

Abstract—Learning-to-rank (LtR) is a framework that

spans from training set generation from unlabelled data to

learning a model to runtime efficiency. While a good number of

learning-to-rank algorithms have been developed over the past

decade, “out-of-the-box” topics such as investigation into the
properties of training sets have not been given much attention

to date. In this article we investigate the imbalanced nature of

LtR training sets, which generally contain very few relevant

documents as compared to the non-relevant ones. Since the

relevant documents are rare in a document collection, the need

to include in the training set as many relevant documents as

possible is well-understood. However, the lower bound of the

number of non-relevant documents needed to learn a good

ranking function is still largely uninvestigated. This article

aims at addressing this question with a special focus on random

forest based LtR algorithms. We employ both random and

deterministic undersampling techniques to reduce the number

of non-relevant documents. Minimization of training set size

reduces the computational complexity (i.e., learning time)

which is an important factor, especially for large scale LtR.

Extensive experiments on Letor benchmark datasets reveal

that in many cases the performance of a LtR algorithm trained

on a much smaller training set (in terms of presence of

non-relevant documents) remains largely similar to that of a

model learnt from the original training set. This investigation

thus suggests that for large scale LtR tasks, we can leverage

undersampling techniques to reduce training time with

oftentimes negligible effect on predictive accuracy. We further

examine the potential benefit of random forest based LtR

algorithms in the context of undersampling which

demonstrates that the inherent structure of a random forest is

conducive to using undersampling, and thereby allows for even

more scalability.

Index Terms—Learning-to-rank, undersampling, random

forests, scalability, imbalanced data.

I. INTRODUCTION

The task of an information retrieval (IR) system is to take a

query from the user and eventually to return a list of

documents ordered by their predicted relevance to that query.

To accomplish this task, traditionally various heuristic (eg.

tf-idf score) and probabilistic models (eg. BM25, Language

Models), are used1. Such a model is essentially a scoring

function that takes a document and a query representation as

input and produces a relevance score for that document with

respect to that query. The documents are then sorted in

Manuscript received on April 26, 2019; revised on February 7, 2020.

Muhammad Ibrahim is with the Department of Computer Science and

Engineering, University of Dhaka, Dhaka-1000, Bangladesh (e-mail:

ibrahim@cse.du.ac.bd).
1 Manning et al. [1] nicely explain these models in details.

descending order of these scores before presenting to the

user.

In the past decade, due to their effectiveness, the use of

machine learning techniques for computing the

abovementioned relevance scores of documents has received

much attention both in academia and industry [2]-[4] which

is called the learning-to-rank (LtR) problem [5]. This

framework adopts a statistical learning approach which uses

labeled data (i.e., relevance predictions given by a set of

simple ranking functions along with the true relevance labels

of the documents) to predict the degree of relevance of unseen

documents with respect to a query. Today most of the

commercial search engines are known to be using LtR

methods. In academia, the use of LtR algorithms in a variety

of tasks is ever-increasing [2]. Learning-to-rank algorithms

are thus at the core of a modern IR system.

The rest of the article is organized as follows. Below we

explain as to why we need to investigate the skewed

distribution of relevance labels in an LtR training set, which

is followed by a list of major contributions of this

investigation. Section II illustrates the methodology of this

research. Section III discusses the existing works. Section IV

explains the learning model. Section V describes the datasets

and analyses the experimental results. Section VI shows the

efficacy of a random forest framework in yielding further

scalability. Section VII summarizes the findings of this

investigation.

A. Motivation

The task of developing an LtR-based IR system can be

viewed as a two stage process [6], [7]. The first stage involves

the following steps:

1. Top-k retrieval. An initial retrieval approach (involving

one or more base rankers such as BM25 score) is used to

retrieve top k documents for each query from the entire

collection of (unlabelled) documents.

2. Human labeling and feature extraction. Relevance

judgments for the retrieved k documents are collected usually

from human judges [8], [9]. Also, features (i.e., relevance

scores predicted by various base rankers) are extracted for

each of these query-document pairs. The features are then

normalized on a per query basis. These features along with

the relevance labels constitute a training data set.

The following step is then performed in the second stage:

3. Learning. An LtR algorithm is employed to learn a

ranking function f(x) from the training set.

Once the system has been trained, the following steps are

performed during real time evaluation:

1. Top-k retrieval. For a query submitted by the user, the

Muhammad Ibrahim

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

406doi: 10.18178/ijmlc.2020.10.3.950

Sampling Non-relevant Documents of Training Sets for

Learning-to-Rank Algorithms

same top-k retrieval approach (i.e., step 1 of the learning

phase) is applied.

2. Feature extraction. Features are extracted for the

retrieved documents using the same base rankers mentioned

in Step 2 of the first stage.

3. Application of the learnt model. A relevance score for

each document is generated using the learned model. The

documents are then ranked using these scores and returned to

the user. Fig. 1 depicts the complete scenario.

Fig. 1. An LtR-based IR system.

Most of the existing works on LtR is focused on developing

better algorithms for learning a ranking function given a

training set, whereas relatively little research has been

devoted to the out-of-the-box engineering topics such as how

to improve the quality of the training data, or how to tackle

the scalability issue for large scale LtR etc. Some studies have

been conducted on the first stage (i.e., how to improve the

initial retrieval approach) of LtR which will be discussed in

the Section III. We are, however, interested in an aspect that

lies between the first and second stages. After applying the

initial approach to retrieve the top k documents from a

document collection, the resultant training set usually

contains very few relevant documents associated with a query

as compared to the non-relevant ones. To demonstrate this

characteristic, in Fig. 2 we show the relevance label

distribution of the prominent LtR datasets (details of these

datasets will be discussed in Section V.A). We see that for all

eight datasets the discrepancy in label distribution is stark

(with varying degree). 2 Now the question becomes, why

might imbalanced training data be a problem for LtR? The

answer is, commercial IR systems have billions of documents

in their collections. As such, a representative training set

(found after applying the initial top-k retrieval) is typically

very large. It is, therefore, computationally challenging for a

learning algorithm to learn a ranking function from such a

large training set. 3 Hence keeping the training set size

smaller is lucrative from the perspective of scalability. On the

2 Note that for graded relevance labels, the usual practice (e.g. [10]) is to

treat only some of the higher relevance labels as relevant while the rest as

non-relevant. Specifically, among the labels in the range 0-4, labels 3 and 4 can

be considered as relevant, and among labels in the range 0-2, labels 1 and 2 can

be considered as relevant.
3 Despite possessing huge computational resources, the commercial search

engines are still in need of better scalability for their learning algorithms [2], [3],

[11], because they need to frequently test newly developed systems (before

releasing them to relevant departments) to check if the new setup works well in

practice. As additional computation comes at a monetary cost, training time of

the algorithms is crucial.

other hand, the larger the training set, the more information

is given to a learning algorithm, and hence sufficient amount

of training data are needed to learn a good ranking function.

Since the number of relevant documents is limited (while the

non-relevant documents for a query is unlimited), all the

relevant documents of a training set are useful. Thus the

following research question can be raised: are all of the

non-relevant documents found from the top-k retrieval

(which are currently included in the LtR training sets)

necessary to learn a good ranking function? That is to say,

could a smaller subset of non-relevant documents be

sufficient for learning a ranking function capable of

well-distinguishing between relevant and non-relevant

documents? If we discover that we can use such a smaller

subset without compromising the accuracy of the learning

algorithm significantly, the time complexity for LtR

algorithms (which is an important issue for large scale LtR

[2], [3], [11]) would be significantly reduced.

Fig. 2. Relevance label distribution of different datasets. Dataset names are

given in the x-axis.

B. Contributions

The following contributions are made in this article:

We employ both random and deterministic undersampling

techniques to examine if a ranking function can successfully

distinguish between the relevant and non-relevant

documents with a smaller subset of non-relevant documents

in the training set. Experimental results suggest that the

random undersampling of non-relevant documents on a

per-query basis works quite well. In many cases, much

smaller training data (even as little as 19-32% of the training

data) can be used without significant degradation of

accuracy.

While our investigation suggests that all LtR algorithms

are likely to reap benefit from the use of undersampling

techniques, the inherent structure of a random forest offers a

more effective way to achieve this as compared to other LtR

algorithms. By properly utilizing the tree-forest structure of

an RF-based LtR algorithm we may achieve even more

scalability without significant degradation of accuracy.

II. APPROACH

Our goal is to reduce the number of non-relevant

documents which comprise the vast majority of the training

set, and then to examine the effect of learning from the

(reduced) training set on a separate (non-reduced) test set.

Pictorially, Fig. 3 describes the procedure. In order to achieve

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

407

this goal we exploit the concept of undersampling techniques

for imbalanced data from the machine learning literature

[12]. Undersampling techniques aim at making the training

set more balanced in terms of the number of instances from

each class. In this study we investigate two approaches: (1) a

random undersampling, and (2) a deterministic

undersampling.

Fig. 3. Undersampling process of our approach.

The existing literature on improving the classification

accuracy in the presence of imbalanced data can broadly be

divided into two categories [12]: (1) a data-level approach,

also known as sampling techniques, and (2) an

algorithmic-level approach, also sometimes called as

cost-sensitive learning. In this work we investigate the

undersampling techniques from the first category – we do not

consider oversampling techniques (and related techniques

such as SMOTE [13]) as they increase the training set size.

Since the LtR data are divided by queries, we perform

undersampling at the query level. That is, for each query, we

retain all the relevant documents in the new training set, and

then include a subset of non-relevant documents according to

a criterion (either randomly or using a deterministic

technique). We then learn a model on this (reduced) training

set, and evaluate the model on a (non-reduced) test set to

compare performance at different amounts of training data.

The procedure of random undersampling is, as the name

implies, to randomly select a subset of non-relevant

documents. As for the deterministic undersmapling, our goal

is to retain the most “informative” non-relevant instances

(i.e., query-document pairs) so that the learning algorithm

can effectively learn to distinguish between relevant and

non-relevant documents with fewer non-relevant documents

in the training set. We identify the informative non-relevant

documents using an effective feature which is BM25 score.

The rationale is that the lower the BM25 score of an

non-relevant document, the “more non-relevant” the
document, and hence the more informative this document is

(as an non-relevant document).

The configuration which uses the original training set is

considered as the baseline.

III. RELATED WORKS

Aslam et al. [8] investigate different methods for top-k

retrieval using a large corpus. That is, they study techniques

for generating a better training set from a large unlabelled

document collection. The training sets produced by their

methods are, however, still highly imbalanced. Hence our

intended work is complementary to theirs.

McDonald et al. [7] focus on the properties of a good

training set through extensive empirical study on several

large document collections. They examine the number of

documents per query (i.e., different values of parameter k) to

be used in top-k retrieval stage, and empirically search for the

optimal values of k for different tasks and datasets. Their

conclusions include: retrieval performance in general

increases with increasing size of training sample (i.e., the

values of k) up to a certain point (depending on the datasets),

and afterwards the performance plateaus.

Dang et al. [6] develop an improved initial retrieval

method by retrieving more relevant documents than the

existing methods such as BM25. Their method utilizes some

complex features like proximity based retrieval functions

[14].

Long et al. [15] propose a technique based on Active

Learning framework that includes an (unlabelled) example

in the training set if this inclusion minimizes a ranking loss

over the training set. The main motivation of using active

learning is to reduce the large cost associated with manual

labeling of documents. Their proposed method is compared

with mainly the depth-k pooling method. Some related works

such as Donmez et al. [16] and Yu [17] also try to find the

(unlabelled) examples which, if added to a training set,

increase the quality of the learned ranking function. This

category of works does not differentiate between relevant and

non-relevant documents, whereas our intended investigation

is specifically concerned with the importance of non-relevant

documents. That is, the training set generated by these

methods is still likely to be highly imbalanced, and thus

eligible for our investigation.

We emphasize the point that although one of the goals of

most of the abovementioned works is to retrieve as many

relevant documents as possible in a training set, in practice

the disparity between the numbers of relevant and

non-relevant documents is still high. As an example, in an

attempt to increase the relevant documents, Chapelle and

Cheng [18] employ the depth-k pooling method which uses

more than one base ranker in the initial retrieval stage, but

still get an imbalanced training set.

We thus observe that none of the studies that investigate

into improving the quality of the training data are primarily

concerned with the non-relevant documents, i.e., none of

them are concerned with the imbalanced nature of the

training data. As our techniques are applicable after applying

those methods (and before the learning phase), this work is

distinctive and complementary to the existing works.

IV. MODEL

The main focus of this article is the random forest based

LtR algorithms. A random forest [19] is a conceptually

simple but highly effective and efficient learning framework.

It aggregates the predictions of a large number of

(independent and variant) decision trees.

It has been shown that the ranking error is bounded by

both the classification error [20] and regression error [21].

Hence practitioners of LtR oftentimes approach to the LtR

problem with a classification or a regression model. In this

setting, a classification (or regression) algorithm learns to

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

408

predict the relevance label of an individual query-document

pair. During evaluation, the documents associated with a

query are ranked in decreasing order of their relevance scores

predicted by the learnt model. Since it treats the instances (i.e.

feature vectors corresponding to the query-document pairs)

independently from one another, this approach is called

pointwise in the literature [3]. Although lacks objective

functions tailored to LtR problem, this approach is still used

by researchers because of its lower computational resource

requirement and conceptual simplicity.

In this article we employ an LtR algorithm which utilizes

concepts of both the classification and regression settings

[22], [23] at the same time. To partition the data of a node of

a tree of a random forest, a classification setting

(entropy-based gain) is used. However, to assign a label to a

data partition during evaluation phase, a regression setting is

used in the following way: when the test instance falls into a

data partition (i.e., a leaf node), the algorithm assigns (as the

score to the test instance) the average of the relevance labels

of all the documents of that data partition. Finally, as

mentioned earlier, the documents are sorted in decreasing

order of the predicted scores and presented to the user. Thus

the training and the testing phase adopts a classification and

a regression setting respectively. With regard to the data to

begin with, each tree is learnt using a bootstrapped (without

replacement) sample of the training set, and the

bootstrapping is performed on a per-query basis. We call this

algorithm RF-point.

Fig. 4. Results of random undersampling approach with RF-point algorithm.

V. EXPERIMENTS

This section describes the experimental settings and

analyses the results.

A. Datasets

In total, eight prominent LtR datasets are used for our

experiments that span a variety of IR tasks, namely topic

distillation (TD2004), homepage finding (HP2004), named

page finding (NP2004), domain-specific search (Ohsumed),

and general web search (MQ2007, MQ2008,

MSLR-WEB10K and Yahoo). Table 1 shows their statistics.

For further details about these datasets, please see Qin et al.

[5], in Letor website4 , Microsoft Research website5 , and

Chapelle et al. [18].

B. Setup

As rank learners, in addition to the RF-point algorithm

discussed in the previous section, we employ another

rank-learner called RankSVM 6 [24] which is a popular

pairwise LtR algorithm that formalizes LtR as a problem of

4 http://research.microsoft.com/en-us/um/beijing/projects/letor/
5 http://research.microsoft.com/en-us/projects/mslr/
6http://research.microsoft.com/en-us/um/beijing/projects/letor/Baselines/Ra

nkSVM-Primal.html.

binary classification on instance pairs, and solves the

problem using support vector machines (SVM).

C. Evaluation Metrics

As evaluation metrics, we use two widely known measures,

namely Normalized Discounted Cumulative Gain at 10th

position (NDCG@10) and Mean Average Precision (MAP).

Since the contemporary IR literature largely prefers NDCG

over MAP, we give more emphasis on NDCG in our result

analysis, although we make use of both of them. Readers may

go through Ibrahim and Murshed [4] and Ibrahim [23] to

know details about these metrics.

D. Using RF-point Algorithm

This section discusses results of RF-point algorithm with

random and deterministic undersampling approaches.

Random Undersampling. Fig. 4 shows plots of random

undersampling approach for the eight datasets.

We first discuss results of the six smaller datasets. Along

the x-axis of a plot is the percentage of training set used for

learning, and along the y-axis is performance. To suppress

random fluctuations, each point in a plot corresponds to the

average metric of five independent runs. We observe that

initially, i.e., with very few non-relevant documents

performance is comparatively poor, as expected; however,

the level of degradation depends on the dataset. As the

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

409

number of non-relevant document increases, so does the

performance. In general, after the initial increase, relatively

minor improvement in performance is gained as we increase

the number of non-relevant documents (note the restricted

interval on the y-axis); and this phenomenon is pronounced

in the datasets where the distribution of the relevance labels

is highly skewed, namely in TD2004, HP2004 and NP2004.

Table II shows the percentage of original training set

required to reach a given level of performance. We observe

that the percentage of training set required to achieve close

performance to the baseline varies from task to task. The

TD2004, HP2004 and NP2004 datasets benefit most from

undersampling – only 10.6%, 7.2% and 4.2% training data

are required to reach within 98% of baseline performance

respectively. Ohsumed, MQ2007 and MQ2008 datasets are

moderately benefitted due to the comparatively less

imbalance nature of their data – approximately half,

one-third and one-fourth of the original data is needed for

these three datasets to reach within 98% of the baseline

performance respectively. As for the training time, the

TD2004, HP2004 and NP2004 datasets achieve 10-21 times

gain over the baseline.

For the two larger datasets, namely MSLR-WEB10K and

Yahoo, we report results of one run (instead of five) as these

datasets are sufficiently large to suppress the possible

fluctuation in the plots (indeed, their plots are found to be

comparatively smoother). Also, for better comparison with

the baseline, here we focus on the amount of training data

required to reach within 98% and 99% of the baseline

performance. From the plots we observe that the

undersampling approach works better for MSLR-WEB10K

dataset than for Yahoo dataset because the relevance label

distribution is more skewed in the former case than the latter

(cf. Table I). On the MSLR-WEB10K dataset, approximately

one-fifth of the data is required to reach within 99% of

baseline performance (with 8 times smaller training time),

whereas on the Yahoo dataset an increased amount of

non-relevant documents is found to be always useful.

TABLE I: STATISTICS OF THE DATASETS (SORTED BY # QUERIES). IN THE LAST ROW, 973/15 FOR TD2004 MEANS THAT THERE ARE 973 AND 15 DOCUMENTS

OF LABEL 0 AND 1 RESPECTIVELY

Characteristic TD2004 HP2004 NP2004 Ohsumed MQ2008 MQ2007 MSLR-WEB1

0K

Yahoo

Task Topic

Distillation

Homepage

Finding

Named Page

Finding

Medical

Corpus

Web

Search

Web

Search

Web Search Web

Search

Queries (overall) 75 75 75 106 784 1692 10000 29921

Queries (train) 50 50 50 63 470 1015 6000 19944

Features 64 64 64 45 46 46 136 519

Rel. labels 2 2 2 3 3 3 5 5

Query-doc pairs

(overall)

75000 75000 75000 16000 15211 69623 1200192 709877

Query-doc pairs

(train)

50000 50000 50000 9684 9630 42158 723412 473134

Docs per query 988 992 984 152 19 41 120 23

Docs of diff. labels

(0/1/2/3/4) per query

973/15 991/1 983/1 106/24/21 15/2.5/1 30/8/2 42/39/16/2/0.9 6/8/7/2/0.4

TABLE II: RANDOM UNDERSAMPLING WITH RF-POINT: % OF TRAINING DATA REQUIRED (PER ENSEMBLE) TO ACHIEVE A GIVEN PERCENTAGE OF

PERFORMANCE OF BASELINE NDCG@10 (I.E., WITH 100% TRAINING DATA) ALONG WITH TRAINING TIME IMPROVEMENT

Dataset %Rel. Docs %of training set required (per ensemble) for 95%-98%-99% of baseline performance

Random undersampling Training time improvement

Ohsumed 30 37 - 56 -98 2.8 - 1.8 - 1 times

MQ2007 26 30.7 - 33.1 -40.3 3.5 - 3.2 - 2.6 times

MQ2008 19 24.5 - 24.5 -95.2 3 - 3 -1 times

TD2004 1.5 4.5 - 10.6 - 21.7 13 - 10 -6 times

HP2004 0.3 0.31 - 7.2 -32.4 50 -18 -4 times

NP2004 0.1 0.82 - 4.2 - 24.4 40 - 21 - 6 times

Dataset %Rel. Docs % of training set required (per ensemble) for 98%-99% of baseline performance

Random undersampling Training time improvement

MSLR-WEB10K 3 15-19 11 - 8 times

Yahoo 12 22-100 7 - 1 times

TABLE III: COMPARISON BETWEEN STANDARD RANDOM UNDERSAMPLING (I.E., ENSEMBLE LEVEL) AND TREE LEVEL RANDOM UNDERSAMPLING WITH

RF-POINT: % OF TRAINING DATA REQUIRED (PER TREE) TO ACHIEVE A GIVEN PERCENT OF BASELINE (I.E., 63% TRAINING SET) PERFORMANCE (NDCG@10)

ALONG WITH TRAINING TIME IMPROVEMENT. THE BEST VALUE IS IN BOLD AND ITALIC FONT

Dataset % of training set required (per tree) for 95%-98%-99% of baseline (i.e., 63% sample) performance

Ensemble level Tree level

Ohsumed 23 - 35 -62 13 - 14 - 19

MQ2007 19.3 - 20.9 - 25.4 17.8 - 19.3 25.4

MQ2008 15.4 - 15.4 - 60.0 15.4 - 15.4 - 18.6

TD2004 2.9 - 6.7 - 13.6 2.2 - 4.0 - 7.2

HP2004 0.2 - 4.5 - 20.4 0.19 - 5.7 - 17.6

NP2004 0.51 - 2.6 - 15.4 0.32 - 3.8 - 30.2

Dataset % of training set required (per tree) for 98%-99% of baseline (i.e., 63% sample) performance

Ensemble level Tree level

MSLR-WEB10K 9 - 12 6-9

Yahoo 14 -63 11-45

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

410

This sub-section thus reveals that when RF-point employs

the random undersampling approach, both the smaller and

larger datasets are candidates for getting improved training

time given that their relevance label distributions are

sufficiently skewed.

Fig. 5 shows that for all the datasets the training time

increases linearly with increasing training set size.

Deterministic Undersampling. Our second approach

performs a deterministic selection of non-relevant documents.

The procedure is as follows. For a query, we, as before,

include all the relevant documents in the training set. We

then sort the non-relevant documents in ascending order of

the values of an effective individual ranker, namely the

BM25 scorer. In the first configuration, we thus include only

the first non-relevant document (i.e., with the minimum

feature value) for that query to the training set. For

subsequent configurations, additional non-relevant

documents are included in the previously sorted order. We

call this approach the ascending order approach.

Fig. 6 shows the plots for the ascending order approach.

All the datasets, in contrast to the random undersampling

approach, exhibit an increasing trend up to the last point of a

curve. A possible explanation for rising performance up to

the last configuration is as follows. When we continue to

include non-relevant documents having comparatively larger

BM25 scores, the performance still continues to slightly

increase because even though BM25 is a good ranker, there

do exist some non-relevant documents which have high

BM25 scores, and including these documents in the training

set helps the learning algorithm to learn these patterns in

addition to the normal patterns (i.e., low BM25 scores) of the

non-relevant documents. Another observation is that for

most of the datasets for the very initial points of a curve there

seems to be no systematic trend of performance. This is

possibly due to the fact that the missing values of the features

have been replaced by 0.0 by the dataset providers; so when

we include the initial documents in ascending order, the

documents with missing values are included which act as

“noise” to our intended goal (i.e., to include documents with
lower BM25 scores). Once the documents having genuine

BM25 scores start to be included, the systematic trends

appear.

Fig. 5. Training time of RF-point against the percentage of training set used to learn the ensemble.

Fig. 6. Results of deterministic undersampling approach with RF-point algorithm.

Comparison between Two Approaches. In Fig. 7 we

compare the performance of the two undersampling

approaches investigated. We notice that in terms of

requirement of percentage of training set to achieve close

performance to the baseline, the random undersampling wins

almost consistently over the deterministic one (with an

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

411

exception of HP2004). This behavior is likely to be due to the

fact that the random sampling approach preserves the

original distribution of non-relevant documents, and as

explained during the analysis of ascending order approach

that although the importance of non-relevant documents

having lower feature values are perceived, the higher feature

values are also required to enhance the hypothesis space from

which the ranking model is picked.

We reiterate that our results are not directly comparable

with that of existing methods (explained in Section III) since

we investigate a previously unexplored area of

undersampling only the non-relevant documents, in the

post-labelling phase, whereas the existing works focus on

sampling both relevant and non-relevant documents, before

labelling.

E. Using RankSVM Algorithm

In order to claim that the findings from RF-point are

generalizable to any rank-learner, we conduct an experiment

with a state-of-the-art LtR algorithm, namely RankSVM. Fig.

8 shows the results for random undersampling approach. We

see that the trends found in RF-point algorithm are mostly

observed in the plots of RankSVM as well. This indicates that

the findings emerged from our technique of undersampling

are most likely to be invariant to different types of

rank-learning algorithms.

Fig. 7. Performance comparison of RF-point between the random undersampling and deterministic undersampling on different datasets in terms of NDCG@10.

Fig. 8. With RankSVM algorithm, results for random undersampling approach across six datasets.

TABLE IV: PERFORMANCE COMPARISON AMONG RF-POINT (BASELINE), RF-POINT WITH OVERSAMPLING (OVERALL), AND RF-POINT WITH OVERSAMPLING

(PER QUERY). AN AVERAGE OVER FIVE INDEPENDENT RUNS IS REPORTED (AND EACH RUN IS THE RESULT OF FIVE-FOLD CROSS-VALIDATION), AND THE

WINNING VALUE IS GIVEN IN ITALIC FONT

Dataset Metric Baseline Oversampling (overall) Oversampling (per query)

MQ2007 NDCG@10 0.4360 0.4332 0.4377

MAP 0.4524 0.4518 0.4547

MQ2008 NDCG@10 0.2234 0.2238 0.2271

MAP 0.4693 0.4728 0.4736

Ohsumed NDCG@10 0.4306 0.4096 0.4109

MAP 0.4213 0.4057 0.4057

TD2004 NDCG@10 0.3513 0.3204 0.3263

MAP 0.2574 0.2349 0.2358

NP2004 NDCG@10 0.7860 0.7071 0.7339

MAP 0.6647 0.5773 0.6038

HP2004 NDCG@10 0.8082 0.7904 0.8001

MAP 0.7174 0.6894 0.7016

VI. A SCALABLE UNDERSAMPLING WITH RANDOM FOREST

In the previous section we have shown that for imbalanced

datasets we can select a random subset of non-relevant

documents (per query) without significantly degrading the

performance. This section shows that the inherent

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

412

architecture of a random forest offers a better way to achieve

this effect.

A. Approach

Since a random forest is an aggregation of many

independent base learners, our idea is to exploit

undersampling at the level of base learners instead of

considering the learner (i.e., the ensemble) as a black-box -

this way the effect of information loss due to bootstrapping

may be minimized. Recall that our standard approach to

undersampling (cf. Fig. 3) was to undersample a subset of

non-relevant documents per query, and thus to generate a

new (smaller) training set for an RF (or any other

rank-learner). We henceforth call this approach the

ensemble-level-undersampling (ELU). In this section, we

investigate another approach that performs undersampling

for each individual tree of an RF. Elaborately, to learn a tree,

the first step is as usual: to generate a bootstrapped sample.

After that we impose a second step which retains only a

random subset (of pre-defined cardinality) of non-relevant

documents (per query) from the bootstrapped sample along

with all the relevant documents. Pictorially, Fig. 9 describes

the new approach which we term as the

tree-level-undersampling (TLU). Thus unlike the ELU

approach, the TLU approach does not need to exclude any

non-relevant documents altogether from learning, rather

each of them gets a chance to be used in some trees (given the

ensemble is sufficiently large). We conjecture that the TLU

approach will converge to the baseline (i.e., without using

any undersampling) performance more quickly than the ELU

approach.

 Fig. 9. Tree-level undersampling with RF-point.

Chen et al. [25] study some modifications of a random

forest to tackle the class imbalance problem for classification.

Since we are concerned with undersampling, below we

summarize one of their techniques which is relevant to ours.

For a tree, their method firstly uses a bootstrap sample of only

the minority class examples, and after that it randomly

samples a subset of majority class examples whose

cardinality is equal to the number of minority class instances

of the bootstrapped sample. However, this idea is not likely to

be effective in the context of LtR because we need to perform

sampling on a query-level, and in some datasets there is only

one relevant document (i.e., minority class example) per

query. Hence we do not consider their approach further.

B. Result Analysis

Table III shows the comparison between the ELU and TLU

approaches. We see that as conjectured, in most of the

datasets TLU approach achieves a given level of performance

with smaller training data per tree (which in turn further

reduces training time) as compared to the ELU approach.

Using the data from Table III, Fig. 10 highlights this

comparison for the 98% performance level.

We note that for most of the datasets we found a good

number of cases where the TLU approach (with smaller data

per tree) performs even better than the baseline (i.e., RF with

no undersampling at all). The reason for this phenomenon is,

we conjecture, due to the fact that the setting of the TLU

approach reduces the correlation among the trees which is

favorable to getting better performance.

Fig. 10. Comparison between ensemble-level and tree-level undersampling with

a random forest. The bars indicate the amount of training data (per tree) used to

achieve 98% of NDCG@10 of the baseline (i.e., RF learnt with all training

data); cf. Table IV.

VII. DISCUSSION

Training time of the LtR algorithms is considered to be an

important issue [2], [3], [11], [27]. Undersampling

techniques reduce the training set size thereby decreasing the

training time. Also, smaller training set requires smaller

feature computation time, and some features are

computationally costly to calculate [2], [7], [11], [26].

Our investigation is distinct from and complementary to

the existing works on using a better initial retrieval approach

(i.e., the top k retrieval as explained in Section I) in that our

techniques are applicable after using these methods. The

existing works focus on the quality of the training set by

treating both relevant and non-relevant documents alike and

before labelling the documents, whereas we focus on the

training set size (and thus on learning time) in the context of

the necessity of including large number of non-relevant

documents. Moreover, our methods can also be extended to

focus on the quality of the training set by incorporating more

advanced undersampling methods in our framework.

The observations of our investigation are summarized

below:

In many cases much less training data (as little as 19-32%

of the training set for TD2004, NP2004, HP2004 and

MSLR-WEB10K datasets) can be used without significant

degradation of performance, namely retaining at least 99% of

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

413

the baseline performance. The findings also suggest that our

method is more applicable to the tasks where the training

data are highly imbalanced.

The random undersampling approach which preserves the

true distribution of non-relevant documents in the

undersampled training set appears to be better than a

deterministic undersampling which selectively includes the

non-relevant document.

The tree-forest hierarchy of a random forest is more

conducive to undersampling. When properly used, this

structure further increases scalability (cf. Fig. 10).

Applying sampling techniques take only linear time in

terms of the size of the training set.

The datasets for which we have found considerable gain in

training time (e.g. TD2004, HP2004 and NP2004) are not in

the same scale of size of that used in commercial IR systems.

The bigger the datasets (having highly skewed relevance

label distribution), the more positive effect is likely to emerge

from our technique. Result of one of the two big datasets,

namely MSLR-WEB10K corroborates this conjecture – in

spite of containing relatively more relevant documents than

the abovementioned three datasets, here the undersampling

approach worked quite well (cf. Table II).

Our approach is applicable after the relevance judgements

of the documents are labelled. Hence a natural concern is, our

approach does not minimize that large cost associated with

human labelling. As such, this investigation is more useful

where click-through data are available so that methods for

automatic labeling [28] can be used.

In the literature of classification, oversampling of minority

class examples is a closely related topic to undersampling.

However, this increases the learning time, and the learning

time is the main focus of this article. Yet for the sake of

comprehensiveness of our investigation, we performed

oversampling on six datasets by randomly duplicating the

minority class instances until their presence becomes equal to

that of the majority class instances. We also implemented a

query-level version of it. After applying RF-point with these

two settings, we mostly found slightly poorer performance

than the baseline. Table IV shows the results of RF-point

after applying an oversampling technique on the training set.

VIII. CONCLUSION

The core motivation of this research was to investigate a

particular characteristic of an LtR environment - namely the

relevance label distribution of a training set - given a limited

budget of computational resources, so that an IR system

developer can take a more informed decision on the

preparation of the training set. We have employed

undersampling techniques to reduce training set size in order

to achieve better scalability. This investigation reveals that

for highly imbalanced datasets our method will be useful. We

have also successfully utilized the hierarchical tree-forest

structure of a random forest to perform undersampling that

resulted in better even scalability. Our work can be further

extended by using more advanced undersampling methods.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Muhammad Ibrahim carried out the research.

REFERENCES

[1] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information

Retrieval, Cambridge Uni. Press, vol. 1, 2008.

[2] T. Y. Liu, Learning to Rank for Information Retrieval, Springerverlag

Berlin Heidelberg, 2011.

[3] H. Li, “Learning to rank for information retrieval and natural language

processing,” Synthesis Lectures on Human Language Technologies, vol.

4, no. 1, pp. 1–113, 2011.

[4] M. Ibrahim and M. Murshed, “From tf-idf to learning-to-rank: An

overview,” Handbook of Research on Innovations in Information

Retrieval, Analysis, and Management, IGI Global, pp. 62–109, 2016.

[5] T. Qin, T. Y. Liu, J. Xu, and H. Li, “Letor: A benchmark collection for

research on learning to rank for information retrieval,” Information

Retrieval, vol. 13, no. 4, pp. 346–374, 2010.

[6] V. Dang, M. Bendersky, and W. B. Croft, “Two-stage learning to rank for

information retrieval,” Advances in Information Retrieval, pp. 423–434,

Springer, 2013.

[7] C. Macdonald, R. L. Santos, and I. Ounis, “The whens and hows of

learning to rank for web search,” Inf. Retrieval, pp. 1–45, 2012.

[8] J. A. Aslam, E. Kanoulas, V. Pavlu, S. Savev, and E. Yilmaz, “Document

selection methodologies for efficient and effective learning-to-rank,” in

Proc. 32nd intl. ACM SIGIR Conf. on Research and Development in

Information Retrieval, 2009, pp. 468–475.

[9] V. Pavlu, “Large scale IR evaluation,” ProQuest LLC, 2008.

[10] A. Mohan, Z. Chen, and K. Weinberger, “Web-search ranking with

initialized gradient boosted regression trees,” Proceedings of the

Learning to Rank Challenge, pp. 77–89, 2011.

[11] O. Chapelle, Y. Chang, and T. Y. Liu, “Future directions in learning to

rank,” in Proc. JMLR Workshop, 2011, vol. 14, pp. 91–100.

[12] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.

on Knowledge and Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

Synthetic minority oversampling technique,” Journal of Artificial

Intelligence Research, vol. 16, pp. 321–357, 2002.

[14] M. Bendersky, D. Metzler, and W. B. Croft, “Learning concept

importance using a weighted dependence model,” in Proc. 3rd ACM intl.

conf. on Web Search and Data Mining, ACM, 2010, pp. 31–40.

[15] B. Long, O. Chapelle, Y. Zhang, Y. Chang, Z. Zheng and B. Tseng,

“Active learning for ranking through expected loss optimization,” in Proc.

the 33rd International ACM SIGIR Conf. on Research and

Development in Information Retrieval, ACM, 2010, pp. 267–274.

[16] P. Donmez and J.G. Carbonell, “Optimizing estimated loss reduction for

active sampling in rank learning,” in Proc. 25th International Conf. on

Machine Learning, ACM, 2008, pp. 248–255.

[17] H. Yu, “Svm selective sampling for ranking with application to data

retrieval,” in Proc. the 11th ACM SIGKDD International Conference on

Knowledge Discovery in Data Mining, ACM, 2005, pp. 354–363.

[18] O. Chapelle and Y. Chang, “Yahoo! learning to rank challenge

overview,” Journal of Machine Learn. Research-Proc, pp. 1–24, 2011.

[19] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.

[20] P. Li, C. Burges, and Q. Wu, “Learning to rank using classification and

gradient boosting,” Advances in Neural Information Processing

Systems, vol. 19, 2007.

[21] D. Cossock and T. Zhang, “Subset ranking using regression,” Learning

Theory, pp. 605–619, 2006.

[22] P. Geurts and G. Louppe, “Learning to rank with extremely randomized

trees,” in Proc. JMLR: Workshop, 2011, vol. 14.

[23] M. Ibrahim and M. Carman, “Comparing pointwise and listwise objective

functions for random forest-based learning-to-rank,” ACM Transactions

on Information Systems (TOIS), vol. 34, no. 4, 2016.

[24] T. Joachims, “Optimizing search engines using clickthrough data,” in

Proc. 8th ACM SIGKDD INTL. CONF. on Knowledge Discovery and

Data Mining, ACM, 2002, pp. 133–142.

[25] C. Chen, A. Liaw, and L. Breiman, Using Random Forest to Learn

Imbalanced Data, University of California, Berkeley, 2004.

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

414

[26] F. Pan, T. Converse, D. Ahn, F. Salvetti, and G. Donato, “Feature

selection for ranking using boosted trees,” in Proc. the 18th ACM Conf.

on Inf. and Knowledge Management, ACM, 2009, pp. 2025–2028.

[27] M. Ibrahim, “Reducing correlation of random forest-based

learning-to-rank algorithms using sub-sample size,” Computational

Intelligence, vol. 35, no. 2, Wiley, 2019.

[28] J. Xu, C. Chen, G. Xu, H. Li, and E. R. T. Abib, “Improving quality of

training data for learning to rank using click-through data,” in Proc. the

third ACM International Conference on Web Search and Data Mining,

ACM, 2010, pp. 171–180.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is

properly cited (CC BY 4.0).

Muhammad Ibrahim obtained his Ph.D. degree from

Monash University, Australia. Prior to that, he obtained

his M.Sc. and B.Sc. Hons. degrees from the Dept. of

Computer Science and Engineering, University of

Dhaka, Bangladesh. He has so far published 15 research

papers. At present, he is working as a lecturer at the

Dept. of Computer Science and Engineering, University

of Dhaka, Bangladesh. His current research interest

includes machine learning, information retrieval, and

artificial intelligence.

’

International Journal of Machine Learning and Computing, Vol. 10, No. 3, May 2020

415

https://creativecommons.org/licenses/by/4.0/

