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SAMPLING FROM LOG-CONCAVE DISTRIBUTIONS

By ALAN FRIEZE, RAvI KANNAN AND NICK POLSON

Carnegie Mellon University, BellCore and Carnegie Mellon University,
and University of Chicago
We consider the problem of sampling according to a distribution with
log-concave density F over a convex body K € R™ The sampling is done

using a biased random walk, and we prove polynomial upper bounds on
the time to get a sample point with distribution close to F.

1. Introduction. This paper is concerned with the efficient sampling of
random points from R”, where the underlying density F is log-concave (i.e.,
log F is concave). This is a natural restriction which is satisfied by many
common distributions, for example, the multivariate normal. The algorithm
we use generates a sample path from a Markov chain whose stationary
distribution is (close to) F. The algorithm falls into the class of Metropolis
algorithms. It has applications to the problem of computing the volume of
convex bodies and in statistics. Recent statistics literature has focused on the
many applications of Markov chain Monte Carlo algorithms (see [11]). How-
ever, theoretical bounds on the convergence rate of such algorithms have
been limited. Using recent developments in the theory of rapidly mixing
Markov chains, in particular the notion of conductance [6, 10], Applegate and
Kannan [2] proved a bound on the convergence rate of the chain considered in
this paper. These theoretical bounds are too large to be useful in practice. In
this paper, we prove tighter bounds using an approach related to the classical
Poincaré inequalities instead of conductance. These bounds are small enough
to be useful in practice and have already found application in the generation
of random contingency tables [4].

Instead of sampling from the continuum of points in R”, we discretize the
problem by assuming that R” is divided into a set of hypercubes &} of side 8
(5 is a given small positive real number) and the problem is to choose one of
these cubes each with probability proportional to the integral of F over the
cube. (If necessary, a sample from the continuum can then be picked by
standard rejection sampling techniques from the cube chosen; we omit details
of this.) Second, we assume that we have a compact convex set K and we
wish to choose points only from K (not all of R"). This is justified because
clearly for any positive real number &, we can find a compact convex set (for
example, a ball) such that the integral of F over the set is at least (1 — &)
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SAMPLING FROM LOG-CONCAVE DISTRIBUTIONS 813

times the integral over R™. While it would suffice to consider the case when K
is a ball, the generality of convex sets is useful in many contexts.

In what follows & denotes a subset of the cubes #; whose union contains
K. For example, @ could be the set of cubes %;(K), which have nonempty
intersection with K. Let C denote the set of centres of these cubes. For
x € R", we denote the cube of side § and centre x by C(x). [Thus C(x) € ¥ if
and only if x € C.] We choose our sample point X by performing a random
walk over C. The walk is biased so that its steady state is (close to) what we
want, and we run the walk until it is close enough to the steady state. The
main results of this paper concern the rate of convergence of the walk to its
steady state.

We may not be able to compute F exactly and so we assume we have good
approximations F(x), x € C. Further, we assume that F(x) is strictly posi-
tive for all x € C.

We can only take advantage of the log-concavity of F if our grid is
sufficiently fine and our approximations F(x) are sufficiently good. In this
context, we will assume that for some small « > 0,

(1) (1+a) 'F(x) <F(y) <1+ a)F(x)
and
(2) (1+a) 8" F(x) < /C(xm(y)F(g) dé < (1+ a)s" 'F(x)

whenever C(x), C(y) are cubes of # sharing a face C(x) N C(y) of dimension
n — 1. Furthermore, we assume

(3) (1+a) 's"F(x) < fc(x)F(g)dgs (1+a)8"F(x), VaxeC.

When we have F = F, it is easy to check that all three conditions are satisfied
if we choose « to be eM® — 1, where M is the Lipschitz constant of In F with
respect to the infinity norm [i.e., M satisfies [In F(x) — In F(y)| < M|x — y|.,
V x,y € K]. However, an « smaller than e*® — 1 may satisfy (1)-(3); this is,
in fact, the case for important functions like F(x) = e~¢/*l and F(x) = e~¢I*",
as tedious, but simple, calculations show. This is the reason for stating the
cumbersome conditions (1)—(3). As we will see (Theorems 1 and 2), the rate of
convergence to the steady state depends upon (1 + «). In typical applications,
one would make 1 + o a constant. [For example, this can be ensured by
choosing 6 = O(1/M).]

The walk we consider fits into the scheme of Metropolis algorithms intro-
duced in [8]. It was used by Applegate and Kannan [2] in their paper on
volume computation.

In the following text, for any natural number m, we let [m] ={1,2,..., m}
and e, e,,..., e, are the standard basis vectors of R™.
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The random walk. This generates a random sequence X,, X,
X,,..., X,,... € C, where X, is picked according to some initial distribution
po(x) and X, , is obtained from X, as follows:

STEP 1. Choose j randomly from [r]. Choose ¢ randomly from {+1}.
SteP 2. Let y = X, + age;.

Step 3. If y &€ C, then X, ; = X,. Otherwise, put X,,; =y with proba-
bility 6 = min{1, F(y)/F(X,)} and X, , = X, with probability 1 — 6.

Formally, the transition probabilities P(x, y) = Pr(X, , = y|X, = x) are
given by

1 — —
P(x,y) = EPy min{l,F(y)/F(x)} for x # y, x, y adjacent,

and
P(x,x)=1- ) P(x,y).

y¥Fx

We refer to this as “the random walk” in this paper. It will be useful also to
consider a modified random walk. The “modified random walk” has

14 — —
P(x,y) = o min{l, F(y)/F(x)} for x + y, x, y adjacent

and
P(x,x)=1- Y P(x,y),

y¥FX

where v = (1 + 262/((1 + a)’nd(d + 2Vn 8)))~ . In most applications, » will
be very close to 1. So the modification can be thought of as follows: With a
small probability, the walk stays put. Otherwise, it does what “the (unmod-
ified) random walk” did.

When & = %;(K) we will refer to the walk as the “body intersecting” walk.
In this case, testing whether y € C can be a significant computational
problem, but nevertheless polynomially solvable, in general. In specific cases,
for example, when K = B(0, R) (the ball of radius R centred at the origin),
the problem is rather trivial.

We will also consider the computationally simpler random walk over those
cubes % (K) in € whose centres are in K. We call this the “centre point”
random walk.

It is easy to see that the chain is ergodic and thus, there are steady state
probabilities #(x) with lim, , , Pr(X, = x) = #(x) for all x independent of
the distribution of X,,. It is easy to verify that

m(x) =F(x)/A,
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where A = ©__ . F(x). We assume that the F(x) are sufficiently good approx-
imations so that sampling according to = can be considered to be our
objective.

Note that this chain is time reversible, that is,

m(x)P(x,y) = 7(y)P(y,x) forall x,y €C.

The main theorem describing the rate of convergence is stated in the follow-
ing text as Theorem 1. We use the so-called chi-squared distance of the
distribution after ¢ steps to the steady state as a measure of closeness (see [9]
and [5]). Let p,(x) = Pr(X, = x) be the distribution after ¢ steps. Then this
distance is given by

pi(x)
7(x)

There are other measures one could use, including the more traditional
variational distance given by

Z lp,(x) — 7 (x)l.

x€¥®

- 1) 7(x).

xeC

The chi-squared measure turns out to yield stronger theorems and, in fact (as
Fill points out), one can derive a bound on the variational distance using the
bound on the chi-squared distance (see Corollary 1).

In Theorems 1 and 2, which will be proved later, we have a random walk
over a set of cubes &

T= UD
De¥@
and
d = diam(T')

(the maximum distance between two points of T).

THEOREM 1. Let K be a convex set in R”. Let & be a subset of & (with
8 < d/10) such that K C T. Let C be the set of centres of these cubes. Let S be
the set of centres of those cubes in & which are not wholly contained in K and
let S = C\ S. Let F be a log-concave positive real-valued function on K with «
satisfying (1), (2) and (3). Consider the random walk X,, X,,... X,,... de-
scribed previously. Then, with p,(x) = P X, = x) [and 7(x), the steady state
probability of being at x], we have

2 172 2
pi(x) ¢ Dol x) _ x
(%) 1) ”(’“)) <(-h) (Zc( () 1) 7

po(%) 1‘)(w(5))”2
() =(8))

1/2

=

xeC

3

-+ max
1- Al xeC
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where
d
Ko = 'E(d + 2‘/;8),
. (1+ a)’kon  d2
(4) A= max{ 3 Ty
5 nd?
( ) -~ m9

and the final approximate equation holds under the assumptions a = 0 and
2Vn 8/d = 0.

Further, the modified random walk satisfies the inequality with A, re-
placed by Xl, where

3
Xl‘l _ (1+ a)’kon
)

and where v= (1 + §/(2(1 + a)’yn))~t. (Also, v= 1 under the same as-
sumptions as before.)

REMARK 1. When n is large, the term 7, = d2/(68?) in (4) is dominated
by the other term. However, when n is small, this may not be the case and
the modified random walk will be preferable.

REMARK 2. The quantity 1 — A; estimates the second largest eigenvalue of
the transition matrix of the walk. The constant 4 in (5) is reasonably close
to optimal. For example, when n = 1, the second largest eigenvalue is 1 — 2
sin(78/d)? =~ 1 — w262 /(2d?); see [1].

COROLLARY 1. Under the same conditions as in Theorem 1, we have the
following bound on the variational distance:

2 1/2
T Ipi(x) = m(x) s(l—mt( y |2 —1) m (%)
xeC xeC 77-(x)
3 Po(*) ()"
1o T w _1‘)(7(§)) '
Proor. Using the Cauchy-Schwarz inequality, we have
(po(x) — 7'1'(x))2 i 1/2
L Ip(%) = 7(x)| < ( r -2 ) (Z =)
xeC xel W(x) x€C

The latter quantity equals the left-hand side of the inequality in Theorem 1
and so we have the corollary. O

We first consider the body intersecting walk. Here we can apply Theorem 1
and its corollary directly. The first term of the bound falls off exponentially to
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zero with ¢. Theorem 1 is only of use if 7(S) is small. For any log-concave
function F, we can choose a sufficiently large compact set such that the
integral of F over the set is close to the integral of F over R™ If now we
choose K to be somewhat larger than this set, then clearly, 7(S) will be
small. We do not quantify these observations here, because that would
depend upon the properties of the specific F’s.

Let us now consider the centre point walk. We define the convex set
K' = {x € K: C(x) ¢ K}, run the walk with @ = #,(K) and apply Theorem 1
to # and K'. This is valid as K’ € U ;.¢D and when § is small, K and K’
will be “close” to each other. The comments in the previous paragraph are
valid in this case too.

It would be preferable to remove the term involving 7(S) in Theorem 1,
since it does not tend to zero at ¢ — ». With extra assumptions, we can
manage this.

Assume without loss that o € K. For u € R", with |u| = 1, let L, ={ru:
r € R*} be the ray in direction u emanating from the origin. Let hr) =h,(r)
= r" 1F(ru). Theorem 2, (which follows) is proved under the assumptlon
that the following condltlons hold for all unit vectors u:

(6) L, N T is an interval.

Let R =R(u) = |[L, N K| and R, = Ry(u) = |L, N T|. Then
(7) R, <2R.

Let s = R, — R. Then

(8) h(r') <k h(r), forR—s<r<r <r+s,

where k; > 1 is defined to be the smallest value satisfying (8). Let
K2 = 2K1("5 + \/’7).

THEOREM 2. Let F be a log-concave positive real-valued function on R*
with a satisfying (1)-(3). Assume (6)—(8) hold. Consider the random walk
Xo,Xq,... X,,... described previously, with € = #,(K) and 58 < R. Then we
have

1/2 1/2

Po(x)
m(x)

2

- 1) m(x)

<(1- )‘z)t( )

xeC

( > )Zﬂ(x)

xeC

(pt( )
7(x)

where
n d?
Ayl = max{(1 + a) (K0K1+KO+K2+2 K0K1K2)8 6a?
n(d\?
) 2(”5)

and the final approximate equation holds under the assumptions a = 0,
~ 1, ky < Kk, and 188/n /d = 0.
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COROLLARY 2. Under the same conditions as in Theorem 2, we have the
following bound on the variational distance:

> (p°(x) - 1)2w(x))

xeC W(x)

In the next section, we prove a general result about the rate of convergence
to the steady state for arbitrary time-reversible chains. It is then a matter of
estimating quantities associated with this result.

1/2

Y Ip(x) = m(x)l < (1= &)’

xeC

2. Convergence rates of time-reversible chains: Dealing with small
sets. In the analysis of geometric random walks, it turns out that certain
sets of states with relatively small steady state probabilities are not easy to
analyse. In the case of random walks on convex sets, where the problem is
usually discretized by using a set of cubes as the states, this problem arises
for the set of S of boundary cubes, which are those cubes in & which are not
wholly contained in the convex set. This irksome problem has cost volume
computation algorithms significant added complexity [3, 6] and has also led
to new ideas like the use of log-concave damping functions as in [2]. In this
section, we propose a general way of tackling the problem of small sets. In
some sense, this serves a purpose analogous to that of u-conductance pro-
posed by Lovasz and Simonovits [6].

Suppose P is the N X N transition probability matrix of an ergodic
Markov chain with N states and steady state probabilities #(-). We assume
throughout that the chain is time-reversible, that is, that =(x)P(x,y) =
w(y)P(y, x) for all x,y. Suppose we start the chain with initial distribution
po() li-e., Pr(X, = x) = po(x) for all x]. Let p,(-) be the probability distribu-
tion of X,. We define the quantity

p(x)
d’t(x): *n'(x) _1

This leads to what Fill [5] calls the chi-squared distance between distribu-
tions.
To define this distance, we first define an inner product on R" by

(0,9 = L ¢(x)v(x)m(x)

x€[N]

and denote its associated norm by

|l = (¢, &)
We also retain the more familiar notation that | | denotes Euclidean length
and that |¢|. = max{|¢(x)|: x € [N]}.
Suppose

P
oy = sup{%l: ¢#0, 7= O}.
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(From linear algebra and time-reversibility, it can be seen that the largest
eigenvalue of P is 1 and that o, is the largest absolute value of an
eigenvalue of P other than 1. We will only use the first of these facts.)

Using arguments similar to the ones used by Fill [5] to get his inequality
(2.11), we can get the inequality

|ilw < a5l

So it would suffice then to prove an upper bound on ¢,. We are not always
able to do this for the random walk described in Section 1. We are able to
prove a bound on a quantity similar to ¢, which ignores a small set S. Our
aim in this section is to prove an inequality for general time-reversible
chains, similar to the foregoing one, but with the new quantity o replacing
0g-
Let S be an arbitrary set of states which will remain fixed for the rest of
this section. Let

QO={¢peRY: 7" =0and ¢(x) =0, x €S}
and

K¢, P)|
(¢, )

The main theorem of this section follows.

o = sup

:¢>GQ\{0},7T¢=0}.

THEOREM 3.

, 3| ol w(S)
(9) byln < @' lbgln + =) \/ i

We need some preliminary linear algebra. Let D denote the N X N
diagonal matrix whose (x, x)th entry is y/7(x) . Then time-reversibility is
equivalent to
(10) D?p = PTD2,

Let

Q =DPD™ !,
Then @ has the same eigenvalues as P and (10) implies that it is symmetric.
The matrix D “converts” | |, to | | in a natural way. This follows from

($,9) = (D))" (Dy)
for ¢, y € RY. Thus
¢l = ID¢l and (¢, Pp) = (D)  Q(D).
So using ¢ = D¢, we obtain
¥Ry }

¢y

(11) o = sup {

ypel
Y+0
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where
Q={¢:{%=0and ¢(x) =0, x € S}

and {(x) = \/77( for x € [N]. Let A denote the orthogonal projection of
RY to Q. It is easy to see that A is defined by

ymx) —
Ay(x) = v(x) - (S) y§s¢(y)v'”'(y x €8,

0, xeS.

LEmMMA 1. Let Q, Q, A, and o be as above. Then
|AQA¢| < olp| forall p € RV,

PrROOF. For ¢ € 0, we have ¢”Qd = $TAQA ¢. So,
o= sup {

¢%@w‘ %@w’
—_— < =
¢€f), ¢T¢ N ¢SGU.B§)N ¢T¢ 71
$+0 d#*0

where o, is the largest eigenvalue of the symmetric matrix B = AQA. [From
standard linear algebra, if O ={x: x = Cy}, where C is a matrix with
independent columns, then A = C(CTC)~1C7 and is, therefore, symmetric.]
However, if ¢ is a corresponding eigenvector of B, then B¢ = o,¢ implies
that ¢ € ). Hence o = o; and the lemma follows. O

LEmMA 2. Ty = 0 implies

=(S)
(8)

PROOF. Assume { Ty = 0. Let ¢ = w — Ay, =D and M = |¢|.. Then

Iy — Ayl < D™l

Y w(x) = X e(x) + —— ( ) «l/(y)\/Tr(y)) m(x)
x€[N] xS (S) xeS§ Vye§
- T om0 + —— £ ()| T sy
xe8 Ky xeS ye8
2 1 2
= T #(x)'m(x) + —= T 7(x)| L s(n)n(»)
x€8 ™ x€fl yES8
\ M?*z(S)
<M*=(S) + —————W(g)
B M3z (8S)

m(S)
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We now go back to the proof of the main theorem of this section-—Theo-
rem 3.

ProOF OF THEOREM 3. Let ¢; = D¢,. Observe that ||, = [¢]. We will
prove that

(12) [, 1] < aly] + 3l¢olm\/ ﬂ—ﬁl ,
7(S)

from which we get, by induction on ¢,

1—gtt! m(S)
1- ) m(S)

. |¢o|oo / W(S)
<o |l//0| + 3]_?; W(g) s

(= ¥ (p(x) —m(x)) =0.

x€[N}

[, < ol + 3l¢olm(

as desired. Now

Also, using time-reversibility, we get

P(x,y)p(y)

Po,)(x) = 1
(Po)(x) = T =0
P(y,x)p,
Ly Penn)
ye[N]

Thus P$, = ¢,,,, and premultiplying by D, we get
Y,,1=Qy, fort =0.
To prove (12), we proceed as follows:
Y41l = Q] < 1QAY| + 1Q(4, — Ady)l.

Using the fact that the eigenvalues of @ have absolute value at most 1 and
Lemma 2, along with the fact that |¢,, |« < |¢,. (since P has row sums
equal to 1), we have

QU — Aw)| < 19, ~ Ab) < 100l m(8)
(3)

Now we need to bound |QAy,|. However,

QA = |AQAY,| + |QAY, — AQAY,.
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We have by Lemma 1 that |[AQA,| < o). So it now suffices to prove that

QAY, — AQAY < 2dglar] T2
th Q‘;l’tS ¢0°° 7r(§)

Now

IQAY, — A(QAY) = I(I — A)QAY,|
< |(I —A)thl + |(I _A)Q(A‘pt - lpt)I
< I(I _A)‘/’Hll + |A¢t - lptls

since @ has all eigenvalues of absolute value at most 1 and also for all vectors
v, |[(I — A)v| < |v], because A is a projection. Each of the last two quantities

is at most |¢gl-y 7(S)/7m(S) by Lemma 2. This finishes the proof of
Theorem 3. O

Our aim is to prove an upper bound on

u {I<¢,P¢>I }
o= -
7ip=0

for the case of the walk of Section 1. We will split the task into two parts. In
the next section, we prove that for any ¢ in Q \ {0} with 7% = 0, we have

(¢, P9) _(1_6_2)
6,8 ~ 6d? |

Clearly, for this it suffices to consider the ¢ satisfying (¢, P$) < 0. Then in
the ensuing section, we prove the more difficult bounds:

(b, P$)
(o) 217N

where A = A; (Theorem 1) or A = A, (Theorem 2).

(13)

3. Proof of (13): (¢, Pp) < 0. We now return to the specific chain
corresponding to our random walk. The following lemma considers the case
where (¢, P¢) is negative

LEMMA 3. ¢ € QO implies

<¢,P¢> = _(1 - T)<¢7 ¢>:
where 7= 8%/6d°.
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Proor. Consider

=Y ( 3 P(x,y)¢(y))¢(x)7r(x) + Zc(l—'r)qﬁ(x)zﬂ'(x)

xeC ‘yel

= ZC Y P(x, ) ¢(y)d(x)m(x) + Zc(l—P<x,x>)¢(x)2w(x)
xelC y#x xe
+ zc(zp(x,x) — 7)(x)’7(x)

(14) = ZC Y (P(%,9)$(9)p(x)m(x) + P(x,y)d(x)*m(x))

xeC y+x
+ Zc(zp(x,x) — 7) (%) 7 (x)

= X w(2)P(x,5)(¢(x) + &(y))°
{x,y}eE
+ zc(zp(x,x) — 1) (%)’ 7 (x),

where E = {{x, y}: x # y and P(x, y) > 0} and the last equation follows by
time-reversibility.

Suppose next that the walk is at x € C. Let P,(x, x) denote the probability
that the ith direction is chosen and that no movement is made at the current
iteration. Thus

1 ) m(x +e;) ) m(x —e;)
P(x,x) = %(1 - m1n{l,W} +1- mln{l, W})

and, of course,
n
P(x,x) = Y Pi(x,x).
i=1
We will show for each i, i =1,2,...,n, that with E, ={(x,y) €E: x —y =
iaei}y

Y w(x)P(x,y)(¢(x) + &(5))°

{x,y}eE;

+ Y (ZPi(x,x) - %)¢(x)277(x) > 0.

xeC

(15)

Fix i and consider the lines in R” parallel to e; which go through the centres
C of the cubes #. These induce a natural partition of C into %, where each
L €%, is the set of cube centres lying on some line. Now fix L €% and
suppose that

L={x,x+e,x+2e,...,x + se;}

= {x©@, x® . 2},
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We break L into maximal contiguous segments L,, L,,... of the form

{x®), x®+D 5 D)

such that
0
m(xUD) > w(x(”)(l - E)

for r=Fk, k+1,...,1 — 1. [A segment ends when 7w(x¢"V) < 7(x®)1 —
8/d), which includes [ = s, as the “next” cube centre has 7(-) = 0.] Thus

1 é
1 P(x(D 4+ — 1 - = =k,k+1,...,1-1,
(16) (', x )zzn( d)’ r==k,k yeeend
and
1n w(xM) = 8 (x), k<r<r<l,
where 6 = (1 — 8/d)¢/9~1 Finally,
1 4

18 P.(xD. x® - _
(18) (0, 20) 2 ——
We prove (15) by showing that

-1

L m(x ") P2, 2 0)($(x7) + $(x*D))’

r=*k

(19)

4
+ ) (2Pi(x(’), xM) — %)(b(x(’))zw(x(r‘)) > 0.
r=k

Now for k <r <,
o 2y = ($(x) + (xTHD)) = (H(xTHD) + (D)) + -
£(S(=70) + #(£)) £ $(=1).
Applying the Cauchy-Schwarz inequality twice, we get
() m(27)

2

-1
< 2w(x<f>>( L 16(x7) + $(= D) |+ 2(x0)"m(2)

r=r

<2(1 - r)ym(x) T (B(x) + $(2 D)) + 2¢(x®) m(2)

r'=r

&\ ! -1 , , ,
< 40_1(]_ — 2) n(l - 7‘) Z W(x(r))P(x(r)’ X +1))

X ($(2) + (2 D)) + 207 (2 D)’ m(2D).



SAMPLING FROM LOG-CONCAVE DISTRIBUTIONS 825

Summing over r = k,k + 1,...,1 — 1 and adding ¢(x®)?m(x?), we obtain

5 o(x0) () < 29—1(1 _ g)n(f)

r=k o

-1
x ¥ aw(x®)P(x"), x D) (p(xD) + p(xC* 1)))2
r=k
d 2
+(1 +26°1 E)qﬁ(x(l)) m(x®).

Comparing this with what we want, that is, (19), we see that the following
equations suffice:
260711 2\ r(ay 1
- = —| = <
d n\é n=

T

and

d
(1 + 2471 —) < 2Pi(x(l), x(l)).
n é

Under the assumption that 108 < d, we get that 7= §%2/6d? satisfies the
inequalities since we have (18). O

REMARK 3. The modified walk has P(x, x) = 1 — v and the argument can
be stopped at (14) provided 7 < 2(1 — »). We thus need » > 1 — A,/2 in the
modified walk. Note that we have A; rather than A, because the modification
introduces a factor of » into our eigenvalue estimate; see Remark 4.

4. Reduction to a continuous problem. We first introduce the quan-
tity

E(¢’¢)=:<¢!¢>__<¢’P¢>

for all ¢ € RC. The time-reversibility of P allows us to conclude

(20) 2E(¢,¢) = L L (¢(x) — ¢(y)’7m(x)P(x,y),

xeC yel(x)

where I'(x) = {y € C: P(x, y) <0}
To prove (20), write

Y ¥ w(x)P(x, 9)(d(x) — ()

xeC y&eC

= ¥ a(x)d(x)’ L P(x,3) + L 7(9)¢(3)° L P(y, %)

xeC yel yeC xeC

-2 ) w(x)d(x) X P(x,y)d(y)-

xel yel
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In this notation we must now prove that

ot E(¢,d)
e (P, P>

Let 1, denote the C-vector of 1’s, ¢ = Lw(x)p(x) and let O = {¢: d(x) = ¢
for x € S}. If ¢ € Q, then ¢ — $1, € Q. Also, for all ¢ € RV and for all
z € R, we have

E(¢ _21N7¢_21N) =E(¢’ ¢)’
<¢ - $1C7¢ - $1C> = <¢’ d)) - az
and so we can redefine our objective as proving

(21) e %9

6 <¢’ ¢> - ¢2 B
¢ nonconstant

For the rest of this section, we fix a particular nonconstant ¢ in Q). Let
T = U ,ecC(x), which is “slightly” larger than K. Define F: T - R as
follows: Suppose ¢ € C(x) for some x € C. Then F(¢) = F(x) if £ & 9C(x)
and F(£) = 0 otherwise.

Given ¢ € R" and a small ¢ > 0, we define ®_: T — R as follows. Suppose
z € C(x) for some x € C. Let C(x, £) denote the cube centred at x with side
6—2¢&.If z € C(x, &), we let ®(2) = ¢(x).If z & C(x, ¢), let D be a face of
C(x) which is closest to z. (If there is a tie for D, the value of ®, does not
matter, as we will see.) Suppose first that D = C(x) N C(y) for some y € C
and that dist(z, D) = ne, where 0 < 5 < 1. In this case, we let ®,(z) = (1 +
M(x) + (1 — D¢(y))/2. In this way, if we start at a point on a face of
C(x, &) parallel to D and move toward D, then ®, changes linearly from
¢(x) to ¢(y) over a distance 2¢. Finally, if the hypercube on the other side of
D to C(x) is not in %, then we keep ®,(2) = ¢(x).

Let

I = fTJV<D8(z)I2F'(z) dz.

The function ®, is not differentiable on a set Z of measure zero (consisting of
points for which there is a tie for D). We can, however, easily “smooth out” @,
close to Z so that (20) and (1) imply

elL,=5""1%Y Y (&);_(M) F(x) + 0(¢)
x€C yeT(x)
1+« — —
<(S52)or £ (0 - 0(9))* min{F(#), F()} + O(e)
4 x€C yeTl(x)

=(1+ a)And" 'E(¢, ¢) + O(¢),
where the hidden constant in O(¢) may depend on =, F, ¢.
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REMARK 4. For the modified walk we need a factor of »~! in order to get
the final equation.

On the other hand, the concavity of In F' implies that it is continuous, so
for small enough &, we have [(F({)d{ <1 + f(e)foxyn e F({) d{, where
S is obtained by translating C(x) N C(y) toward x by some & € [0, ] and f
is some function with lim sup, _, , f(&) = 0. This along with (2) implies that

el > (1+f(e)) "1+ a)‘lng|vq>€(z)|2F(z) dz — O(¢).
So

afTIVqJS(z)IZF(z) dz B
(1+ a)’(1 +f(&))nd" 1A

(22) E(é,¢) = O(e).

This deals with the numerator in (21). For the denominator,

($,0) —$2=A"" L ¢(x)"F(x) — ¢
(23) xeC . _ ,
=A"t Y (¢(x) —{) F(x) —(¢—¢) foranyleR.

xeC
We will use the foregoing equation with { = u, where
[ ®,(2)F(2) de
- JkF(z)dz

and then let ¢(z) = ®,(z) — u. We will show in Section 5 that

(24) /K¢(z)2F(z) dz < axolevwle(z) dz

and in Section 7 (for use in Theorem 2) that
(25) [ w(2)’F(2)dz < ak, [ #(2)"F(z) dz + bex, [ |Vul’F(2) dz,
T\K K T

for any a, b > 1 satisfying (¢ — 1Xb — 1) > 1.
Consider first Theorem 1. It follows from (23) that

(¢, 9y — 2 =A"1 ¥ (d(x) — p)’F(x)

xeC\S

(26) +A7 L (9(0) )" F(x) ~ (8- uy’

1+ a 2
< —m /K¢(z) F(z)dz + O(¢)
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since ¢ = ¢ for x € S. Thus, by (24),

+ «

— 1
(¢, ¢) — $* <

57A 8KofKIV¢(z)|2F(z) dz + O(¢)

27
( ) 1+« 2
< WKO(I + a) (1 + f(e))nB”_IAE(d), d)) + 0(8)
The second inequality comes from (22) and K c T. Now, (27) is true for all
£ > 0 and so (21) follows in the case of Theorem 1.
Now consider Theorem 2. It follows from (23) that

1+«

(6, ) = &* < — /T(¢8(z) — p)’F(2)dz + O(¢)
1+a 5 9
- = (/K¢ F(x)dx + fT\K"’ F(z)dz| + O(¢)
1+«

T ((am1 + l)def2F(z) dz

+bsx2f7JV<Ds(x)|2F(z) dz) +0(¢)

1+ a 9
< —p(ro(ar, + 1) + bK2)sf7JVCIJS(z)I F(z)dz + O(¢)

1+a
< ;T(Ko(a,q + 1) + biy)(1 + a)’(1 + f(&))

Xnd" NAE(¢$, ) + O(&).
Substituting @ = 1y/k,/(kok;) and b =1 + (a — 1), we obtain

- 1+«
_ 72
(P, ¢) — p* < 5A

X(1+ a)’(1 +f(£))nd" AE(¢, ) + O(&).
This is true for all £ > 0 and so (21) follows for the case of Theorem 2.

(Kokl + ko + Ky + 2 K0K1K2)

5. Proof of (24). We will reduce the geometry to one dimension by
applying the following localisation lemma of Lovész and Simonovits [7]:

LEmMMA 4. Let f,fs be upper semicontinuous functions defined on R
such that

| f(z)dz>0, i=1,2
Rn
Then there exist a, b € R™ and a linear function 1: [0,1] —» R, such that

[ flta+ @ -0)b)i(e)" Tdr>0, =12
t=0
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To apply this we replace (24) by the equivalent
2
(Jg®(2)F(2) dz)
xF(z) dz
Adding a constant to ®, does not change either side of this inequality and so

we can assume that ®,(z) is positive on K. We then use the fact that under
this assumption, (28) fails to hold if and only if there exists « > 0 such that

(28) [Kopg(z)F(z) dz — < aKO[KIVQ(z)le(z) dz.

chbg(z)F(z) dz — ade)g(z)F(z) dz > aKO[KIVQ(z)PF(z) dz
and
—[Kd)s(z)F(z) dz + a[KF(z) dz > 0.

We apply Lemma 4 with

fi=(D2F — a®,F — £x,| VD, (2)*F) x¢
and

fo=(—®,F + aF) xx.

(Here xy is the indicator function of the body K.)

Let a,b,! be as in Lemma 4. We observe that we can take a, b € K
because of the factor yx. Let g(¢) = ®,(1 — t)a + tb), h(t) = F(1 — t)a +
t)l(t)" ', w(t) = h(t)/[Lo(£)dE and §(¢) = |[VO,((1 — t)a + tb)|. Note
that 7 (¢) is log-concave.

We then see that if (28) fails to hold, then

(29) [tiog(t)2qr(t)dt— (j;iog(t)w(t)dt) < sxoj;:og(t)2w(t)dt

fails to hold.
We can thus prove (24) by proving (29). We replace the LHS of (29) using
the identity

( fiog(t)%(t) dt — (fiog(t)w(t) dt)
30) t= -
ST CERE SR O

Letcf=lb—a| andu=(b—a)/cf.Then,for0535ts1,

(g(t) —2(s))* = (f;sg’(@df)z

st o Jd, )
=d fg,_ 1quj(f) xj((l—f)a+§b)d§ i

a

=sj=
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where x;() is defined by

1 'faq)” 1—¢&)a+&b)#0
xi(§) = ! ‘7xj(( ) ) ’

0, otherwise.
By the Cauchy-Schwarz inequality, we have
oD,

o'?xj

n n 1/2
leujxj(é) ((1-¢&)a+¢b)l < (Zlu?xj(f)) £(¢).
Jj= j=

So we get with another application of Cauchy—Schwarz,
2

n 1/2
(g(t)—g(s))zscf2(j: (glu?xj(ﬁ)) g(¢)d¢

A, t i t .
< dz(j T ulx(é) dg)(f £(¢)’ ds).
§=Sj= 1 é=s
Now each time the line from s to ¢ crosses a hyperplane of the form x; = m3$,
m an integer, we get a contribution of 2£/(du;) to [x,(¢) d§. Furthermore,
the number of such crossings is at most

du.(t —
(31) —u’(;—s) + 1.
So we get (using the facts that X7_ ,u?=1and Xlu jI\/rT )
. [t — sl Vn o\
— 2 2 ~ 2
(8(1) -~ g(s))" <2 ( =+ 5 )[é=sg(§) de.
Thus if RHS (30) denotes the right hand side of (30), then
2o (1 1 It - sl \/—n— t 2
RHS(30) < d sj;=0/t=0( S 7 qug(.g) deéw(t)m(s) dtds
(32) = 2d%[  £(&)'m(¢)
£=0
¢ 1 [t—s Vn\w(s)m(¢)
x(js=0/t=§( > +7)—-——W(§) dtds) dé,

where the last equation is obtained by interchanging the order of integration,
the factor of 2 coming from the fact that s, are interchangable in the
previous expression. Now let

= {we [0,1] = R,: 7 is log-concave and fl w(t) dt = 1}.
=0
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Let
£ 1 (s)m(¢)
M, = su t— dtd
1z s=of=§( ) m(§)
£e[0,1]
and
¢ 1 m(s)m(t)
M,= s dtd
2 wlel{')[ s=0‘/;=§ 77('5)
£e(0,1]
Then (32) implies
A M, Mz‘/—n— 1 2
(33) RHS(30) < 2d%|— + —=—| [ &(¢&)’n(&)d¢.
0 d £=0

We will prove in succeeding text that
M, =% and M,=1
and (24) follows immediately from (33).

6. Computation of M, and M,. We begin with M,;. Rather than re-
strict ourselves to 7 € II, we prove that if A: [0, 1] —» R, is log-concave, then

h
(34) j;ioj;if(t_s)h(s)h(t)dtdss (86)

This will prove M, < 1/8, which is what we want. We then note that 2 = 1
satisfies (84) with equality.

Since log & is concave, there exists a € R such that
(35) h(s) <h(€)e*¢~9,  se[0,1].

Our aim first is to show that the extremal A satisfies (35) with equality for all
s € [0, 1], for some «. Let

h(s) ds.

I, = fioh(s) ds and I, = f:fh(s) ds,

J0=[si0(g—s)h(s)ds and J1=ft:§(t—§)h(t)dt.

Then (34) is equivalent to
IyJ, + 1,J, - h( &)

IL+I, ~ 8

or
Jy o 1 h(£)
=t == < .
L, LT+, 8

Suppose now that we fix a and also A(¢)=B>0. Let If(a,B)=
15, Be®®™ 8 ds and let I(a, B), Jy(a,B) and J(a, B) be defined analo-
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gously. Clearly, under these circumstances I, < I,(a, 8) for £ = 0,1 and so
1 1
—1 T =< 1 1
IO +4 IO(a’B) +I1(a’B)

We now prove that

(36)

i]f_ < Jk( a, B )
I, = Ii(a,B) ’
We prove (87) for & = 1, the proof for £ = 0 being essentially the same. Let M

be a positive integer and 6 = (1 — ¢)/M. Let g = log h and let g, = g(£ + 16),
[=0,1,..., M. The concavity of g implies that

(37) E=0,1.

(38) 8iv2 — 8141 = 8141 — 81> 0<l<M-2,

and (35) implies

(39) g1 <8 +talb, O0=<l<M.

Now choose 1 > 0 small. By choosing M sufficiently large, we can ensure that
Jy M le&

(40) S g

— <
= M
I, Li=oe®

Denote the RHS of (4) by p(gy, &1, - - - » &u)- Since 7 is arbitrary, we need only
show that, subject to (38) and (39), p is maximised when g, = g, + «l#8, that
is,

):;M:Olegohr 10

(41) p(g) < TH cavrals -

This is easy to do by backward induction on
k=k(g) =max{m: g, =g,+ al6,0 <l <mj}.
The base case & = M is trivial and so assume that (41) holds for 2 = x + 1
and assume that & = «. Let
v=g,+axkd—g > 0.

Define g by

_ g, 0<l<k,

£1= g tv, k<l<M.
Note that g satisfies (88) and (39) and that 2(g) = x + 1. Hence our induc-
tive assumption implies that g satisfies (41). On the other hand,if e’ =1 + ¢
and &, = e¢!, then
Mo h, + X th, TM, Ik,
Lo+ el by Eloh,
e(Ziodh EN by — i3 T BT

(ZXoh, + eXiL hy) X oy

p(8) — n(8)

v

0,
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since clearly
L hy LiZolhy
T = Tigh
We can, therefore, assume from now on that h(s) = Be*¢~9 for some «a, 8.

We can, in fact, assume that 8 = 1 as B contributes a factor of 82 to both
sides of (34). So now let

Ji—o Jime(t — 5)e®C P dtds

v(a, §) = e [L e™ ds
e + £ — e — 21D
N a(e*—1)
We must show that y(a, £) < 1/8 for « € R and ¢ € [0, 1]. Now,
oy 1

L 1—e*+ a(l-¢)
o a(e*—1) ( ¢ Tae )

and
%y 1
2 = (—a
¢ a(e*—1)
It follows that for fixed «, y is maximised when

(et L)

20001-0) < 0,

Now let

f(a) = v(a,é*(a))

11 e —1 1 1
= — - =+
2 0g 2

@ @ ale®—1)"

A simple computation yields
1
li = —
lim f(a) = 3

and that f is even, that is, f(—a) = f(a) for all « € R. Next let
2

g(a) = a’f(a) - =
Then
e?*(a—2)° + e*(2a% — 8) + (a + 2)°
4a(e” — 1)° '

By checking that the series expansion of the preceding numerator contains
only nonnegative coefficients, we see that g'(a) < 0 for a = 0. Thus g(a) <
g(0) =0 for @ > 0, and since [ is even, this completes the proof that M, =
1/8. '

g'(a) =~
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For the computation of M, we need to show

3 1 h(f) 1
fs=0j;=§h(s)h(t)dtdsg ’ fs:(,h(s)ds'

Fixing h(¢) = B and assuming (35), this amounts to

Ll _B
I,+1, 4
Thus we can once again assume that the extremal % satisfies (35) and that
=1
So now let
[E ot eCtD dtds
g(a7§)= 0i§§1 as
e*f _,e* ds
Ji e dsflL et dt
- eagfsl=0eas ds
(e% = (e = e)
ae®(e* — 1)
e*—e — 170 11
- a(e® — 1)
We need to show that ¢(a, ¢) < 1/4 for ¢ € [0, 1]. Now
% _ (-6 _ gut)
6 (e*-1)
and
% o
= - -8 1 e*8) < 0.
agZ (ea _ 1) (e e )
Thus {(a, ¢) is maximised at £ = 1/2, independent of a. Now let
1\ (e*/%—1)°
e = el 3) - Sy
Then

lim f(a) = 1/4
and if g(a) = af(a) — a/4, then
(o2 - 1)°
' = _ <.
g'(a) 4(e“/2+1)2 =

This shows that g(a) <g(0) =0 for @ > 0 and g(a) > g(0) for & < 0 and
completes our proof that M, = 1/4.
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7. Proof of (25). Recall assumptions (6)~(8). We introduce polar coordi-
nates (r, 8) = (64, 0,,...,6,_,)) so that

Jj-1
xj=rsin(0j)n cos(6;), Jel[n]
i=1
Then

(@) [ W Ry de= [[[* w0 R, 0) ar) (o) s,

r=

where r"~1J(0) is the Jacobian of the transformation. Similarly,

(43) [ w(2)'F(2)dz = f(/R rn—1¢(r,o)2F(r,e)dr)J(o)de
B \"r=0
and
(44)  [IWPF(z)dz - j(/Rl‘”rn-l|V¢|2F(r, 9) dr)J(e) ds.
T o\'r=R
Now consider a fixed 6. Let A(r) = r*~1F(r, 8) and g(r) = ¢(r, 6). Note that

h is log-concave. Let u denote the vector of Euclidean length 1 in the
direction 6. Then we can write

g(r) = Zu x,jw

Jj=1
where x; = x;(r) is the indicator for d¢/dz; + 0
We prove the following lemma, where R’ - .

LEMMA 5. For any real a,b > 1 such that (a — 1X(b — 1) > 1,

5) [ g(r) h(r) dr <a,<1f’: g(r)’h(r)dr + sbxzf [Vyl?h(r) dr.

r=R

Inequality (25) follows from (42)—(45).

PRrOOF OF LEMMA 5. Let r > R. We have, using the inequalities g(r)? <
alg(r — )% + b(g(r) — g(r — sN? and A(r) < k,A(r — ),

M g(r)h(r) dr < ax, ["g(r)*h(r) dr
(46) r=R R

+ b]:(g(r + ) —g(r))2h(r + s) dr.

We will bound the second term. To do so, note that for any ¢ and «,

5(0) - (@)l =|[* g ar
f Zu XJ \/h()t)/h()t dA|.

)‘U‘Jl

(47)
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Now using Cauchy—-Schwarz twice, we get
1/2

. n L 12 , o 2
|g(§)—g(a)|ﬁf (Eu}?)(fh()‘) ) ) (3‘) h(A)|  dA
A=al j=1 j=1 j
(48) 1/2 1/2
< ([g Y ulx2h()) d/\) (/; IVy[2h( A) dA) .
A=aj=1 A=q

We wish to apply this to (46) with { =r + ¢ and a =r, where r € [R', R].
Then as A runs from r to r + s, we have k,h(A) > h(r + 5), so we have

(g(r+s) —g(r)?h(r+s) < Kl(j:: é ux? dA (j::lvwzh()o dA).

We bound the first factor on the right hand side as in (31) to obtain

+s I S
fr gZngijd)tg&s(g +1/r7)

A=rj=1

So we get
/;(g(r +5) —g(r)’h(r + ) dr < 2e:<1(% + ﬁ)/}:llVllflzh(/\) dA.

Plugging this into (46), we get the lemma. [

8. Conclusion. We have given good estimates of the second eigenvalue
of the transition matrices of our chains. It would be of great interest if we
could replace the /, diameter d by the smaller [, diameter.
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