
ar
X

iv
:2

00
2.

07
76

4v
6 

 [
cs

.S
E

] 
 2

0 
O

ct
 2

02
1

Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Sampling in Software Engineering Research:

A Critical Review and Guidelines

Sebastian Baltes · Paul Ralph

Received: date / Accepted: date

Abstract Representative sampling appears rare in empirical software engi-
neering research. Not all studies need representative samples, but a general
lack of representative sampling undermines a scientific field. This article there-
fore reports a critical review of the state of sampling in recent, high-quality
software engineering research. The key findings are: (1) random sampling is
rare; (2) sophisticated sampling strategies are very rare; (3) sampling, rep-
resentativeness and randomness often appear misunderstood. These findings
suggest that software engineering research has a generalizability crisis. To ad-
dress these problems, this paper synthesizes existing knowledge of sampling
into a succinct primer and proposes extensive guidelines for improving the con-
duct, presentation and evaluation of sampling in software engineering research.
It is further recommended that while researchers should strive for more repre-
sentative samples, disparaging non-probability sampling is generally capricious
and particularly misguided for predominately qualitative research.

Keywords Sampling · Representative sampling · Random sampling ·

Purposive sampling · Probability sampling · Research methodology

1 Introduction

Most research involves selecting some of many possible items to study; that
is, sampling. Sampling is crucial not only for positivist research (e.g. ques-
tionnaires, experiments, positivist case studies) but also for interpretivist and

S. Baltes
University of Adelaide, Adelaide, Australia
E-mail: sebastian.baltes@adelaide.edu.au

P. Ralph
Dalhousie University, Halifax, Canada
E-mail: paulralph@dal.ca

http://arxiv.org/abs/2002.07764v6


2 Sebastian Baltes, Paul Ralph

constructivist research (e.g. interview studies, grounded theory, interpretivist
case studies).

In present-day epistemology, positivism refers to various ideological and
philosophical positions usually associated with quantitative research, such as
belief in objective reality and attempting to support a priori theories with
(usually quantitative) empirical evidence. Sampling is crucial for positivist
studies because it determines external validity.

Meanwhile, social constructivism is the idea that much of our reality is so-
cially or culturally constructed. This leads to interpretivism: the view that the
methods of natural science are insufficient or inappropriate for understanding
social reality because it is socially and culturally constructed. Interpretivists
believe that each situation is unique and concepts from one context do not nec-
essarily generalize to others. Both schools are associated with building (more
so than testing) context-dependent, middle-range theories. The goal of inter-
pretivists and constructivists is not statistically generalizing from samples to
populations—they sometimes do not even use the term “sampling”. However,
sampling is still crucial for them because selecting poor research sites hinders
data collection and focusing on the wrong topics undermines theory building.

We were motivated to write this paper by three observations concerning
the difficulty of sampling for software engineering (SE) research:

1. For many SE phenomena, there is no suitable sampling frame; that is, a
list from which to draw a sample.

2. Some SE studies adopt poorly understood sampling strategies such as ran-
dom sampling from a non-representative surrogate population.

3. Many SE articles evince deep misunderstandings of representativeness—
the key criteria for assessing sampling in positivist research (see Section 2.6).

The purpose of this paper is therefore as follows.

Purpose: (1) Providing a detailed, SE-specific primer on sampling con-
cerns and techniques; (2) investigating the state of sampling in SE re-
search; (3) providing guidelines for improving sampling in SE research.

Please note: This paper discusses common problems and errors in existing
research (e.g. misusing the term random, overstating sample representative-
ness). However, we intentionally do not cite specific examples of papers that
make these errors because our goal is to foster consensus not division. We do
not wish to cast aspersions on individual researchers for endemic problems.
Anyone who reads widely in SE research should recognize the ubiquity of the
problems described below.

2 Sampling: A Primer

For our purposes, sampling is the process of selecting a group of items to
study (a sample) from a (usually larger) group of items of interest. The group
of items of interest is called the population, and the (usually incomplete) list



Sampling in Software Engineering Research: A Critical Review and Guidelines 3

Table 1 Summary of Sampling Approaches

Type Approach Capsule Description

Non-Probability Convenience Select items based on expediency
Non-Probability Purposive Select items most useful for study’s objective
Non-Probability Referral-chain Select items based on relationship to existing

items
Non-Probability Respondent-driven Bias-mitigating variant of referral-chain
Probability Whole frame Select the entire sampling frame
Probability Simple random Select items entirely by chance
Probability Systematic random Select every xth item from a random start
Multi-stage Stratified Select items from different groups randomly

but in equal proportion
Multi-stage Quota Select items from different groups purposively

but in equal proportion
Multi-stage Cluser Select items in stages, where each stage is a

subset of the previous

of items in the population is called the sampling frame. The degree to which
a sample’s properties (of interest) resemble those of the population is the
sample’s representativeness (see Section 2.6 for more).

Researchers have developed diverse approaches for selecting samples from
populations. There is no single best technique or hierarchy of better and worse
techniques. Different sampling approaches are appropriate for different pur-
poses in different circumstances. While there are dozens of sampling strategies,
this section focuses on those most applicable to SE research.

The following exposition on sampling is primarily synthesized from sev-
eral textbooks (Cochran, 2007; Henry, 1990; Trochim and Donnelly, 2001)
and extends similar primers in the SE literature (e.g. de Mello et al., 2015;
Kitchenham and Pfleeger, 2008). A good grasp of the sampling strategies and
issues dissected in this section is necessary to understand the study that fol-
lows. Table 1 summarizes the sampling approaches.

2.1 Non-probability sampling

Non-probability sampling includes all of the sampling techniques that do
not employ randomness. This section discusses four kinds of non-probability
sampling: convenience, purposive, referral-chain (or snowball) sampling, and
respondent-driven sampling.

While some (positivist) methodologists (e.g. Hoeven et al., 2015) present
non-probability sampling as intrinsically inferior to probability sampling, non-
probability sampling is preferable for some purposes in some contexts (see
Section 2.6).



4 Sebastian Baltes, Paul Ralph

2.1.1 Convenience sampling

In convenience sampling, items are selected based on availability or expedi-
ence. When we select people or artifacts to study arbitrarily, or based on them
being nearby, available or otherwise easy to study, we adopt convenience sam-
pling. Convenience sampling is controversial because it is very popular despite
threatening generalizability (cf. Arnett, 2008; Henrich et al., 2010). The key
advantages of convenience sampling are: (1) speed, (2) low cost and (3) no
need for a sampling frame.

2.1.2 Purposive sampling

In purposive sampling, items are selected according to some logic or strategy,
carefully but not randomly (Patton, 2014). Guidelines for purposive sampling
are often provided in the context of selecting sites or data sources for pre-
dominately qualitative, interpretivist research (e.g. Miles et al., 2014). While
non-probability samples can be representative of broader populations, the goal
of non-probability sampling is often to find accessible, information-rich cases,
sites, organizations or contexts from which researchers can learn about their
topic of study (Patton, 2014).

Purposive sampling includes several approaches, for example:

1. Studying projects hosted on GitHub1 because it is popular and has good
tool support.

2. Recruiting a panel of experts on a particular topic for a focus group (“ex-
pert sampling”).

3. Selecting projects that are as diverse as possible (“heterogeneity sam-
pling”)2.

The key advantages of purposive sampling are: (1) the researcher can ex-
ercise expert judgment; (2) the researcher can ensure representativeness on a
specific dimension (see Section 2.6); (3) no sampling frame is needed (e.g. you
do not need a list of every software company in your country to select ABC
corporation as the site for a case study). The main challenge with purposive
sampling is that it is intrinsically subjective and opportunistic.

2.1.3 Referral-chain (snowball) sampling

In referral-chain sampling (also called snowball sampling) sampling, items are
selected based on their relationship to previously selected items. Snowball sam-
pling is useful when there is no good sampling frame for the population of
interest (Faugier and Sargeant, 1997). For example, there is no comprehensive
list of black-hat hackers or software developers who have experienced sexual
harassment. However, members of such “hidden populations” often know each

1 https://github.com
2 Diversity can be defined along many different axes, gender being one of

them (Vasilescu et al., 2015).

https://github.com


Sampling in Software Engineering Research: A Critical Review and Guidelines 5

other. Snowball sampling with human participants therefore works by finding
a few individuals in the population, studying them, and having them identify
other members of the population.

In SE, snowball sampling is commonly used in literature reviews to supple-
ment keyword searches. When we begin with an article A, searching the papers
A cites is sometimes called backward snowballing while searching the papers
that cite A is sometimes called forward snowballing. We can study software
libraries, methods and services (as in service-oriented architecture), in much
the same way.

The advantage of snowball sampling is that it helps us to identify items
that are not in our sampling frame. However, snowball sampling biases results
toward more connected people (or artifacts) and can lead to sampling a small,
highly-interconnected subset of a larger population.

2.1.4 Respondent-driven sampling

Respondent-driven sampling is an advanced form of referral-chain sampling
designed to mitigate sampling bias (Heckathorn, 1997). It works as follows.

1. Begin with diverse initial participants (seeds) who (i) have large social
networks, (ii) represent different sub-populations, (iii) do not know each
other, and (iv) can influence peers to participate.

2. Have participants recruit, rather than identify, peers. This reduces selection
bias by the researcher.

3. Limit recruitment such that each participant can only recruit a small num-
ber of peers (typically three) to prevent highly-connected participants from
biasing the sample.

4. Require many (e.g. 20) recruitment waves. This generates longer referral
chains, decreasing the risk of oversampling from a highly-connected subset
of the population.

5. Prevent individuals from participating more than once.
6. Continue recruitment until the sample reaches equilibrium, the point where

the distribution of variables of interest is stable.
7. Apply a mathematical model to account for sampling bias (cf. Johnston and Sabin,

2010; Heckathorn, 1997).

While the details of the mathematical model used are beyond the scope
of this paper, more information and tools are available.3 Respondent-driven
sampling has, however, been criticized for producing optimistic confidence in-
tervals, and generally being “substantially less accurate than generally ac-
knowledged” (Goel and Salganik, 2010).

2.2 Probability sampling

Probability sampling includes all of the sampling techniques that employ ran-
domness. Here, random means that each item in the population has an equal

3 http://respondentdrivensampling.org/

http://respondentdrivensampling.org/


6 Sebastian Baltes, Paul Ralph

probability of selection (Daniel, 2011), not selecting items arbitrary or without
logic. Standing on a street corner interviewing “random” pedestrians, recruit-
ing participants using email or advertising on social networks or assigning
participants to experimental conditions in the order in which they arrive at a
laboratory are not random. Practically speaking, any selection without using
a random number generator is probably not random.4

Research on and guidelines for probability sampling are often written from
the perspective of positivist questionnaire studies (e.g. Kitchenham and Pfleeger,
2002). Since examining the entire population is usually impractical, the re-
searcher selects a subset of the population (a sample) and attempts to estimate
a population parameter by statistically analyzing the sample. Probability sam-
pling ostensibly facilitates such statistical generalization (cf. Mullinix et al.,
2015). The overwhelming challenge for applying any kind of probability sam-
pling in SE is the absence of comprehensive sampling frames for common units
of analysis/observation (see Section 6). This section describes some probability
sampling approaches that are relevant to SE research.

2.2.1 Whole frame

“Whole frame” simply means that all items in the sampling frame are selected.
Suppose a researcher wants to assesses morale at a specific software develop-
ment company. The company provides a complete list of developers and their
contact information. The researcher creates a survey with questions about job
satisfaction, views of the company, employees’ future plans, etc. They send the
questionnaire to all of the developers—the entire sampling frame. Whether
this is technically “sampling” is debatable, but it is an important option to
consider, especially when data collection and analysis are largely automated.

2.2.2 Simple Random Sampling

Simple random sampling means that items are selected entirely by chance, such
that each item has equal chance of inclusion. Now suppose the above survey
finds low morale. The researcher decides to follow up with some in-depth
interviews. However, interviewing all 10,000 developers is clearly impractical,
so the researcher assigns each developer a number between 1 and 10,000, uses
a random number generator to select 20 numbers in the same range, and
interviews those 20 developers. This is simple random sampling because the
researcher simply chooses n random elements from the sampling frame.

2.2.3 Systematic Random Sampling

In systematic random sampling, given an interval, x, every xth item is selected,
from a starting point chosen entirely by chance. Suppose, to complement the

4 True random number generation is available from numerous sources, including
https://www.random.org/

https://www.random.org/


Sampling in Software Engineering Research: A Critical Review and Guidelines 7

interviews, the researcher decides to review developers’ posts on the company’s
messaging system (e.g. Slack). Suppose there is no easy way to jump to a
random message and there are too many messages to read them all. So the
researcher generates a random number between 1 and 100 (say, 47) and then
reads message 47, 147, 247, etc. until reaching the end of the messages. This
is systematic random sampling. Each post still has an equal probability of
inclusion; however, the consistent interval could bias the sample if there is a
recurring pattern that coincides with the interval (e.g. taking annual weather
data in the middle of summer vs. the middle of winter).

2.2.4 Panel sampling

Panel sampling is when the same sample is studied two or more times. Now
suppose the researcher implements a program for improving morale, and a
year later, re-interviews the same 20 developers to see if their attitudes have
changed. This is called panel sampling because the same panel of developers
is sampled multiple times. Panel sampling is probability sampling if the panel
is selected randomly, and non-probability sampling otherwise.

2.2.5 A repository mining example of probability sampling

All four of these probability sampling strategies could also be applied in, for
example, repository mining. We could (in principle) study every public project
on GitHub using GHTorrent (Gousios, 2013) as our sampling frame (whole
frame), randomly select 50 projects (simple random sampling), sort projects
by creation date and study every 100th project (systematic random sampling),
or take repeated measurements from the same 100 projects over time (panel
sampling).

2.3 Multistage sampling

Methodologists often present multistage sampling as a special case where two
or more sampling strategies are intentionally combined (e.g. Valliant et al.,
2018). Two common approaches are stratified/quota sampling and cluster sam-
pling.

2.3.1 Stratified/Quota sampling

In stratified and quota sampling, the sampling frame is divided into sub-frames
with proportional representation. Suppose that the developer morale survey
discussed above reveals significant differences between developers who identify
as white and those who do not. However, further suppose that 90% of the
developers are white. To get more insight into these differences, the researcher
might divide developers into two strata—white and non-white—and select 10
developers from each strata. If the developers are selected randomly, this is



8 Sebastian Baltes, Paul Ralph

called stratified random sampling. If the developers are selected purposively,
it is called quota sampling. This sampling strategy is interesting because it is
intentionally non-representative (Trost, 1986).

We conceptualize these strategies as multistage because the researcher pur-
posively chooses the strata (stage 1) before selecting the people or artifacts to
study (stage 2). This paper uses stratified random sampling (see Section 3).

2.3.2 Cluster sampling

Cluster sampling is when the sampling frame is divided into groups and items
are drawn from a subset of groups. Suppose that the company from our morale
survey example has 20 offices spread around the world. Traveling to all 20
offices for face-to-face interviews could be prohibitively expensive. Instead,
the researcher selects three offices (stage 1) and then selects 7 participants in
each of these offices (stage 2). This is called cluster sampling. If and only if both
selections are random, it is called cluster random sampling. Cluster sampling
works best when the groups (clusters) are similar to each other but internally
diverse on the dimensions of interest.

If the researcher found that the seven developers at one office seem much
happier than developers in the rest of the company and therefore conducted
extra interviews at that office, in hopes of unraveling the sources of im-
proved morale, this is called adaptive cluster sampling (Thompson, 1990;
Turk and Borkowski, 2005).

2.4 Sampling in qualitative research

Qualitative researchers have to select both sites (e.g. teams, organizations,
projects) and data sources (e.g. whom to interview, which documents to read,
which events to observe). Different qualitative research traditions (e.g. grounded
theory, phenomenology, ethnography) talk about this “selection” in signifi-
cantly different ways (Gentles et al., 2015). Some qualitative researchers use
the term “sampling” (e.g. Glaser and Strauss, 2017). Others argue that “sam-
pling” implies statistical generalization whereas qualitative research involves
analytical generalization (Yin, 2018; van Manen, 2016). Others argue that
there are many kinds of generalization, and qualitative researchers generalize
from data to descriptions to concepts to theories, rather than from samples to
populations (e.g. Lee and Baskerville, 2003).

This paper tries to clarify that sampling does not imply statistical gener-
alization. Predominately qualitative approaches including case studies, inter-
view studies, grounded theory and action research typically use non-probability
sampling to support non-statistical generalization from data to theory (cf.
Stol et al., 2016; Checkland and Holwell, 1998; Ralph, 2019). Predominately
quantitative studies, especially questionnaire surveys, sometimes use probabil-
ity sampling to support statistical generalization from samples to populations.



Sampling in Software Engineering Research: A Critical Review and Guidelines 9

As we shall see below, however, many quantitative studies also adopt non-
probability sampling.

In our view, selecting sites and data sources is a kind of sampling. Selecting
a site because it possesses an interesting property is purposive sampling. In-
terviewing whoever will speak on a subject of interest is convenience sampling.

As fledgling concepts or theories begin to emerge, however, the researcher
may use them to decide what to focus on next. In the grounded theory lit-
erature, theoretical sampling refers to selecting items to study based on an
emerging theory (e.g. Breckenridge and Jones, 2009; Draucker et al., 2007).
For example, suppose the researcher from our running example begins gener-
ating a theory of developer morale, which includes a preliminary category “in-
terpersonal conflict.” Selecting peer code reviews with many back-and-forth
interactions, because they might contain evidence of interpersonal conflict,
would be theoretical sampling.

2.5 Sampling Frameworks and Algorithms

Historically, sampling strategies were described using a three-tier framework:
population, sampling frame, sample. For example:

– Population: Households in City X
– Sampling Frame: City X ’s phone book
– Sample: 100 phone numbers randomly selected from City X’s phone book

In other words, the sample is a subset of the sampling frame and the
sampling frame is a subset of the population. The trouble is, many sampling
approaches used in SE research do not map cleanly into this framework.

For instance, suppose that we are interested in non-code documents in
software projects (e.g. specifications, lists of contributors, diagrams, budgets).
Furthermore, we are especially interested in documents for open source systems
and we have had good experiences mining GitHub, so we will limit ourselves to
open source projects on GitHub. We only speak English, so we exclude all non-
English documents. Now we randomly select 50 English-language open source
projects on GitHub and then randomly select up to ten documents from each
selected project. We end up with 500 documents. Now suppose we also contact
the owners of each selected project to ask if they object to the research, and
suppose two of them do, so we delete the corresponding 20 documents.

The above example has seven sets. Mapping seven sets into a three-tier
framework is intrinsically confusing. It’s not clear if the sample is the 500
documents we collected or the 480 we retained. It’s not clear if the sampling
frame is all GitHub projects or GitHub projects that have non-code documents,
that are open source, that are in English or some combination thereof. It is
not clear if the population is all non-code documents in the world or limited
to GitHub, English, open source projects or some combination thereof.

Furthermore, while simple random sampling was involved, it came after
eliminating most software projects. Does claiming that a sample is good be-



10 Sebastian Baltes, Paul Ralph

cause we used probability sampling make any sense if we have previously
excluded 99% of the population?

We suggest bypassing all this confusion by thinking of most quantitative
studies as having a multistage sampling algorithm. Precisely defining what is
the sampling frame and what is the sample is not as important as describ-
ing the sampling procedures clearly enough to enable others to replicate and
understand how the sample might be biased. Authors should identify the pop-
ulation they want to generalize to and papers should reflect on how each step
in the sampling algorithm could bias the results.

If the sample is retrieved using a script, the script should be provided in
an appropriately archived replication package. Alternatively, if the sampling
is performed manually, the precise, step-by-step algorithm used to determine
the sample should be provided either in the main text (for shorter algorithms)
or the replication package (for longer algorithms). In studies with many steps
(e.g. systematic literature reviews) consider a diagram showing how many
items were found or eliminated in each step (cf. Moher et al., 2009, Fig 1).

For some studies, sampling algorithms can be expressed in a single sentence
such as ‘we selected Corporation Y because of our pre-existing relationship’
or ’we recruited a convenience sample of students from the authors’ university
using our faculty’s student email list.’ There is nothing wrong with having
a simple sampling algorithm as long as it is appropriate for the goals of the
study.

In contrast, the process by which qualitative researchers choose which data
sources to focus on can be complex, intuitive and impossible to describe al-
gorithmically. Rather, qualitative researchers should describe their approach
and reasoning.

2.6 Representativeness

Kruskal and Mosteller (1979a) argue, with extensive examples, that the term
“representative” has been (mis)used in at least five ways:

1. as a “seal of approval bestowed by the writer”
2. as the “absence of selective forces in the sampling”
3. as a “miniature or small replica of the population”
4. as a claim that its members are “typical of the population” or “the ideal

case”
5. as a claim to heterogeneity or that all subpopulations or classes are included

(not necessarily proportionately) in the sample

Recall: representativeness is the degree to which a sample’s properties (of
interest) resemble those of a target population. Representativeness is a mutual
property of a sample and a population. Representativeness is not a property
of a sampling technique. This section discusses common misunderstandings of
representativeness and arguments for representativeness.



Sampling in Software Engineering Research: A Critical Review and Guidelines 11

First, representativeness is rooted in positivist epistemology. Post-
modernists, interpretivists, and constructivists reject the entire notion of sta-
tistical generalization on numerous grounds, including:

– Broadly applicable (“universal”) theories of social phenomenon simply do
not exist (Duignan, 2019).

– Each context is unique; therefore, findings from one do not translate whole-
sale into others (Guba and Lincoln, 1982).

– Statistical generalization precludes deep understanding of a particular so-
cial, political economic, cultural, technological context (Thomas and Myers,
2015).

Representativeness of a sample (or site) is therefore not a valid evaluation
criterion under these epistemologies. Contrastingly, in positivism, falsification-
ism and Bayesian epistemology, the primary purpose of sampling is to support
statistically generalizing findings from a sample to a population. Represen-
tativeness is therefore the overwhelming quality criterion for sampling: good
samples are representative—bad samples are biased.

Second, representativeness is widely conflated with randomness.

Suppose that two researchers, Kaladin and Shallan, have a sampling frame of
10,000 software projects, with an average size of 750,000 lines of code: 70%
open source and 30% closed source. Kaladin randomly selects 10 projects.
Suppose 4 of them are open source and 6 are closed source, with an average
size of 747,823 lines of code. Meanwhile, Shallan inspects a histogram of project
size and discovers a bi-modal distribution, with clear clusters of large and small
projects. Shallan purposively selects 7 large open source projects, 7 small open
source project, 3 large closed source projects and 3 small closed source projects.

This example illustrates several key points about representativeness:

1. Representativeness is dimension-specific. A sample can be representative
on one parameter but not another.

2. Probability sampling does not guarantee representativeness on the dimen-
sions of interest.

3. Non-random samples can be representative on the dimensions of interest.
4. Non-probability sampling can lead to more representative samples than

probability sampling.
5. The representativeness of a random sample depends on sample size.

If an unbiased, random sample is large enough, the law of large num-
bers dictates that its parameters will converge on the parameters of the sam-
pling frame. What constitutes “large” depends on many factors including the
strength of the effects under investigation, the type of statistical tests being
used and the number of variables involved. The parameters of small sam-
ples, however, may differ greatly from the sampling frame. While Bayesian
approaches handle small samples more systematically and transparently, estab-
lishing representativeness with small samples remains problematic (McElreath,
2020).



12 Sebastian Baltes, Paul Ralph

Table 2 Reasonable Arguments regarding Representativeness

Name GPRS* Argument Threats

Random
Selection

No Each item in sampling frame
has an equal probability of in-
clusion.

Assumes large sample size,
good sampling frame and no co-
incidences.

Size No Sample is so large that missing
a subpopulation is unlikely.

Bias toward one or more sub-
populations or on important
parameters.

Breadth No Sample captures a large vari-
ance on important parameters.

Point estimates unreliable;
groups may not be propor-
tional.

Parameter
Matching

No Sample and population param-
eters have similar distributions.

Possible bias outside of con-
sidered parameters; requires
known population parameters.

Universality No All possible samples are rep-
resentative because the phe-
nomenon affects the entire pop-
ulation equally.

Phenomenon is not actually
universal.

Postmodern
Critique

No The entire logic of statistically
generalizing from a sample to a
population is flawed.

Statistical generalization not
supported.

Practical
Critique

No Generalizing to a population is
not the purpose of this kind of
study (e.g. case study, experi-
ment).

Statistical generalization not
supported.

*Guaranteed to Produce a Representative Sample?

Moreover, no sample size can overcome bias in the sampling frame. Suppose
that Kaladin and Shallan want to draw inferences about all of the software
projects conducted in Brazil. However, suppose the sampling frame is a list of
all public sector projects in Brazil. Further suppose that public sector projects
are more often large and open source than private sector projects, so Kaladin’s
sample is biased not only toward open source projects but also toward larger
projects, and Shallan’s sample is less representative than it first appeared.

Clearly then, random is not equal to representative. Rather than defin-

ing representativeness, randomness is one of several possible argu-

ments that a sample should be representative. Extending Kruskal and Mosteller
(1979a), we see seven main arguments regarding representativeness (see Table
2). None of these approaches guarantee a representative sample, but each has
some merit.

As discussed above, we can argue that the sample is representative because
individuals were selected randomly. However, random selection is only reliable
if the sample size is large and the sampling frame is unbiased, and even then
only produces a representative sample most of the time.

Alternatively, suppose we are surveying developers about their perceptions
of the relationship between agile practices and morale. We can argue that the
larger and broader our sample, the less likely it is to have missed an important
subpopulation. The breadth argument supports generalization of correlations



Sampling in Software Engineering Research: A Critical Review and Guidelines 13

(e.g. between agility and morale). Breadth is the argument of heterogeneity
sampling, and can apply to convenience and snowball sampling where over-
sampling some subpopulations is a key threat. Using multiple sampling frames
makes the breadth argument more convincing (cf. de Mello et al., 2015).

However, the breath argument does not support point estimates. Suppose
only 1% of our sample reports abandoning agile practices because of morale.
While the point estimate of 1% is not reliable, abandoning agile practices over
morale issues is probably rare. It seems highly unlikely that a survey of 10,000
developers from 100 countries, including thousands of companies and dozens of
industries, would miss a large subpopulation of low-morale agile-abandoners.

Another reasonable argument for representativeness is that sample param-
eters mirror known distributions of population parameters. If we know the
approximate distributions for a population of projects’ size, age, number of
contributors, etc., we can compare the sample parameters (e.g. using the chi-
square goodness-of-fit test) to see if they differ significantly. If the sample
parameters are close to known population parameters, the sample is represen-
tative on those dimensions. If the sample and population match on known di-
mensions, it seems more likely (but not guaranteed) that they will also match
on unknown dimensions. This is the argument of quota sampling. Unfortu-
nately, concerted efforts will be needed to establish population parameters for
common units of analysis in software engineering research.

A quite different argument is the appeal to universality. Suppose we have
good reasons to believe that the phenomenon of interest affects the entire
population equally. For example, Fitt’s law predicts the time required to point
at a target based on the target’s size and distance (Fitts, 1954). Insofar as
Fitt’s law is universal, researchers can argue that sampling is irrelevant—all
samples are representative.

The appeal to universality is related to the ongoing debate about gen-
eralizing from student participants to professionals (cf. Sjøberg et al., 2002;
Feldt et al., 2018). While the details of this debate are beyond the scope of
this paper, it is important not to imply a sample of participants is represen-
tative simply because they are professionals. Suppose researchers conduct an
experiment based on a convenience sample of six American white, male, pro-
fessional developers, who have bachelor’s degrees in software engineering and
are between the ages of 30 and 40. Implying that this sample is representative
of professional developers in general because the participants are professionals
instead of students is plainly incorrect.

Contrastingly, some studies address sampling concerns by simply dismiss-
ing them on philosophical grounds (as described above). Others argue that,
practically speaking, statistical generalization is not the purpose of the present
study (cf. Stol and Fitzgerald, 2018). There is nothing intrinsically wrong with
this as long as the manuscript does not imply representativeness elsewhere.

Many studies, especially laboratory studies, simply ignore sampling con-
cerns. Sometimes a single sentence acknowledges the limitation that the results
may not generalize (see also Section 4.2). Other studies give dubious arguments
for representativeness (Kruskal and Mosteller, 1979b).



14 Sebastian Baltes, Paul Ralph

3 Method

To investigate the state of sampling in software engineering, we conduct a
critical review. For the purposes of this paper, a critical review is similar to a
systematic review, except for two key differences:

1. A systematic review typically aggregates evidence regarding causal rela-
tionships to generate evidence-based recommendations, whereas a critical
review critically evaluates issues.

2. A systematic review typically aims to collect all relevant primary studies
on a specific topic (Kitchenham and Charters, 2007) while a critical review
analyzes a sample of primary studies sharing some key characteristic(s).

Critical reviews in software engineering often investigate methodological top-
ics; for example, how grounded theory and ethnography are reported (Stol et al.,
2016; Zhang et al., 2019) or how qualitative research is synthesized (Huang et al.,
2018).

To conduct the critical review, we manually retrieved and analyzed a sam-
ple of software engineering papers. This section describes the study’s research
questions, data collection and data analysis. For this study, we adopt a critical
realist philosophy.

3.1 Objective and research questions

The objective of this study is to investigate the sampling techniques used in
software engineering research, and their relationship to research methods and
units of analysis/observation. This objective motivates the following research
questions. In recent, high-quality software engineering research . . .

RQ1: . . . what sampling approaches are most common?
RQ2: . . . how do authors justify their sampling approaches?
RQ3: . . . what empirical research methodologies are most common?
RQ4: . . . what units of observation are most common?

RQ1 is the main focus of the study. We include RQ2 to highlight the diver-
sity of arguments for representativeness seen in the literature. Meanwhile RQs
3 and 4 are essential for informing guidance: which sampling approaches are
appropriate strongly depends on the research method and unit of observation.
Here, research methodology denotes the approach to collecting and analyzing
data (e.g. controlled experiment, case study, systematic review). We decided
to concentrate on units of observation, rather than units of analysis, because
most of the first 20 articles we coded clearly identified their unit(s) of observa-
tion, i.e. what was observed/measured/analyzed, whereas identifying units of
analysis required substantial interpretation. For example, if a paper analyzed
the commit histories of a sample of open source projects, the units of observa-
tion would be the commits themselves. The units of analysis, however, could be
the developers contributing to those projects, the projects, both, or something
else—depending on how the commits were aggregated and analyzed.



Sampling in Software Engineering Research: A Critical Review and Guidelines 15

We focus on recent research because research methodology has evolved
rapidly in the software engineering community; e.g. increasing use of empirical
methods in general (Zannier et al., 2006; Theisen et al., 2018) and qualitative
methods in particular (Stol et al., 2016).

3.2 Sampling strategy and inclusion/exclusion criteria

Answering the above research questions requires manual analysis. Since most
SE articles involve sampling, and there are hundreds of thousands of SE ar-
ticles, we cannot manually analyze the entire population—we need a sample.
Since we only report descriptive statistics, we cannot use power analysis to
work backwards from estimated effect size to required sample size. Instead, we
work backwards from feasibility: based on our research questions and experi-
ence, we estimated that it would take about 20 minutes to analyze each paper.
Therefore, analyzing 120 articles should take approximately 20 ∗ 120/60 = 40
hours. (We were optimistic; it actually took 15-30 minutes to code each paper
with longer discussions of difficult cases.)

Furthermore, we wanted to know where the field is headed. This suggests
focusing on recent papers in the most influential outlets. Consequently, we limit
our sampling frame to articles published between 2014 and 2019 inclusive in
one of the four A* SE outlets according to the 2020 CORE rankings5:

1. The International Conference on Software Engineering (ICSE)
2. Foundations of Software Engineering (FSE), which was held jointly with

European Software Engineering Conference in 2015, 2017, 2018, and 2019
3. IEEE Transactions on Software Engineering (TSE)
4. ACM Transactions on Software Engineering and Methodology (TOSEM)

Moreover, we applied several inclusion and exclusion criteria:

1. Include: Only full papers.
2. Exclude: Front matter, letter from editor, etc.
3. For FSE and ICSE: Include only papers in the main technical track (for

symmetry, since TSE and TOSEM do not have an equivalent of workshops,
posters, etc.).

4. Exclude ICSE and FSE papers for which an extended journal version is
already in the sample (no such papers were included so this criterion was
never applied).

We did not evaluate the quality of the articles because we care about their
sampling technique, not their results. We wrote a Python script6 to retrieve
and validate DBLP7 metadata of articles published between 2014 and 2019
in either of the four target venues. The collected information includes venue,
year, title, authors, length (pages), session/issue name, and a DOI link to the

5 https://www.core.edu.au/conference-portal
6 https://github.com/sbaltes/dblp-retriever
7 https://dblp.uni-trier.de/

https://www.core.edu.au/conference-portal
https://github.com/sbaltes/dblp-retriever
https://dblp.uni-trier.de/


16 Sebastian Baltes, Paul Ralph

article PDF. Using the collected data, the first author manually applied the
above-mentioned criteria, resulting in a sampling frame of 1,830 full papers.

Next, we applied stratified random sampling; that is, we used a true-
random number generator8 to randomly select five papers from each outlet-
year (e.g. five papers published by TOSEM in 2016). This means that each
outlet and each year have equal representation in our sample. The tool that
we implemented to retrieve the papers and the R script implementing our
sampling approach are available in our replication package (see Section 9).

Like many SE studies, we adopt a poorly-understood sampling approach.
First, we purposively selected “full research papers published in four good out-
lets over six years” and then randomly selected items to study from this more
manageable list. We can make the randomness argument to representativeness;
however, the four venues in the sampling frame are obviously not representa-
tive of all SE research because they are among the most competitive and are
all in English. Other researchers might have chosen a different sampling frame.
There is no objective basis on which to select outlets or to study six years of
four outlets vs. four years of six outlets vs. one year of 20 outlets. To proceed,
we must simply make reasonable choices and explain their implications.

3.3 Data extraction and analysis

Papers were randomly ordered and assigned a unique identifier from 1 to 120.
Below, we use PXX to denote the XX th paper (e.g. P35 is the 35th paper).

The first author reviewed each paper and recorded, in addition to the au-
tomatically collected metadata, the following data points in a spreadsheet:
relevant quotations (paper summary, sampling description, quality attributes,
sampling limitations, population), number of studies reported in the paper,
empirical method, number of samples, sampling stages, sample origin, units of
observation, properties analyzed, study population, sampling frame, sampling
frame size, sample size, number of items studied. (We created the simple tax-
onomy of empirical methods shown below inductively.) The complete list of
primary studies and dataset are included in the supplementary material (see
Section 9).

Some papers clearly stated the sampling technique, for example:

1. “We invited 739 developers, via e-mail using convenience sampling” (P35).
2. “From the top 500 projects, we sampled 30 projects uniformly at random”

(P43).
3. “We used stratified sampling to identify potential interviewees” (P56).

However, many papers did not clearly explain their sampling technique (specifics
below). We therefore had to infer the sampling technique from the text. For
example, we inferred purposive sampling from the statement: “We prepared
... buggy code ... and asked workers to describe how to fix it. Only those who
passed this qualifying test could proceed to our debugging tasks” (P92).

8 https://www.random.org/

https://www.random.org/


Sampling in Software Engineering Research: A Critical Review and Guidelines 17

Table 3 Properties of studied papers (n = 120)

Property Count Total
0 1 2 3 4 ≥ 5

Studies per paper 5 92 17 6 0 0 studies: 144
Samples per study 0 107 26 6 2 1 samples: 191
Sampling stages per sample 0 175 26 9 0 0 sampling stages: 210*

*includes 6 stages with generated data, which we exclude in the following

The first author marked ambiguous cases for review by the second author,
and these were classified by consensus. For each ambiguous case, we developed
a decision rule to guide future classifications (decision rules are included in our
replication pack). We did this in a continuous way, analyzing and resolving
ambiguity as we went.

The most important decision rule was to code studies where authors ap-
plied certain filtering criteria such as popularity of a project or experience of
a developer as purposive samples. Another important rule was to use the code
sub-sample to indicate when authors derived a new sample based on a previ-
ously introduced one (e.g. selecting developers who were active in projects that
had been sampled before). A third rule was to classify studies based on domi-
nant methodology. A study that was predominately quantitative with a small
qualitative component, for instance, was coded as quantitative. For articles
reporting multiple studies where some methods were primarily quantitative
and others primarily qualitative, we captured both using a separate row for
each study.

4 Results and Discussion

We analyzed 120 articles, of which 115 contained an empirical study. Some
articles reported multiple studies; some studies had multiple stages of sampling
(Table 3). We examined the results by article (115), study (144), and sampling
stage (210). Note that multiple studies can use the same sample and multiple
samples can be used by the same study.

The sample sizes ranged from 1 to 819,000 with a median of 22. In two
cases it was not possible to derive the sample size from the descriptions in
the paper. Only for 60 sampling stages was it possible to derive the size of
the corresponding sampling frames. The sizes of the reported sampling frames
ranged from 3 to 2,000,000 with a median of 395. This section addresses each
research question and then comments on observable trends.

4.1 RQ1: Sampling techniques used

Table 4 shows the different sampling techniques used in the studies. The fre-
quencies in Table 4 total more than 115 because some papers report multiple
studies and some studies use multiple samples or sampling stages.



18 Sebastian Baltes, Paul Ralph

Table 4 Frequency of sampling techniques (n = 204 sampling stages)

Type Strategy Frequency

Non-probability Purposive 149 (73.0%)
Non-probability Convenience 23 (11.3%)
Other Whole sampling frame 14 (6.9%)
Probability Simple random 13 (6.4%)
Probability Stratified random 4 (2.0%)
Non-probability Snowballing 1 (0.5%)

Table 5 Origins of samples in SE research (n = 204 sampling stages)

Strategy Definition Frequency

Existing-sample(s) Study used previously collected data, e.g., reported
in related work

62 (30.4%)

Unclear The strategy was not explained 49 (24.0%)
Online-resources(s) Sample retrieved from the internet (e.g., websites,

mailing lists, LinkedIn)
31 (15.2%)

Sub-sample Study used a subset of another sample presented in
the same paper

28 (13.8%)

Personal-network Sample comprises artifacts or people that re-
searchers had access to (e.g., students, industry con-
tacts)

20 (9.8%)

Other For example public or corporate datasets, snow-
balling.

14 (6.9%)

The most common strategies were purposive (149) and convenience sam-
pling (23). Only 17 stages utilized probability sampling—13 used simple ran-
dom sampling and 4 used stratified random sampling. Fourteen stages ana-
lyzed their entire sampling frame. Six stages analyzed generated data, which
we exclude in the following.

Eight of the thirteen sampling stages that involved simple random sam-
pling, and three of the four sampling stages utilizing stratified random sam-
pling, were sub-samples of previously derived non-random samples. This is
important because random sampling from a non-random frame undermines
the argument that the sample should be representative because it is random
(see Section 6) and the coding of papers P16, P27, P35, P43, P47, P48 and
P82 in the supplementary material for more details.

Samples are derived from a variety of sources (see Table 5). In 62 cases,
the sample was based on an existing dataset, typically from related work. In
28 sampling stages, a subset of a larger sample presented in the corresponding
paper was used. Thirty-one stages involved sampling from online resources,
which was usually done in a purposive manner (27 out of 31 stages). Sources
for such samples included the Android developer documentation (P16), online
Scala tutorials (P45), LinkedIn groups (P49), app stores (P80, P89, P98), or
the online Common Vulnerabilities and Exposures database (P91). Twenty
stages involved sampling from the researchers’ personal networks (e.g. their
students or colleagues) and in 49 cases, the origin of the samples was unclear.



Sampling in Software Engineering Research: A Critical Review and Guidelines 19

Table 6 Empirical method vs. sampling strategy (n = 204 sampling stages); Strategies:
None (sample = sampling frame), Convenience, Purposive, Simple Random.

None Con. Pur. Sim. Other

Experimental tool evaluation (quantitative) 10 8 107 6 2
Mining software repositories (quantitative) 0 1 8 1 0
Task- & questionnaire user study (quantitative) 1 3 3 0 0
Questionnaire survey (quantitative) 0 2 6 0 1
Taxonomy building (qualitative) 1 0 3 5 0
Coding of artifacts (qualitative) 1 0 4 1 0
Other 1 9 18 0 2

Table 5 excludes the six papers that used generated data and the five papers
that did not report an empirical study.

4.2 RQ2: Authors’ justifications

Of the 120 articles in our sample, 86 provided some justification as to whether
their sample exhibits certain quality criteria, often despite a questionable—
or unexplained—sampling approach. The justifications were often mentioned
in “Threats to Validity” or “Limitations” sections. The most common justi-
fication (29 articles) was that the studied artifacts were “real” (as in “real-
world”). P17, for instance, described the sample as containing “representative
real-world ORM applications”, but did not go into details about the actual
strategy followed to select those applications. Further popular adjectives were
“large” (16), “representative” (13), and “diverse” (8).

4.3 RQ3: Research methodologies

Predominately quantitative studies outnumber predominately qualitative stud-
ies 126 to 16. Of those 126 quantitative studies, 98 report experimental evalu-
ations of software tools, models, or machine learning approaches. Nine studies
involve mining software repositories; nine studies report on different kinds of
user studies, and six are questionnaire-based surveys. Beyond that, the diver-
sity of approaches defies organization into common methodological categories.
For instance, one study involves comparing software metrics; others build tax-
onomies. Table 6 contrasts empirical methods with sampling strategy.

4.4 RQ4: Units of observation

We organized the primary studies’ units of observation into the categories
shown in Table 7. Most of the studies investigate code artifacts including
GitHub projects (e.g. P4, P17, P43), code commits (e.g. P16, P85), and pack-
ages (e.g. P56). Examples for other artifacts include bug reports (P16), faulty



20 Sebastian Baltes, Paul Ralph

Table 7 Units of observation (n = 204 sampling stages)

Unit Examples Frequency

Code artifacts Projects, source code, defects, fixes, commits, code
smells

132 (64.7%)

People Developers, maintainers, students, interview tran-
scripts

37 (18.1%)

Non-code artifacts Bug reports, discussions, pull requests, effort esti-
mates, feature models

33 (16.2%)

Articles Papers published in SE journals and conferences 2 (1.0%)

Table 8 Empirical method vs. unit of observation (n = 204 sampling stages)

Software Artifacts* People Other

Experimental tool evaluation (quant.) 101 29 3 0
Mining software repositories (quant.) 8 2 0 0
Task- & questionnaire user study (quant.) 1 0 6 0
Questionnaire survey (quant.) 3 0 6 0
Taxonomy building (qual.) 5 4 0 0
Coding of artifacts (qual.) 5 1 0 0
Other (e.g., mapping studies, Wizard-of-Oz
evaluations, think-aloud studies)

9 1 18 2

*non-code artifacts

rules in model transformations (P29), and test logs (P99). Besides students
(e.g. P69, P94, P96), the category people also includes GitHub users (P77),
Microsoft developers (P87), and Amazon Mechanical Turk workers (P94). Ta-
ble 8 contrasts units of observation with empirical method.

5 Discussion

Perhaps the most salient finding of this study is that purposive and con-

venience sampling were the most common sampling strategies in
both qualitative and quantitative studies. Only seventeen articles employed
probability sampling and eleven out of the seventeen corresponding sampling
stages were sub-samples of non-probability samples. While non-probability
sampling can sometimes produce representative samples, the broad absence of
probability sampling suggests that software engineering research has a

generalizability crisis.

While this kind of study cannot determine why probability sampling is so
rare, at least three factors may be involved:

1. Probability sampling is intrinsically difficult for some methodologies (e.g.
experiments with human participants). However, non-probability sampling
is popular even for questionnaires and quantitative data analysis studies.

2. Some SE research adopts interpretivism or other philosophical positions
incommensurate with statistical generalization. Although we did not ana-



Sampling in Software Engineering Research: A Critical Review and Guidelines 21

lyze philosophical positions (not least because most articles do not state
one), a few studies may fall into this group.

3. Good sampling frames for most SE phenomena do not exist.

The significance of this third factor cannot be overstated. Without good
sampling frames, the randomness argument for representativeness falls apart.
We can only claim that the sample represents the sampling frame, but not the
population, which is, by definition, what we are trying to generalize to.

Sampling frames are usually incomplete. Telephone sampling, for example,
is incomplete because not everyone has a phone, but most households have
one or more phones and there are techniques to account for unlisted numbers
(Landon Jr. and Banks, 1977) such as randomly permuting digits of listed
numbers or substituting an area code used with mobile phones for an area
code used with landlines while retaining the other numbers.

There is nothing like a phone book of all the software developers, projects,
products, companies, test suites, embedded systems, design diagrams, user
stories, personas, code faults, or code comments in the world or even in a
specific country, language or application domain. Instead, we study samples
of GitHub projects (e.g. P10), Microsoft developers (e.g. P87) or Huawei test
logs (e.g. P99). If we randomly select enough Microsoft developers, we might
get a sample representative of all Microsoft developers, but this is obviously
not representative of all developers in the world because even if there were
such a thing as an average company, Microsoft would not be it.

The closest we can get to publicly available sampling frames of certain sub-
populations of software developers is probably the list of registered Stack Over-
flow users provided by their official data dump or SOTorrent (Baltes et al.,
2018) and the lists of GitHub projects and users provided by the GHTorrent
dataset (Gousios, 2013). Those datasets, however, both come with their own
challenges and limitations (Baltes and Diehl, 2016).

This raises two questions: how do we get better samples for our research
and how should we assess sampling in an empirical study? We will return to
these questions in Section 6.

Meanwhile, sampling techniques and terminology appear widely misunder-
stood or misused. The frequency of articles not explaining where their samples
came from is concerning. We cannot evaluate sampling bias without knowing
the source of the sample. Beyond that, we see the following archetypal prob-
lems in the rhetoric around sampling.

– Incorrectly using the term “random” to mean arbitrary.
– Arguing that a convenience sample of software projects is representative

because they are “real-world” projects.
– Assuming that a small sample is representative because it is random.
– Assuming that a large random sample is representative despite being se-

lected from an obviously biased sampling frame.
– Implying that results should generalize to large populations without any

claim to having a representative sample.



22 Sebastian Baltes, Paul Ralph

– Dismissing research (particularly case studies) over representativeness con-
cerns when representativeness is not a goal of the study.

– Implying that qualitative research is inferior to quantitative research be-
cause of the prevalence of non-probability sampling, when most quantita-
tive research uses non-probability sampling.

Despite the problems described above, we want to highlight positive ex-
amples from recent software engineering papers, not limited to the stratified
sample we used for our review.

– Some experiments with students present a brief account of how a conve-
nience sample of students was recruited at a certain university, from a
certain class or cohort (e.g. Mohanani et al., 2019).

– Some case studies mention purposive sampling and state some characteris-
tics of the sites that led to their selection (e.g. Ingram and Drachen, 2020).

– Some repository mining studies clearly explain that they randomly draw
elements from a purposively chosen sampling frame, acknowledging that
their results should statistically generalize to the sampling frame but not
the theoretical population (e.g. Maalej and Robillard, 2013).

– Other repository mining studies clearly explain sampling was constrained
by API limitations, and how the researchers worked around those con-
straints (e.g. Humbatova et al., 2020).

– Some grounded theory studies effectively explain that their goals do not
include either representativeness or generalizing from a sample to a popu-
lation (e.g. Sedano et al., 2019).

– Some questionnaire surveys thoroughly explain their sampling strategy and
its implications (e.g. Russo and Stol, in press).

– Some systematic literature reviews present an extensive step-by-step ac-
count of how the primary studies were retrieved and filtered (e.g. Beecham et al.,
2008).

5.1 Threats to Validity

The preceding results should be interpreted in light of several limitations:
Reliability. Most of the data we extracted from the articles comprises

objective, unambiguous facts such as venue, year, title, authors, length (in
pages), sample size, and unit of observation. However, some data points (e.g.
the methodology or sampling approach) required interpretation and different
researchers may have reached different conclusions. We tried to mitigate this
threat to reliability by having the second author audit ambiguous cases.

Replicability. To enhance replicability, we provide a comprehensive repli-
cation pack (see Section 9) including our data collection scripts, sample and
analysis documents.

External validity. Our results should statistically generalize to our pop-
ulation (recent, high-quality software engineering research) to the extent that
the contents of ICSE, FSE, TSE and TOSEM represent high-quality SE re-
search. Generalizability is threatened by the possibility that other venues that



Sampling in Software Engineering Research: A Critical Review and Guidelines 23

publish high quality SE research differ in the sampling approaches that they
attract or accept. It is not safe to assume that our results generalize to sub-
stantially different venues, research conducted decades ago, or research that
will be conducted years in the future.

Construct and measurement validity. This research does not involve
any latent variables, so construct validity does not apply per se. However, the
reader could question whether we appropriately ascertain the primary studies’
empirical methods, sampling approaches and so on. This kind of study does
not lend itself to quantitative analysis of measurement validity. All we can say
is that the text of this paper ought to demonstrate that we have sufficient
training and knowledge of sampling to be credible.

Internal and conclusion validity. We do not test causal hypotheses so
internal validity does not apply. Our analysis is predominately descriptive, so
conclusion validity is strong—there are no complicated statistical tests here
to go awry. There are no strong assumptions (e.g. homoscedasticity) to be
violated.

6 Recommendations

Section 4 demonstrates that software engineering has a generalizability cri-
sis brought on chiefly by a lack of attention to representative sampling. The
following section presents numerous recommendations and guidelines for ad-
dressing this crisis.

6.1 Guidelines for researchers

To improve the conduct and reporting of sampling for any empirical study, we
recommend:

1. Clarify your philosophical position. A treatise on 21st century epis-
temology is not necessary, but one sentence on the study’s perspective—
positivism, falsificationism, interpretivism, constructivism, critical realism,
etc.—will help. Otherwise the reader (or reviewer) may apply inappropriate
criteria.

2. Explain the purpose of sampling. Clearly state whether you are aim-
ing for a representative sample, or have a different goal (e.g. theoretical
saturation).

3. Explain how your sample was selected. For qualitative studies, the
reader should be able to recover your reasoning about what to study
(Checkland and Holwell, 1998). For quantitative studies, the reader should
be able to replicate your sampling approach and the size of the sample
should be evident.

4. Make sure your sampling strategy matches your goal, epistemol-

ogy, and type of study. For example, a positivist questionnaire might
use respondent-driven sampling; a pilot laboratory experiment might use



24 Sebastian Baltes, Paul Ralph

convenience sampling, and an interpretivist case study might employ pur-
posive sampling.

5. Avoid defensiveness.Very few software engineering studies have a strong
claim to representative sampling. Overselling the representativeness of your
sample is unnecessary and unscientific. For example:
– Do not misrepresent ad hoc sampling as random.
– Do not pretend small samples are automatically representative because

they are random or because they were purposefully selected.
– Do not pretend random sample are representative when selected from

potentially or obviously biased sampling frames
– Do not pretend a sample is representative because it is “real” (e.g.

professionals instead of students, commercial projects instead of toy
examples).

– Do not admit to sampling bias in your limitations section only to pre-
tend the results are near-universal in your conclusion.

Moreover, if representativeness is the goal of the study, we further recom-
mend:

1. Identify the population; that is, in principle, who or what you would
like to generalize to (e.g. professional software developers in Turkey, code
faults in cyber-physical systems).

2. Present your sampling algorithm (see Section 2.5). If the algorithm
maps neatly into the tripartite model of a population, a sampling frame and
a sample, feel free to use those terms. However, if the algorithm has many
stages and does not map neatly into the tripartite model, just focus on
providing a replicable, concise, algorithmic account of how another person
can generate the same sample. It is not necessary to name every stage or
identify one specific stage as the “sampling frame.”

3. If you use data collection scripts, provide them.
4. If the sampling strategy has many stages, consider a diagram or flow chart.
5. If your sampling approach was nondeterministic (e.g. theoretical sampling),

describe your reasoning.
6. Give an explicit argument for representativeness (cf. Table 2). Admit

the generalizability threats implied by this argument.
7. Clearly explain how the sample could be biased. For complicated

sampling strategies, discuss bias for each step in your algorithm or diagram
explaining the sampling approach. This could be presented in the sampling
section or with limitations.

8. Publish your sample as part of a replication package if and only if it
does not contain sensitive or protected information. Be very careful of the
potential for re-identifying de-identified data.

For example, if we are conducting a randomized controlled experiment
with a convenience sample of software developers, we should not claim that
the sample is representative because the participants are professionals. We
should explain that we are prioritizing internal validity and that this kind of
research does not support statistical generalization. Similarly, for a case study,



Sampling in Software Engineering Research: A Critical Review and Guidelines 25

we should explain that the purpose of a case study is to understand one site
deeply, not to generalize from a sample to a population. We should not pretend
that one or a few sites are representative because they are large companies or
real projects or use popular practices. For interpretivist research, meanwhile,
we should discuss transferability rather than external validity.

The situation is trickier for questionnaire surveys, qualitative surveys,
repository mining and exploratory data science, where external validity is more
often a key criterion. Authors of these studies should offer an explicit argu-
ment for representativeness and clearly explain attempts to mitigate sampling
bias.

6.2 Mitigating sampling bias in different kinds of studies

Several other techniques can help improve sampling in certain situations. For
large samples, we can use bootstrapping to assess stability. For instance, if we
have a convenience sample of 10,000 Java classes, we can randomly exclude
1,000 classes and check whether it perturbs the results.

If a sampling frame is biased, consider replicating the study using different
sampling frames. For example, if we find a pattern in a sample of GitHub
projects, replicate the study on a sample of SourceForge projects. The more
diverse the repositories, the more likely the results generalize. This could be a
full replication or a limited sanity check with a small sample from a different
domain. For studies of software projects, consider using sample coverage; that
is “the percentage of projects in a population that are similar to the given
sample” (Nagappan et al., 2013), to support heterogeneity sampling.

Developers (or developers with certain experiences) can be treated as a
hidden population. If respondent-driven sampling (Section 2.1.4) can reach
injecting-drug users and sex workers (Malekinejad et al., 2008), surely it can
help reach software developers. If representativeness is not a priority, Salleh et al.
(2018) provide several suggestions for recruiting industry participants includ-
ing exploiting local practitioner communities, using managers and moderators
as recruiters, and using snowball sampling.

Meanwhile, many practices can reduce sampling bias and response bias in
questionnaire surveys (Dillman et al., 2014). These include starting with
important questions that resonate with participants (not demographics), avoid-
ing matrix questions, avoiding mandatory questions, and sending reminders.
Offering incentives (e.g. cash, prizes) is also effective. Some research suggests
that offering charitable donations does not increase response rates (Toepoel,
2012); however, none of this research was done with software developers, and
donating to an open source project might be more effective than small cash
incentives for motivating open source contributors to complete a questionnaire
(e.g. Ralph et al., 2020b). There are also myriad techniques for assessing re-
sponse bias (Sax et al., 2003). Many questionnaire studies in SE use none of
these techniques.



26 Sebastian Baltes, Paul Ralph

Similarly, sampling bias and publication bias in systematic reviews can
be addressed by (i) forward and backward snowballing on references, (ii)
searching multiple databases, (iii) searching pre-print servers and dissertations,
and (iv) requesting unpublished work in an area through relevant mailing lists,
and (v) checking websites of prolific researchers in the area.

Evaluating sampling bias in software repository mining is fraught. Each
repository is likely biased in unpredictable, non-obvious ways. Therefore, we
cannot safely assume that random samples from one repository are represen-
tative of other repositories or software in general. Comparing samples from
multiple repositories may help improve representativeness, or at least assess
stability, but open source projects may differ from closed-source projects in
unknown ways and the private code that companies are willing to share might
systematically differ from the code they will not share (Paulson et al., 2004).
Research comparing projects stored in public and private repositories is espe-
cially needed, but intrinsically difficult. One (ethically questionable) option is
to examine private code that has been leaked.

In the long term, SE research needs better sampling frames. One way to
achieve this is to develop curated corpora like the Qualitas corpus, “a large
curated collection of open source Java systems” (Tempero et al., 2010). Simi-
lar corpora could be developed for many kinds of code and non-code artifacts
used in software projects, including design specifications, requirements speci-
fications, diverse models and diagrams, user stories, scenarios, personas, test
cases, closed-source Java systems, systems in all the other common languages,
unit tests, and end-user documentation. Creating any one of these corpora
is a major undertaking and should be recognized as a significant research
contribution in itself. Even without good demographic information, the repre-
sentativeness of a curated corpus can be improved in numerous ways:

1. Including artifacts from diverse domains (e.g. aerospace, finance, personal
computing, robotics).

2. Including artifacts from diverse software (e.g. embedded systems, enterprise
systems, console video games).

3. Making the corpus large enough to support heterogeneity sampling and
bootstrapping.

4. Attempting to match the parameters we can discern; for example, we could
attempt to include artifacts from different countries according to the size
of each country’s software industry.

Corpora improve reproducibility because one corpus can support many studies.
Furthermore, building corpora helps to separate the difficult task of creating
and validating a good sampling frame from any particular study of the items
in the corpora. This makes research more manageable. That said, it may not
be possible to create a perfect, unbiased corpora. The idea is to create corpora
that are less biased than other sampling frames, or at least corpora with well-
understood biases. Corpora can quickly go out of date and there exists an
innate tension between keeping corpora stable and up-to-date.



Sampling in Software Engineering Research: A Critical Review and Guidelines 27

6.3 Guidelines for reviewers

From our experience, many reviewers struggle to evaluate sampling. Our ad-
vice is to evaluate sampling in the context of a study’s philosophy,

methodology, goals and practical realities. Assessments of external valid-
ity or transferability in principle and out of context are unhelpful. The same
goes for assessing sampling outside of peer review (e.g. to include primary
studies in a systematic literature review).

For interpretivist studies, it is sufficient for researchers to justify site selec-
tion and explain their data collection. Complaining about low external validity
in a case study is typically unreasonable because that is not what a case study
is for (Stol and Fitzgerald, 2018).

When reviewing a positivist study that does not aim for generalization (e.g.
a laboratory experiment with human participants) only worry about high-
level external validity threats such as using student participants instead of
professionals. Complaining about low external validity in a laboratory exper-
iment is typically unreasonable because that is not what a lab study is for
(Stol and Fitzgerald, 2018).

However, when reviewing a study that does aim for generalization (e.g. a
questionnaire study) insist on reasonable attempts to mitigate sampling bias.
The whole point of a large questionnaire survey is to sacrifice internal validity
for external validity. If external validity is the main priority of a study, it
should have a defensible claim that its sample is representative.

For example, suppose we are evaluating a questionnaire study of 3D ani-
mators at AAA game companies. The authors recruited animators by posting
on mailing lists, which is basically convenience sampling—end of sampling
discussion. This should be rejected not because it uses convenience sampling
but because appropriate, practical steps for mitigating sampling bias were not
taken. Authors should have used respondent-driven sampling, or found a list
of AAA game companies and used stratified random sampling, or advertised
on multiple channels and compared them (cf. Baltes and Diehl, 2016). They
should have reported response rates or bounce rates, compared early respon-
ders to late responders and so on.

In contrast, suppose we are evaluating a constructivist grounded theory
study of agile practices at a Norwegian software company. We could say “this
study has low external validity because we cannot generalize from an n of
1.” This is simultaneously true and inappropriate. External validity is not an
appropriate quality criterion for this kind of study (Charmaz, 2014) and statis-
tical generalizing is not its aim (Stol and Fitzgerald, 2018). Instead, we should
be asking why this site was selected, how the researchers went about theoret-
ical sampling, and to what extent the resulting theory seems transferable to
other contexts (Stol et al., 2016).

Assessing sampling in software repository mining is difficult because it
comes from SE, so we are creating the norms. What we can say with confidence
is randomness argument to representativeness is unconvincing when the sample
was randomly selected from a purposively assembled subset of the repository,



28 Sebastian Baltes, Paul Ralph

and there is no evidence that the software in the repository does not differ
from software in general on the dimensions of interest.

The key is to evaluate studies against the norms for that particular kind
of study, and to question whether researchers applied practical mitigations
available to them (like sending reminders for a questionnaire), not to evaluate
abstract quality criteria like external validity. Pilot and proof of concept studies
investigate something under ideal—not representative—conditions. For exper-
iments with human participants, representative sampling is often prohibitively
expensive. Most qualitative research does not seek to generalize to other con-
texts, so representative sampling is irrelevant, and disparaging “a sample of 1”
is merely prejudice against qualitative research. For studies that do not aim for
representativeness, reviewers should instead focus on over-generalization. Lab
studies and pilot studies under ideal conditions do not show that something
works in real life; qualitative field studies do not establish universality.

Reviewers should check whether the sampling strategy is commensurate
with the study’s implications. Non-representative sampling should be accom-
panied by acknowledging that external validity is limited. Such acknowledg-
ments should not be followed by a sneaky implication that the results are
universal. Misusing the term “random” should not be tolerated.

Finally, reviewers should consider whether the sample is large enough. For
studies using frequentist statistics to test causal hypotheses, power analysis
should be used to estimate desired sample sizes (Cohen, 1988). Reviewers
should also consider local norms, for example average sample sizes (Caine,
2016).

For case studies, there is a longstanding debate in the case study method-
ology literature about whether a typical manuscript should report one case
or multiple cases. Our position is that: (1) reporting multiple, related cases
in a single paper is advantageous (Yin, 2018); however, single-case studies
can still have value and should not be rejected out of hand (Easton, 2010).
Case studies—single or multiple—do not aim for statistical generalization, and
adding a second, third or fourth case will not change that.

The discussion of representativeness above foreshadows the difficulty of
assessing a sampling strategy. The representativeness of a sample is often sub-
jective, and representativeness is not always the goal of the sampling strategy.
We suggest the following questions for guiding assessment of a sampling strat-
egy:

1. Has the paper specified a philosophical stance?
2. Has the paper specified the goal of the sampling strategy (e.g. representa-

tiveness, convenience)?
3. Has the paper described the sample and sampling strategy sufficiently?
4. Is the sampling strategy consistent with the stated goal and philosophical

position?
5. Is the sampling strategy reasonable given the context, constraints and ma-

turity of the research?
6. Are the limitations of the sample acknowledged?



Sampling in Software Engineering Research: A Critical Review and Guidelines 29

7. Does the sampling strategy match the paper’s knowledge claims?
8. If representativeness is the goal, what argument to representativeness is

made? Is it reasonable given the type of study and practical constraints?
Are there specific steps the researchers could have taken to mitigate sam-
pling bias but did not?

It is very important for a sampling strategy to support the specific knowl-
edge claims of the paper. When an article makes claims about a population,
based on sample, or makes generic claims of the form X causes Y, we can
and should question the article’s argument for representativeness. Much qual-
itative research, in contrast, seeks to understand one specific context with no
attempt to generalize knowledge to other contexts. In such research, challenges
to representativeness are far less important.

This is not to say that a paper should be rejected out of hand because some
details are missing or the conclusion overreaches. Reviewers can often simply
request clarifications or rewording. Even when representativeness is the goal
and reasonable attempts to mitigate sampling bias have not been made, such
attempts may be possible in a multi-phase review process.

The key phrases here are “reasonable” and “practical constraints.” Any
criticism of a paper’s sampling approach should include suggesting specific,
practical techniques to mitigate sampling bias. Complaining that a systematic
review should have addressed sampling bias through reference snowballing is
reasonable; complaining that a study of unit tests should have used probability
sampling when no reasonable sampling frame exists is not.

6.4 A Strategy for Addressing the Generalizeability Crisis

Based on the preceding discussion, we suggest a multi-pronged strategy for
improving the generalizeability of software engineering research.

1. Education. PhD students need to take formal research methods courses.
There is simply no excuse for failing to teach PhD students a variety of
sampling strategies and the technical meaning of “random.”

2. Larger samples. Many studies are simply too small for their intended
purposes. It is not normally possible to detect modest effect sizes with a
twelve-participant experiment or to reach theoretical saturation with six
interviewees.

3. More probability sampling. Probability sampling is not always appro-
priate, but should be used more often where it is appropriate. Many reposi-
tory mining studies, for example, would benefit from probability sampling.

4. More sophisticated sampling.Where possible, researchers should try to
replace basic sampling approaches (e.g. snowball) with more sophisticated
approaches (e.g. respondent-driven) to mitigate sampling bias.

5. Multiple sampling frames or approaches. Drawing samples from mul-
tiple sources (e.g. countries, organizations, projects, repositories) not only
increases sample heterogeneity but also provides a way to investigate whether
results are source-specific.



30 Sebastian Baltes, Paul Ralph

6. Develop better sampling frames. A comprehensive research program
is needed to develop better sampling frames and better techniques for ac-
cessing elusive populations of common units of analysis.

Meanwhile, the flip-side of the generalizeability crisis is an over-generalization
crisis. Anecdotally, many papers seem to overstate the representativeness of
their samples and the generalizability of their findings. An important avenue
for future work is to understand how and why SE researcher’s overstate gen-
eralizability, and what can be done about it.

7 Related Work

Many papers and books have been published that discuss sampling. Most gen-
eral methods textbooks, such a Trochim’s excellent Research Methods Knowl-
edge Base (2001) and SE-specific methods texts (e.g. Wohlin et al., 2012;
Foster, 2014; Easterbrook et al., 2008) discuss the logic of sampling, and many
of the strategies described in Section 2. Some previous papers tackle sampling
from the perspective of a particular methodological context such as software
repository mining (Nagappan et al., 2013; Cosentino et al., 2016) or question-
naire surveys (Kitchenham and Pfleeger, 2002; De Mello and Travassos, 2016)
while others provide more general primers similar to that in Section 2 (e.g.
de Mello et al., 2015; Kitchenham and Pfleeger, 2008). We extend these works
by untangling representativeness from randomness and elucidating the
many arguments for representativeness that can be deployed in SE research.

Meanwhile, a few studies have investigated the prevalence of probability
sampling in SE research. Amir and Ralph (2018) found probability sampling
in only 13 of 236 articles in the proceedings of the International Symposium
Empirical Software Engineering and Measurement from 2012 to 2016 inclu-
sive. Similarly, Cosentino et al. (2016) found that purposive and convenience
sampling were the most commonly employed strategies in studies of GitHub
projects; while de Mello and Travassos (2015) found that purposive and con-
venience sampling were he most common strategies in questionnaire surveys.
This paper confirms the same trend in a method-agnostic sample of papers
published at top venues.

Some existing work analyzes specific issues related to sampling and gives
recommendations. For instance, Baltes and Diehl (2016) discuss barriers to
random sampling for questionnaire surveys, highlighting in particular ethical
concerns with “contacting developers on GitHub using email addresses users
did not provide for this purpose” and the need to establish population param-
eters to assess representativeness. Many papers discuss the challenges of gen-
eralizing from students to professionals (e.g. Feldt et al., 2018; Falessi et al.,
2018) and from open-source to closed-source projects (e.g. Cosentino et al.,
2016).

Other existing work gives various recommendations related to sampling.
Stol and Fitzgerald (2018) introduces the concept of a “sample study,” that



Sampling in Software Engineering Research: A Critical Review and Guidelines 31

is, a study that aims to statistically generalize from a sample to a popula-
tion; Stol and Fitzgerald’s point, which we echo, is that criticizing the ex-
ternal validity of a study that does not aim to support statistical general-
izability is nonsensical. Nagappan et al. (2013) suggest “sample coverage”;
that is “the percentage of projects in a population that are similar to the
given sample” as a criterion for evaluating sampling, which is closely re-
lated to what we call the breadth argument to representativeness. Similarly,
Torchiano et al. (2017) suggest assessing representativeness by comparing a
sample to what is known about the target population, which is closely re-
lated to what we call the parameter-matching argument to representativeness.
However, Torchiano et al. (2017) share our concern that population parame-
ters may be unknown.

In contrast, de Mello and Travassos (2015) give recommendations for gen-
erating and describing sampling frames which are very different from ours.
Their recommendations, including recruiting individuals from “an active and
thematic SE discussion group” and studying “multiple” open source projects,
do not address the core issues of representativeness and biased sampling frames
tackled by this paper. Similarly, de Mello et al. (2015) and De Mello and Travassos
(2016) present a framework for sampling professionals for online surveys and
introduce LinkedIn as an exemplary “source of sampling”. This again is very
different from our perspective, since our guidelines are not limited to questionnaire-
based online surveys and we further agree with Baltes and Diehl (2016) that
contacting developers using contact information not provided for this purpose
is ethically fraught. Nevertheless, there seems to be agreement that better sam-
pling frames are needed and that the sampling procedure should be presented
as transparent as possible.

This paper extends previous recommendations by elucidating a six-pronged
strategy for addressing the generalizability crisis in SE research. We also sug-
gest various approaches for mitigating sampling bias including treat-
ing developers as a hidden population, bootstrapping, selecting projects from
multiple repositories (not just GitHub) and charitable incentives for taking
questionnaires. This paper also develops specific guidelines for reviewers—a
crucial step, as many papers are unreasonably criticized for non-probability
sampling when the study does not aim to support statistical generalization,
there is no appropriate sampling frame to support probability sampling, and
very few of the other studies accepted by the same venue use probability sam-
pling effectively.

8 Conclusion

This paper makes several contributions:

1. An introduction to sampling with examples from SE research. This exposi-
tion is more grounded in SE research than previous discussions in reference
disciplines, and more general than previous discussions within SE.



32 Sebastian Baltes, Paul Ralph

2. An analysis of the state of sampling methods in a stratified random sample
of recent SE research in leading venues. It shows that probability sampling
is rare, and most probability samples are drawn from unknown or non-
representative sampling frames.

3. A novel exploration of the arguments for representativeness (see Table 2),
clarifying that randomness neither equals nor guarantees representative-
ness, and that a nonprobability sample can be more representative than a
probability sample.

4. Guidelines for conducting, reporting and reviewing sampling.

A sample is representative of a population insofar as the relevant parame-
ters correspond. We can assume that a random sample is representative if and
only if it is sufficiently large and is drawn from an unbiased sampling frame.
Few SE studies use random sampling. Of those that do, some samples are too
small to assume representativeness and others are drawn from plainly biased
sampling frames. Researchers make various arguments for why their samples
should be representative: the sample is large, includes diverse items, matches
known population parameters, etc.

This creates a paradox: the lack of representative sampling is undermining
SE research but rejecting a study over its non-representative sample is capri-
cious because virtually none of the other studies have representative samples.
We can escape this paradox by working towards more representative sam-
pling in studies where generalizability is desired. For questionnaires especially,
researchers should apply known techniques for mitigating and estimating sam-
pling bias. We also need to develop more curated corpora of SE artifacts, better
sampling frames for SE professionals and techniques for mitigating sampling
bias in repository mining.

Furthermore, we need reciprocal willingness of researchers to present their
research more honestly and reviewers to stop capriciously rejecting work over
unavoidable sampling bias. This means no more mislabeling ad hoc sampling
as random, no more pretending small samples are automatically representa-
tive because they are random, and no more ignoring the potential differences
between sampling frames and populations. It also means no more accepting
convenience sampling for experiments while criticizing convenience sampling
for case studies and interviews. No more encouraging snowball sampling for
literature reviews while rejecting it in questionnaires.

The contributions above should be considered in light of several limita-
tions. We operationalized “recent high-quality software engineering research”
as articles published in four top venues over six years. Our sample is therefore
unlikely to represent the broader field. Studies that were published twice (e.g.
a paper in FSE followed by an extended version in TOSEM) have a greater
chance of being selected. Moreover, the analysis was hindered by widespread
confusion regarding sampling techniques and research methodologies.

Additionally, some of the guidelines suggested in this paper are not di-
rectly supported by empirical evidence. The guidelines are meta-science, and
like most meta-science, are somewhat polemical Ralph et al. (2020a). It sim-



Sampling in Software Engineering Research: A Critical Review and Guidelines 33

ply is not practical to conduct experiments to determine whether aligning a
study’s sampling strategy with its goals, epistemology and methodology im-
proves scientific outcomes.

In conclusion, we hope that this article’s sampling primer, empirical results
and recommendations raise awareness of and provide at least some basis for
improving sampling in SE research.

9 Data Availability

Supplementary materials, which have been archived on Zenodo (Baltes and Ralph,
2020), include:

– An Excel spreadsheet containing the complete list of articles, all of the
extracted data and all of our analyses;

– The scripts we used to retrieve sampling frame and sample.9

Acknowledgements The authors would like to thank Klaas Stol for encouraging us to
write this paper. This project was supported by the National Sciences and Engineering
Research Council of Canada (Grant No. RGPIN-2020-05001)

References

Amir B, Ralph P (2018) There is no random sampling in software engineering
research. In: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, pp 344–345

Arnett JJ (2008) The neglected 95%: why american psychology needs to be-
come less american. American Psychologist 63(7):602

Baltes S, Diehl S (2016) Worse Than Spam: Issues In Sampling Software De-
velopers. In: Genero M, Jedlitschka A, Jorgensen M (eds) 10th International
Symposium on Empirical Software Engineering and Measurement (ESEM
2016), ACM, Ciudad Real, Spain, pp 52:1–52:6, DOI 10.1145/2961111.
2962628

Baltes S, Ralph P (2020) Sampling in software engineering research supple-
mentary material [data set]. DOI 10.5281/zenodo.3666824

Baltes S, Dumani L, Treude C, Diehl S (2018) SOTorrent: Reconstructing
and Analyzing the Evolution Stack Overflow Posts. In: Zaidman A, Hill E,
Kamei Y (eds) 15th International Conference on Mining Software Reposi-
tories (MSR 2018), ACM, Gothenburg, Sweden, pp 319–330

Beecham S, Baddoo N, Hall T, Robinson H, Sharp H (2008) Motivation in soft-
ware engineering: A systematic literature review. Information and Software
Technology 50(9):860–878, DOI 10.1016/j.infsof.2007.09.004

Breckenridge J, Jones D (2009) Demystifying theoretical sampling in grounded
theory research. Grounded Theory Review 8(2)

9 a more recent version of dblp-retriever may be available at
https://github.com/sbaltes/dblp-retriever

https://github.com/sbaltes/dblp-retriever


34 Sebastian Baltes, Paul Ralph

Caine K (2016) Local standards for sample size at chi. In: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, ACM, New
York, NY, USA, CHI ’16, pp 981–992, DOI 10.1145/2858036.2858498

Charmaz K (2014) Constructing grounded theory. Sage, London
Checkland P, Holwell S (1998) Action Research: Its Nature and Valid-
ity. Systemic Practice and Action Research 11(1):9–21, DOI 10.1023/A:
1022908820784

Cochran WG (2007) Sampling techniques. John Wiley & Sons
Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence
Erlbaum Associates, Hillsdale, NJ, USA

Cosentino V, Izquierdo JLC, Cabot J (2016) Findings from github: methods,
datasets and limitations. In: 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR), IEEE, pp 137–141

Daniel J (2011) Sampling essentials: Practical guidelines for making sampling
choices. Sage Publications

De Mello RM, Travassos GH (2016) Surveys in software engineering: Identify-
ing representative samples. In: Proceedings of the 10th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement,
pp 1–6

Dillman DA, Smyth JD, Christian LM (2014) Internet, phone, mail, and
mixed-mode surveys: the tailored design method, 4th edn. John Wiley &
Sons, Hoboken, NJ, USA

Draucker CB, Martsolf DS, Ross R, Rusk TB (2007) Theoretical sampling
and category development in grounded theory. Qualitative health research
17(8):1137–1148

Duignan B (2019) Postmodernism. In: Encyclope-
dia Britannica, Encyclopedia Britannica, Inc., URL
https://www.britannica.com/topic/postmodernism-philosophy

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical
methods for software engineering research. In: Guide to advanced empirical
software engineering, Springer, pp 285–311

Easton G (2010) One case study is enough. Lancaster University Technical
Report URL https://eprints.lancs.ac.uk/id/eprint/49016/

Falessi D, Juristo N, Wohlin C, Turhan B, Münch J, Jedlitschka A, Oivo M
(2018) Empirical software engineering experts on the use of students and
professionals in experiments. Empirical Software Engineering 23(1):452–489

Faugier J, Sargeant M (1997) Sampling hard to reach populations. Journal of
Advanced Nursing 26(4):790–797

Feldt R, Zimmermann T, Bergersen GR, Falessi D, Jedlitschka A, Juristo
N, Münch J, Oivo M, Runeson P, Shepperd M, Sjøberg DIK, Turhan B
(2018) Four commentaries on the use of students and professionals in em-
pirical software engineering experiments. Empirical Software Engineering
23(6):3801–3820

Fitts PM (1954) The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental Psychology
47(6):381–391

https://www.britannica.com/topic/postmodernism-philosophy
https://eprints.lancs.ac.uk/id/eprint/49016/


Sampling in Software Engineering Research: A Critical Review and Guidelines 35

Foster E (2014) Software Engineering: A Methodical Approach. Apress, New
York, USA

Gentles SJ, Charles C, Ploeg J, McKibbon KA (2015) Sampling in qualitative
research: Insights from an overview of the methods literature. The Qualita-
tive Report 20(11):1772–1789

Glaser BG, Strauss AL (2017) Discovery of grounded theory: Strategies for
qualitative research. Routledge

Goel S, Salganik MJ (2010) Assessing respondent-driven sampling. Pro-
ceedings of the National Academy of Sciences 107(15):6743–6747, DOI
10.1073/pnas.1000261107

Gousios G (2013) The GHTorrent dataset and tool suite. In: Zimmermann
T, Di Penta M, Kim S (eds) 10th International Working Conference on
Mining Software Repositories (MSR 2013), IEEE, San Francisco, CA, USA,
pp 233–236

Guba EG, Lincoln YS (1982) Epistemological and methodological bases of
naturalistic inquiry. Educational Communication & Technology Journal
30(4):233–252

Heckathorn DD (1997) Respondent-Driven Sampling: A New Approach to the
Study of Hidden Populations. Social Problems 44(2):174–199

Henrich J, Heine SJ, Norenzayan A (2010) The weirdest people in the world?
Behavioral and brain sciences 33(2-3):61–83

Henry GT (1990) Practical sampling. Sage
Hoeven LRv, Janssen MP, Roes KC, Koffijberg H (2015) Aiming for a repre-
sentative sample: Simulating random versus purposive strategies for hospital
selection. BMC Medical Research Methodology 15(1):90

Huang X, Zhang H, Zhou X, Babar MA, Yang S (2018) Synthesizing qualitative
research in software engineering: A critical review. In: Proceedings of the
40th International Conference on Software Engineering, pp 1207–1218

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020)
Taxonomy of real faults in deep learning systems. In: 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), IEEE

Ingram C, Drachen A (2020) How software practitioners use informal local
meetups to share software engineering knowledge. In: 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), IEEE

Johnston LG, Sabin K (2010) Sampling hard-to-reach populations with re-
spondent driven sampling. Methodological Innovations Online 5(2):38–48,
DOI 10.4256/mio.2010.0017

Kitchenham B, Charters S (2007) Guidelines for performing systematic lit-
erature reviews in software engineering. Tech. rep., Keele University and
University of Durham

Kitchenham B, Pfleeger SL (2002) Principles of survey research: Part 5: Popu-
lations and samples. ACM SIGSOFT Software Engineering Notes 27(5):17–
20

Kitchenham BA, Pfleeger SL (2008) Personal opinion surveys. In: Guide to
advanced empirical software engineering, Springer, pp 63–92



36 Sebastian Baltes, Paul Ralph

Kruskal W, Mosteller F (1979a) Representative sampling, i: Non-scientific lit-
erature. International Statistical Review 47(1):13–24

Kruskal W, Mosteller F (1979b) Representative sampling, iii: The current
statistical literature. International Statistical Review 47(3):245–265, DOI
10.2307/1402647

Landon Jr EL, Banks SK (1977) Relative Efficiency and Bias of Plus-
One Telephone Sampling. Journal of Marketing Research 14(3):294, DOI
10.2307/3150766

Lee AS, Baskerville RL (2003) Generalizing generalizability in information
systems research. Information Systems Research 14(3):221–243

Maalej W, Robillard MP (2013) Patterns of knowledge in api reference docu-
mentation. IEEE Transactions on Software Engineering 39(9):1264–1282

Malekinejad M, Johnston LG, Kendall C, Kerr LRFS, Rifkin MR, Rutherford
GW (2008) Using Respondent-Driven Sampling Methodology for HIV Bio-
logical and Behavioral Surveillance in International Settings: A Systematic
Review. AIDS and Behavior 12(1):105–130, DOI 10.1007/s10461-008-9421-1

van Manen M (2016) Phenomenology of practice: Meaning-giving methods in
phenomenological research and writing. Routledge

McElreath R (2020) Statistical rethinking: A Bayesian course with examples
in R and Stan. CRC press

de Mello RM, Travassos GH (2015) Characterizing sampling frames in software
engineering surveys. In: Proceedings of the Ibero-American Conference on
Sofware Engineering (CibSE)

de Mello RM, Da Silva PC, Travassos GH (2015) Investigating probabilistic
sampling approaches for large-scale surveys in software engineering. Journal
of Software Engineering Research and Development 3(1):1–26

Miles MB, Huberman AM, Saldaña J (2014) Qualitative data analysis: A
methods sourcebook, 4th edn. Sage, Thousand Oaks, California, USA

Mohanani R, Turhan B, Ralph P (2019) Requirements framing affects design
creativity. IEEE Transactions on Software Engineering DOI 10.1109/TSE.
2019.2909033

Moher D, Liberati A, Tetzlaff J, Altman DG, Group P, et al. (2009) Pre-
ferred reporting items for systematic reviews and meta-analyses: the prisma
statement. PLoS med 6(7):e1000097

Mullinix KJ, Leeper TJ, Druckman JN, Freese J (2015) The generalizability of
survey experiments. Journal of Experimental Political Science 2(2):109–138

Nagappan M, Zimmermann T, Bird C (2013) Diversity in software engineer-
ing research. In: Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering, ACM, pp 466–476

Patton MQ (2014) Qualitative research & evaluation methods: Integrating
theory and practice. Sage publications

Paulson JW, Succi G, Eberlein A (2004) An empirical study of open-source
and closed-source software products. IEEE Transactions on Software Engi-
neering 30(4):246–256, DOI 10.1109/TSE.2004.1274044

Ralph P (2019) Toward methodological guidelines for process theories and
taxonomies in software engineering. IEEE Transactions on Software Engi-



Sampling in Software Engineering Research: A Critical Review and Guidelines 37

neering 45(7):712–735
Ralph P, Ali Nb, Baltes S, Bianculli D, Diaz J, Dittrich Y, Ernst N, Felderer M,
Feldt R, Filieri A, et al. (2020a) Empirical standards for software engineering
research. arXiv preprint arXiv:201003525

Ralph P, Baltes S, Adisaputri G, Torkar R, Kovalenko V, Kalinowski M,
Novielli N, Yoo S, Devroey X, Tan X, et al. (2020b) Pandemic program-
ming: How covid-19 affects software developers and how their organizations
can help. Empirical Software Engineering DOI 10.1007/s10664-020-09875-y

Russo D, Stol K (in press) Gender differences in personality traits of software
engineers. IEEE Transactions on Software Engineering DOI 10.1109/TSE.
2020.3003413

Salleh N, Hoda R, Su MT, Kanij T, Grundy J (2018) Recruitment, engagement
and feedback in empirical software engineering studies in industrial contexts.
Information and software technology 98:161–172

Sax LJ, Gilmartin SK, Bryant AN (2003) Assessing response rates and non-
response bias in web and paper surveys. Research in Higher Education
44(4):409–432

Sedano T, Ralph P, Péraire C (2019) The product backlog. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE),
IEEE, pp 200–211

Sjøberg D, Anda B, Arisholm E, Dyba T, Jørgensen M, Karahasanovic A,
Koren EF, Vokac M (2002) Conducting realistic experiments in software
engineering. In: 2002 International Symposium on Empirical Software En-
gineering, IEEE, Nara, Japan, pp 17–26, DOI 10.1109/ISESE.2002.1166921

Stol KJ, Fitzgerald B (2018) The abc of software engineering research. ACM
Transactions on Software Engineering and Methodology (TOSEM) 27(3):11

Stol KJ, Ralph P, Fitzgerald B (2016) Grounded Theory in Software Engi-
neering Research: A Critical Review and Guidelines. In: Proceedings of the
International Conference on Software Engineering, IEEE, Austin, TX, USA,
pp 120–131

Tempero E, Anslow C, Dietrich J, Han T, Li J, Lumpe M, Melton H, Noble J
(2010) The Qualitas Corpus: A Curated Collection of Java Code for Empir-
ical Studies. In: Proceedings of the 17th Asia Pacific Software Engineering
Conference, IEEE, Sydney, Australia, pp 336–345, DOI 10.1109/APSEC.
2010.46

Theisen C, Dunaiski M, Williams L, Visser W (2018) Software engineering
research at the international conference on software engineering in 2016.
ACM SIGSOFT Software Engineering Notes 42(4):1–7

Thomas G, Myers K (2015) The anatomy of the case study. Sage
Thompson SK (1990) Adaptive cluster sampling. Journal of the American
Statistical Association 85(412):1050–1059

Toepoel V (2012) Effects of incentives in surveys. In: Gideon L (ed) Handbook
of survey methodology for the social sciences, Springer, pp 209–223

Torchiano M, Fernández DM, Travassos GH, de Mello RM (2017) Lessons
learnt in conducting survey research. In: 2017 IEEE/ACM 5th International
Workshop on Conducting Empirical Studies in Industry (CESI), IEEE, pp



38 Sebastian Baltes, Paul Ralph

33–39
Trochim WM, Donnelly JP (2001) Research methods knowledge base, vol 2.
Atomic Dog Publishing, Cincinnati, OH, USA

Trost JE (1986) Statistically nonrepresentative stratified sampling: A sampling
technique for qualitative studies. Qualitative Sociology 9(1):54–57

Turk P, Borkowski JJ (2005) A review of adaptive cluster sampling: 1990–2003.
Environmental and Ecological Statistics 12(1):55–94

Valliant R, Dever JA, Kreuter F (2018) Designing multistage samples. In:
Practical Tools for Designing and Weighting Survey Samples, Springer, pp
209–264

Vasilescu B, Posnett D, Ray B, van den Brand MG, Serebrenik A, Devanbu P,
Filkov V (2015) Gender and Tenure Diversity in GitHub Teams. In: Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems - CHI ’15, ACM Press, Seoul, Republic of Korea, pp 3789–3798,
DOI 10.1145/2702123.2702549

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012)
Experimentation in software engineering. Springer Science & Business Media

Yin RK (2018) Case study research: Design and methods, 6th edn. Sage, Thou-
sand Oaks, California, USA

Zannier C, Melnik G, Maurer F (2006) On the success of empirical studies in
the international conference on software engineering. In: Proceedings of the
28th international conference on Software engineering, pp 341–350

Zhang H, Huang X, Zhou X, Huang H, Babar MA (2019) Ethnographic re-
search in software engineering: a critical review and checklist. In: Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp
659–670


	1 Introduction
	2 Sampling: A Primer
	3 Method
	4 Results and Discussion
	5 Discussion
	6 Recommendations
	7 Related Work
	8 Conclusion
	9 Data Availability

