
Sampling Large Databases for Association Rules

Hannu Toivonen
University of Helsinki, Department of Computer Science

FIN-00014 University of Helsinki, Finland
Hannu.Toivonen@Helsinki.FI

Abstract

Discovery of association rules .is an import-

ant database mining problem. Current al-
gorithms for finding association rules require

several passes over the analyzed database, and

obviously the role of I/O overhead is very sig-

nificant for very large databases. We present
new algorithms that reduce the database activ-

ity considerably. The idea is to pick a Random

sample, to find using this sample all associ-

ation rules that probably hold in the whole

database, and then to verify the results with
the rest of the database. The algorithms thus

produce exact association rules, not approx-
imations based on a sample. The approach is,

however, probabilistic, and in those rare cases

where our sampling method does not produce

all association rules, the missing rules can be
found in a second pass. Our experiments show

that the proposed algorithms can find associ-

ation rules very efficiently in only one database

Pa=

1 Introduction

Database mining, or knowledge discovery in databases

(KDD), has in the recent years attracted a lot of
interest in the database community (for overviews,

see [FPSSU96, PSFSl]). The interest is. motivated

by the large amounts of computerized data that many

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

organizations now have about their business. For in-

stance, supermarkets store electronic copies of millions
of receipts, and banks and credit card companies main-
tain extensive transaction histories. The goal in data-
base mining is to analyze these large data sets and to
discover patterns or regularities that are useful for de-

cision support.

Discovery of association rules [AIS93] is an inter-

esting subfield of database mining. The motivation for

searching association rules has come from the desire to

analyze large amounts of supermarket basket data. As-

sociation rules describe how often items are purchased
together: for instance, an association rule “beer +

chips (87 %)” states that 87 % of the customers that
have bought beer, also have bought chips. Such rules
can be useful for decisions concerning, e.g., product

pricing, promotions, or store layout. Association rules
have been used to discover regularities in other data-

bases as well: university course enrollment data has

been analyzed to find combinations of courses taken

by the same students, and alarms that occur close to

each other in time have been searched in telecommu-

nication alarm data [MTV94].

The size of the data collection has an essential role

in database mining. Large data sets are necessary

for reliable results; unfortunately, however, the effi-

ciency of the mining algorithms depends heavily on
the database. Association rule algorithms require mul-

tiple passes over the whole database, and subsequently
the database size is by far the most influential factor

of the execution time for very large databases. Recent

research has managed to reduce the disk I/O activity

to two full scans over the database [SON95].

We present algorithms,that make only one full pass

over the database. The idea. is to pick a-random sample,
use it to determine all association rules that probably
hold in the whole database, and then to verify the res-
ults with the rest of the database. The algorithms thus

produce exact, association rules in one full pass over

the database. In those rare cases where our sampling
method does not produce all association rules, the

134

missing rules can be found in a second pass. Our ex-

tensive experiments show that this method works very
well in practice, making the approach attractive espe-
cially for very large databases.

This paper is organized as follows. Section 2 re-

views the definition of association rules and the prob-
lem setting. An overview of previous work in asso-

ciation rule discovery is given in Section 3. In Sec-
tion 4 we present our approach to discovering asso-
ciation rules using sampling; sampling is analyzed in

Section 5. Experimental results are given in Section 6.
Finally, Section 7 contains concluding remarks.

2 Association Rules

We shortly review the definitions related to association

rules. Consider the supermarket domain and the so

called basket data analysis: the goal is to discover asso-

ciations between items that are often bought together.

Let R= {Il,Iz,... , Im} represent the set of items
that are being sold in the supermarket. Each item 1; is
an attribute over the binary domain { 0, l}, where value

1 indicates that a particular basket has contained the

corresponding product. The baskets are represented
by rows in a relation r = {tl, . . . , t,,} over R. That
is, each basket is represented by a binary vector of
length m, which can be interpreted as the set of items

that was bought in the basket.

Consider sets of items that are bought together. The

relative frequency of an itemset X s R in r is

ftix, r) = I{t E r 1 t[i] = 1 for all 1; E X}[

Id

In other words, the frequency of an itemset X is the

fraction of the baskets that has contained all the items

in X, i.e., the probability that a randomly chosen row
from r contains the itemset X.

The goal is to find items that are bought often to-

gether. The user determines what is often enough

by giving a frequency threshold. Given a frequency
threshold min-fr, -we say that a set X is frequent’
if fr(X, r) 2 min-fr. That is, an itemset is frequent

if it is contained in at least a fraction mixfr of the

baskets. For notational convenience, we introduce a

shorthand notation F(r, min-fr) for the collection of

frequent sets in a given relation r with respect to a

frequency threshold mixfr:

F(r, min-fr) = {X E R 1 fr(X, r) 2 min-fr}.

Now, finally, we define association rules. Given dis-

joint and non-empty itemsets X, Y C R, the expression
X + Y is an association rule over r. The interpreta-

tion is that when all the items in set X are in a basket,

‘In the literature, also the terms large and covering have been

used for frequent; and the term support for frequency.

also the items in Y tend to be in the basket. The

strength or corlfidence of the rule is

frtx U Y, r)

fG,r) .

The confidence can be seen as a conditional probability
in the analyzed relation r. For instance, assume that
the rule {beer} + {chips} has a confidence of 87 %.
This means that if a randomly chosen basket contains
beer, then it also contains chips with probability 0.87.

A confidence threshold is used to exclude rules that
are not strong enough to be interesting. Also, the given
frequency threshold mixfr is used to remove rules that

do not apply often enough, i.e., rules such that the

frequency of X U Y is below the frequency threshold.

The problem of finding association rules can now

be stated in the following way. Given a set R of bin-
ary attributes, a corresponding relation r, a frequency
threshold min-fr, and a confidence threshold mixconf,

find all association rules in r that have confidence at

least min-conf and frequency at least mixfr.

The discovery of association rules can be divided
into two phases [AIS93]. First, discover all frequent
itemsets X E R. Then, for each frequent X, test for

all non-empty subsets Y C X if the rule X \ Y * Y

holds with sufficient confidence. The second part of the
problem can be solved in main memory in a straight-

forward manner once the frequent sets and their fre-
quencies are known. Discovery of the frequent sets is

the hard part of the problem: with m items., there are

2”’ potentially frequent itemsets. For all but the smal-

lest m, efficient methods for locating the frequent sets
are needed. For the rest of this article, we consider the

task of discovering all frequent sets.

3 Previous Work on Association Rules

Since the introduction of the problem of *mining as-

sociation rules [AIS93] several generate-and-test type

of algorithms have been proposed for the task of

discovering frequent sets. An efficient breadth-first

or level-wise method for generating candidate sets,
i.e., potentially frequent sets, has been presented
in [AS94, MTV94, AMS+96]. This method-also

called Apriori-is the core of all known algorithms
except the original one. [AIS93] and its variation for

SQL [HS93], which have bgen shown to be inferior to

the level-wise method [AS94, MTV94, AMSf96].

An alternative strategy for the database pass, using
inverted structures and ;a general purpose DBMS, has
been considered in [HI<MT95]. The most efficient al-
gorithm so far, in particular in terms of database oper-
ations, is Partition [SON95]. We review the level-wise

method and the Partition algorithm below.

135

Other work related to association rules includes the

problem of mining rules with generalizations [HF95,
HKMT95, SA95], management of large amounts of dis-

covered association rules [KMR+94, TKR+95], and

a theoretical analysis of an algorithm for a class of
KDD problems including the discovery of frequent

sets [MT96]. A connectionist approach to mining rules
is presented in [LSL95].

3.1 Level-Wise Algorithms

Algorithms for discovering frequent sets are based

on the observation that if a set is not frequent then

its supersets can not be frequent. All current al-

gorithms [MTV94, AS94, HKMT95, HF95, PCY95,

SA95, AMS+96] start on level 1 by evaluating the fre-
quencies of singleton itemsets. On level k, candidate
itemsets X of size k are generated such that all sub-

sets of X are frequent. For instance, in the second
pass, candidates are pairs of items such that both items

are frequent. After the frequencies of the candidates

on level k have been evaluated, new candidates for

level k + 1 are generated and evaluated. This is re-
peated until no new candidates can be generated. The

efficiency of this approach is based on not generating

and evaluating those candidate itemsets that cannot be

frequent, given all smaller frequent sets.

The level-wise algorithms make one pass over the

database for each level. There are thus K or Ii + 1

passes over the database, where Ir’ is the size of the

largest frequent set.2 Sometimes, if there are only few

candidates in the last iterations, candidates can be gen-

erated and tested for several levels at once.

3.2 Partition Algorithm

The Partition algorithm [SON951 reduces the database

activity: it computes all frequent sets in two passes
over the database. The algorithm works also in the

level-wise manner, but the idea is to partition the data-

base to sections small enough to be handled in main

memory. That is, a part is read once from the disk,

and level-wise generation and evaluation of candidates

for that part are performed in main memory without

further database activity.

The first database pass consists of identifying in

each part the collection of all locally frequent sets. For

the second pass, the union of the collections of locally

frequent sets is used as the candidate set. The first
pass is guaranteed to locate a superset of the collec-
tion of frequent itemsets; the second pass is needed to

merely compute the frequencies of the sets.

2K + 1 passes are needed if there are candidates of size K + 1.

4 Sampling for Frequent Sets

A fairly obvious way of reducing the database activity
of knowledge discovery is to use only a random sample

of the relation and to find approximate regularities. In

other words, one can trade off accuracy against effi-
ciency. This can be very useful: samples small enough
to be handled totally in main memory can give reas-
onably accurate results. Or, approximate results from
a sample can be used to set the focus or to adjust
parameters for a more complete discovery phase.

It is often important to know the frequencies and

confidences of association rules exactly. In business

applications, for example for large volumes of super-

market sales data, even very small differences can be

significant. When relying on results from sampling
alone, one also takes the risk of loosing valid associ-

ation rules because their frequency in the sample is

below the threshold.

Using a random sample to get approximate results

is fairly straightforward. Below we give bounds for
sample sizes, given the desired accuracy of the results.

Our main contribution is, however, to show that ex-
act frequencies can be found efficiently, by analyzing
first a random sample and then the whole database as

follows. Use a random sample to efficiently find a su-

perset S of the collection of frequent sets. A superset

can be determined efficiently by applying the level-wise

method on the sample in main memory, and by using a

lowered frequency threshold. In terms of the Partition

algorithm, discover locally frequent sets from one part
only, and with a lower threshold. Then use the rest of

the database to compute the exact frequencies of the

sets. This approach requires only one full pass over
the database, and two passes in the worst case.

4.1 The Negative Border

As a tool for further analysis, consider the concept of

negative border. Given a collection S C P(R) of sets,

closed with respect to the set inclusion relation, the
negative border ad-(S) of S consists of the minimal

itemsets X s R not in S [MT96].

The collection of all frequent sets is always closed

with respect to set inclusion. For instance, let R =

{A,. . . , F} and assume the collection F(r, mixfr). of

frequent sets (with some r and mixfr) is

{A), {Bl, {Cl, {Fl, {A> Bl, {A,Cl,
{A,F}, {C, F}, {A, C, F}.

The negative border of this collection contains now,
e.g., the set {B,C}: it is not in the collection, but all

its subsets are. The whole negative border is

fW(F(r, min-fr)) = {{B, C), (8, F), IDI, {WI.

136

Algorithm 1

Input: A relation r over a binary schema R, a fre-
quency threshold mixfr, a sample size as, and a
lowered frequency threshold low-fr.

Output: The collection F(r, min-fr) of frequent sets
and their frequencies, or its subset and a failure report.
Method:

1. draw a random sample s of size ss from T;

// find frequent sets in the sample:
2.

3.

compute S := T(s, low-fr) in main memory;

// database pass:
compute T :=

{X E S U fW (S)) fr(X, r) 1 mixfr};

4. for all X E F do output X and fr(X, r);
5. report if there possibly was a failure;

The intuition behind the concept is that given a
(closed) collection S of sets that are frequent, the neg-

ative border contains the “closest” itemsets that could

be frequent, too. The candidate collections of the level-

wise algorithms are, in effect, the negative borders of

the collections of frequent sets found so far, and the
collection of all candidates that were not frequent is

the negative border of the collection of frequent sets.

Of particular importance is the fact that the negative
border needs to be evaluated, in order to be sure that

no frequent sets are missed [MT96].

. 4.2 Frequent Set Discovery Using Sampling

We now apply the concept of negative .border to using

sampling for finding frequent sets. It is not sufficient

to locate a superset S of F(r, min-fr) using tk sample
and then to test S in r, because the negative border

BP(F(r, min-fr)) needs to be checked, too. If we have

F(r, min-fr) C S, then obviously S U fW (S) is a suffi-

cient collection to be checked. Determining SU ti- (S)

is easy: it consists of all sets that were candidates of the

level-wise method in the sample. Algorithm 1 presents

the principle: search for frequent sets in the sample,

but lower the frequency threshold so much that it is

very unlikely that any frequent sets are missed. Then

evaluate the sets and their border, i.e., all sets that
were evaluated in the sample, also in the rest of the

database.

Sometimes, unfortunately, it may happen that we
find out that not all necessary sets have been evaluated.

There has been a failure in the sampling if all frequent

sets are not found in one pass, i.e., if there is a frequent
set X in F(r, mixfr) that is not in SUfW (S). A mzss

is a frequent set Y in F(r, min-fr) that is in BP(S).
If there are no misses, then the algorithm is guaran-

teed to have found all frequent sets. Misses themselves

are not a problem. They are evaluated in the whole

relation, and thus they are not actually missed by the
algorithm. Misses, however, indicate a potential fail-

ure. Namely, if there is a miss Y, then some superset of
Y might be frequent but not in S u ad-(S). A simple
way to recognize a potential failure is thus to check if
there are any misses.

Example. Assume that we have a relation r with

10 million rows over attributes A,. . . , F, and that we

want to find the frequent sets with the threshold 2 %.

Algorithm 1 randomly picks a small fraction s of r, say

20,000 rows, and keeps this sample s in main memory.
The algorithm can now, without any further database
activity, discover very efficiently sets that are frequent
in the sample.

To make (almost) sure that the collection of fre-

quent sets in the sample includes all sets that really
are frequent in r, the frequency threshold is lowered
to, e.g., 1.5 %. Algorithm 1 now determines the collec-

tion S = F(s, 1.5 %) from the sampled 20,000 rows.
Let the maximal sets of S be

Since the threshold was lowered, S is likely to be a

superset of the collection of frequent sets in r. In the

pass over the rest of r, the frequency of all sets in S

and ad-(S) is evaluated. That‘ is, in addition to the
sets that are frequent in the sample, we evaluate also

those candidates that were not frequent in the sample,

i.e., the negative border

{B,F)> {C, 01, {D, F), {El.

The goal is to discover the collection F(r, 2 %) of

frequent, sets in r. Let sets

{A,B),{A,C,F). _

and all their subsets be the frequent sets. All frequent

sets are in S, so they are evaluated and their exact

frequencies are known after the full database pass. We
also know that we have found all frequent sets since

also the negative border

of F(r, 2 %) was evaluated and found not to be fre-.

quent
Now assume a slightly different situation, where the

set {B, F} turns out to be frequent in T, that is, {B, F}
is a miss. What we have actually missed is the set
{A, B, F} which can be frequent in r, since all its sub-

sets are. In this case Algorithm 1 reports that there

possibly is a failure. cl

The problem formulation is now the following: given

a database r and a frequency threshold mixfr, use a

137

Algorithm 2
Input: A relation r
a frequency threshold
of F(r, mkfr).
Output: The collection
and their frequencies.

Method:
1. repeat
2. compute S

over a binary schema R,
mixfr, and a subset S

.F(r, min-fr) of frequent sets

:= s u &r(S);
until S does not grow;

// database pass:

3.

4. compute F := {X E S) fr(X, r) > min-fr};
5. for all X E T do output, X and fr(X, r);

random sample s to determine a collection S of sets

such that S contains with a high probability the collec-

tion of frequent sets F(r, min-jr). For efficiency reas-

ons, a secondary goal is that S does not contain unne-

cessarily many other sets. We present two variants of

algorithms using sampling. One of them is guaranteed

to find all frequent, sets in one pass in fraction 1 -A of

the cases, where A is a parameter given by the user.

In the fraction of cases where a possible failure is

reported, all frequent sets can be found by making a

second pass over the database. Algorithm 2 can be

used to extend Algorithm 1 with a second pass in such

a case. The algorithm simply computes the collection

of all sets that possibly could be frequent. This can be

done in a similar way that candidates are generated in

the algorithms for finding frequent sets.

5 Analysis of Sampling

Next we analyze the relation of sample size to the

accuracy of results. We first consider how accur-

ate the frequencies computed from a random sample

are. As has been noted before, samples of reason-

able size provide good approximations for frequent

sets [MTV94, AMSf96]. Related work on using a

sample for approximately verifying the truth of sen-

tences of tuple calculus is considered in [KM94].

5.1 Accuracy and Sample Size

We consider the absolute error of the estimated fre-

quency. Given an attribute set X C R and a random

sample s from a relation over binary attributes R, the
error e(X, s) is the difference of the frequencies:

0, s) = If+(X) - b-(X, s)l,

where fr(X) is the frequency of X in the relation from

which s was drawn.

To analyze the error, we consider sampling with re-
placement. The reason is that we want to avoid making
other assumptions of the database size except that it
is large. For sampling with replacement the size of the

database has no effect on the analysis, so the results
apply, in principle, on infinitely large databases. To
emphasize this, the relation from which a sample is

drawn is not shown in the notation of the error. For

very large databases there is practically no difference

between sampling with and without replacement.

In the following we analyze the number of rows
in the sample s that contain X, denoted m(X, s).

The random variable m(X, s) has binomial distribu-

tion, i.e., the probability of m(X, s) = c, denoted
Pr[m(X, s) = c], is

(> “I fr(X)‘(l - fr(X))l”i-c. e

First consider the necessary size of a sample, given

requirements on the size of the error. The following

theorem gives a lower bound for the size of the sample,

given an error bound E and a maximum probability S
for an error that exceeds the bound.

Theorem 1 Given
sample 5 of size

the probability that

Proof. We have

Pr[e(X, s) > c] =

an attribute set X and a random

1 2
IsI > - In -

2E2 s

e(X, s) > E is at most 6.

The Chernoff bounds [AS921 give an upper bound

for the probability. cl

Table 1 gives values for the sufficient sample size Is/,

for E = O.Ol,O.OOl and S = 0.01,0.001,0.0001. With
the tolerable error E around 0.01, samples of a reas-

onable size suffice. E.g., if a chance of 0.0001 for an

error of more than 0.01 is acceptable, then a sa.mple of
size 50,000 is sufficient. For ma.ny applications these
parameter values are perfectly reasonable-errors in
the input dat,a. may be more likely tl1a.n 0.0001. In

such cases, a,pproximate rules can be produced based

on a sample, i.e., in constant time independent of the
size of r. With tighter error requirements the sample

sizes can be quite large.
The result above is for a given set X. The following

corollary gives a result for a more stringent case: given
a collection S of sets, with probability 1 - A there is

no set in S with error more than E.

138

Table 1: Sufficient sample sizes, given E and 6.

Cotiollary 2 Given a collection S of sets and a ran-

dom sample s of size

IsI> &hi?,

the probability that there is a set X E S such that

e(X, s) > E is at most A.

Proof. By Theorem 1, the probability for e(X, s) >
c for a given set X is at most &. Since there are JS]

such sets, the probability in question is at most A. (7

The Chernoff bound is not always very tight, and in
practice the exact probability from the binomial dis-

tribution or its normal approximation is much more
useful.

5.2 Probability of a Failure

Consider now the proposed approach to finding all fre-

quent sets exactly. The idea was to locate a superset of

the collection of frequent sets by discovering frequent

sets in a sample with a lower threshold.

Assume we have a sample s and a collection S =
3(s, low-fr) of sets. What can we say about the prob-

ability of a failure? A failure is first of all possible if

there is a set that should have been checked but was

not. That is, sampling might have failed if there is such

a collection 7 of misses that f?d- (S U 7) has sets that
are not in m-(S). Given such a collection 7 of po-

tential misses, estimating the probability that all sets
in 7 actually are misses is difficult since the sets are

not independent. To get an upper bound one can com-

pute, as if the sets were independent, the probability
of any of the sets in 7 being a miss. This, again, is

bounded by considering the whole f%-(S) instead of

subcollections 7. In summary: to estimate the prob-

ability of a failure we can compute an upper bound for

the probability of a miss.
An interesting aspect is that the upper bound can

be computed on the Ay when processing the sample.

Thus, if an upper bound for the probability of a failure
is desired, the frequency threshold low& can be adjus-

ted dynamically to reduce the probability of a miss.

A variation of Theorem 1 gives the following result
on how to set the lowered frequency threshold so that
misses are avoided with a high probabylity.

Theorem 3 Given a frequent set X! a random
sample s, and a probability parameter 6, the probabil-

ity that X is a miss is at most 6 when

low+ < min,fr -

J

-!-In1
214 6

Proof. Using the Chernoff bounds again-this time
for one-sided error-we have

q

Conside; now the number of sets checked in the

second pass by Algorithm 2, in the case of a failure.

The collection S can, in principle, grow much. Each
independent miss can in the worst case generate as

many new candidates as there are frequent sets. Note,
however, that if the probability that a given set is a

miss is at most 6, then the probability of 1 independent
misses can be at most S’. In a pathological case the
misses are very much dependent: there is a very large

frequent set X such that its subsets only occur with

the whole X. If X is not frequent in a sample, then
also all its subsets are missed. At least in the applic-

ation domain of supermarket basket data this kind of
sets are very unlikely to exist at all.

6 Experiments

We now describe the experiments we conducted in or-

der to assess the practical feasibility of using samples

for finding frequent sets. We present two new variants
of algorithms using sampling and give experimental

results.

6.1 Test Organization

We used three synthetic data sets from [AS941 in

our tests. These databases model supermarket bas-
ket data, and they have been used as benchmarks for

several association rule algorithms [AS94, HKMT95,
PCY95, SON95, AMS+96]. The central properties of

the data sets are the following. There are IRI = 1,000

attributes, and the average number T of attributes per

row is 5, 10, and 20. The number]r] of rows is ap-
proximately 100,000. The average size I of maximal
frequent sets is 2, 4, and 6. Table 2 summarizes the
parameters for the data sets; see [AS941 for details of

the data generation.
We assume that the real data sets from which as-.

sociation rules are discovered can be much larger than

139

T5.12.100K T10.14.100K T20.16.100K
7 r I I I I 7-m 7

6- Level-wise +-- - 6 -
+--

5-
Partition

5

4- 4
Passes

3- - 3-

2 "

1 :r ‘C 1 TQ
I I I I

422 :I 6

3

2

1

2 1.5 1 0.75 0.5 0.25 2 1.5 1 0.75 0.5 2 1.5 1
Frequency threshold (%)

Figure I: The number of database passes made by frequent set algorithms.

Table 2: Synthetic data set characteristics (T = row

size on average, I = size of maximal frequent sets on
average).

Data set name IRI T 1 Id

T5.12.DlOOK 1,000 5 2 97,233

T10.14.DlOOK 1,000 10 4 98,827

T20.16.Dl OOK 1,000 20 6 99,941

the test data sets. To make the experiments fair we

use sampling with replacement. This means that the
real data set,s could, in principle, have been arbitrary

large data sets such that these data sets represent their

distributional properties.
We considered sample sizes from 20,000 to 80,000.

Samples of these sizes are large enough to give good
approximations and small enough to be handled in
main memory. Since our approach is probabilistic, we

repeated every experiment 100 times for each para-

meter combination. Altogether, over 10,000 trials were
run. We did not experiment with all the frequency

thresholds used in the literature; the repeated trials

would have taken too long. The tests were run on a

PC with 90 MHz Pentium processor and 32 MB main

memory under Linux operating system.

6.2 Number of Database Passes and Misses

We experimented with Algorithm 1 with the above

mentioned sample sizes 20,000 to 80,000. We selected

the lowered threshold so that the probability of missing
any given frequent set X is less than 6 = 0.001, i.e.,

given any set X with f?(X) 2 min-fi; we have

Pr~~X, s) < low-fr] < 0.001.

The lowered threshold depends on the frequency
threshold and the sample size. The lowered threshold

Table 3: Lowered frequency thresholds (%) for 6 =

0.001.

0.25

0.50

I--

0.75

1.00

1.50

L 2.00

-IT- Sa.mple size

20,000 1 40,000 60.000 1 80.000 1

:

values are given in Table 3; we used in the computa-
tions t,he exact probabilities from the binomial distri-

bution, not the Chernoff bounds.

Figure 1 shows the nurnber of database passes for

the three different types of algorithms: the level-wise
algorithm, Partition, and the sampling Algorithm 1.

Each of the data points in t,he results shown for Al-

gorithm 1 is the average value over 100 trials. Explain-

ing the results is easy. The level-wise algorithm rnakes

1<(+1) passes over the database, where K is the size

of the largest frequent set. The Partition algorithm

makes two passes over the database when there are
any frequent sets. For Algorit,hm 1, the fraction of tri-
als with misses is expected to be larger than 6 = 0.001,
depending on how many frequent sets have a frequency

relatively close to the threshold and are thus likely

misses in a sample. The algorithm has succeeded in
finding all frequent sets in one pass in almost all cases.
The number of database passes made by Partition al-
gorithm is practically twice that of Algorithm 1, and

the number of passes of the level-wise algorithm is up

to six times that of Algorithm 1.

Table 4 shows the number of trials with misses for

each data set, sample size, and frequency threshold. In

140

Table 4: Number of trials with misses.

T5.12.DlOOK

I I Sample size
min-fr (%) 11 20,000

0.25 0
0.50 0
0.75 0

I

1.00 0
1.50 0

2.00 0

40,000- 60,000 80,000

1 0 0
1 0 1

0 0 0

0 0 0
0 0 0

0 0 0

1

T10.14.DlOOK

20,000 (40,000 1 60,000 1 80,000

T20.16.DlOOK

Sample size

mixfr (%) 20,000 40,000 60,000 80,000

1.00 0 0 0 0

1.50 1 1 1 0
2.00 0 1 0 2

each set of 100 trials, there have been zero to two trials

with misses. The overall fraction of trials with misses
was 0.0038. We repeated the experiment with d = 0.01,

i.e., so that the miss probability of any given frequent

set is at most 0.01. This experiment gave misses in
fraction 0.041 of all the trials. In both cases the frac-

tion of trials with misses was about four times 6.

The actual amount of reduction in the database

activity depends very much on the storage structures.

For instance, if the database has 10 million rows, a disk
block contains on average 100 rows, and the sample

size is 20,000, then the sampling phase could read up
to 20 % of the database. For the design and analysis of

sampling methods see, e.g, [OR89]. The related prob-
lem of sampling for query estimation is considered in
more detail in [HSSP]. A n alternative for randomly

drawing each row in separation is, of course, to draw

whole blocks of rows to the sample. Depending on how
randomly the rows have been assigned to the blocks,

this method can give very good or very bad results.

141

The reduction in database activity is achieved at the

cost of considering some attribute sets that. the level-
wise algorithm does not generate and check. Table 5
shows the average number of sets considered for data

set T10.14.DlOOK with different sarnple sizes, and

the number of candidate sets of the level-wise al-
gorithm. The largest absolute overhead occurs with
low thresholds, where the number of itemsets con-
sidered has grown from 318,588 by 64,694 in the worst
case. This growth is not significant for the total exe-
cution time since the itemsets are handled entirely in
main memory. The relative overhead is larger with

higher thresholds, but since the absolute overheads are

very small the effect is negligible. Table 5 indicates

that larger samples cause less overhead (with equally

good results), but that for sample sizes from 20,000 to

80,000 the difference in the overhead is not significant.

To obtain a better picture of the relation of 6 and
the experimental number of trials with misses, we con-

ducted the following test. We took 100 samples (for

each frequency threshold and sample size) and determ-
ined the lowered frequency threshold that would have

given misses in one out of the hundred trials. Figure 2
presents these results (as points), together with lines

showing the lowered thresholds with 6 = 0.01 or 0.001,
i.e., the thresholds corresponding to miss probabilit-

ies of 0.01 and 0.001 for a given frequent set. The
frequency thresholds that would give misses in frac-

tion 0.01 of cases approximate surprisingly closely the

thresholds for S = 0.01. Experiments with a larger

scale of sample sizes give comparable results. There
are two explanations for the similarity of the values.

One reason is that there are not necessarily many
potential misses, i.e., not many frequent sets with

frequency relatively close to the threshold. Another
reason that contributes to the similarity is that the sets
are not independent.

In the case of a possible failure, Algorithm 2 gener-

ates itera.tively all new candidates and makes another

pass over the database. In our experiments the number
of frequent set.s missed-when any were missed-was

one or two for 6 = 0.001, and one to 16 for 6 = 0.01.

The number of candidates checked on the second pass

was very small compared to the total number of item-

sets checked.

6.3 Guaranteed 1 - A Success Probability

Setting the lowered threshold for Algorithm 1 is not
trivial: how to select it so that the probability of a fail-

ure is low but there are not unnecessarily many sets
to check? An automatic way of setting the parameter

would be desirable. Consider, for instance, an inter-
active mining tool. It would be very useful to know

in advance how long an operation will approximately

take-or, in the case of mining association rules, how

many database passes there will be.

We now present two algorithms that are guaranteed
to find all frequent sets in a given fraction 1 - A of

Table 5: Number of attribute sets considered for data set T10.14.DlOOK.

T5.12.1OOK
mmfr (%) I 1 I I

2.00 - 0.01 -

Y 0.001 ‘2’ - -
X ,,,,..,.,,.,...,........._.. ..,....._.,.

__,,,..... ,’

1.50 -
Y ,,.,.. ..,..... ,. ,.,

l,.OO -
o.75 ,,,x;., ..,,,,,....x..x........... ..x...

., ..x . . . x x.. r
o.50 .,,, n,, ,,

o.25 .)(,. -...,.. .._. ,,,(.,,

,,. ,,
I I I I

20000 40000 60000 80000
Sample size

Figure 2: Frequency thresholds giving misses in 0.01 cases (points) and lowered thresholds with 6 = 0.01 and

0.001 (lines).

the cases. The first one uses a simple greedy principle
with which an optimal lowered frequency threshold can

be found. The other algorithm is not as optimal, but

its central phase is almost identical to the level-wise

method and it is therefore very easy to incorporate
into existing software. We present experimental results
with this latter algorithm.

The greedy Algorithm 3 starts with an empty set S.

It then greedily increases the probability of success by

adding the most probable misses to S until the upper

bound for the probability of a miss is at most A.

Algorithm 4 is a very simple variation of the level-
wise algorithm. It utilizes also the upper bound ap-
proximation described in Section 5: it monitors the

upper bound of the probability of a miss and keeps the
probability small by lowering the frequency threshold

low&, when necessary, for the rest of the algorithm.

To use the level-wise algorithm for the discovery of
frequent sets in a sample with the dynamic adjustment

of the lowered threshold, the only modification con-
cerns the phase where candidates are either added to

the collection of frequent sets or thrown away. In Al-

gorithm 4, lines 8 - 13 have been added to implement

this change. Every time there is a candidate X that is
not frequent in the sample, compute the probability p
that X is frequent. If the total probability P of a miss
increases too much (see below) with such an X, then

lower the frequency threshold low-fr to the frequency

of X in the sample for the rest of the algorithm. Thus

X is eventually considered frequent in the sample, and
so are all following candidate sets that would increase

the overall probability of a miss at least as much as X.

We use the following heuristic to decide whether the

possibility of a miss increases too much. Given a para-
meter y in [0, l]., the frequency threshold is lowered if

the probability p is larger than fraction 7 of the “re-

maining error reserve” A - P. More complex heur-
istics for changing the frequency threshold could be

142

Input: A relation r over a binary attributes R, a

sample size ss, a frequency threshold mixfr, and a
maximum miss probability A.
Output: The collection F(r, mkfr) of frequent sets
and their frequencies at least in fraction 1 - A of the
cases, and a subset of LF(r, min-fr) and a failure report
in the rest of the cases.
Method:
1. draw a random sample s of size ss from r;
2. s:=0;

Algorithm 3 Algorithm 4
Input: A relation r over a binary attributes R, a

sample size ss, a frequency threshold min-fr, and a
maximum miss probability A.
Output: The collection r(r, min-jr) of frequent sets
and their frequencies at least in fraction 1 - A of the
cases, and a subset of F(r, min-fr) and a failure report

in the rest of the cases.

Method:

3.

4.

5.
6.

7.

8.
9.

// find frequent sets in the sample:

while probability of a miss > A do begin

select X E B-(S) with the highest

probability of being a miss;

s := su {X};
end;
// database pass:

compute T :=

{X E S U BP (S) 1 f7(X, r) 2 min-fr};

for all X E T do output X and fr(X, r);
report if there possibly was a failure;

1.

2.

3.

4.

5.
6.
7.

8.

9.
10.
11.
12.

13.
14.

15.
16.
17.

18.

19:

draw a random sample s of size ss from r;

P := 0;

low-jr := min-fry

// find frequent sets in the sample:

Cl := {{A} I A E R};
i := 1;

while Ci # 0 do begin
for all X E Ci do begin

if fr(X, s) < low& then do

p := Pr[X is frequent];

if p/(A - P) > 7 then
low& := fr(X, s)

else P := 1 - (1 - P)(l - p);

end;

if fr(X, s) 2 low-fr then

si := si u {X};
end;
i := is 1;
Ci := ComputeCandidates(S;-1);

end;

developed, e.g., by taking into account the number of

candidates on the level .and whether the number of fre-

’ quent sets per level is growing or shrinking. The ob-

servations made from Figure 2 hint that the lowered

threshold can be set in the start-up to roughly cor-
respond to the desired probability of a miss, i.e., for

A= 0.01 the lowered threshold could be set as for
6 = 0.01.

We tested Algorithm 4 with maximum miss prob-

ability A = 0.1 and dynamic adjustment parameter

7 = 0.01 for two frequency thresholds for each data set.
The fraction of trials with misses is shown in Table 6.
The fraction succesfully remained below A = 0.1 in

each set of experiments.

As Table 6 shows, the fraction of cases with misses
was actually less than half of A. The reason is that

with a small y the algorithm tends to be conservat-

ive and keeps a lot of space for the probability of a

miss in reserve. This is useful when there can be very

many candidates. The negligible trade-off is that the
algorithm may consider unnecessarily many sets as fre-

quent in the sample.

7 Concluding Remarks

We have discussed the use of sampling in the task of
discovering association rules in large databases. We

described algorithms that take a random sample from

a database, identify those sets that probably are fre-

20.

21.

22.

// database pass:
compute F :=

{X E lJjci Cj 1 fr(X, r) 2 mixfr};

for all X E F do output X and fr(X, r);
report if there possibly was a failure;

quent in the database, and then compute the exact fre-

quencies from the rest of the database.

The described algorithms are fairly simple. Two
of the algorithms have the property that they discover
all frequent sets in one pass in a fraction 1 - A of the

cases, where A is given by the user. Those cases where

sampling possibly missed frequent sets can be recog-

nized, and the missing sets can be found in a second

pass.

Our experiments showed that the approach works:

all frequent sets can actually be found in almost one

pass over the database. For the efficiency of mining
association rules in very large databases the reduction
of disk I/O is significant.

This work raises two obvious open questions. The

first one concerns the discovery of association rules: is
there a method for discovering exact association rules

.143

Table 6: Fraction of trials with misses with A = 0.10.

T5.12.DlOOK

Sample size

min-jr (%) 20,000 40,000 60,000 1 80,000

0.50 0.03 0.03 0.00 I 0.02
1 1.00 11 0.00 1 0.00 1 0.00 1 0.00 1

T10.14.DlOOK

minijr (%)

Sample size

20,000 40,000 60,000 80,000

0.75 0.01 0.04 0.02 0.01

1 1.50 11 0.00 1 0.02 1 0.04 1 0.01 I

T20.16.DlOOK

Sample size

mixfr (%) 20,000 40,000 60,000 80,000

1.00 0.02 0.01 0.01 0.01

2.00 0.01 0.03 0.01 0.03

in at most one pass? The other question is, how much

can database mining methods gain from sampling in

general?

Acknowledgements

I would like to thank Heikki Mannila for his many help-

ful comments on an earlier draft. I also wish to thank

the anonymous referees for their constructive criticism.

This research has been supported by the Academy

of Finland.

References

[AIS93]

[AMS+96]

[AS921

Rakesh Agrawal, Tomasz Imielinski, and

Arun Swami. Mining association rules

between sets of items in large databases. In

Proceedings of ACM SIGMOD Conference

on Management of Data (SIGMOD’93),

pages 207 - 216, May 1993.

Rakesh Agrawal, Heikki Mannila, Ra-
makrishnan Srikant, Hannu Toivonen, and

A. Inkeri Verkamo. Fast discovery of as-
sociation rules. In Usama M. Fayyad,

Gregory Piatetsky-Shapiro, Padhraic

Smyth, and Ramasamy Uthurusamy,

editors, Advances in Knowledge Discovery

and Data Mining, pages 307 - 328. AAAI

Press, Menlo Park, CA, 1996.

Noga Alon and Joel H. Spencer. The Prob-

abilistic Method. John Wiley Inc., New

York, NY, 1992.

[AS941

[FPSSU96]

[HF95]

[HKMT95]

[HS92]

[HS93]

[KM941

[KMR+94]

Rakesh Agrawal and Ramakrishnan Srik-

ant. Fast algorithms for mining association
rules in large databases. In Proceedings of

the Twentieth International Conference on

Very Large Data Bases (VLDB’94), pages

487 - 499, September 1994.

Usama M. Fayyad, Gregory Piatetsky-
Shapiro, Padhraic Smyth, and Ramasamy

Uthurusamy, editors. Advances in Know-

ledge Discovery and Data Mining. AAAI’

Press, Menlo Park, CA, 1996.

Jiawei Han and Yongjian Fu. Discovery

of multiple-level association rules from
large databases. In Proceedings of the 21st

International Conference of Very Large

Data Bases (VLDB ‘95), pages 420 - 431,
Zurich, Swizerland, 1995.

Marcel Holsheimer, Martin Kersten,
Heikki Mannila, and Hannu Toivonen. A
perspective on databases and data mining.
In Proceedings of the First International

Conference on Knowledge Discovery and

Data Mining (KDD’95), pages 150 - 155,

Montreal, Canada, August 1995.

Peter J. Haas and Arun N. Swami. Sequen-
tial sampling procedures for query size es-

timation. In Proceedzngs of ACM SIGMOD

Conference on Management of Data (SIG-

MOD’92), pages 341 - 350, San Diego,

CA, June 1992.

Maurice Houtsma and Arun Swami. Set-
oriented mining of association rules. Re-

search Report RJ 9567, IBM Almaden Re-
search Center, San Jose, California, Octo-

ber 1993.

Jyrki Kivinen and Heikki Mannila. The

power of sampling in knowledge discov-

ery. In Proceedzngs of the Tharteenth

ACh4 SIGACT-SIGMOD-SIGART Sym-

posium on Pranciples of Database Systems

(PODS’94), pages 77 - 85, Minneapolis,
MN, May 1994.

Mika Klemettinen, Heikki Mannila, Pirjo

Ronkainen, Hannu Toivonen, and A. Inkeri

Verkamo. Finding interesting rules from

large sets of discovered association rules.

In Proceedings of the Third International

Conference on Information and Know-

ledge Jlanagement (CIKM’94), pages

401 - 407, Gaithersburg, MD, November

1994. ACM.

144

[LSL95]

[MT961

[MTV94]

[OR891

[PCY95]

[PSFSl]

[SA95]

[SON951

Hongjun Lu, Rudy Setiono, and Huan Liu.

Neurorule: A connectionist approach to
data mining. In Proceedings of the 21st

International Conference on Very Large

Data Bases (VLDB’g5), pages 478 - 489,
Zurich, Swizerland, 1995.

Heikki Mannila and Hannu Toivonen.

On an algorithm for finding all interest-
ing sentences. In Cybernetics and Sys-

tems, Volume II, The Thirteenth European

Meeting on Cybernetics and Systems Re-

search, pages 973 - 978, Vienna, Austria,

April 1996.

Heikki Mannila, Hannu Toivonen; and

A. Inkeri Verkamo. Efficient algorithms
for discovering association rules. In

Knowledge Discovery in Databases, Papers

from the 1994 AAAI Workshop (I<DD’g4),

pages 181- 192, Seattle, Washington, July

1994.

Frank Olken and Doron Rotem. Random

sampling from B+ trees. In Proceedings of

the Fifteenth International Conference on

Very Large Data Bases (VLDB’89), pages

269 - 277, Amsterdam, August 1989.

Jong Soo Park, Ming-Syan Chen, and
Philip S. Yu. An effective hash-based al-

gorithm for mining association rules. In

Proceedings of ACM SIGMOD Conference

on Management of Data (SIGMOD’g5),

pages 175 - 186, San Jose, California, May

1995.

Gregory Piatetsky-Shapiro and William J.
Frawley, editors. Knowledge Discovery in

Databases, AAAI Press, Menlo Park, CA,

1991.

Ramakrishnan Srikant and Rakesh

Agrawal. Mining generalized association

rules. In Proceedings of the 21st Inter-

national Conference on Very Large Data

Bases (VLDB’95), pages 407 - 419,

Zurich, Swizerland, 1995.

Ashok Savasere, Edward Omiecinski, and

Shamkant Navathe. An efficient algorithm
for mining association rules in large data-
bases. In Proceedings of the 2fst In-

ternational Conference on Very Large

Data Bases (VLDB’g5), pages 432 - 444,
Zurich, Swizerland, 1995.

[TKR+95] Hannu Toivonen, Mika Klemettinen, Pirjo

Ronkainen, Kimmo Hatiinen, and Heikki
Mannila. Pruning and grouping of dis-
covered association rules. In Workshop

Notes of the ECML-95 Workshop on Stat-

:stics, Machine Learning, and Knowledge

Discovery in Databases, pages 47 - 52,
Heraklion. Crete, Greece, April 1995.

145

