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Abstract 

Discovery of association rules .is an import- 

ant database mining problem. Current al- 
gorithms for finding association rules require 

several passes over the analyzed database, and 

obviously the role of I/O overhead is very sig- 

nificant for very large databases. We present 
new algorithms that reduce the database activ- 

ity considerably. The idea is to pick a Random 

sample, to find using this sample all associ- 

ation rules that probably hold in the whole 

database, and then to verify the results with 
the rest of the database. The algorithms thus 

produce exact association rules, not approx- 
imations based on a sample. The approach is, 

however, probabilistic, and in those rare cases 

where our sampling method does not produce 

all association rules, the missing rules can be 
found in a second pass. Our experiments show 

that the proposed algorithms can find associ- 

ation rules very efficiently in only one database 

Pa= 

1 Introduction 

Database mining, or knowledge discovery in databases 

(KDD), has in the recent years attracted a lot of 
interest in the database community (for overviews, 

see [FPSSU96, PSFSl]). The interest is. motivated 

by the large amounts of computerized data that many 
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organizations now have about their business. For in- 

stance, supermarkets store electronic copies of millions 
of receipts, and banks and credit card companies main- 
tain extensive transaction histories. The goal in data- 
base mining is to analyze these large data sets and to 
discover patterns or regularities that are useful for de- 

cision support. 

Discovery of association rules [AIS93] is an inter- 

esting subfield of database mining. The motivation for 

searching association rules has come from the desire to 

analyze large amounts of supermarket basket data. As- 

sociation rules describe how often items are purchased 
together: for instance, an association rule “beer + 

chips (87 %)” states that 87 % of the customers that 
have bought beer, also have bought chips. Such rules 
can be useful for decisions concerning, e.g., product 

pricing, promotions, or store layout. Association rules 
have been used to discover regularities in other data- 

bases as well: university course enrollment data has 

been analyzed to find combinations of courses taken 

by the same students, and alarms that occur close to 

each other in time have been searched in telecommu- 

nication alarm data [MTV94]. 

The size of the data collection has an essential role 

in database mining. Large data sets are necessary 

for reliable results; unfortunately, however, the effi- 

ciency of the mining algorithms depends heavily on 
the database. Association rule algorithms require mul- 

tiple passes over the whole database, and subsequently 
the database size is by far the most influential factor 

of the execution time for very large databases. Recent 

research has managed to reduce the disk I/O activity 

to two full scans over the database [SON95]. 

We present algorithms,that make only one full pass 

over the database. The idea. is to pick a-random sample, 
use it to determine all association rules that probably 
hold in the whole database, and then to verify the res- 
ults with the rest of the database. The algorithms thus 

produce exact, association rules in one full pass over 

the database. In those rare cases where our sampling 
method does not produce all association rules, the 
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missing rules can be found in a second pass. Our ex- 

tensive experiments show that this method works very 
well in practice, making the approach attractive espe- 
cially for very large databases. 

This paper is organized as follows. Section 2 re- 

views the definition of association rules and the prob- 
lem setting. An overview of previous work in asso- 

ciation rule discovery is given in Section 3. In Sec- 
tion 4 we present our approach to discovering asso- 
ciation rules using sampling; sampling is analyzed in 

Section 5. Experimental results are given in Section 6. 
Finally, Section 7 contains concluding remarks. 

2 Association Rules 

We shortly review the definitions related to association 

rules. Consider the supermarket domain and the so 

called basket data analysis: the goal is to discover asso- 

ciations between items that are often bought together. 

Let R= {Il,Iz,... , Im} represent the set of items 
that are being sold in the supermarket. Each item 1; is 
an attribute over the binary domain { 0, l}, where value 

1 indicates that a particular basket has contained the 

corresponding product. The baskets are represented 
by rows in a relation r = {tl, . . . , t,,} over R. That 
is, each basket is represented by a binary vector of 
length m, which can be interpreted as the set of items 

that was bought in the basket. 

Consider sets of items that are bought together. The 

relative frequency of an itemset X s R in r is 

ftix, r) = I{t E r 1 t[i] = 1 for all 1; E X}[ 

Id 

In other words, the frequency of an itemset X is the 

fraction of the baskets that has contained all the items 

in X, i.e., the probability that a randomly chosen row 
from r contains the itemset X. 

The goal is to find items that are bought often to- 

gether. The user determines what is often enough 

by giving a frequency threshold. Given a frequency 
threshold min-fr, -we say that a set X is frequent’ 
if fr(X, r) 2 min-fr. That is, an itemset is frequent 

if it is contained in at least a fraction mixfr of the 

baskets. For notational convenience, we introduce a 

shorthand notation F(r, min-fr) for the collection of 

frequent sets in a given relation r with respect to a 

frequency threshold mixfr: 

F(r, min-fr) = {X E R 1 fr(X, r) 2 min-fr}. 

Now, finally, we define association rules. Given dis- 

joint and non-empty itemsets X, Y C R, the expression 
X + Y is an association rule over r. The interpreta- 

tion is that when all the items in set X are in a basket, 

‘In the literature, also the terms large and covering have been 

used for frequent; and the term support for frequency. 

also the items in Y tend to be in the basket. The 

strength or corlfidence of the rule is 

frtx U Y, r) 

fG,r) . 

The confidence can be seen as a conditional probability 
in the analyzed relation r. For instance, assume that 
the rule {beer} + {chips} has a confidence of 87 %. 
This means that if a randomly chosen basket contains 
beer, then it also contains chips with probability 0.87. 

A confidence threshold is used to exclude rules that 
are not strong enough to be interesting. Also, the given 
frequency threshold mixfr is used to remove rules that 

do not apply often enough, i.e., rules such that the 

frequency of X U Y is below the frequency threshold. 

The problem of finding association rules can now 

be stated in the following way. Given a set R of bin- 
ary attributes, a corresponding relation r, a frequency 
threshold min-fr, and a confidence threshold mixconf, 

find all association rules in r that have confidence at 

least min-conf and frequency at least mixfr. 

The discovery of association rules can be divided 
into two phases [AIS93]. First, discover all frequent 
itemsets X E R. Then, for each frequent X, test for 

all non-empty subsets Y C X if the rule X \ Y * Y 

holds with sufficient confidence. The second part of the 
problem can be solved in main memory in a straight- 

forward manner once the frequent sets and their fre- 
quencies are known. Discovery of the frequent sets is 

the hard part of the problem: with m items., there are 

2”’ potentially frequent itemsets. For all but the smal- 

lest m, efficient methods for locating the frequent sets 
are needed. For the rest of this article, we consider the 

task of discovering all frequent sets. 

3 Previous Work on Association Rules 

Since the introduction of the problem of *mining as- 

sociation rules [AIS93] several generate-and-test type 

of algorithms have been proposed for the task of 

discovering frequent sets. An efficient breadth-first 

or level-wise method for generating candidate sets, 
i.e., potentially frequent sets, has been presented 
in [AS94, MTV94, AMS+96]. This method-also 

called Apriori-is the core of all known algorithms 
except the original one. [AIS93] and its variation for 

SQL [HS93], which have bgen shown to be inferior to 

the level-wise method [AS94, MTV94, AMSf96]. 

An alternative strategy for the database pass, using 
inverted structures and ;a general purpose DBMS, has 
been considered in [HI<MT95]. The most efficient al- 
gorithm so far, in particular in terms of database oper- 
ations, is Partition [SON95]. We review the level-wise 

method and the Partition algorithm below. 
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Other work related to association rules includes the 

problem of mining rules with generalizations [HF95, 
HKMT95, SA95], management of large amounts of dis- 

covered association rules [KMR+94, TKR+95], and 

a theoretical analysis of an algorithm for a class of 
KDD problems including the discovery of frequent 

sets [MT96]. A connectionist approach to mining rules 
is presented in [LSL95]. 

3.1 Level-Wise Algorithms 

Algorithms for discovering frequent sets are based 

on the observation that if a set is not frequent then 

its supersets can not be frequent. All current al- 

gorithms [MTV94, AS94, HKMT95, HF95, PCY95, 

SA95, AMS+96] start on level 1 by evaluating the fre- 
quencies of singleton itemsets. On level k, candidate 
itemsets X of size k are generated such that all sub- 

sets of X are frequent. For instance, in the second 
pass, candidates are pairs of items such that both items 

are frequent. After the frequencies of the candidates 

on level k have been evaluated, new candidates for 

level k + 1 are generated and evaluated. This is re- 
peated until no new candidates can be generated. The 

efficiency of this approach is based on not generating 

and evaluating those candidate itemsets that cannot be 

frequent, given all smaller frequent sets. 

The level-wise algorithms make one pass over the 

database for each level. There are thus K or Ii + 1 

passes over the database, where Ir’ is the size of the 

largest frequent set.2 Sometimes, if there are only few 

candidates in the last iterations, candidates can be gen- 

erated and tested for several levels at once. 

3.2 Partition Algorithm 

The Partition algorithm [SON951 reduces the database 

activity: it computes all frequent sets in two passes 
over the database. The algorithm works also in the 

level-wise manner, but the idea is to partition the data- 

base to sections small enough to be handled in main 

memory. That is, a part is read once from the disk, 

and level-wise generation and evaluation of candidates 

for that part are performed in main memory without 

further database activity. 

The first database pass consists of identifying in 

each part the collection of all locally frequent sets. For 

the second pass, the union of the collections of locally 

frequent sets is used as the candidate set. The first 
pass is guaranteed to locate a superset of the collec- 
tion of frequent itemsets; the second pass is needed to 

merely compute the frequencies of the sets. 

2K + 1 passes are needed if there are candidates of size K + 1. 

4 Sampling for Frequent Sets 

A fairly obvious way of reducing the database activity 
of knowledge discovery is to use only a random sample 

of the relation and to find approximate regularities. In 

other words, one can trade off accuracy against effi- 
ciency. This can be very useful: samples small enough 
to be handled totally in main memory can give reas- 
onably accurate results. Or, approximate results from 
a sample can be used to set the focus or to adjust 
parameters for a more complete discovery phase. 

It is often important to know the frequencies and 

confidences of association rules exactly. In business 

applications, for example for large volumes of super- 

market sales data, even very small differences can be 

significant. When relying on results from sampling 
alone, one also takes the risk of loosing valid associ- 

ation rules because their frequency in the sample is 

below the threshold. 

Using a random sample to get approximate results 

is fairly straightforward. Below we give bounds for 
sample sizes, given the desired accuracy of the results. 

Our main contribution is, however, to show that ex- 
act frequencies can be found efficiently, by analyzing 
first a random sample and then the whole database as 

follows. Use a random sample to efficiently find a su- 

perset S of the collection of frequent sets. A superset 

can be determined efficiently by applying the level-wise 

method on the sample in main memory, and by using a 

lowered frequency threshold. In terms of the Partition 

algorithm, discover locally frequent sets from one part 
only, and with a lower threshold. Then use the rest of 

the database to compute the exact frequencies of the 

sets. This approach requires only one full pass over 
the database, and two passes in the worst case. 

4.1 The Negative Border 

As a tool for further analysis, consider the concept of 

negative border. Given a collection S C P(R) of sets, 

closed with respect to the set inclusion relation, the 
negative border ad-(S) of S consists of the minimal 

itemsets X s R not in S [MT96]. 

The collection of all frequent sets is always closed 

with respect to set inclusion. For instance, let R = 

{A,. . . , F} and assume the collection F(r, mixfr). of 

frequent sets (with some r and mixfr) is 

{A), {Bl, {Cl, {Fl, {A> Bl, {A,Cl, 
{A,F}, {C, F}, {A, C, F}. 

The negative border of this collection contains now, 
e.g., the set {B,C}: it is not in the collection, but all 

its subsets are. The whole negative border is 

fW(F(r, min-fr)) = {{B, C), (8, F), IDI, {WI. 
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Algorithm 1 

Input: A relation r over a binary schema R, a fre- 
quency threshold mixfr, a sample size as, and a 
lowered frequency threshold low-fr. 

Output: The collection F(r, min-fr) of frequent sets 
and their frequencies, or its subset and a failure report. 
Method: 

1. draw a random sample s of size ss from T; 

// find frequent sets in the sample: 
2. 

3. 

compute S := T(s, low-fr) in main memory; 

// database pass: 
compute T := 

{X E S U fW (S) ) fr(X, r) 1 mixfr}; 

4. for all X E F do output X and fr(X, r); 
5. report if there possibly was a failure; 

The intuition behind the concept is that given a 
(closed) collection S of sets that are frequent, the neg- 

ative border contains the “closest” itemsets that could 

be frequent, too. The candidate collections of the level- 

wise algorithms are, in effect, the negative borders of 

the collections of frequent sets found so far, and the 
collection of all candidates that were not frequent is 

the negative border of the collection of frequent sets. 

Of particular importance is the fact that the negative 
border needs to be evaluated, in order to be sure that 

no frequent sets are missed [MT96]. 

. 4.2 Frequent Set Discovery Using Sampling 

We now apply the concept of negative .border to using 

sampling for finding frequent sets. It is not sufficient 

to locate a superset S of F(r, min-fr) using tk sample 
and then to test S in r, because the negative border 

BP(F(r, min-fr)) needs to be checked, too. If we have 

F(r, min-fr) C S, then obviously S U fW (S) is a suffi- 

cient collection to be checked. Determining SU ti- (S) 

is easy: it consists of all sets that were candidates of the 

level-wise method in the sample. Algorithm 1 presents 

the principle: search for frequent sets in the sample, 

but lower the frequency threshold so much that it is 

very unlikely that any frequent sets are missed. Then 

evaluate the sets and their border, i.e., all sets that 
were evaluated in the sample, also in the rest of the 

database. 

Sometimes, unfortunately, it may happen that we 
find out that not all necessary sets have been evaluated. 

There has been a failure in the sampling if all frequent 

sets are not found in one pass, i.e., if there is a frequent 
set X in F(r, mixfr) that is not in SUfW (S). A mzss 

is a frequent set Y in F(r, min-fr) that is in BP(S). 
If there are no misses, then the algorithm is guaran- 

teed to have found all frequent sets. Misses themselves 

are not a problem. They are evaluated in the whole 

relation, and thus they are not actually missed by the 
algorithm. Misses, however, indicate a potential fail- 

ure. Namely, if there is a miss Y, then some superset of 
Y might be frequent but not in S u ad-(S). A simple 
way to recognize a potential failure is thus to check if 
there are any misses. 

Example. Assume that we have a relation r with 

10 million rows over attributes A,. . . , F, and that we 

want to find the frequent sets with the threshold 2 %. 

Algorithm 1 randomly picks a small fraction s of r, say 

20,000 rows, and keeps this sample s in main memory. 
The algorithm can now, without any further database 
activity, discover very efficiently sets that are frequent 
in the sample. 

To make (almost) sure that the collection of fre- 

quent sets in the sample includes all sets that really 
are frequent in r, the frequency threshold is lowered 
to, e.g., 1.5 %. Algorithm 1 now determines the collec- 

tion S = F(s, 1.5 %) from the sampled 20,000 rows. 
Let the maximal sets of S be 

Since the threshold was lowered, S is likely to be a 

superset of the collection of frequent sets in r. In the 

pass over the rest of r, the frequency of all sets in S 

and ad-(S) is evaluated. That‘ is, in addition to the 
sets that are frequent in the sample, we evaluate also 

those candidates that were not frequent in the sample, 

i.e., the negative border 

{B,F)> {C, 01, {D, F), {El. 

The goal is to discover the collection F(r, 2 %) of 

frequent, sets in r. Let sets 

{A,B),{A,C,F). _ 

and all their subsets be the frequent sets. All frequent 

sets are in S, so they are evaluated and their exact 

frequencies are known after the full database pass. We 
also know that we have found all frequent sets since 

also the negative border 

of F(r, 2 %) was evaluated and found not to be fre-. 

quent 
Now assume a slightly different situation, where the 

set {B, F} turns out to be frequent in T, that is, {B, F} 
is a miss. What we have actually missed is the set 
{A, B, F} which can be frequent in r, since all its sub- 

sets are. In this case Algorithm 1 reports that there 

possibly is a failure. cl 

The problem formulation is now the following: given 

a database r and a frequency threshold mixfr, use a 
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Algorithm 2 
Input: A relation r 
a frequency threshold 
of F(r, mkfr). 
Output: The collection 
and their frequencies. 

Method: 
1. repeat 
2. compute S 

over a binary schema R, 
mixfr, and a subset S 

.F(r, min-fr) of frequent sets 

:= s u &r(S); 
until S does not grow; 

// database pass: 

3. 

4. compute F := {X E S ) fr(X, r) > min-fr}; 
5. for all X E T do output, X and fr(X, r); 

random sample s to determine a collection S of sets 

such that S contains with a high probability the collec- 

tion of frequent sets F(r, min-jr). For efficiency reas- 

ons, a secondary goal is that S does not contain unne- 

cessarily many other sets. We present two variants of 

algorithms using sampling. One of them is guaranteed 

to find all frequent, sets in one pass in fraction 1 -A of 

the cases, where A is a parameter given by the user. 

In the fraction of cases where a possible failure is 

reported, all frequent sets can be found by making a 

second pass over the database. Algorithm 2 can be 

used to extend Algorithm 1 with a second pass in such 

a case. The algorithm simply computes the collection 

of all sets that possibly could be frequent. This can be 

done in a similar way that candidates are generated in 

the algorithms for finding frequent sets. 

5 Analysis of Sampling 

Next we analyze the relation of sample size to the 

accuracy of results. We first consider how accur- 

ate the frequencies computed from a random sample 

are. As has been noted before, samples of reason- 

able size provide good approximations for frequent 

sets [MTV94, AMSf96]. Related work on using a 

sample for approximately verifying the truth of sen- 

tences of tuple calculus is considered in [KM94]. 

5.1 Accuracy and Sample Size 

We consider the absolute error of the estimated fre- 

quency. Given an attribute set X C R and a random 

sample s from a relation over binary attributes R, the 
error e(X, s) is the difference of the frequencies: 

0, s) = If+(X) - b-(X, s)l, 

where fr(X) is the frequency of X in the relation from 

which s was drawn. 

To analyze the error, we consider sampling with re- 
placement. The reason is that we want to avoid making 
other assumptions of the database size except that it 
is large. For sampling with replacement the size of the 

database has no effect on the analysis, so the results 
apply, in principle, on infinitely large databases. To 
emphasize this, the relation from which a sample is 

drawn is not shown in the notation of the error. For 

very large databases there is practically no difference 

between sampling with and without replacement. 

In the following we analyze the number of rows 
in the sample s that contain X, denoted m(X, s). 

The random variable m(X, s) has binomial distribu- 

tion, i.e., the probability of m(X, s) = c, denoted 
Pr[m(X, s) = c], is 

( > “I fr(X)‘(l - fr(X))l”i-c. e 

First consider the necessary size of a sample, given 

requirements on the size of the error. The following 

theorem gives a lower bound for the size of the sample, 

given an error bound E and a maximum probability S 
for an error that exceeds the bound. 

Theorem 1 Given 
sample 5 of size 

the probability that 

Proof. We have 

Pr[e(X, s) > c] = 

an attribute set X and a random 

1 2 
IsI > - In - 

2E2 s 

e(X, s) > E is at most 6. 

The Chernoff bounds [AS921 give an upper bound 

for the probability. cl 

Table 1 gives values for the sufficient sample size Is/, 

for E = O.Ol,O.OOl and S = 0.01,0.001,0.0001. With 
the tolerable error E around 0.01, samples of a reas- 

onable size suffice. E.g., if a chance of 0.0001 for an 

error of more than 0.01 is acceptable, then a sa.mple of 
size 50,000 is sufficient. For ma.ny applications these 
parameter values are perfectly reasonable-errors in 
the input dat,a. may be more likely tl1a.n 0.0001. In 

such cases, a,pproximate rules can be produced based 

on a sample, i.e., in constant time independent of the 
size of r. With tighter error requirements the sample 

sizes can be quite large. 
The result above is for a given set X. The following 

corollary gives a result for a more stringent case: given 
a collection S of sets, with probability 1 - A there is 

no set in S with error more than E. 
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Table 1: Sufficient sample sizes, given E and 6. 

Cotiollary 2 Given a collection S of sets and a ran- 

dom sample s of size 

IsI> &hi?, 

the probability that there is a set X E S such that 

e(X, s) > E is at most A. 

Proof. By Theorem 1, the probability for e(X, s) > 
c for a given set X is at most &. Since there are JS] 

such sets, the probability in question is at most A. (7 

The Chernoff bound is not always very tight, and in 
practice the exact probability from the binomial dis- 

tribution or its normal approximation is much more 
useful. 

5.2 Probability of a Failure 

Consider now the proposed approach to finding all fre- 

quent sets exactly. The idea was to locate a superset of 

the collection of frequent sets by discovering frequent 

sets in a sample with a lower threshold. 

Assume we have a sample s and a collection S = 
3(s, low-fr) of sets. What can we say about the prob- 

ability of a failure? A failure is first of all possible if 

there is a set that should have been checked but was 

not. That is, sampling might have failed if there is such 

a collection 7 of misses that f?d- (S U 7) has sets that 
are not in m-(S). Given such a collection 7 of po- 

tential misses, estimating the probability that all sets 
in 7 actually are misses is difficult since the sets are 

not independent. To get an upper bound one can com- 

pute, as if the sets were independent, the probability 
of any of the sets in 7 being a miss. This, again, is 

bounded by considering the whole f%-(S) instead of 

subcollections 7. In summary: to estimate the prob- 

ability of a failure we can compute an upper bound for 

the probability of a miss. 
An interesting aspect is that the upper bound can 

be computed on the Ay when processing the sample. 

Thus, if an upper bound for the probability of a failure 
is desired, the frequency threshold low& can be adjus- 

ted dynamically to reduce the probability of a miss. 

A variation of Theorem 1 gives the following result 
on how to set the lowered frequency threshold so that 
misses are avoided with a high probabylity. 

Theorem 3 Given a frequent set X! a random 
sample s, and a probability parameter 6, the probabil- 

ity that X is a miss is at most 6 when 

low+ < min,fr - 

J 

-!-In1 
214 6 

Proof. Using the Chernoff bounds again-this time 
for one-sided error-we have 

q 

Conside; now the number of sets checked in the 

second pass by Algorithm 2, in the case of a failure. 

The collection S can, in principle, grow much. Each 
independent miss can in the worst case generate as 

many new candidates as there are frequent sets. Note, 
however, that if the probability that a given set is a 

miss is at most 6, then the probability of 1 independent 
misses can be at most S’. In a pathological case the 
misses are very much dependent: there is a very large 

frequent set X such that its subsets only occur with 

the whole X. If X is not frequent in a sample, then 
also all its subsets are missed. At least in the applic- 

ation domain of supermarket basket data this kind of 
sets are very unlikely to exist at all. 

6 Experiments 

We now describe the experiments we conducted in or- 

der to assess the practical feasibility of using samples 

for finding frequent sets. We present two new variants 
of algorithms using sampling and give experimental 

results. 

6.1 Test Organization 

We used three synthetic data sets from [AS941 in 

our tests. These databases model supermarket bas- 
ket data, and they have been used as benchmarks for 

several association rule algorithms [AS94, HKMT95, 
PCY95, SON95, AMS+96]. The central properties of 

the data sets are the following. There are IRI = 1,000 

attributes, and the average number T of attributes per 

row is 5, 10, and 20. The number ]r] of rows is ap- 
proximately 100,000. The average size I of maximal 
frequent sets is 2, 4, and 6. Table 2 summarizes the 
parameters for the data sets; see [AS941 for details of 

the data generation. 
We assume that the real data sets from which as-. 

sociation rules are discovered can be much larger than 
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Figure I: The number of database passes made by frequent set algorithms. 

Table 2: Synthetic data set characteristics (T = row 

size on average, I = size of maximal frequent sets on 
average). 

Data set name IRI T 1 Id 

T5.12.DlOOK 1,000 5 2 97,233 

T10.14.DlOOK 1,000 10 4 98,827 

T20.16.Dl OOK 1,000 20 6 99,941 

the test data sets. To make the experiments fair we 

use sampling with replacement. This means that the 
real data set,s could, in principle, have been arbitrary 

large data sets such that these data sets represent their 

distributional properties. 
We considered sample sizes from 20,000 to 80,000. 

Samples of these sizes are large enough to give good 
approximations and small enough to be handled in 
main memory. Since our approach is probabilistic, we 

repeated every experiment 100 times for each para- 

meter combination. Altogether, over 10,000 trials were 
run. We did not experiment with all the frequency 

thresholds used in the literature; the repeated trials 

would have taken too long. The tests were run on a 

PC with 90 MHz Pentium processor and 32 MB main 

memory under Linux operating system. 

6.2 Number of Database Passes and Misses 

We experimented with Algorithm 1 with the above 

mentioned sample sizes 20,000 to 80,000. We selected 

the lowered threshold so that the probability of missing 
any given frequent set X is less than 6 = 0.001, i.e., 

given any set X with f?(X) 2 min-fi; we have 

Pr~~X, s) < low-fr] < 0.001. 

The lowered threshold depends on the frequency 
threshold and the sample size. The lowered threshold 

Table 3: Lowered frequency thresholds (%) for 6 = 

0.001. 

0.25 

0.50 

I-- 

0.75 

1.00 

1.50 

L 2.00 

-IT- Sa.mple size 

20,000 1 40,000 60.000 1 80.000 1 

: 

values are given in Table 3; we used in the computa- 
tions t,he exact probabilities from the binomial distri- 

bution, not the Chernoff bounds. 

Figure 1 shows the nurnber of database passes for 

the three different types of algorithms: the level-wise 
algorithm, Partition, and the sampling Algorithm 1. 

Each of the data points in t,he results shown for Al- 

gorithm 1 is the average value over 100 trials. Explain- 

ing the results is easy. The level-wise algorithm rnakes 

1<(+1) passes over the database, where K is the size 

of the largest frequent set. The Partition algorithm 

makes two passes over the database when there are 
any frequent sets. For Algorit,hm 1, the fraction of tri- 
als with misses is expected to be larger than 6 = 0.001, 
depending on how many frequent sets have a frequency 

relatively close to the threshold and are thus likely 

misses in a sample. The algorithm has succeeded in 
finding all frequent sets in one pass in almost all cases. 
The number of database passes made by Partition al- 
gorithm is practically twice that of Algorithm 1, and 

the number of passes of the level-wise algorithm is up 

to six times that of Algorithm 1. 

Table 4 shows the number of trials with misses for 

each data set, sample size, and frequency threshold. In 
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Table 4: Number of trials with misses. 

T5.12.DlOOK 

I I Sample size 
min-fr (%) 11 20,000 

0.25 0 
0.50 0 
0.75 0 

I 

1.00 0 
1.50 0 

2.00 0 

40,000- 60,000 80,000 

1 0 0 
1 0 1 

0 0 0 

0 0 0 
0 0 0 

0 0 0 

1 

T10.14.DlOOK 

20,000 ( 40,000 1 60,000 1 80,000 

T20.16.DlOOK 

Sample size 

mixfr (%) 20,000 40,000 60,000 80,000 

1.00 0 0 0 0 

1.50 1 1 1 0 
2.00 0 1 0 2 

each set of 100 trials, there have been zero to two trials 

with misses. The overall fraction of trials with misses 
was 0.0038. We repeated the experiment with d = 0.01, 

i.e., so that the miss probability of any given frequent 

set is at most 0.01. This experiment gave misses in 
fraction 0.041 of all the trials. In both cases the frac- 

tion of trials with misses was about four times 6. 

The actual amount of reduction in the database 

activity depends very much on the storage structures. 

For instance, if the database has 10 million rows, a disk 
block contains on average 100 rows, and the sample 

size is 20,000, then the sampling phase could read up 
to 20 % of the database. For the design and analysis of 

sampling methods see, e.g, [OR89]. The related prob- 
lem of sampling for query estimation is considered in 
more detail in [HSSP]. A n alternative for randomly 

drawing each row in separation is, of course, to draw 

whole blocks of rows to the sample. Depending on how 
randomly the rows have been assigned to the blocks, 

this method can give very good or very bad results. 
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The reduction in database activity is achieved at the 

cost of considering some attribute sets that. the level- 
wise algorithm does not generate and check. Table 5 
shows the average number of sets considered for data 

set T10.14.DlOOK with different sarnple sizes, and 

the number of candidate sets of the level-wise al- 
gorithm. The largest absolute overhead occurs with 
low thresholds, where the number of itemsets con- 
sidered has grown from 318,588 by 64,694 in the worst 
case. This growth is not significant for the total exe- 
cution time since the itemsets are handled entirely in 
main memory. The relative overhead is larger with 

higher thresholds, but since the absolute overheads are 

very small the effect is negligible. Table 5 indicates 

that larger samples cause less overhead (with equally 

good results), but that for sample sizes from 20,000 to 

80,000 the difference in the overhead is not significant. 

To obtain a better picture of the relation of 6 and 
the experimental number of trials with misses, we con- 

ducted the following test. We took 100 samples (for 

each frequency threshold and sample size) and determ- 
ined the lowered frequency threshold that would have 

given misses in one out of the hundred trials. Figure 2 
presents these results (as points), together with lines 

showing the lowered thresholds with 6 = 0.01 or 0.001, 
i.e., the thresholds corresponding to miss probabilit- 

ies of 0.01 and 0.001 for a given frequent set. The 
frequency thresholds that would give misses in frac- 

tion 0.01 of cases approximate surprisingly closely the 

thresholds for S = 0.01. Experiments with a larger 

scale of sample sizes give comparable results. There 
are two explanations for the similarity of the values. 

One reason is that there are not necessarily many 
potential misses, i.e., not many frequent sets with 

frequency relatively close to the threshold. Another 
reason that contributes to the similarity is that the sets 
are not independent. 

In the case of a possible failure, Algorithm 2 gener- 

ates itera.tively all new candidates and makes another 

pass over the database. In our experiments the number 
of frequent set.s missed-when any were missed-was 

one or two for 6 = 0.001, and one to 16 for 6 = 0.01. 

The number of candidates checked on the second pass 

was very small compared to the total number of item- 

sets checked. 

6.3 Guaranteed 1 - A Success Probability 

Setting the lowered threshold for Algorithm 1 is not 
trivial: how to select it so that the probability of a fail- 

ure is low but there are not unnecessarily many sets 
to check? An automatic way of setting the parameter 

would be desirable. Consider, for instance, an inter- 
active mining tool. It would be very useful to know 

in advance how long an operation will approximately 

take-or, in the case of mining association rules, how 

many database passes there will be. 

We now present two algorithms that are guaranteed 
to find all frequent sets in a given fraction 1 - A of 



Table 5: Number of attribute sets considered for data set T10.14.DlOOK. 

T5.12.1OOK 
mmfr (%) I 1 I I 

2.00 - 0.01 - 

Y 0.001 ‘2’ - - 
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., ..x . . . x x.. r 
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Sample size 

Figure 2: Frequency thresholds giving misses in 0.01 cases (points) and lowered thresholds with 6 = 0.01 and 

0.001 (lines). 

the cases. The first one uses a simple greedy principle 
with which an optimal lowered frequency threshold can 

be found. The other algorithm is not as optimal, but 

its central phase is almost identical to the level-wise 

method and it is therefore very easy to incorporate 
into existing software. We present experimental results 
with this latter algorithm. 

The greedy Algorithm 3 starts with an empty set S. 

It then greedily increases the probability of success by 

adding the most probable misses to S until the upper 

bound for the probability of a miss is at most A. 

Algorithm 4 is a very simple variation of the level- 
wise algorithm. It utilizes also the upper bound ap- 
proximation described in Section 5: it monitors the 

upper bound of the probability of a miss and keeps the 
probability small by lowering the frequency threshold 

low&, when necessary, for the rest of the algorithm. 

To use the level-wise algorithm for the discovery of 
frequent sets in a sample with the dynamic adjustment 

of the lowered threshold, the only modification con- 
cerns the phase where candidates are either added to 

the collection of frequent sets or thrown away. In Al- 

gorithm 4, lines 8 - 13 have been added to implement 

this change. Every time there is a candidate X that is 
not frequent in the sample, compute the probability p 
that X is frequent. If the total probability P of a miss 
increases too much (see below) with such an X, then 

lower the frequency threshold low-fr to the frequency 

of X in the sample for the rest of the algorithm. Thus 

X is eventually considered frequent in the sample, and 
so are all following candidate sets that would increase 

the overall probability of a miss at least as much as X. 

We use the following heuristic to decide whether the 

possibility of a miss increases too much. Given a para- 
meter y in [0, l]., the frequency threshold is lowered if 

the probability p is larger than fraction 7 of the “re- 

maining error reserve” A - P. More complex heur- 
istics for changing the frequency threshold could be 
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Input: A relation r over a binary attributes R, a 

sample size ss, a frequency threshold mixfr, and a 
maximum miss probability A. 
Output: The collection F(r, mkfr) of frequent sets 
and their frequencies at least in fraction 1 - A of the 
cases, and a subset of LF(r, min-fr) and a failure report 
in the rest of the cases. 
Method: 
1. draw a random sample s of size ss from r; 
2. s:=0; 

Algorithm 3 Algorithm 4 
Input: A relation r over a binary attributes R, a 

sample size ss, a frequency threshold min-fr, and a 
maximum miss probability A. 
Output: The collection r(r, min-jr) of frequent sets 
and their frequencies at least in fraction 1 - A of the 
cases, and a subset of F(r, min-fr) and a failure report 

in the rest of the cases. 

Method: 

3. 

4. 

5. 
6. 

7. 

8. 
9. 

// find frequent sets in the sample: 

while probability of a miss > A do begin 

select X E B-(S) with the highest 

probability of being a miss; 

s := su {X}; 
end; 
// database pass: 

compute T := 

{X E S U BP (S) 1 f7(X, r) 2 min-fr}; 

for all X E T do output X and fr(X, r); 
report if there possibly was a failure; 

1. 

2. 

3. 

4. 

5. 
6. 
7. 

8. 

9. 
10. 
11. 
12. 

13. 
14. 

15. 
16. 
17. 

18. 

19: 

draw a random sample s of size ss from r; 

P := 0; 

low-jr := min-fry 

// find frequent sets in the sample: 

Cl := {{A} I A E R}; 
i := 1; 

while Ci # 0 do begin 
for all X E Ci do begin 

if fr(X, s) < low& then do 

p := Pr[X is frequent]; 

if p/(A - P) > 7 then 
low& := fr(X, s) 

else P := 1 - (1 - P)(l - p); 

end; 

if fr(X, s) 2 low-fr then 

si := si u {X}; 
end; 
i := is 1; 
Ci := ComputeCandidates(S;-1); 

end; 

developed, e.g., by taking into account the number of 

candidates on the level .and whether the number of fre- 

’ quent sets per level is growing or shrinking. The ob- 

servations made from Figure 2 hint that the lowered 

threshold can be set in the start-up to roughly cor- 
respond to the desired probability of a miss, i.e., for 

A= 0.01 the lowered threshold could be set as for 
6 = 0.01. 

We tested Algorithm 4 with maximum miss prob- 

ability A = 0.1 and dynamic adjustment parameter 

7 = 0.01 for two frequency thresholds for each data set. 
The fraction of trials with misses is shown in Table 6. 
The fraction succesfully remained below A = 0.1 in 

each set of experiments. 

As Table 6 shows, the fraction of cases with misses 
was actually less than half of A. The reason is that 

with a small y the algorithm tends to be conservat- 

ive and keeps a lot of space for the probability of a 

miss in reserve. This is useful when there can be very 

many candidates. The negligible trade-off is that the 
algorithm may consider unnecessarily many sets as fre- 

quent in the sample. 

7 Concluding Remarks 

We have discussed the use of sampling in the task of 
discovering association rules in large databases. We 

described algorithms that take a random sample from 

a database, identify those sets that probably are fre- 

20. 

21. 

22. 

// database pass: 
compute F := 

{X E lJjci Cj 1 fr(X, r) 2 mixfr}; 

for all X E F do output X and fr(X, r); 
report if there possibly was a failure; 

quent in the database, and then compute the exact fre- 

quencies from the rest of the database. 

The described algorithms are fairly simple. Two 
of the algorithms have the property that they discover 
all frequent sets in one pass in a fraction 1 - A of the 

cases, where A is given by the user. Those cases where 

sampling possibly missed frequent sets can be recog- 

nized, and the missing sets can be found in a second 

pass. 

Our experiments showed that the approach works: 

all frequent sets can actually be found in almost one 

pass over the database. For the efficiency of mining 
association rules in very large databases the reduction 
of disk I/O is significant. 

This work raises two obvious open questions. The 

first one concerns the discovery of association rules: is 
there a method for discovering exact association rules 
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Table 6: Fraction of trials with misses with A = 0.10. 

T5.12.DlOOK 

Sample size 

min-jr (%) 20,000 40,000 60,000 1 80,000 

0.50 0.03 0.03 0.00 I 0.02 
1 1.00 11 0.00 1 0.00 1 0.00 1 0.00 1 

T10.14.DlOOK 

minijr (%) 

Sample size 

20,000 40,000 60,000 80,000 

0.75 0.01 0.04 0.02 0.01 

1 1.50 11 0.00 1 0.02 1 0.04 1 0.01 I 

T20.16.DlOOK 

Sample size 

mixfr (%) 20,000 40,000 60,000 80,000 

1.00 0.02 0.01 0.01 0.01 

2.00 0.01 0.03 0.01 0.03 

in at most one pass? The other question is, how much 

can database mining methods gain from sampling in 

general? 
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