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A major hurdle in the simulation of the steady state of epidemic processes is that the system will unavoidably

visit an absorbing, disease-free state at sufficiently long times due to the finite size of the networks where

epidemics evolves. In the present work, we compare different quasistationary (QS) simulation methods where the

absorbing states are suitably handled and the thermodynamical limit of the original dynamics can be achieved.

We analyze the standard QS (SQS) method, where the sampling is constrained to active configurations, the

reflecting boundary condition (RBC), where the dynamics returns to the pre-absorbing configuration, and hub

reactivation (HR), where the most connected vertex of the network is reactivated after a visit to an absorbing

state. We apply the methods to the contact process (CP) and susceptible-infected-susceptible (SIS) models on

regular and scale free networks. The investigated methods yield the same epidemic threshold for both models.

For CP, that undergoes a standard collective phase transition, the methods are equivalent. For SIS, whose phase

transition is ruled by the hub mutual reactivation, the SQS and HR methods are able to capture localized epidemic

phases while RBC is not. We also apply the autocorrelation time as a tool to characterize the phase transition

and observe that this analysis provides the same finite-size scaling exponents for the critical relaxation time for

the investigated methods. Finally, we verify the equivalence between RBC method and a weak external field for

epidemics on networks.
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I. INTRODUCTION

Nonequilibrium phase transitions are observed in many

physical, biological, social, and chemical systems [1–3], to

mention just a few examples. A fundamental class of nonequi-

librium phenomena is the absorbing-state phase transition

(APT) [1,2,4] that occurs when the system has accessible

states where the dynamics remains permanently stuck, strongly

violating detailed balance and thus implying the absence of

equilibrium counterparts. One of the characteristic features of

APTs is the interplay between the propagation and annihilation

of particles that can represent hosts for an infectious disease,

microorganisms, molecules in catalytic reactions, etc. When

the ratio between propagation and annihilation is below a

threshold, the density ρ of active particles vanishes and an

APT takes place.

A fundamental model that exhibits an APT is the contact

process (CP) [5], where infected individuals lying on a

substrate (originally a lattice [5] but it was later extended

to networks [6]) can spontaneously be cured or infect one of

their nearest neighbors. From the epidemiological viewpoint,

the susceptible-infected-susceptible (SIS) model is canonical

[7]. In SIS, the cure is the same as in CP, but the infection

is transmitted at a rate λ to each healthy neighbor of an

infected vertex, while in CP the infection rate is divided

by the vertex degree. On lattices, SIS and the CP have the

same critical behavior belonging to the directed percolation

(DP) universality class [4]. However, the nature of the phase

transition of these models are different on complex networks

with power-law (PL) degree distributions given by P (k) ∼

k−γ , where P (k) is the probability that a randomly chosen

vertex of the network connects to other k vertices. While

CP exhibits a transition at a finite threshold that involves the

collective activation of the entire network [8], the transition

of the SIS model occurs at a threshold that goes to zero in

the thermodynamical limit and is triggered by the mutual

reactivation of hubs (vertices with very large degree) [8,9].
Many dynamical processes exhibiting distinct types of

APTs have been intensively studied on lattices [1–4]. However,
the behavior of this kind of process is strongly affected by the
structure, in the form of a network, that connects the system
components and mediates their interactions [10,11]. The
former investigations of an epidemic spreading on complex
networks [7,12–14], which later revealed many remarkably
properties and puzzling outcomes [15–20], were subsequently
followed by a diversified analysis of other kinds of APTs on
networks [6,21–28].

The large amount of gathered data regarding real networks
[29], the recent advances on complex network theory, and
the increased computational power are among the factors that
leveraged the modern research on networks and dynamical
processes taking place on them. Even for simple dynamical
processes most of the exact results are bounds [11] and
analytical approximations based on mean-field theories are
generically used to quantitatively predict the behavior of such
processes on networks [10,11]. Dynamical correlations play
an important role irrespective of the infinite dimensionality of
networks [30–32] and mean-field theories are approximations
that call for complementary analysis based on computer
simulations. For example, the existence of localized epidemic
phases [17,18,33,34] and the slow subcritical dynamics due to
rare (locally supercritical) regions [20,33,35,36] on networks
with PL degree distribution have recently been discussed,
grounded on simulations. Notice that localization is related
to metastability at subcritical phases [35] and can play
an important role in the quasistationarity of the dynamical
process.

A major hurdle in the simulations of APTs is that they

are unavoidably performed in finite-size systems and for

sufficiently long times an absorbing state is always visited
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due to the finite number of accessible configurations, implying

that the unique real stationary state is an absorbing one [4].

Moreover, standard dynamic methods for simulations of APTs

as, e.g., spreading or decay simulations [4], are not effective

in complex networks due to the small-world property [29]

that makes the dynamics to probe the network finiteness

very quickly. An alternative is to consider the so-called

quasistationary (QS) state where the original dynamics is

perturbed to skip the absorbing state in a such way that this

perturbation becomes irrelevant in the infinite-size limit for all

intensive quantities of interest and a finite-size scaling (FSS)

technique provides the correct thermodynamical limit as well

as the critical exponents associated with the APT [1,4].

The standard QS (SQS) method consists in performing

averages only over the samples that did not visit an absorbing

state [4]. Also, a reflecting boundary condition (RBC), where

the evolution returns to the pre-absorbing state when it visits an

absorbing one, can be easily applied [37]. Another approach1

is to include an external field (EF) [1,39,40], conjugated to

the order parameter, that continuously and noncorrelatively

introduces activity. If the field is sufficiently weak it becomes

equivalent to the RBC method [40], which in turn, provides

the same critical points and FSS of the critical density of the

SQS method in lattice systems [40,41].

The SQS method has been used to investigate the APT

of the CP model on networks with a PL degree distribution

showing very good agreement with the critical exponents

obtained by a heterogeneous mean-field (HMF) theory [28,31].

This method was also applied to numerically determine

the epidemic threshold of the SIS model as a function

of the network size [18,42]. Besides a vanishing threshold

[42], the SQS method was applied to investigate multiple tran-

sitions [18] and localization [36] of the SIS model on networks

with a PL degree distribution. The EF method with a finite

source was also applied to the SIS model [43]. In Ref. [17], a

simulation strategy was adopted wherein the most connected

vertex of the network is never cured. However, a systematic

comparison among different methods remains lacking.

In this work, we compare the outcomes of RBC and SQS

methods in the APT of the CP and SIS models in regular

and PL networks. We apply the integrated autocorrelation

time of QS time series as a measure of the characteristic

relaxation time instead of the usual average time between

two consecutive visits to be the absorbing state because the

latter does not represent the relaxation time in RBC method.

For heterogeneous networks, we also investigate an alternative

version of the RBC method, called hub reactivation (HR),

where the dynamics always restart in the most connected

vertex of the network. This method resembles the strategy

used in Ref. [17]. Finally, we extend the results of Ref. [40]

to networked substrates, confirming that the weak limit of EF

(WEF) method is equivalent to RBC.

In summary, we observe that the SQS, RBC, and HR

methods provide the same threshold and critical exponents

for CP on complex networks and regular lattices. For the

1There exist other important methods to deal with absorbing states

in finite-size systems, e.g., those conserving the number of particles

[38].

SIS model on networks with a PL degree distribution [44],

SQS and HR methods differ from the RBC method in some

relevant aspects. For instance, the first and second ones capture

activated configurations which are highly localized around the

most connected vertex of the network, while the last one does

not.

The sequence of the paper is organized as follows. The

theoretical background for the different QS methods is

presented in Sec. II. In Sec. III, we describe CP and SIS models

with their computer implementations. Numerical methods

to characterize the critical point including the integrated

autocorrelation time are presented in Sec. IV. The results

along with the associated discussions are in Sec. VI and we

summarize our findings in Sec. VII.

II. QUASISTATIONARY STATES

The terminology QS is commonly attributed to averages

restricted to samples that did not visit an absorbing state of

the original dynamics [4]. Here, this term is used in a more

general context, in which the dynamical process is perturbed

to prevent the system from getting trapped into absorbing

states but assuring that intensive QS quantities converge to

the stationary ones in the thermodynamical limit.

In order to comprehend some basic concepts necessary to

develop the QS methods, let us consider a one-step process

Xt , in which only transitions n → n ± 1 are permitted [45],

with states labeled by n = 0,1,2, . . . , and the state n = 0 is

absorbing. Now, lets X∗
t be a similar process where the unique

difference is that the state n = 0 is not absorbing anymore. For

n > 0, the evolution of X∗
t is the same as Xt unless, at most,

by some perturbation in the rules that must be negligible in

the active phase in the thermodynamical limit. The process X∗
t

returns to a state n > 0 after some time, whenever the system

visits an absorbing state.

Let Pn and P ∗
n be the probabilities to be in the state n in

the original and modified dynamics, respectively. The master

equation [45] for the original process reads as

dPn

dt
=

∑
m

wnmPm −
∑
m

wmnPn, (1)

where wnm is the transition rate from m to n. Introducing a

perturbative source of activity to remove the absorbing state,

the new dynamical equation2 becomes

dP ∗
n

dt
=

∑
m

wnmP ∗
m −

∑
m

wmnP
∗
n + F (P ∗

0 ,P ∗
1 , . . .), (2)

where the functional F will depend on the particular QS

method. The basic QS quantities of interest can extracted from

the QS distribution P̄n yielded by the stationary solution of

Eq. (2).

A. Standard QS method

This method consists in performing averages only over

samples that did not visit an absorbing state. The QS

2For the modified dynamics it is not necessarily a master equation

since nonlinear terms are allowed.
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distribution of the original dynamics is given by

P̄n = lim
t→∞

Pn(t)

Ps(t)
, n > 0, (3)

where

Ps(t) =
∑
n�1

Pn(t) = 1 − P0(t) (4)

is the probability that the epidemics is active at time t .

In practice, this strategy is troublesome since critical and

subcritical simulations in finite size get constantly trapped

into absorbing states, resulting in short and noisy intervals

of stationary data. de Oliveira and Dickman [41] proposed a

clever strategy to circumvent these problems: Every time the

dynamics visits an absorbing state, the system jumps to an

active configuration selected according to the QS probability.

The source term in Eq. (1) is thus given by F = w0P
∗
n [41],

where w0 =
∑

m�=0 w0,m is the total rate of entering into the

absorbing state. One can verify that the stationary solution of

Eq. (2) with this source term corresponds to the QS solution

of Eq. (1); see Ref. [41] for details.

Differentiating Eq. (4) and assuming that the QS regime

exists as t → ∞ we find that

dPs

dt
= −

dP0

dt
= −P̄1Ps(t), (5)

where we used the master equation (1) for n = 0 and Pn =

P̄nPs for n > 0. The solution is Ps ∼ exp(−t/τa), where

τa =
1

P̄1

, (6)

is the typical relaxation time to decay from an active QS state

to an absorbing configuration that also corresponds to the time

between two consecutive visits to an absorbing state during

the QS regime.

The difficulty to translate this theoretical analysis into a

simulation scheme is that we have no prior knowledge of

the QS probability distribution. Computationally, it can be

done by constructing and constantly updating a list with M

configurations visited along the simulation. This list is used

to randomly select the new state after a visit to an absorbing

state. To grant convergence to the QS state, the list, which

is finite, is constantly updated by substituting a randomly

selected element of the list by the current system configuration

with probability per unit of time pr . The convergence of this

method to the standard QS state, defined by Eq. (3), was

recently addressed [46].

B. Reflecting boundary condition method

The absorbing phase can be avoided by bringing back the

system to the configuration that it was immediately before the

visit to the absorbing state, representing a reflecting boundary

condition [37]. We permit states with n = 0 being visited but it

returns to the previous active state with rate 1. The source term

in Eq. (2) becomes F = (δ1,n − δ0,n)P ∗
0 . The QS distribution

is given by

P̄n = lim
t→∞

P ∗
n . (7)

For n = 0, Eq. (2) simplifies to

dP ∗
0

dt
= P ∗

1 − P ∗
0 . (8)

In the QS regime we have P̄1 = P̄0. To calculate the time

between two visits to the absorbing state, the epidemic

lifespan, consider a discrete dynamics of time step τ0 = 1,

the mean time that the system lasts in the absorbing state. The

system is or is not in a state n = 0 with probabilities P̄0 and

1 − P̄0, respectively. If the system is active in step s = 0, the

probability that it stays active for s steps corresponds to stay

in a state n > 0 for s − 1 steps and returns to n = 0 at step

s, which is given by Qs = (1 − P̄0)s−1P̄0. The average time

between two visits to the absorbing state is

τa =

∞∑
s=0

τ0sQs =
τ0

P̄0

=
1

P̄1

, (9)

recovering Eq. (6). Notice that this time differs from that

of the SQS method since it is the average time to visit the

absorbing state starting from a single infected vertex and not

from an arbitrary QS state, as discussed in Sec. II A. Thus its

scaling properties are different. Lets us consider a spreading

process on a lattice of dimension d. The probability that the

dynamics is active at time t starting with a single infected

vertex is Ps and, at the critical point, this quantity scales as

Ps ∼ t−δ exp(−t/ts) [4] where the finite size of the lattice is

probed at a characteristic time ts ∼ N z∗

[4], being N = Ld the

number of sites3 of the lattice of length L. So, the average time

between two visits to the absorbing state is given by

τa =

∫ ∞

0

t
dP0

dt
dt =

∫ ∞

0

Psdt ∼ N z∗(1−δ) (10)

for d smaller than the upper critical dimension dc = 4 for

which δ < 1 [4]. The last integral is obtained with Eq. (4) and

an integration by parts and was evaluated using the saddle-

point method. Above the upper critical dimension, correspond-

ing to the mean-field level that we are mainly interested in, we

have δ = 1 and ts ∼ N1/2 [47,48]. Evaluating the integral for

δ = 1, we find τa increasing logarithmically with the system

size.

C. Hub reactivation method

In the case of heterogeneous networks, we also investigate

an alternative to the RBC method where, after visiting the

absorbing state, the infection always restarts in the most

connected vertex of the network or in one of them if there

are multiple. This strategy favors the onset of outbreaks since

hubs are usually prone to spread the activity. The motivation of

this method is the existence of localized active phases around

the hubs in SIS-like dynamics [18], which are suppressed by

the RBC method. In Sec. VI, this point will be made clear.

D. External field method

In this method, the system is coupled to a uniform external

field that spontaneously creates activity at a rate f chosen

3It is more convenient to consider the number of sites rather than

the system length since we aim at networks.
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to vanish as N → ∞ [40]. The source term in Eq. (2) is

f (N − n + 1)P ∗
n−1 − f (N − n)P ∗

n , n > 0, that accounts for

the incomes and outcomes of P ∗
n due to the spontaneous

creation. For the absorbing state we have

dP ∗
0

dt
= P ∗

1 − f NP ∗
0 , (11)

implying P̄ ∗
1 = f NP̄ ∗

0 for t → ∞. Using Eq. (9) we have that

τa = τ0/P̄
∗
0 = 1/P̄ ∗

1 , where τ0 = 1/(f N ) was used.

The critical density produced by a small external field f

scales as ρ̄ex ∼ f 1/δh , where δh is a critical exponent [4].

The QS density scales as ρ̄qs ∼ N−β∗

. Imposing that the

critical density of particles produced by the external field is

negligible when compared with the QS density and assuming

f ∼ N−α , we have that the condition ρ̄ex ≪ ρ̄qs is satisfied

for α > β∗δh � 1; the last inequality is verified considering

the critical exponents β∗ = (0.252,0.398,0.464,1/2) and δh =

(9.23,3.72,2.52,2) for DP in d = 1,2,3 and d � 4, respec-

tively [1]. The total creation in absorbing states goes to zero in

the thermodynamical limit and the dynamics gets trapped for

diverging times into the absorbing states. Computationally it

is not a problem since it is implemented as a time step 	t =

1/f N ; see Sec. III B. Hence, we must construct the QS distri-

butions using only the nonabsorbing part of the simulations as

P̄n ≡ lim
t→∞

P ∗
n∑

m>0 P ∗
m

(12)

and P̄0 ≡ 0.

III. MODELS AND ALGORITHMS

A. Models

The CP model was originally proposed as a simple model

for epidemic propagation on a lattice [5]. For a more general

case, we consider a connected graph with N vertices and a

quenched (not changing in time) connection structure. Each

vertex i of the network has ki edges connecting to nearest

neighbors and can be either infected (σi = 1) or susceptible

(σi = 0). Infected vertices spread activity through the network

by direct susceptible contacts. An infected vertex i transmits

the infection to each of its susceptible nearest neighbors with a

rate λ/ki , in which λ is the control parameter. In turn, infected

vertices become spontaneously susceptible with rate 1 fixing

the time unit. In SIS model, the infection rate is λ for each

edge connecting infected and susceptible vertices irrespective

of their degrees while the healing process is the same of CP.

So, one can easily realize that the state σi = 0 for all vertices

is absorbing in both models. The limit between persistence

and extinction of activity is delimited by a critical value λc

of the control parameter. The density of infected vertices at

the stationary state, ρ̄, is the order parameter that is null in the

absorbing phase λ < λc and reaches a steady value for λ > λc.

Contrasting with homogeneous graphs, SIS and CP are

very different for heterogeneous networks. Distinct analytical

approaches were devised to determine an expression for λc

and the respective critical exponents in random networks with

PL degree distributions, for both SIS [7,9,15,19,43,49,50]

and CP [6,26,27,31,51–53]. The central results are that, in

the thermodynamical limit, CP has a finite threshold and

undergoes an APT with well-defined FSS exponents. For

infinite-size PL networks, the SIS model does not exhibit an

APT such that an endemic active phase is observed for any

finite infection rate λ > 0. However, for finite sizes the SIS

effectively has a threshold [9,15,17,18,30,42] and the APT,

including FSS exponents, can also be investigated numerically.

B. Algorithms

For the SQS, RBC, and HR methods with n > 0, the

simulations of the SIS dynamics were performed according

the adapted Gillespie algorithm presented in Refs. [18,42].

At each time step, the number of infected vertices Ni and

the sum of the degrees of these vertices Nn are computed.

With a probability Ni/(Ni + λNn) a randomly chosen infected

node becomes healthy. With the complementary probability

λNn/(Ni + λNn), an infected vertex is chosen proportionally

to its degree and one of its links is chosen with equal chance.

If the selected link points to a susceptible vertex it becomes

infected; otherwise the simulation continues. The total number

of infected nodes and the number of links emanating from

them are updated, time is incremented by t → t + 	t , where4

	t = 1/(Ni + λNn), and the entire process is iterated. If

the system visits the absorbing state, the rules described in

Secs. II A, II B, or II C are applied, returning to an active state.

It is worth noting that this algorithm is statistically exact in the

same sense as the Gillespie algorithm.

For the EF method, a third possible event is defined: The

spontaneous infection of a randomly chosen site with rate

f . In this case, a chosen infected node becomes healthy

with probability Ni/(Ni + λNn + f N ), the transmission of

the infection is tried with probability λNn/(Ni + λNn + f N ),

while spontaneous creation at a randomly chosen vertex is tried

with the complementary probability f N/(Ni + λNn + f N ).

If the chosen vertex is susceptible it becomes infected;

otherwise the simulation goes on. The time increment is

	t = 1/(Ni + λNn + f N ).

The simulations of the CP were done using the standard

procedure [4]. At each time step, an infected vertex is chosen

with equal chance and attempts to infect one of its nearest

neighbors, randomly selected, with probability λ/(1 + λ).

Annihilation of a randomly chosen infected vertex occurs with

the complementary probability 1/(1 + λ). Time is incremented

by 	t = 1/(Ni + λNi) and the whole process is iterated. For

the EF method, the probabilities are f N/(Ni + λNi + f N ),

λNi/(Ni + λNi + f N ), and Ni/(Ni + λNi + f N ) for spon-

taneous infection, catalytic infection and spontaneous healing,

respectively, and the time step is 	t = 1/(Ni + λNi + f N ).

The relevant QS quantities are calculated during an aver-

aging time tav, after a relaxation time trlx. The QS probability

P̄n is computed during the interval tav, such that each active

configuration contributes to the QS distribution with a weight

proportional to its lifetime 	t . In networks, we used typically

tav = 108, trlx = 106, and pr = 10−2, the last one in SQS

method. For lattices, trlx > 107 was used. For very supercritical

simulations shorter times are used.

4In the Gillespie algorithm, the time increments are drawn from an

exponential distribution with average 	t . For long QS averaging, the

results are independent of this step.
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FIG. 1. Main panel: Susceptibility vs infection rate for the SIS

model on UCM networks [57] with a PL degree distribution with

γ = 2.7 and different sizes using the SQS method. Inset: Lifespan vs

infection rate. The network sizes are indicated in the legend.

IV. NUMERICAL CHARACTERIZATION

OF THE CRITICAL POINT

A. Susceptibility and epidemic lifespan

The critical behavior of nonequilibrium processes presents

diverging correlation length and time. The former makes

little sense for complex networks because of the small-world

property stating that average distance between two vertices

increases logarithmically or slower with the network size

[29]. However, the concept of diverging temporal correla-

tions can be applied to identify and characterize the APT

[17,18,31,42,54,55]. The susceptibility defined as [42]

χ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉
(13)

exhibits a peak that diverges as size increases at the transition

point for SIS on uncorrelated networks with degree exponent

γ < 3 [17,30,42] and CP on complex networks in general

[31,56]. This peak will be used to estimate the effective, size-

dependent thresholds λp. Figure 1 shows the susceptibility

χ (λ) and the lifespan τa(λ) (inset) for different network sizes

N obtained with the SQS method. Note that for all curves

shown, τa diverges approximately at the same position λp

where the peaks of the susceptibility χ curves are located.

Using the lifespan τa as an order parameter is not possible

due to its divergence in the active phase. Hence, we consider

the integrated autocorrelation time in the next subsection. In

the case of multiple peaks in the susceptibility curves [42], the

epidemic threshold is taken as the one occurring nearest to the

lifespan divergence [18].

B. Autocorrelation time

The autocorrelation time of a series is defined as [58]

τc =
1

2

tav∑
s=0

C(s), (14)
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FIG. 2. Autocorrelation time against infection rate for SIS model

on square lattices of different sizes being the sharper the larger the

size. The simulation method is SQS. Inset shows the FSS of the

epidemic threshold for d = 1,2,3.

where C(s) is the autocorrelation function given by

C(s) =
〈ρ̃(s ′ + s)ρ̃(s ′)〉

〈ρ̃2〉
, (15)

and ρ̃(s) = ρ(s) − 〈ρ〉 is a time series built recording the

density in the QS regime between time intervals 	t = 1. Here,

brackets represent time averaging over s ′ at the QS regime. To

prevent spurious behavior in the subcritical phase with the

SQS method, the time series must be rid of big gaps. So, every

time a new configuration is randomly selected to replace the

absorbing state, we discard an interval of the time series in

a such a way that the number of infected vertices before and

after the replacement differs at most by 	n = ±1. For RBC,

HR, and EF methods this problem does not exist. Large time

series with at least 107 points were used to calculate τc near and

below the epidemic thresholds. The autocorrelation function of

long time series is efficiently computed as the inverse Fourier

transform of the power spectrum of the series [58].

To validate the method, we performed simulations of the

critical SIS model on hypercubic lattices of dimensions d = 1,

2, and 3 with periodic boundary conditions. Figure 2 shows

the autocorrelation time against infection rate for SIS model

in square lattices of different sizes exhibiting a pronounced

diverging peak as the lattice size increases. The position of the

peak λp converges to the expected SIS threshold5 λc in d = 1,

2, and 3 following the standard FSS [1]

λp − λc ∼ L−1/ν⊥ , (16)

where ν⊥ is the critical exponent associated with the diver-

gence of the correlation length; see the inset of Fig. 2.

5In regular graphs where all vertices have the same number of

connections k the SIS and CP thresholds are related by λSIS
c = λCP

c /k.

Using the thresholds known for CP in hypercubic lattices [1] we

have λSIS
c = 1.648924, 0.41219, and 0.21948 for d = 1, 2, and 3,

respectively.
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FIG. 3. QS density against number of vertices for critical SIS on

lattices of dimensions d = 1, 2, 3 and RRN (d = ∞) using SQS and

RBC methods. Dashed lines represent the scaling exponents of the

DP class [1].

V. COMPARISON OF THE SQS AND RBC METHODS

IN REGULAR GRAPHS

Figure 3 shows the QS density for critical SIS against the

number of vertices N (N = Ld for lattices) in d-dimensional

hypercubic lattices and in random regular networks (RRN)

[56]. In the last one, all vertices have the same degree

k = 3 and connections are random [42], implying that RRN

corresponds to an infinite dimension. Power-law decays in the

form ρ̄ ∼ N−β∗

with the expected exponents β∗ = 0.2521,

0.3978, 0.4640, and 1/2 for DP class in dimensions d = 1,2,3,

[1] and ∞ [47] are observed in both SQS and RBC methods.

The different QS methods correspond to distinct strengths of

perturbation of the system. Thus the critical quantities do not

have to be identical but only present the same scaling to grant

equivalence among methods.

Figure 4(a) compares the critical epidemic lifespan τa as

a function of the size N for SQS and RBC methods. The

DP scaling laws τ ∼ N z∗

, with z∗ = 1.5807, 0.8830, and 1/2

for d = 1, 2, and ∞, respectively, are confirmed for SQS

method while the DP exponents z∗(1 − δ) = 1.3285, 0.4852,

and 0 (logarithmic) are observed for RBC, confirming the

prediction of Eq. (10). Figure 4(b) compares the integrated

autocorrelation times for SQS and RBC at the critical point.

One can see that the same scaling law τc ∼ N z∗

is found,

showing that this quantity provides a correct characteristic

relaxation time for both methods.

VI. NUMERICAL ANALYSIS ON POWER-LAW DEGREE

DISTRIBUTED NETWORKS

We consider networks with PL degree distributions of the

form P (k) ∼ k−γ generated by the uncorrelated configuration

model (UCM) [57]. The network is built associating the

number of stubs of each vertex according the distribution

P (k), randomly connecting stubs, avoiding self- and multiple

connections, and imposing the minimal degree k0 = 3 and the

structural upper cutoff kc = N1/2 in the degree distribution.
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FIG. 4. (a) Lifespan of the critical SIS dynamics on lattices of

dimensions d = 1, 2 and RRN (d = ∞). Solid lines represent the DP

exponents predicted by the SQS (τa ∼ N z∗
) and dashed ones represent

RBC methods [τa ∼ N z∗(1−δ)]. (b) Critical integrated correlation time

against size. Solid lines are PLs τc ∼ N z∗
with the DP exponents.

This procedure guarantees the absence of degree correlations

for any value of γ > 2 [57]. We analyze values of γ for

which SIS has distinct behaviors on UCM networks of finite

size [8]. For γ < 3, SIS exhibits a single well-resolved

transition occurring at a threshold that goes to zero in

the thermodynamical limit while for γ > 3 the model has

localized active phases leading to multiple smeared transitions

for large networks [18,36]. In the case of CP, a sharp transition

occurring at a finite threshold is observed for any value of γ

[28,31]. We consider only the case γ < 3 where the critical

exponents depend on γ [27].

A. γ < 3

A comparison of susceptibility curves obtained with RBC,

SQS, and HR methods for SIS and CP models is shown in

Fig. 5(a) for a network with N = 107 vertices. The three

methods are equivalent for CP: The transition is slightly

less pronounced in SQS than RBC and HR, but the last

two are indistinguishable. For SIS, the susceptibility peak

obtained with RBC is evidently more pronounced than with
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FIG. 5. Comparison of QS quantities on SF networks. (a) Sus-

ceptibility χ and (b) order parameter ρ̄ in the QS regime as a function

of λ for the SIS and CP (insets) models using different methods. The

degree exponent is γ = 2.7 and the network size is N = 107.

HR method, despite their algorithmic similarity: The latter

exhibits susceptibility close to the one of the SQS method,

indicating a smearing of the transition [36] in SQS and HR

when compared with RBC. This phenomenon is also evidenced

by the curves of density against infection rate shown in

Fig. 5(b), in which the subcritical density in the SQS and

HR methods are broader than in RBC.

The position of the susceptibility peaks is practically

independent of method used, as shown in Fig. 6. In the case

of SIS, RBC provides peaks slightly above other methods,

a difference that is not perceivable in this plot. Fitting SIS

data to a PL λp ∼ N−φ , the exponent is φ = 0.20 for the

three methods. For CP the convergence to the threshold value

reported in Ref. [31], for this same network model, is verified

with the three methods.

Figure 7(a) shows the FSS of the order parameter ρ

evaluated at the position of the susceptibility peak λp(N ) [31]

for γ = 2.7. Assuming a scaling ρ ∼ N−β∗

, the FSS of CP

provides β∗ = 0.60(2) for RBC, HR, and SQS methods. Here

the numbers in parentheses represent uncertainties due to the

regression. However, for the SIS model we found β∗ = 0.69(2)

for RBC in contrast with and β∗ = 0.61(2) obtained for SQS
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FIG. 6. Effective thresholds λp as a function of N for the SIS

(bottom curves) and CP (top curves) models obtained with SQS,

RBC, and HR methods. The CP threshold was subtracted by 1 to

improve visibility. The solid line is a PL regression and the dashed

one is the epidemic threshold of the CP in the limit of very large

networks given in Ref. [31]. The degree exponent is γ = 2.7.

and HR methods. Notice that the SQS exponents for SIS

and CP are the same within uncertainties. The FSS of the

autocorrelation time and epidemic lifespan for SIS model are

shown in Fig. 7(b). As in the case of RRN networks, the time

τa increases logarithmically for RBC and HR (data not shown

for the latter) methods. On the other hand, the autocorrelation

times provide the same scaling for RBC, HR, and SQS that

agrees with the scaling of τa obtained via the SQS method.

Assuming a scaling τ ∼ N z∗

, we found the same exponent

z∗ = 0.33(1) for τc in all methods and τa in SQS. Equivalent

results were obtained for CP with an exponent z∗ = 0.40(1).

Let us shed some light on the difference between SIS

simulations using RBC and HR methods. In RBC, the

probability of returning to the absorbing configuration in the

next step after the epidemic is restarted is pabs = 1/(1 + λck),

where k is the degree of the vertex where the activity ended

and returned subsequently. Since the pre-absorbing state will,

with large probability, be in a vertex of low degree, which

represents the great majority of vertices in the network, and

remembering that λc(N ) → 0 as N → ∞, the probability that

the system falls back into the absorbing state in the next step

goes to 1. In the HR method, the particle returns to a vertex

of degree k = kc ∼ min[N1/2,N1/(γ−1)] such that λc(N )k ≫ 1

and the probability to produce an outbreak with n > 1 infected

vertices goes to 1. So this qualitatively explain why HR is

similar to SQS rather than RBC since the long-term regime of

SQS is constituted by a large number of configurations with

n ≫ 1, many of them neighboring the hubs and increasing the

chance of their reactivation. Note that in the CP dynamics,

the system returns to the absorbing state with probability

pabs = 1/(1 + λc) < 1/2 irrespective of the vertex degree and

a new outbreak with n > 1 has a finite probability to happen

in both RBC and HR. The autocorrelation is insensitive to this

detail and provides the same FSS scaling exponents for all

methods.
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FIG. 7. Finite-size scaling of epidemic models on UCM networks

with γ = 2.7. (a) Critical density for SIS (open symbols) and CP

(filled symbols). The densities for CP were divided by a factor 10 to

improve the visibility. (b) FSS of the integrated correlation time (τc)

and time between attempts of visits to the absorbing state (τa) for the

SIS model. The SQS data for τa is divided by a factor 102 to improve

the visibility. The lines represent PL regressions. The averages were

performed over 10 network realizations and the error bars are smaller

than the symbols.

B. γ > 3

For γ > 3.0 the degree distribution of the UCM model has

a finite variance but presents some vertices with degree much

larger than the rest of the network, hereafter called outliers;

see discussions in Refs. [18,36]. These outliers generate local-

ized metastable patches that can be independently activated,

manifested as multiple peaks in the susceptibility of the SIS

model on large networks simulated with the SQS method

[18,30,42,54]. Susceptibility curves comparing the different

methods for the same network realization are shown in Fig. 8.

A remarkable difference is that the peak observed at small λ

in SQS curves, which is due to the activity localized in the

most connected vertex of the network [18,42], is not observed

in the RBC but is in the HR method. The secondary peaks are

associated to the lifespan divergence [18]. The SQS and HR

methods are equivalent. The activation of the most connected

vertex is not captured by RBC method but it is for the other
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FIG. 8. Susceptibility χ (λ) and QS density ρ(λ) curves for the

SIS model on UMC networks with (a), (b) γ = 3.5 and (c), (d) γ =

4.0 using different QS methods. The dashed lines are the epidemic

lifespan τa = 1/P̄1. The network size is N = 107.

two methods. A smearing of the transition [36,59,60] in SQS

and HR methods is more evident than in the case γ = 2.7. As

expected, above the epidemic threshold, the methods become

equivalent since the absorbing state was never visited in the

simulations. It is worth mentioning that the multiple transitions

are not artifacts of the SQS simulations, and are also observed

with the HR and RBC methods.

Figure 9 shows the scaling of the epidemic threshold of SIS

model for γ = 3.5 and γ = 4.0 as a function of the network

size. One can see that the size dependences are remarkably
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FIG. 9. Effective thresholds as a function of the system size for

SIS model on UCM networks with γ = 3.5 (open symbols) and

γ = 4.0 (filled symbols) using different QS methods.

042308-8



SAMPLING METHODS FOR THE QUASISTATIONARY . . . PHYSICAL REVIEW E 94, 042308 (2016)

0.01 0.02 0.03

λ
10

0

10
1

10
2

10
3

10
4

χ

WEF
RBC

0.01 0.02 0.03

λ

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

ρ

(a)

(b)

10
3

10
4

10
5

10
6

10
7

N

10
-2

10
-1

λ
p

WEF
RBC

10
3

10
4

10
5

10
6

10
7

N

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ρ

(c)

(d)

FIG. 10. Equivalence of RBC and WEF methods for SIS model

on UCM networks with degree exponent γ = 2.75. Top panels show

the (a) susceptibility and (b) density of infected vertices against

infection rate. Bottom panels show the FSS of (c) epidemic threshold

and (d) critical density.

similar for the three methods and the differences are inside

uncertainties.

C. Comparison between WEF and RBC methods

In the limit of the weak external field (WEF), the creation

events rarely occur in the active phase and therefore it is

equivalent to RBC method in regular graphs [40]. However,

some differences are eligible in highly heterogeneous networks

since pre-absorbing states are usually configurations with

infection near or in a hub. This could enhance the chance

of epidemic outbreak occurrence in RBC method because the

epidemic would restart nearer a hub than in WEF method,

where it returns to a randomly selected vertex. We performed

simulations using an external field f = N−1.25. A comparison

of the methods for SIS in Fig. 10 shows the equivalence

between them.

VII. CONCLUSIONS

The interplay between structural properties of complex

networks and evolution of epidemic processes on the top of

them constitutes a fundamental problem in network science

[11]. Distinct theories have been developed to address central

questions such as the position or existence of epidemic thresh-

olds [7–9,11,15,32,50,61], localization and delocalization of

epidemic phases [17,19,20,35], and the critical exponents

ruling the epidemics around the threshold [6,26,27,31]. In this

framework, numerical simulations are fundamental tools in

the validation of theories and conjectures [7,15,28,30,32,42]

as well as in the setting up of new physical and analytical

insights [8,9,60].

Simulations near the epidemic threshold constitute a chal-

lenge since in finite networks an absorbing state, in which the

epidemic is eradicated, will always be reached due to the finite

number of accessible configurations [4]. Aiming at investi-

gating epidemic processes with steady states via stochastic

simulations, one needs to resort to the QS approaches, which

suitably handle the absorbing states, along with a finite-size

analysis. In these approaches a perturbation of the original

dynamics, which is negligible in the thermodynamical limit

of the active phase, is introduced. We investigated distinct

QS methods: The SQS has sampling constrained to active

configurations; the RBC, where the dynamics returns to

the configuration that it was immediately prior the visit to

the absorbing state; the HR method, where the epidemic is

restarted in one of the most connected vertices of the network;

and a weak external field (WEF) that introduces spontaneous

infection. Two distinct epidemic models with active steady

state were considered, the CP [4] and the SIS [11] models,

whose phase transitions have different natures [8].

We observed that all methods are equivalent for CP,

providing the same epidemic thresholds and FSS exponents

of the critical QS quantities. For SIS, the same thresholds are

obtained for all methods but the FSS of the critical density

provides scaling exponents for RBC and WEF different from

SQS and HR methods. Also, RBC and WEF do not capture

epidemic activity localized in the most connected vertex of

the network. So, if one wishes an analysis rid of localized

epidemics, RBC method is indicated but if one also needs to

resolve localization the SQS or HR are more appropriated.

The SQS is theoretically well grounded [46,48,53] but it is

algorithmically more complicated and computationally less

efficient than the other investigated methods.

An advantage of the SQS method is that it provides an

epidemic lifespan proportional to the characteristic relaxation

time in both subcritical and critical regimes [41], but it is

infinite in the active phase. Moreover, for the other investigated

methods the epidemic lifespan does not correspond to the

characteristic relaxation time. In order to overcome these

difficulties we analyzed the autocorrelation time of the QS

series for the different methods. Autocorrelation provides the

characteristic relaxation time, including in the supercritical

regime. We found the same FSS exponents for all investigated

methods irrespective of the network and epidemic models

considered. In particular, applying the autocorrelation method

to regular lattices of dimension d = 1, 2, and 3 as well as RRN

(d = ∞), the directed percolation exponents were obtained.
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[38] T. Tomé and M. J. de Oliveira, Nonequilibrium Model for the

Contact Process in an Ensemble of Constant Particle Number,

Phys. Rev. Lett. 86, 5643 (2001).
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