

DEERWESTER, S.T., DUMAIS, S.T., FURNAS, G.W., LANDAUER, T.K., AND HARSHMAN,
R.H. 1990. Indexing by latent semantic analysis. Journal of the American Society for Informa-

tion Science 41, 391–407.

DRINEAS, P., FRIEZE, A., KANNAN, R., VEMPALA, S., AND VINAY, V. 2004. Clustering
large graphs via Singular Value Decomposition. Machine Learning 56, 9–33.

DRINEAS, P., AND KANNAN, R. 2003. Pass efficient algorithms for approximating large matri-
ces. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
Baltimore, MD, 2003, 223–232.

DRINEAS, P., KANNAN, R., AND MAHONEY, M. 2006. Fast Monte-Carlo Algorithms for
Matrices II: Computing a low-rank approximation to a matrix. SIAM J. Computing 36, 158-
183.

DRINEAS, P., MAHONEY, M. P., AND KANNAN, R. 2006. Fast Monte-Carlo Algorithms for
Matrices III: Computing an Efficient Approximate Decomposition of a Matrix. SIAM J. Com-
puting 36, 184-206.

FERNANDEZ DE LA VEGA, W. 1996 MAX-CUT has a randomized approximation scheme in
dense graphs. Random Structures and Algorithms 8, 187–199.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.



Sampling from large matrices · 19

FRIEZE, A., AND KANNAN, R. 1996. The Regularity Lemma and approximation schemes for

dense problems. In: Proceedings of the 37th Annual IEEE Symposium on Foundations of Com-
puting, 12–20.

FRIEZE, A., KANNAN, R., AND Vempala, S. 2004. Journal of the ACM 51, 1025–1041.

KASHIN, B., AND TZAFRIRI, L. Some remarks on the restrictions of operators to coordinate
subspaces. Unpublished notes.

LEDOUX, M., AND TALAGRAND, M. 1991. Probability in Banach spaces, Springer, 1991.

LUNIN, A.A. 1975. On operator norms of submatrices. Math. USSR Sbornik 27, 481–502.

PAPADIMITRIOU, C.H., RAGHVAN, P., TAMAKI, H., AND VEMPALA, S. 1998 Latent se-
mantic indexing: A probabilistic analysis. Journal of Comp. and System Sciences 61, 217–235.

RUDELSON, M. 1999. Random vectors in isotropipc position. Journal of Functional Analysis
164, 60–72.

TALAGRAND, M. 1995. Sections of smooth convex bodies via majorizing measures. Acta Math-
emtaica 175, 273–300

VERSHYNIN, R. 2001. John’s decompositions: selecting a large part. Israel Journal of Mathe-
matics 122, 253–277.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.


