
 
Abstract—Learning-to-rank (LtR) is a framework that 

spans from training set generation from unlabelled data to 

learning a model to runtime efficiency. While a good number of 

learning-to-rank algorithms have been developed over the past 

decade, “out-of-the-box” topics such as investigation into the 
properties of training sets have not been given much attention 

to date. In this article we investigate the imbalanced nature of 

LtR training sets, which generally contain very few relevant 

documents as compared to the non-relevant ones. Since the 

relevant documents are rare in a document collection, the need 

to include in the training set as many relevant documents as 

possible is well-understood. However, the lower bound of the 

number of non-relevant documents needed to learn a good 

ranking function is still largely uninvestigated. This article 

aims at addressing this question with a special focus on random 

forest based LtR algorithms. We employ both random and 

deterministic undersampling techniques to reduce the number 

of non-relevant documents. Minimization of training set size 

reduces the computational complexity (i.e., learning time) 

which is an important factor, especially for large scale LtR. 

Extensive experiments on Letor benchmark datasets reveal 

that in many cases the performance of a LtR algorithm trained 

on a much smaller training set (in terms of presence of 

non-relevant documents) remains largely similar to that of a 

model learnt from the original training set. This investigation 

thus suggests that for large scale LtR tasks, we can leverage 

undersampling techniques to reduce training time with 

oftentimes negligible effect on predictive accuracy. We further 

examine the potential benefit of random forest based LtR 

algorithms in the context of undersampling which 

demonstrates that the inherent structure of a random forest is 

conducive to using undersampling, and thereby allows for even 

more scalability.  

 

Index Terms—Learning-to-rank, undersampling, random 

forests, scalability, imbalanced data. 

 

I. INTRODUCTION 

The task of an information retrieval (IR) system is to take a 

query from the user and eventually to return a list of 

documents ordered by their predicted relevance to that query. 

To accomplish this task, traditionally various heuristic (eg. 

tf-idf score) and probabilistic models (eg. BM25, Language 

Models), are used1. Such a model is essentially a scoring 

function that takes a document and a query representation as 

input and produces a relevance score for that document with 

respect to that query. The documents are then sorted in 
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descending order of these scores before presenting to the 

user.  

In the past decade, due to their effectiveness, the use of 

machine learning techniques for computing the 

abovementioned relevance scores of documents has received 

much attention both in academia and industry [2]-[4] which 

is called the learning-to-rank (LtR) problem [5]. This 

framework adopts a statistical learning approach which uses 

labeled data (i.e., relevance predictions given by a set of 

simple ranking functions along with the true relevance labels 

of the documents) to predict the degree of relevance of unseen 

documents with respect to a query. Today most of the 

commercial search engines are known to be using LtR 

methods. In academia, the use of LtR algorithms in a variety 

of tasks is ever-increasing [2]. Learning-to-rank algorithms 

are thus at the core of a modern IR system.  

The rest of the article is organized as follows. Below we 

explain as to why we need to investigate the skewed 

distribution of relevance labels in an LtR training set, which 

is followed by a list of major contributions of this 

investigation. Section II illustrates the methodology of this 

research. Section III discusses the existing works. Section IV 

explains the learning model. Section V describes the datasets 

and analyses the experimental results. Section VI shows the 

efficacy of a random forest framework in yielding further 

scalability. Section VII summarizes the findings of this 

investigation. 

A. Motivation 

The task of developing an LtR-based IR system can be 

viewed as a two stage process [6], [7]. The first stage involves 

the following steps: 

1. Top-k retrieval. An initial retrieval approach (involving 

one or more base rankers such as BM25 score) is used to 

retrieve top k documents for each query from the entire 

collection of (unlabelled) documents. 

2. Human labeling and feature extraction. Relevance 

judgments for the retrieved k documents are collected usually 

from human judges [8], [9]. Also, features (i.e., relevance 

scores predicted by various base rankers) are extracted for 

each of these query-document pairs. The features are then 

normalized on a per query basis. These features along with 

the relevance labels constitute a training data set. 

The following step is then performed in the second stage: 

3. Learning. An LtR algorithm is employed to learn a 

ranking function f(x) from the training set. 

Once the system has been trained, the following steps are 

performed during real time evaluation: 

1. Top-k retrieval. For a query submitted by the user, the 
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same top-k retrieval approach (i.e., step 1 of the learning 

phase) is applied. 

2. Feature extraction. Features are extracted for the 

retrieved documents using the same base rankers mentioned 

in Step 2 of the first stage. 

3. Application of the learnt model. A relevance score for 

each document is generated using the learned model. The 

documents are then ranked using these scores and returned to 

the user. Fig. 1 depicts the complete scenario. 
 

 
Fig. 1. An LtR-based IR system. 

 

Most of the existing works on LtR is focused on developing 

better algorithms for learning a ranking function given a 

training set, whereas relatively little research has been 

devoted to the out-of-the-box engineering topics such as how 

to improve the quality of the training data, or how to tackle 

the scalability issue for large scale LtR etc. Some studies have 

been conducted on the first stage (i.e., how to improve the 

initial retrieval approach) of LtR which will be discussed in 

the Section III. We are, however, interested in an aspect that 

lies between the first and second stages. After applying the 

initial approach to retrieve the top k documents from a 

document collection, the resultant training set usually 

contains very few relevant documents associated with a query 

as compared to the non-relevant ones. To demonstrate this 

characteristic, in Fig. 2 we show the relevance label 

distribution of the prominent LtR datasets (details of these 

datasets will be discussed in Section V.A). We see that for all 

eight datasets the discrepancy in label distribution is stark 

(with varying degree). 2  Now the question becomes, why 

might imbalanced training data be a problem for LtR? The 

answer is, commercial IR systems have billions of documents 

in their collections. As such, a representative training set 

(found after applying the initial top-k retrieval) is typically 

very large. It is, therefore, computationally challenging for a 

learning algorithm to learn a ranking function from such a 

large training set. 3  Hence keeping the training set size 

smaller is lucrative from the perspective of scalability. On the 

2 Note that for graded relevance labels, the usual practice (e.g. [10]) is to 

treat only some of the higher relevance labels as relevant while the rest as 

non-relevant. Specifically, among the labels in the range 0-4, labels 3 and 4 can 

be considered as relevant, and among labels in the range 0-2, labels 1 and 2 can 

be considered as relevant. 
3 Despite possessing huge computational resources, the commercial search 

engines are still in need of better scalability for their learning algorithms [2], [3], 

[11], because they need to frequently test newly developed systems (before 

releasing them to relevant departments) to check if the new setup works well in 

practice. As additional computation comes at a monetary cost, training time of 

the algorithms is crucial. 

other hand, the larger the training set, the more information 

is given to a learning algorithm, and hence sufficient amount 

of training data are needed to learn a good ranking function. 

Since the number of relevant documents is limited (while the 

non-relevant documents for a query is unlimited), all the 

relevant documents of a training set are useful. Thus the 

following research question can be raised: are all of the 

non-relevant documents found from the top-k retrieval 

(which are currently included in the LtR training sets) 

necessary to learn a good ranking function? That is to say, 

could a smaller subset of non-relevant documents be 

sufficient for learning a ranking function capable of 

well-distinguishing between relevant and non-relevant 

documents? If we discover that we can use such a smaller 

subset without compromising the accuracy of the learning 

algorithm significantly, the time complexity for LtR 

algorithms (which is an important issue for large scale LtR 

[2], [3], [11]) would be significantly reduced. 
 

 
Fig. 2. Relevance label distribution of different datasets. Dataset names are 

given in the x-axis. 

 

B. Contributions 

The following contributions are made in this article: 

We employ both random and deterministic undersampling 

techniques to examine if a ranking function can successfully 

distinguish between the relevant and non-relevant 

documents with a smaller subset of non-relevant documents 

in the training set. Experimental results suggest that the 

random undersampling of non-relevant documents on a 

per-query basis works quite well. In many cases, much 

smaller training data (even as little as 19-32% of the training 

data) can be used without significant degradation of 

accuracy. 

While our investigation suggests that all LtR algorithms 

are likely to reap benefit from the use of undersampling 

techniques, the inherent structure of a random forest offers a 

more effective way to achieve this as compared to other LtR 

algorithms. By properly utilizing the tree-forest structure of 

an RF-based LtR algorithm we may achieve even more 

scalability without significant degradation of accuracy. 

 

II. APPROACH 

Our goal is to reduce the number of non-relevant 

documents which comprise the vast majority of the training 

set, and then to examine the effect of learning from the 

(reduced) training set on a separate (non-reduced) test set. 

Pictorially, Fig. 3 describes the procedure. In order to achieve 
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this goal we exploit the concept of undersampling techniques 

for imbalanced data from the machine learning literature 

[12]. Undersampling techniques aim at making the training 

set more balanced in terms of the number of instances from 

each class. In this study we investigate two approaches: (1) a 

random undersampling, and (2) a deterministic 

undersampling. 

 

 
Fig. 3. Undersampling process of our approach. 

 

The existing literature on improving the classification 

accuracy in the presence of imbalanced data can broadly be 

divided into two categories [12]: (1) a data-level approach, 

also known as sampling techniques, and (2) an 

algorithmic-level approach, also sometimes called as 

cost-sensitive learning. In this work we investigate the 

undersampling techniques from the first category – we do not 

consider oversampling techniques (and related techniques 

such as SMOTE [13]) as they increase the training set size. 

Since the LtR data are divided by queries, we perform 

undersampling at the query level. That is, for each query, we 

retain all the relevant documents in the new training set, and 

then include a subset of non-relevant documents according to 

a criterion (either randomly or using a deterministic 

technique). We then learn a model on this (reduced) training 

set, and evaluate the model on a (non-reduced) test set to 

compare performance at different amounts of training data. 

The procedure of random undersampling is, as the name 

implies, to randomly select a subset of non-relevant 

documents. As for the deterministic undersmapling, our goal 

is to retain the most “informative” non-relevant instances 

(i.e., query-document pairs) so that the learning algorithm 

can effectively learn to distinguish between relevant and 

non-relevant documents with fewer non-relevant documents 

in the training set. We identify the informative non-relevant 

documents using an effective feature which is BM25 score. 

The rationale is that the lower the BM25 score of an 

non-relevant document, the “more non-relevant” the 
document, and hence the more informative this document is 

(as an non-relevant document). 

The configuration which uses the original training set is 

considered as the baseline.  

 

III. RELATED WORKS 

Aslam et al. [8] investigate different methods for top-k 

retrieval using a large corpus. That is, they study techniques 

for generating a better training set from a large unlabelled 

document collection. The training sets produced by their 

methods are, however, still highly imbalanced. Hence our 

intended work is complementary to theirs. 

McDonald et al. [7] focus on the properties of a good 

training set through extensive empirical study on several 

large document collections. They examine the number of 

documents per query (i.e., different values of parameter k) to 

be used in top-k retrieval stage, and empirically search for the 

optimal values of k for different tasks and datasets. Their 

conclusions include: retrieval performance in general 

increases with increasing size of training sample (i.e., the 

values of k) up to a certain point (depending on the datasets), 

and afterwards the performance plateaus. 

Dang et al. [6] develop an improved initial retrieval 

method by retrieving more relevant documents than the 

existing methods such as BM25. Their method utilizes some 

complex features like proximity based retrieval functions 

[14]. 

Long et al. [15] propose a technique based on Active 

Learning framework that includes an (unlabelled) example 

in the training set if this inclusion minimizes a ranking loss 

over the training set. The main motivation of using active 

learning is to reduce the large cost associated with manual 

labeling of documents. Their proposed method is compared 

with mainly the depth-k pooling method. Some related works 

such as Donmez et al. [16] and Yu [17] also try to find the 

(unlabelled) examples which, if added to a training set, 

increase the quality of the learned ranking function. This 

category of works does not differentiate between relevant and 

non-relevant documents, whereas our intended investigation 

is specifically concerned with the importance of non-relevant 

documents. That is, the training set generated by these 

methods is still likely to be highly imbalanced, and thus 

eligible for our investigation.  

We emphasize the point that although one of the goals of 

most of the abovementioned works is to retrieve as many 

relevant documents as possible in a training set, in practice 

the disparity between the numbers of relevant and 

non-relevant documents is still high. As an example, in an 

attempt to increase the relevant documents, Chapelle and 

Cheng [18] employ the depth-k pooling method which uses 

more than one base ranker in the initial retrieval stage, but 

still get an imbalanced training set.  

We thus observe that none of the studies that investigate 

into improving the quality of the training data are primarily 

concerned with the non-relevant documents, i.e., none of 

them are concerned with the imbalanced nature of the 

training data. As our techniques are applicable after applying 

those methods (and before the learning phase), this work is 

distinctive and complementary to the existing works. 

 

IV. MODEL 

The main focus of this article is the random forest based 

LtR algorithms. A random forest [19] is a conceptually 

simple but highly effective and efficient learning framework. 

It aggregates the predictions of a large number of 

(independent and variant) decision trees.  

It has been shown that the ranking error is bounded by 

both the classification error [20] and regression error [21]. 

Hence practitioners of LtR oftentimes approach to the LtR 

problem with a classification or a regression model. In this 

setting, a classification (or regression) algorithm learns to 
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predict the relevance label of an individual query-document 

pair. During evaluation, the documents associated with a 

query are ranked in decreasing order of their relevance scores 

predicted by the learnt model. Since it treats the instances (i.e. 

feature vectors corresponding to the query-document pairs) 

independently from one another, this approach is called 

pointwise in the literature [3]. Although lacks objective 

functions tailored to LtR problem, this approach is still used 

by researchers because of its lower computational resource 

requirement and conceptual simplicity. 

In this article we employ an LtR algorithm which utilizes 

concepts of both the classification and regression settings 

[22], [23] at the same time. To partition the data of a node of 

a tree of a random forest, a classification setting 

(entropy-based gain) is used. However, to assign a label to a 

data partition during evaluation phase, a regression setting is 

used in the following way: when the test instance falls into a 

data partition (i.e., a leaf node), the algorithm assigns (as the 

score to the test instance) the average of the relevance labels 

of all the documents of that data partition. Finally, as 

mentioned earlier, the documents are sorted in decreasing 

order of the predicted scores and presented to the user. Thus 

the training and the testing phase adopts a classification and 

a regression setting respectively. With regard to the data to 

begin with, each tree is learnt using a bootstrapped (without 

replacement) sample of the training set, and the 

bootstrapping is performed on a per-query basis. We call this 

algorithm RF-point. 

 

 
Fig. 4. Results of random undersampling approach with RF-point algorithm. 

 

V. EXPERIMENTS 

This section describes the experimental settings and 

analyses the results. 

A. Datasets 

In total, eight prominent LtR datasets are used for our 

experiments that span a variety of IR tasks, namely topic 

distillation (TD2004), homepage finding (HP2004), named 

page finding (NP2004), domain-specific search (Ohsumed), 

and general web search (MQ2007, MQ2008, 

MSLR-WEB10K and Yahoo). Table 1 shows their statistics. 

For further details about these datasets, please see Qin et al. 

[5], in Letor website4 , Microsoft Research website5 , and 

Chapelle et al. [18].  

B. Setup 

As rank learners, in addition to the RF-point algorithm 

discussed in the previous section, we employ another 

rank-learner called RankSVM 6 [24] which is a popular 

pairwise LtR algorithm that formalizes LtR as a problem of 

4 http://research.microsoft.com/en-us/um/beijing/projects/letor/ 
5 http://research.microsoft.com/en-us/projects/mslr/ 
6http://research.microsoft.com/en-us/um/beijing/projects/letor/Baselines/Ra

nkSVM-Primal.html.  

binary classification on instance pairs, and solves the 

problem using support vector machines (SVM). 

C. Evaluation Metrics 

As evaluation metrics, we use two widely known measures, 

namely Normalized Discounted Cumulative Gain at 10th 

position (NDCG@10) and Mean Average Precision (MAP). 

Since the contemporary IR literature largely prefers NDCG 

over MAP, we give more emphasis on NDCG in our result 

analysis, although we make use of both of them. Readers may 

go through Ibrahim and Murshed [4] and Ibrahim [23] to 

know details about these metrics.  

D. Using RF-point Algorithm 

This section discusses results of RF-point algorithm with 

random and deterministic undersampling approaches.  

Random Undersampling. Fig. 4 shows plots of random 

undersampling approach for the eight datasets. 

We first discuss results of the six smaller datasets. Along 

the x-axis of a plot is the percentage of training set used for 

learning, and along the y-axis is performance. To suppress 

random fluctuations, each point in a plot corresponds to the 

average metric of five independent runs. We observe that 

initially, i.e., with very few non-relevant documents 

performance is comparatively poor, as expected; however, 

the level of degradation depends on the dataset. As the 
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number of non-relevant document increases, so does the 

performance. In general, after the initial increase, relatively 

minor improvement in performance is gained as we increase 

the number of non-relevant documents (note the restricted 

interval on the y-axis); and this phenomenon is pronounced 

in the datasets where the distribution of the relevance labels 

is highly skewed, namely in TD2004, HP2004 and NP2004. 

Table II shows the percentage of original training set 

required to reach a given level of performance. We observe 

that the percentage of training set required to achieve close 

performance to the baseline varies from task to task. The 

TD2004, HP2004 and NP2004 datasets benefit most from 

undersampling – only 10.6%, 7.2% and 4.2% training data 

are required to reach within 98% of baseline performance 

respectively. Ohsumed, MQ2007 and MQ2008 datasets are 

moderately benefitted due to the comparatively less 

imbalance nature of their data – approximately half, 

one-third and one-fourth of the original data is needed for 

these three datasets to reach within 98% of the baseline 

performance respectively. As for the training time, the 

TD2004, HP2004 and NP2004 datasets achieve 10-21 times 

gain over the baseline. 

For the two larger datasets, namely MSLR-WEB10K and 

Yahoo, we report results of one run (instead of five) as these 

datasets are sufficiently large to suppress the possible 

fluctuation in the plots (indeed, their plots are found to be 

comparatively smoother). Also, for better comparison with 

the baseline, here we focus on the amount of training data 

required to reach within 98% and 99% of the baseline 

performance. From the plots we observe that the 

undersampling approach works better for MSLR-WEB10K 

dataset than for Yahoo dataset because the relevance label 

distribution is more skewed in the former case than the latter 

(cf. Table I). On the MSLR-WEB10K dataset, approximately 

one-fifth of the data is required to reach within 99% of 

baseline performance (with 8 times smaller training time), 

whereas on the Yahoo dataset an increased amount of 

non-relevant documents is found to be always useful. 
 

TABLE I: STATISTICS OF THE DATASETS (SORTED BY # QUERIES). IN THE LAST ROW, 973/15 FOR TD2004 MEANS THAT THERE ARE 973 AND 15 DOCUMENTS 

OF LABEL 0 AND 1 RESPECTIVELY 

Characteristic TD2004 HP2004 NP2004 Ohsumed MQ2008 MQ2007 MSLR-WEB1

0K 

Yahoo 

Task Topic 

Distillation 

Homepage 

Finding 

Named Page 

Finding 

Medical 

Corpus 

Web 

Search 

Web 

Search 

Web Search Web 

Search 

# Queries (overall) 75 75 75 106 784 1692 10000 29921 

# Queries (train) 50 50 50 63 470 1015 6000 19944 

# Features 64 64 64 45 46 46 136 519 

# Rel. labels 2 2 2 3 3 3 5 5 

# Query-doc pairs 

(overall) 

75000 75000 75000 16000 15211 69623 1200192 709877 

# Query-doc pairs 

(train) 

50000 50000 50000 9684 9630 42158 723412 473134 

# Docs per query 988 992 984 152 19 41 120 23 

# Docs of diff. labels 

(0/1/2/3/4) per query 

973/15 991/1 983/1 106/24/21 15/2.5/1 30/8/2 42/39/16/2/0.9 6/8/7/2/0.4 

 

TABLE II:  RANDOM UNDERSAMPLING WITH RF-POINT: % OF TRAINING DATA REQUIRED (PER ENSEMBLE) TO ACHIEVE A GIVEN PERCENTAGE OF 

PERFORMANCE OF BASELINE NDCG@10 (I.E., WITH 100% TRAINING DATA) ALONG WITH TRAINING TIME IMPROVEMENT 

Dataset %Rel. Docs %of training set required (per ensemble) for 95%-98%-99% of baseline performance 

Random undersampling Training time improvement 

Ohsumed 30 37 - 56 -98 2.8 - 1.8 - 1 times 

MQ2007 26 30.7 - 33.1 -40.3 3.5 - 3.2 - 2.6 times 

MQ2008 19 24.5 - 24.5 -95.2 3 - 3 -1 times 

TD2004 1.5 4.5 - 10.6 - 21.7 13 - 10 -6 times 

HP2004 0.3 0.31 - 7.2 -32.4 50 -18 -4 times 

NP2004 0.1 0.82 - 4.2 - 24.4 40 - 21 - 6 times 

 

Dataset %Rel. Docs % of training set required (per ensemble) for 98%-99% of baseline performance 

Random undersampling Training time improvement 

MSLR-WEB10K 3 15-19 11 - 8 times 

Yahoo 12 22-100 7 - 1 times 

 

TABLE III: COMPARISON BETWEEN STANDARD RANDOM UNDERSAMPLING (I.E., ENSEMBLE LEVEL) AND TREE LEVEL RANDOM UNDERSAMPLING WITH 

RF-POINT: % OF TRAINING DATA REQUIRED (PER TREE) TO ACHIEVE A GIVEN PERCENT OF BASELINE (I.E., 63% TRAINING SET) PERFORMANCE (NDCG@10) 

ALONG WITH TRAINING TIME IMPROVEMENT. THE BEST VALUE IS IN BOLD AND ITALIC FONT 

Dataset % of training set required (per tree) for 95%-98%-99% of baseline (i.e., 63% sample) performance 

Ensemble level Tree level 

Ohsumed 23 - 35 -62 13 - 14 - 19 

MQ2007 19.3 - 20.9 - 25.4 17.8 - 19.3 25.4 

MQ2008 15.4 - 15.4 - 60.0 15.4 - 15.4 - 18.6 

TD2004 2.9 - 6.7 - 13.6 2.2 - 4.0 - 7.2 

HP2004 0.2 - 4.5 - 20.4 0.19 - 5.7 - 17.6 

NP2004 0.51 - 2.6 - 15.4 0.32 - 3.8 - 30.2 

 

Dataset % of training set required (per tree) for 98%-99% of baseline (i.e., 63% sample) performance 

Ensemble level Tree level 

MSLR-WEB10K 9 - 12 6-9 

Yahoo 14 -63 11-45 
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This sub-section thus reveals that when RF-point employs 

the random undersampling approach, both the smaller and 

larger datasets are candidates for getting improved training 

time given that their relevance label distributions are 

sufficiently skewed. 

Fig. 5 shows that for all the datasets the training time 

increases linearly with increasing training set size. 

Deterministic Undersampling. Our second approach 

performs a deterministic selection of non-relevant documents. 

The procedure is as follows. For a query, we, as before, 

include all the relevant documents in the training set. We 

then sort the non-relevant documents in ascending order of 

the values of an effective individual ranker, namely the 

BM25 scorer. In the first configuration, we thus include only 

the first non-relevant document (i.e., with the minimum 

feature value) for that query to the training set. For 

subsequent configurations, additional non-relevant 

documents are included in the previously sorted order. We 

call this approach the ascending order approach.  

Fig. 6 shows the plots for the ascending order approach. 

All the datasets, in contrast to the random undersampling 

approach, exhibit an increasing trend up to the last point of a 

curve. A possible explanation for rising performance up to 

the last configuration is as follows. When we continue to 

include non-relevant documents having comparatively larger 

BM25 scores, the performance still continues to slightly 

increase because even though BM25 is a good ranker, there 

do exist some non-relevant documents which have high 

BM25 scores, and including these documents in the training 

set helps the learning algorithm to learn these patterns in 

addition to the normal patterns (i.e., low BM25 scores) of the 

non-relevant documents. Another observation is that for 

most of the datasets for the very initial points of a curve there 

seems to be no systematic trend of performance. This is 

possibly due to the fact that the missing values of the features 

have been replaced by 0.0 by the dataset providers; so when 

we include the initial documents in ascending order, the 

documents with missing values are included which act as 

“noise” to our intended goal (i.e., to include documents with 
lower BM25 scores). Once the documents having genuine 

BM25 scores start to be included, the systematic trends 

appear. 

 

 
Fig. 5. Training time of RF-point against the percentage of training set used to learn the ensemble. 

 

 
Fig. 6. Results of deterministic undersampling approach with RF-point algorithm. 

 

Comparison between Two Approaches. In Fig. 7 we 

compare the performance of the two undersampling 

approaches investigated. We notice that in terms of 

requirement of percentage of training set to achieve close 

performance to the baseline, the random undersampling wins 

almost consistently over the deterministic one (with an 
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exception of HP2004). This behavior is likely to be due to the 

fact that the random sampling approach preserves the 

original distribution of non-relevant documents, and as 

explained during the analysis of ascending order approach 

that although the importance of non-relevant documents 

having lower feature values are perceived, the higher feature 

values are also required to enhance the hypothesis space from 

which the ranking model is picked. 

We reiterate that our results are not directly comparable 

with that of existing methods (explained in Section III) since 

we investigate a previously unexplored area of 

undersampling only the non-relevant documents, in the 

post-labelling phase, whereas the existing works focus on 

sampling both relevant and non-relevant documents, before 

labelling. 

E. Using RankSVM Algorithm 

In order to claim that the findings from RF-point are 

generalizable to any rank-learner, we conduct an experiment 

with a state-of-the-art LtR algorithm, namely RankSVM. Fig. 

8 shows the results for random undersampling approach. We 

see that the trends found in RF-point algorithm are mostly 

observed in the plots of RankSVM as well. This indicates that 

the findings emerged from our technique of undersampling 

are most likely to be invariant to different types of 

rank-learning algorithms. 

 

 
Fig. 7. Performance comparison of RF-point between the random undersampling and deterministic undersampling on different datasets in terms of NDCG@10. 

 

 
Fig. 8. With RankSVM algorithm, results for random undersampling approach across six datasets. 

 

TABLE IV: PERFORMANCE COMPARISON AMONG RF-POINT (BASELINE), RF-POINT WITH OVERSAMPLING (OVERALL), AND RF-POINT WITH OVERSAMPLING 

(PER QUERY). AN AVERAGE OVER FIVE INDEPENDENT RUNS IS REPORTED (AND EACH RUN IS THE RESULT OF FIVE-FOLD CROSS-VALIDATION), AND THE 

WINNING VALUE IS GIVEN IN ITALIC FONT 

Dataset Metric Baseline Oversampling (overall) Oversampling (per query) 

MQ2007 NDCG@10 0.4360 0.4332 0.4377 

MAP 0.4524 0.4518 0.4547 

MQ2008 NDCG@10 0.2234 0.2238 0.2271 

MAP 0.4693 0.4728 0.4736 

Ohsumed NDCG@10 0.4306 0.4096 0.4109 

MAP 0.4213 0.4057 0.4057 

TD2004 NDCG@10 0.3513 0.3204 0.3263 

MAP 0.2574 0.2349 0.2358 

NP2004 NDCG@10 0.7860 0.7071 0.7339 

MAP 0.6647 0.5773 0.6038 

HP2004 NDCG@10 0.8082 0.7904 0.8001 

MAP 0.7174 0.6894 0.7016 

 

VI. A SCALABLE UNDERSAMPLING WITH RANDOM FOREST 

In the previous section we have shown that for imbalanced 

datasets we can select a random subset of non-relevant 

documents (per query) without significantly degrading the 

performance. This section shows that the inherent 
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architecture of a random forest offers a better way to achieve 

this effect. 

A. Approach 

Since a random forest is an aggregation of many 

independent base learners, our idea is to exploit 

undersampling at the level of base learners instead of 

considering the learner (i.e., the ensemble) as a black-box - 

this way the effect of information loss due to bootstrapping 

may be minimized. Recall that our standard approach to 

undersampling (cf. Fig. 3) was to undersample a subset of 

non-relevant documents per query, and thus to generate a 

new (smaller) training set for an RF (or any other 

rank-learner). We henceforth call this approach the 

ensemble-level-undersampling (ELU). In this section, we 

investigate another approach that performs undersampling 

for each individual tree of an RF. Elaborately, to learn a tree, 

the first step is as usual: to generate a bootstrapped sample. 

After that we impose a second step which retains only a 

random subset (of pre-defined cardinality) of non-relevant 

documents (per query) from the bootstrapped sample along 

with all the relevant documents. Pictorially, Fig. 9 describes 

the new approach which we term as the 

tree-level-undersampling (TLU). Thus unlike the ELU 

approach, the TLU approach does not need to exclude any 

non-relevant documents altogether from learning, rather 

each of them gets a chance to be used in some trees (given the 

ensemble is sufficiently large). We conjecture that the TLU 

approach will converge to the baseline (i.e., without using 

any undersampling) performance more quickly than the ELU 

approach. 

 

 Fig. 9. Tree-level undersampling with RF-point. 

 

Chen et al. [25] study some modifications of a random 

forest to tackle the class imbalance problem for classification. 

Since we are concerned with undersampling, below we 

summarize one of their techniques which is relevant to ours. 

For a tree, their method firstly uses a bootstrap sample of only 

the minority class examples, and after that it randomly 

samples a subset of majority class examples whose 

cardinality is equal to the number of minority class instances 

of the bootstrapped sample. However, this idea is not likely to 

be effective in the context of LtR because we need to perform 

sampling on a query-level, and in some datasets there is only 

one relevant document (i.e., minority class example) per 

query. Hence we do not consider their approach further. 

B. Result Analysis 

Table III shows the comparison between the ELU and TLU 

approaches. We see that as conjectured, in most of the 

datasets TLU approach achieves a given level of performance 

with smaller training data per tree (which in turn further 

reduces training time) as compared to the ELU approach. 

Using the data from Table III, Fig. 10 highlights this 

comparison for the 98% performance level.  

We note that for most of the datasets we found a good 

number of cases where the TLU approach (with smaller data 

per tree) performs even better than the baseline (i.e., RF with 

no undersampling at all). The reason for this phenomenon is, 

we conjecture, due to the fact that the setting of the TLU 

approach reduces the correlation among the trees which is 

favorable to getting better performance.  

 

 
Fig. 10. Comparison between ensemble-level and tree-level undersampling with 

a random forest. The bars indicate the amount of training data (per tree) used to 

achieve 98% of NDCG@10 of the baseline (i.e., RF learnt with all training 

data); cf. Table IV. 

 

VII. DISCUSSION 

Training time of the LtR algorithms is considered to be an 

important issue [2], [3], [11], [27]. Undersampling 

techniques reduce the training set size thereby decreasing the 

training time. Also, smaller training set requires smaller 

feature computation time, and some features are 

computationally costly to calculate [2], [7], [11], [26]. 

Our investigation is distinct from and complementary to 

the existing works on using a better initial retrieval approach 

(i.e., the top k retrieval as explained in Section I) in that our 

techniques are applicable after using these methods. The 

existing works focus on the quality of the training set by 

treating both relevant and non-relevant documents alike and 

before labelling the documents, whereas we focus on the 

training set size (and thus on learning time) in the context of 

the necessity of including large number of non-relevant 

documents. Moreover, our methods can also be extended to 

focus on the quality of the training set by incorporating more 

advanced undersampling methods in our framework. 

The observations of our investigation are summarized 

below: 

In many cases much less training data (as little as 19-32% 

of the training set for TD2004, NP2004, HP2004 and 

MSLR-WEB10K datasets) can be used without significant 

degradation of performance, namely retaining at least 99% of 
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the baseline performance. The findings also suggest that our 

method is more applicable to the tasks where the training 

data are highly imbalanced.  

The random undersampling approach which preserves the 

true distribution of non-relevant documents in the 

undersampled training set appears to be better than a 

deterministic undersampling which selectively includes the 

non-relevant document. 

The tree-forest hierarchy of a random forest is more 

conducive to undersampling. When properly used, this 

structure further increases scalability (cf. Fig. 10). 

Applying sampling techniques take only linear time in 

terms of the size of the training set. 

The datasets for which we have found considerable gain in 

training time (e.g. TD2004, HP2004 and NP2004) are not in 

the same scale of size of that used in commercial IR systems. 

The bigger the datasets (having highly skewed relevance 

label distribution), the more positive effect is likely to emerge 

from our technique. Result of one of the two big datasets, 

namely MSLR-WEB10K corroborates this conjecture – in 

spite of containing relatively more relevant documents than 

the abovementioned three datasets, here the undersampling 

approach worked quite well (cf. Table II).  

Our approach is applicable after the relevance judgements 

of the documents are labelled. Hence a natural concern is, our 

approach does not minimize that large cost associated with 

human labelling. As such, this investigation is more useful 

where click-through data are available so that methods for 

automatic labeling [28] can be used.  

In the literature of classification, oversampling of minority 

class examples is a closely related topic to undersampling. 

However, this increases the learning time, and the learning 

time is the main focus of this article. Yet for the sake of 

comprehensiveness of our investigation, we performed 

oversampling on six datasets by randomly duplicating the 

minority class instances until their presence becomes equal to 

that of the majority class instances. We also implemented a 

query-level version of it. After applying RF-point with these 

two settings, we mostly found slightly poorer performance 

than the baseline. Table IV shows the results of RF-point 

after applying an oversampling technique on the training set. 

 

VIII. CONCLUSION 

The core motivation of this research was to investigate a 

particular characteristic of an LtR environment - namely the 

relevance label distribution of a training set - given a limited 

budget of computational resources, so that an IR system 

developer can take a more informed decision on the 

preparation of the training set. We have employed 

undersampling techniques to reduce training set size in order 

to achieve better scalability. This investigation reveals that 

for highly imbalanced datasets our method will be useful. We 

have also successfully utilized the hierarchical tree-forest 

structure of a random forest to perform undersampling that 

resulted in better even scalability. Our work can be further 

extended by using more advanced undersampling methods.  
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