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Sampling is a key issue for answering most ecological and evolutionary questions. The importance of developing a
rigorous sampling design tailored to specific questions has already been discussed in the ecological and sampling literature
and has provided useful tools and recommendations to sample and analyse ecological data. However, sampling issues are
often difficult to overcome in ecological studies due to apparent inconsistencies between theory and practice, often
leading to the implementation of simplified sampling designs that suffer from unknown biases. Moreover, we believe that
classical sampling principles which are based on estimation of means and variances are insufficient to fully address many
ecological questions that rely on estimating relationships between a response and a set of predictor variables over time and
space. Our objective is thus to highlight the importance of selecting an appropriate sampling space and an appropriate
sampling design. We also emphasize the importance of using prior knowledge of the study system to estimate models or
complex parameters and thus better understand ecological patterns and processes generating these patterns. Using a semi-
virtual simulation study as an illustration we reveal how the selection of the space (e.g. geographic, climatic), in which
the sampling is designed, influences the patterns that can be ultimately detected. We also demonstrate the inefficiency of
common sampling designs to reveal response curves between ecological variables and climatic gradients. Further, we show
that response-surface methodology, which has rarely been used in ecology, is much more efficient than more traditional
methods. Finally, we discuss the use of prior knowledge, simulation studies and model-based designs in defining
appropriate sampling designs. We conclude by a call for development of methods to unbiasedly estimate nonlinear
ecologically relevant parameters, in order to make inferences while fulfilling requirements of both sampling theory and
field work logistics.

Principles and definitions of sampling

Answers to ecological and evolutionary questions (e.g. in
genetics, functional ecology, biogeography) often require
measuring relevant biological variables (e.g. presence,
growth rate, functional trait, concentration) on items (e.g.
individuals, populations, species, ecosystems) of interest in
the system under study. The set of all possible items from
which generalized processes and patterns are to be derived is
called the target population (Fig. 1), a statistical meaning of
‘‘population’’ that should not be confounded with the
biological one. A statistical target population can be
uncountable, or can contain only a small fraction of items
actually accessible for measurements, which makes it
generally impossible to completely measure (census) all
items. It is then necessary to define what is called a sampling
frame (Fig. 1), which is the finite set of all items that could
be measured, and to employ different sampling strategies to

obtain items to measure from the frame. The sampling
frame ideally coincides with the target population, but may
differ for various reasons such as accessibility, incomplete-
ness, or size (Särndal et al. 1992). From this defined
sampling frame, one can draw a subset or sample of items �
called sampling units � to be measured (Fig. 1). Sampling
units should be distinct and easy to define; however, there
are many situations where sampling units are not easily
identified. This is the case when studying species that do
not have clear individuals (e.g. plants with vegetative
growth) or when units are defined in terms of location or
area (e.g. grid-cells of a map). In the latter case, there is an
undetermined number of units that may or may not
overlap.

Procedures to draw samples from the sampling frame,
called sampling designs (Fig. 1), are of two main types:
probabilistic vs non-probabilistic. These types differ in
terms of estimation methodology and reliability (Lemeshow
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and Levy 1999). To be reliable, a sampling design should
lead to parameter estimates that are both unbiased (i.e.
mean value of estimates equal to the target population
value) and precise (i.e. small variability). This often requires
a trade-off between bias and precision reached when the
mean squared error (MSE�Bias2�Variance, Hastie et al.
2009) is minimized. In a probabilistic design, every
sampling unit from the frame has a known non-zero
probability of selection, leading to unbiased estimates of
the mean and variance (and their confidence intervals) for
the variables of interest. The unbiased Horvitz-Thompson
estimator of the mean for the target population is then:

X

i

1

pi

�xi (1)

where xi is the variable x measured on the ith sampling unit
and pi is the non-null probability to sample the ith sampling
unit. In case of non-equal probabilities, measurements on
units that are less likely to be sampled are given a higher
weight, as they are expected to be under-represented in the
observed sample. In a non-probabilistic design, some
sampling units from the frame have no chance of being
selected or their selection probability cannot be accurately
determined. This can lead to biased estimates and may
result in erroneous inferences (Lemeshow and Levy 1999).

Choice of a sampling method � which requires a proper
identification of the target population, sampling frame,
sampling units, sampling design, study extent and sampling
effort � must be done within the frame of sampling theory.
These choices influence the ecological or evolutionary
patterns and processes that are revealed during analysis,
the confidence in the resulting estimates, and the validity of
extrapolation to other systems or time periods (Lemeshow
and Levy 1999, Olsen et al. 1999, Skalski et al. 2005).

Sampling in ecology

Sampling issues have always been an important aspect of
ecological studies and are frequently discussed in ecological
literature. For instance, different sampling designs can result
in radically different species distribution models (Austin
1987, Hirzel and Guisan 2002, Austin et al. 2006), models
for conservation prioritization (e.g. lichens, Edwards et al.
2004; butterflies, Haddad et al. 2008), economics forecast-
ing (e.g. forests, Schreuder et al. 1999; fishes, Courbois
et al. 2008, Hughes and Peck 2008), or public health
initiatives (e.g. radioactivity monitoring, Scott et al. 2008).
Though crucial, sampling issues are often difficult to
overcome in ecological studies due to apparent inconsis-
tencies between theory and practice, such as proper
identification of target population and sampling units, or
logistics problems (e.g. time, money, accessibility) when
planning field work, or when working with information
from many different extant datasets.

Unfortunately, this often leads to the implementation of
simplified or so-called convenience sampling designs
(Schreuder et al. 1999, Rosenstock et al. 2002), such as
following transects or roads (e.g. US Breeding Bird survey,
Peterjohn 1994, Bart et al. 1995), which, like all non-
probabilistic designs, suffer from unknown biases. Yet even
though probabilistic designs ensure the unbiased estimation
of simple parameters like means and variances, they may be
insufficient to fully address many ecological questions,
particularly those estimating the strength of relationships
between a response and a set of predictor variables over time
and space. Extending the use of classical sampling principles
on the estimation of means and variances to the evaluation
of such relationships is not straightforward. Two key pitfalls
concerning the appropriateness of sampling for evaluating
these relationships include:

Figure 1. Sampling concepts and vocabulary.
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Truncated gradient: accurately estimating the shape of a
biological pattern � such as the response of a functional
trait to an environmental gradient, which in many cases
will be non-linear � requires sampling across the entire
range of variation of both the environmental and
biological variables of interest (Mohler 1983, Austin
1987, Thuiller et al. 2010), and doing so in a balanced
manner (i.e. not with a large amount of points in one part
of the curve). Truncated gradients can lead to erroneous
statistical inference, which in turn can affect ecological
interpretation and lead to spurious predictions if the
response is used to extrapolate a species distribution in
space or time (Van Horne 2002, Thuiller et al. 2004).
This may occur, for example, when using administrative
instead of natural boundaries for delineating the study
extent, or when samples do not exist over part of the
range. It is then critical to employ a function that is
constrained at its extremes and that cannot be extrapolated
beyond these extremes. This common pitfall results when
samples are drawn from a frame that misses a substantial
portion of the target population.

Indirect gradients: inference from a given gradient
assumes that a specific value of the gradient has the
same meaning everywhere (Austin and Smith 1989). This
assumption is unlikely in studies dealing with sites that are
spread at continental or global scales, as rough global
gradients (e.g. temperature) are less informative at local
scales given they can subsume many underlying factors
that are locally or physiologically important (e.g. soil,
pollution, drought). This is also an issue for so-called
indirect gradients (sensu Austin 1987), such as latitudinal
and altitudinal gradients: an elevation of 1000 m a.s.l.
does not have the same meaning in terms of environ-
mental conditions in the Rocky Mountains, North
America, and on Mount Kenya, Africa. Indirect gradients
are inherently hard to interpret and are usually not
transferable in time and space; however, they are exten-
sively used in ecological studies in spite of explicit
warnings concerning their use as surrogates of climatic
gradients (Körner 2007, McCain 2009). Here, the sample
frame may better coincide with the target population but
be at a coarse grain that misses important, finer-grained
effects.

Objectives

Pitfalls concerning the appropriateness of sampling for
explanatory or predictive model estimation can be avoided
in many cases by: 1) an appropriate definition of the
sampling space (e.g. geographical, climatic); 2) selection of
a proper sampling design; and 3) the use of prior knowledge
on the study system. The increased desire to obtain and use
data over large, often continent-wide, spatial extents,
coupled with ever-increasing availability of large electronic
databases, makes it urgent to address these issues given how
they affect the reliability of estimates and inferences made
from field data and databases. We illustrate these three
issues and provide suggested solutions obtained from
a semi-virtual simulation study.

Methods

Simulation study

We used a semi-virtual simulation study to illustrate the
consequences of sampling decisions on estimation of
biological parameters. Semi-virtual studies are useful
because they contain, and can hence depict, the ‘‘true’’
pattern of interest, and therefore can be used to test and
compare sampling designs (Hirzel and Guisan 2002,
Austin et al. 2006, Zurell et al. 2010). Our simulation
study does not cover all sampling design possibilities, but
covers five commonly implemented designs in ecological
studies (see below). The simulation study was built in R
version 2.10.1 (R Development Core Team 2008) using
the packages ade4, graphics, lattice, and VGAM.

Definition of the case study

For our semi-virtual simulation study we selected a study area
with strong climate gradients that were not correlated with
topography. This choice of a real landscape allows us to
maintain realism in our simulations. The study area
encompasses 30 000 km2 located in southeastern France.
It includes part of the French Alps and the Rhône Valley
(Fig. 2). Sampling units were defined as pixels of the map (at
1�1 km) identified by their geographic coordinates (lati-
tude and longitude). The area was further described by
elevation data derived from the shuttle radar topography
mission (SRTM3, <www2.jpl.nasa.gov/srtm/>) and cli-
mate. For simplicity, we selected two uncorrelated climatic
gradients from the French National Climatic Network
(Aurhely, Benichou and Le Breton 1987): mean annual
temperature and total annual precipitation. We defined a
virtual climatically-constrained biological variable that varied
between 0 and 100 and could be measured over the study
area. This variable can be considered to represent one of many
different ecological variable types, such as growth rate, habitat
suitability, abundance, survival, radioactivity concentration,
net primary productivity, or allele frequency (Fig. 2).

Because many biological variables show an optimum at
some intermediate environmental condition and decline
gradually towards the boundaries (Hirzel and Guisan 2002,
Gaston 2003), the formulated variable followed a skewed
Gaussian shape along both selected climatic gradients
(obtained with the R function dsnorm()). To add some
realism, and because two gradients may not be sufficient to
describe the environmental conditions that influence the
distribution of a biological variable, we added a random
noise variable having a normal distribution (mean�0,
standard deviation�4, i.e. normally spread between ca
�15 and 15) to simulate the other factors influencing the
organism of interest (after Mohler 1983, Hirzel and Guisan
2002). We ensured that the optimum of the biological
variable (highest value) occurred in the study area, but was
not centered climatically (8.288C and 1236 mm). To avoid
the problems of sampling-induced bias due to the detect-
ability of sampling units � an important topic not evaluated
in our simulation � we assumed that the variable of interest
had a detectability of 1.0, occurred everywhere, and is
stable over time (Wintle et al. 2005, Mackenzie 2006).
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The sampling frame is thus defined as the list of all the
pixels in the defined geographic space.

Virtual samplings

We tested the effects of five common sampling approaches
implemented in ecological studies on our virtual biological
variable. Samples were drawn from the sampling frame
following designs of increasing complexity (see Fig. 3 for
a visual example): 1) simple random, the simplest prob-
abilistic design where each pixel from the frame had
the same probability of being sampled. 2) Road-based
sampling, a commonly used non-probabilistic design where
only pixels close to the main roads had a non-null
probability (i.e. inversely proportional to the distance to
roads) of being sampled. 3) Stratified random by altitude, a
commonly used probabilistic design where equal numbers
of pixels were randomly drawn from a fixed number (here,
ten) of altitudinal classes. 4) Systematic from the climatic
space, a probabilistic design given a random start. Climatic
space was stratified within a regular grid and one pixel was
randomly drawn from each cell of this grid. 5) Model-based
design, a learning non-probabilistic sampling process.
We first drew a sub-sample from the frame using uniform
sample from the climatic space (i.e. design 4). The response
to the two climatic gradients was first estimated using
a polynomial model with linear and quadratic terms for
temperature and precipitation and an interaction on a first
part of the sample:

Variable: temperature�temperature2�precipitation
�precipitation2�temperature�precipitation (2)

Negative predictions were converted to zeros. This prior,
model-based knowledge of how the response generally
varies along environmental gradients was used to define
the final sampling (second part), which followed a central
composite factorial design centred on the estimated optimal
conditions (OC) and surface response methodology (Box

and Hunter 1957, Wu and Hamada 2000). The two
iterative parts of the overall sampling design were chosen
here to contain an equal number of sampling units, but the
optimal allocation is likely to depend on the problem.

To evaluate the effect of sample size relative to each
design, samples containing 50, 200, or 1000 sampling units
were drawn following each sampling design. Each combi-
nation of design and sample size was simulated 1000 times.
For the three probabilistic designs (1, 3, 4), the probability
pi to sample the unit i was determined analytically. We ran
the two non-probabilistic designs (2, 5) 10 000 times to
numerically determine the probability pi of the unit i of
being sampled.

Evaluation methods of the different samplings

We estimated two biological parameters from the virtual
samples that we then compared to the ‘‘true’’ values: mean
and optimum of the biological variable (Fig. 4). These are
only two examples among all parameters that could be
estimated for the variable (e.g. sum, variance, range,
response to gradients). 1) We estimated the weighted
mean (eq. 1, Horvitz-Thompson estimator) for the prob-
abilistic samples, and without weights for the non-
probabilistic samples. 2) We also estimated the optimal
conditions (optimum) in environmental space for the
biological variable from the linear model described above
(Fig. 4c). Finally, we calculated the Euclidean distance (in
standard deviation) between the ‘‘true’’ and the estimated
optimum in the standardized variable space (e.g. the
distance between the white circle and the white dots or
black squares in Fig. 4c); this distance gives an idea of how
well the optimum was estimated (Fig. 4b). We thus
assumed that the variable could be estimated using a
polynomial model (as in the eq. 2) with linear and quadratic
terms for temperature and precipitations and an interaction.

Figure 2. Study site and the virtual variable of interest. The study site is located in the south-east of France. (a) Altitudinal map of the
study site including a part of the French Alps and of the Rhône valley. (b) Construction of the virtual biological variable as a skewed
Gaussian curve along both temperature and precipitations gradients plus a noise. The white line delimits the environmental conditions
existing in the study area. (c) Map of the virtual ecological variable through the study area. The virtual variable ranges from 0 to 100 (e.g.
habitat suitability, relative biomass, relative fecundity).
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Results

For both biological parameters, bias and precision of the
estimates depend on the sampling design (Fig. 4).
As expected, sample size had a strong effect on the precision
of estimates of both the mean and the distance to optimum.
In general, larger samples resulted in more precise estimates
(Fig. 4). However, the efficiency of the sampling design also
depends on the question and the parameters to be estimated
(e.g. mean vs optimum, Fig. 4). The estimate of the mean
was closer to truth (no bias and high precision) using the
probabilistic samples where data were drawn using a simple
random (1) and systematic sample from the climatic space

(4) than from any other sampling design (Fig. 4a).
Unbiased estimates with lower precision were obtained
with the stratification by altitude (3). In contrast, estimates
were biased for the non-probabilistic designs. The mean was
underestimated with the road-based design (2) because cold
areas (higher values) were less frequently sampled (see
truncated gradients), and was over-estimated with the
model-based design (5), as sampling was more intense
closer to the optimum.

However, the estimate of the variable’s optimum was
closer to the truth (smaller bias and higher precision) when
calculated from the model-based design (5) than from any
other sampling design (Fig. 4b). Two designs, systematic

Figure 3. Importance of the sampling space onto which the sampling design is set up. Sampling designs used in this study: the red dots
(20 measurements) represent a sample drawn from the frame through different sampling designs. From top to bottom, a latitudinal
transect sampling (drawn from the frame within the geographic space), a road-based sampling (drawn from the frame within the
geographic space), a stratification by altitude (drawn from the frame within the topographic space), a model-based sampling (drawn
from the frame within the climatic space). The red boxes indicate in which space the sampling has been performed. Axes have not been
repeated on all figures, they are the same within columns. Sampling probability (left column): patterns resulting from four different
sampling designs, i.e. for each unit of the frame (here, each pixel from the map) its probability to be sampled for four contrasting
sampling designs (the darker points represent the higher probabilities). These maps of probability are differing and will thus result in
different weighting in follow-up calculations. Different spaces (from left to right): the topographic space represented within the
geographical map (green for low altitudes and brown for high altitudes), the climatic space represented by temperatures and
precipitations and the biological space represented by the variable of interest mapped into the climatic space (green for low values and
brown for high values).
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from the climatic space (4) and simple random (1), resulted in

somewhat less precise estimates of the optimum. Finally, the

road-based (2) and stratified random by altitude designs (3),

resulted in very poor estimates of the response shape (Fig. 5)

with its optimum (see truncated gradients). Interestingly, the

higher the sampling effort, the poorer the estimates of the

optimum, with mean estimates generally being greater than

the target population value. With 200 measurements, the

optimum was found at 198C and 1758 mm for the simple

random design compared to 9.88C and 1376 mm for the

model-based design (Fig. 4c, 5). These were relative to the
true optimums for temperature and precipitation of 8.288C
and 1236 mm, respectively.

Discussion

A story of sampling spaces

Our simulation study illustrates the importance of the
selection of the appropriate sampling space (Fig. 3). The

Figure 4. Effects of sampling designs and sample size on the precision of parameter estimations. Illustration of the sampling design effect
on the precision and bias of the estimation of two biological variables: (a) the mean variable and (b) distance between the ‘‘true’’ optimum
corresponding to environmental optimal conditions for the observed variable and the estimated one. Results are given for the five
sampling designs: 1) simple random, 2) road-based, 3) stratified random by altitude, 4) systematic from the climatic space, and 5) a
model-based. The boxplots of the estimated values give the median, and the first and third quartiles of the estimates (mean and distance to
optimum). Results are given for 50, 200 and 1000 sampling units. (a) Distribution of the estimations of the parameter mean. The grey
line is the true value on the studied area. (b) Distribution of the Euclidian distances between the true optimum of the parameter and the
one estimated from virtual measurements. The grey line corresponds to 0, the best value that can be obtained. (c) Map of the true (red
dot) and estimated (blue squares and green dots) optimum of the parameter, for 200 measures estimated optima for the simple random
design (1) in blue and the model-based design (5) in green. The gray shade represents the virtual biological variable used in this study
(Fig. 2b).
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sampling frame, here defined as the set of all geographical
pixels in the study site, can be represented in different
spaces (Hutchinson 1957): geographic space (e.g. latitude,
longitude), topographic space (e.g. elevation), climatic space
(e.g. temperature, precipitations), and biological space (e.g.
habitat suitability). In our example, the sampling frame was
defined in the geographic space. From this frame, we
generated a set of sampling units that are not redundant in
this space because one geographical location corresponds to
only one possible unit. However, when projected into the
climatic space, the frame looks less representative than in
the geographic space, with a large percentage of the
sampling units representing hot and dry conditions, and a
small percentage of them representing other climatic
conditions. Clearly, switching from one space to another
can have consequences on the sampling (Fig. 3). For
instance, the road-based sampling in our example leads to
a complete coverage of the latitudinal gradient, but to an
incomplete coverage of the altitudinal and temperature
gradients, with a complete omission of cold mountainous
areas far from roads. This easily explains why sampling in
an inadequate space might result in problems as we
described in the case of truncated gradients. It also shows
that selecting the appropriate space to sample in is crucial
for learning about the abiotic factors generally implied in
ecological processes (Magnani 2009). The sampling is
however often done in one space (e.g. geographical) while
the pattern of interest occurs in a different space (e.g.
climatic, Fig. 3). For example, both dispersal limitation and
spatial autocorrelation of the environment (e.g. climate) can
shape species distributions in the geographical space (Austin
and Smith 1989, Araujo et al. 2009). Consequently, the
selection of the sampling space may seem trivial on the
surface but is not always evident in practice.

Influence of the sampling design

On the probabilities to sample a sampling unit
How the sampling design may influence the patterns
revealed from the sampled data is rarely discussed in
ecological studies, where the focus is generally on the
estimation of simple parameters such as population averages,
size, or measures of diversity (Yoccoz et al. 2001, Edwards
et al. 2006). However, the method used to implement the
sampling can strongly influence the estimates by affecting the
selection probabilities of the sampling units (Fig. 3, Austin
and Smith 1989, Sauer et al. 2003). Sampling probabilities
are determined analytically in the case of probabilistic
designs, and evaluated numerically in the case of non-
probabilistic designs. Both can be displayed in geographical
space. Three of the designs exemplified in Fig. 3 (road-based,
stratified random by altitude, and model-based design) lead
to very low but non-null probabilities, and to distinctly
different probability patterns. This has large consequences
for the final parameter estimates: similar data sets resulting
from two different sampling designs will lead to different
inferences because the weights given to individual observa-
tions are design-dependent (Lemeshow and Levy 1999).

On the estimates of simple and complex parameters
Our simulation study illustrates that the efficiency of the
sampling design depends on the question and the para-
meters to be estimated (e.g. mean vs optimum, Fig. 4). If
the basic aim is to estimate the mean value of a biological
variable over a study area, the simple random sampling
design, one of the simplest probabilistic designs, gives the
results closest to truth. In contrast, if the basic aim is to
estimate the optimum of the biological variable, then the
model-based design gives the results closest to truth, even if
the model used to estimate the optimum was simpler than

Figure 5. Estimation of the surface responses for the different designs. The 3D surface is given along the two environmental gradients
temperature and precipitations. From top left to bottom right, the true surface and response curves obtained with 200 measurements for
the simple random, road-based, the stratified random by altitude, the systematic from the climatic space, and the model-based designs.

1034

S
D

M
S

P
E

C
I
A

L
I
S

S
U

E
:

S
P

E
C

I
E

S
D

I
S

T
R

I
B

U
T

I
O

N
M

O
D

E
L

L
I
N

G



the one used to construct the simulation study. It is not
surprising that the model-based design performed better
than the other methods to estimate models, as it represents
an iterative learning method. The so-called surface response
methodology, which is derived from model-based sampling,
was developed to estimate the kind of response shapes used
in our virtual example (Box and Hunter 1957, Wu and
Hamada 2000).

On the required sampling effort
A key result from this semi-virtual study is that sample size
was not the most influential factor in our ability to draw
biological inference; indeed, sampling design had a stronger
influence on the precision of parameter estimation than did
sample size. This means that, concerning parameter
estimation, appropriate design could reduce the sampling
effort and costs associated with sampling, an important
attribute given that resources for many ecological investiga-
tions are generally limited. It suggests, for example, that
sub-sampling large databases with a design for deriving
a dataset for model building may be preferred over using the
whole dataset if the original design is unknown.

Using prior knowledge of the study system

Our simulation study also illustrates the importance of a
priori knowledge of the system when establishing a
sampling design. Basing sampling designs on prior knowl-
edge and detailed hypotheses of how the main variables of
the study system will impact the variables of interest
is useful for reducing bias and increasing precision in the
estimations of parameters with regard to the research
question and to the costs. Incorporating prior knowledge
of the study system is exactly the principle applied in
Bayesian statistics in order to make reliable statistical
inferences. Prior knowledge is, however, too often ignored
and typically unknown, which makes it a challenging task
(Clark 2005). There are potentially three ways to generate
an efficient sampling design prior to starting field work.
First, one can use expert knowledge and past studies
to identify the research question, variables to measure, the
corresponding target population, and from this derive an
appropriate sampling frame. Expert knowledge is necessary
but insufficient as a sole attribute of design, as it usually
ignores other important variables or gradients that are not
yet identified as important.

Second, one can perform a preliminary descriptive
analysis in order to develop a design tailored to the question
and study system. A very simple sampling scheme (e.g.
simple random sample) can be first conducted on the
variable of interest and then the response between the
environmental and biological variable can be evaluated.
A derived, more complex sampling design can then be based
on the first results, such as surface response methodology
(Box and Hunter 1957, Wu and Hamada 2000), from
which we derived our model-based design. This powerful
methodology effectively captures variation along a gradient
and relies on a priori knowledge or assumptions on the
patterns of interest, but is rarely used in ecology (but
see Inouye 2001). Response surface methodology is
particularly efficient to investigate effects of multiple factors

simultaneously (Inouye 2005). Using previously known
distributions (Brito et al. 1999, Albert et al. 2010) or
habitat suitability models (Guisan et al. 2006, Singh et al.
2009) as prior knowledge to establish or improve the
sampling design has rarely been applied in ecology (but see
Edwards et al. 2005).

Third, one can develop simulation studies, that
are important tools for investigating ecological processes
(Hirzel and Guisan 2002, Austin et al. 2006, Zurell et al.
2010), to aid in the development of appropriate sampling
designs. We feel that such pathways have not been
sufficiently exploited in ecology studies (but see Dengler
and Oldeland 2010). Using real data and expert knowledge,
as used in our simulation study, one can: 1) construct
acceptable hypotheses on the expected patterns; 2) simulate
different sampling designs including, for instance, the costs
of sampling or the difficulty to reach the sampling sites; and
3) test the effect of sampling design (distribution of the
sample in the sampling space) and effort on estimates (e.g.
number of populations, number of individuals per popula-
tions). Following these steps can support decision-making,
aid in developing sampling procedures better adapted to the
research question, the hypotheses and the constraints of the
study, and in particular it may enhance research flexibility
(spare solutions) when facing the complexities that are
inherent to field work.

Estimating response curves, models or derived
parameters

Many ecological questions rely on accurate estimations of
response curves and surfaces (Austin 1987). Moreover, the
selection of models by balancing information content with
parsimony is a crucial question in model estimation (Hastie
et al. 2009). Many ecologically relevant parameters can be
derived from models, such as optima (e.g. trait or growth
optimal along an environmental gradient, Albert et al.
2010), breadth (e.g. niche breadth along an environmental
gradient, Thuiller et al. 2004), or slope (e.g. rate of change
in time or space). However, these aspects have not been
well-linked to the sampling design, although we showed the
importance of these issues when estimating different types
of parameters (simple vs complex).

In particular, the generalization of the Horvitz-Thompson
weighting of observations is not straightforward for the
estimation of nonlinear parameters (e.g. the optimum of a
quadratic curve, as in the simulation study). Estimation of
nonlinear statistics from complex surveys has long been
considered a difficult problem in the sampling literature,
and different approaches have been suggested (Kish and
Frankel 1974, Campbell 1980, Deville 1999, Berger and
Skinner 2005), based either on a linearization of the
estimator (so that the classical Horvitz-Thompson approach
can be used) or on resampling (jackknife or bootstrap, Shao
1996). To the best of our knowledge, these approaches have
not been routinely applied in ecology and evolution.

Moreover, the way model should be selected (Hastie
et al. 2009) by balancing information with parsimony is a
crucial point for the question of model estimation. This is
not addressed sufficiently in the sampling literature but goes
beyond the goal of our study. In sum, we believe that there
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is a need to assess how to estimate ecologically relevant
parameters which are both unbiased and nonlinear, and
how to evaluate such estimates both in terms of specific
designs (e.g. surface response methodology) and post-
sampling analysis (e.g. Horvitz-Thompson approach) to
address important questions in ecology and evolution.
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