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Abstract The offset linear canonical transform (OLCT)
is the name of a parameterized continuum of transforms
which include, as particular cases, the most widely used
linear transforms in engineering such as the Fourier transform
(FT), fractional Fourier transform (FRFT), Fresnel transform
(FRST), frequency modulation, time shifting, time scaling,
chirping and others. Therefore the OLCT provides a uni-
fied framework for studying the behavior of many practical
transforms and system responses. In this paper the sampling
theorem for OLCT is considered. The sampling theorem for
OLCT signals presented here serves as a unification and
generalization of previously developed sampling theorems.

Keywords Regular sampling · Offset linear canonical
transform · Special affine Fourier transform · Linear
canonical transform · Time–frequency representation ·
Uncertainty principle

1 Introduction

The sampling process is central in almost any domain because
it provides the link between the continuous physical signals
and the discrete time domain. The most common sampling
theorem is probably the Shannon sampling theorem [1]
appealing to signals of compact support in the Fourier
domain. In this work we generalize Shannon’s sampling
theorem to signals with a compact support in the OLCT
domain.

A. Stern (B)
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The OLCT [2] is introduced in Sect. 2. The OLCT, also
called special affine Fourier transform [3], is a time-shifted
and frequency-modulated version of the linear canonical
transform (LCT) [2,4–6]. Therefore it is more general and
flexible than the LCT. It is a class of integral transforms that
provides a canonical formalism for the response of a very
large class of physical systems. Many operations, such as
the FT, FRFT [7,8], FRST [9], offset FT [10], LCT, Gauss–
Weierstrass transform [6], time shifting and scaling,
frequency modulation, pulse chirping, Lorentz squeezing [3]
and others, are special cases of the OLCT. Any linear com-
bination or concatenation of the special cases of the OLCT
yields also an OLCT. Thus, by developing a sampling theo-
rem for OLCT we obtain a unified sampling theorem for all
above mentioned transforms.

The condition for uniform sampling of signals with
compact support in the OLCT domain is derived in Sect. 3
and the respective interpolation formula is given. This sam-
pling theorem generalizes previously developed sampling
theorems such as Shannon’s sampling theorem [1], sampling
theorems for signals bandlimited in the FRFT domain [11–
14], in the FRST domain [15], and in the LCT domain [16].
It can be viewed as a special case of Kramer’s sampling the-
orem [17] for linear integral transforms. However, it is much
more explicit and therefore, is more practical. One practical
implication of the presented theorem is that it provides the
sampling conditions for the output of any system that has a
response described by the OLCT and that is stimulated by a
bounded support input.

It is very instructive to understand the OLCT via its opera-
tion in the time-frequency (phase space) domain. The OLCT
has a simple geometrical manifestation in the time-frequency
domain; it performs an inhomogeneous affine mapping of
the Wigner–Ville distribution (WVD) [18,19] of the signal.
Based on this fact, we present in Sect. 4 a heuristically and
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insightful interpretation of the OLCT sampling theorem in
the time–frequency domain.

The theorem presented here generalizes and extends the
sampling theorem presented in [16]. The novelty of the
theorem here over that in [16] is fivefold. First, the sampling
theorem presented here can be applied to a larger class of
signals. For instance, in Sect. 6 is shown an example of a type
of signal for which the LCT sampling theorem [16] cannot
be applied directly, whereas the OLCT can be. In order to
apply the LCT sampling theorem [16] to such a signal, the
signal needs to be preprocessed. Second, we provide here
the interpolation formula which permits direct reconstruc-
tion in the sampled domain. The reconstruction in [16] is
carried out in the LCT reciprocal domain. Third, we pres-
ent here an additional version of the sampling theorem that
uses the properties of the OLCTed signal in the time–
frequency domain. In order to use this version of the sam-
pling theorem one needs not be familiar either with the LCT
or the OLCT. Fourth, the theorem presented here holds for
signals in Hilbert space L2

C (�), which consists of all square-
integrable signals (in Lebesgue sense), whereas the LCT in
[16] requires the signals to be absolute-integrable so that their
inverse LCT integral formula holds everywhere. Fifth, we
present a generalization of the Heisenberg–Weyl uncertainty
principle to include OLCT pairs.

2 The OLCT

The OLCT with real parameters A = (a, b, c, d, y0, ω0) of
a function f (x) is defined by:

f̃ A(y) =
{∫ ∞

−∞ f (x)hA(x, y)dx b �= 0,
√

de j cd
2 (y−y0)

2+ jω0 y f [d(y − y0)] b = 0,
(1)

where

h A(x, y) = K Ae
j

2b [ax2+2x(y0−y)−2y(dy0−bω0)+dy2],

KA =
√

1

j2π |b|e j
dy2

0
2b , (2)

and ad − cb = 1. The definition for case b = 0 is the limit
of the integral in (1) for the case b �= 0 as |b| → 0 [6]. Some
of the special cases of the OLCT are listed in Table 1. Those
relations can be easily verified by substituting the specific
parameters A in Eq. (2).

For later use we note that the inverse of an OLCT with
parameters A = (a, b, c, d, y0, ω0) is given (up to a nor-
malization factor) by an OLCT with parameters A−1 =
(d,−b,−c, a, bω0 − dy0, cy0 − aω0) [2]. This can be ver-
ified by using the definition (1) or can be easily derived
from the time–frequency interpretation of the OLCT (see
Sect. 4.2).

Table 1 Some of the specific cases of the OLCT and their sampling
conditions

Transform A parameters Maximum sampling
interval of f̃ A(y)

Offset linear canonical (a, b, c, d, e, f ) 2π
Bx

|b|
transform (OLCT)

Fourier transform (FT) (0, 1,−1, 0, 0, 0, 0) 2π
Bx

Fractional Fourier (cosϕ, sinϕ,−sinϕ, 2π
Bx

|sin (ϕ)|
transform (FRFT) cosϕ, 0,0)

Fresnel transform (1, b, 0, 1, 0, 0) 2π
Bx

|b|
(FRST)

Linear canonical (a, b, c, d, 0, 0) 2π
Bx

|b|
transform (LCT)

Time shifting by x0 (1, 0, 0, 1, x0, 0) �

Time scaling (d−1, 0, 0, d, 0, 0) �/d

Frequency (1, 0, 0, 1, 0, ω0) �

modulation

Bx denotes the support of f (x) and � denotes the sampling intervals
of f (x) (as defined in Theorem 2)

3 The sampling theorem

Theorem 1 The OLCT f̃ A(y) with real parameters A =
(a, b, c, d, y0, ω0), b �= 0 of a function f (x) ∈ L2

C (�) with

a bounded support so that f (x) = 0 x /∈
[
− Bx

2 , Bx
2

]
, can

be completely recovered from its samples at points spaced
�y ≤ 2π

Bx
|b| apart, using the following interpolation for-

mula:

f̃ A(y) = e
j

2b
[
dy2−2y(dy0−bω0)

] ∑
n∈Z

f̃ A(
n�y

)

×
sin

[
π

(
y

�y
− n

)]
π

(
y

�y
− n

) e
− j

2b

[
d(n�y)

2−2n�y(dy0−bω0)
]
.

(3)

Proof Let us rewrite Eq. (1) for b �= 0 in the form

f̃ A(y) = KAe
j

2b
[
dy2−2y(dy0−bω0)

]
G(y) (4)

where G(y) is defined by:

G(y) =
∞∫

−∞
f (x)e

j
2b

(
ax2+2y0x

)
e− j

b yx dx

= (KA)−1e− j
2b

[
dy2−2y(dy0−bω0)

]
f̃ A(y). (5)

By expressing e− j
b yx in terms of Fourier series:

e− j
b yx =

∑
n∈Z

sin
[
π

(
y

�y
− n

)]
π

(
y

�y
− n

) e− jn
�y
b x ,

�y ≤ 2π

Bx
|b|, |x | <

Bx

2
, (6)
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and substituting in Eq. (5) we obtain:

G(y) =
∞∫

−∞
f (x)e

j
2b

(
ax2+2y0x

)

×
∑
n∈Z

sin
[
π

(
y

�y
− n

)]
π

(
y

�y
− n

) e− jn
�y
b x dx

=
∑
n∈Z

sin
[
π

(
y

�y
− n

)]
π

(
y

�y
− n

)

×
∞∫

−∞
f (x)e

j
2b

(
ax2+2y0x

)
e− jn

�y
b x dx . (7)

The integral in (7) can be recognized as the function G(y)

at sample points y = n�y, n ∈ Z . Thus, using Eq. (4) we
obtain

G(y) =
∑
n∈Z

sin
[
π

(
y

�y
− n

)]
π

(
y

�y
− n

) G(y)

∣∣∣∣ y = n�y

=
∑
n∈Z

(KA)−1 f̃ A(
n�y

) sin
[
π

(
y

�y
− n

)]
π

(
y

�y
− n

)
×e

− j
2b

[
d(n�y)

2−2n�y(dy0−bω0)
]
. (8)

Finally substitution of Eq. (8) in Eq. (4) yields the inter-
polation formula Eq. (3). �	

By interchanging the roles of f̃ A(y) and f (x) in
Theorem 1 and by replacing the parameter set A = (a, b, c,
d, y0, ω0) with that of the inverse OLCT A−1 = (d,−b,−c,
a, bω0 − dy0, cy0 − aω0) we obtain the sampling
theorem for signals band limited in the OLCT domain, i.e.,

with f̃ A(y) = 0 y /∈
[
− By

2 ,
By
2

]
. In this form, the sampling

theorem resembles the common (Shannon) sampling
theorem. It is easy to verify that with A−1 = (0,−1, 1,

0, 0, 0), defining the (inverse) Fourier, transform we obtain
Shannon sampling theorem [1] with the well known

interpolation formula f (x) = ∑
n∈Z f (n�x )

sin
[
π

(
x

�x
−n

)]
π

(
x

�x
−n

) ,

�x = 2π
By

. The sampling condition for the specific OLCT
cases FRFT, FRST and LCT are shown in the last column in
Table 1. These results can be obtained from Theorem 1 and
are in concordance with those obtained in references [11–
16], respectively. Note that the sampling interval depends
on parameter b. In the case of the FRFT, and in particular
for the FT, this parameter is bounded |b| ≤ 1 setting the
maximum sampling interval to �y = 2π

Bx
. This means that

there is no FRFT that can be sampled at intervals larger than
2π/Bx . The case is different for the FRST where the param-
eter b may be arbitrary large and consequently the sampling

interval is virtually unbounded. In other words, the sampling
interval of the FRST may be arbitrary large by proper choice
of parameter b. This can be understood from the fact that
the FRST widens the effective support of the signal by an
amount proportional to b (see also Sect. 5). Signal widening
implies spreading the information which permits decreasing
the sampling density.

Theorem 1 holds for the case b �= 0 (which is the more
interesting case). From definition (1) it can be seen that
for b = 0 the OLCT is simply a time scaled version of
f multiplied by a qudrature phase function (linear chirp)√

de j cd
2 (y−y0)2+ jω0 y . Therefore, in such a case the sampling

condition is dictated by that of f (x), yielding the following
sampling theorem:

Theorem 2 If a function f (x) ∈ L2
C (�) can be reconstr-

ucted from its samples x = n�, n ∈ Z by some formula
f (x) = ∑

n∈Z f (n�)ϕn(x), where {ϕn(x)}n∈Z is an
orthogonal or Reisz basis (e.g., ϕn(x) = sinc

(
x
/
� − n

)
for f (x) band limited in frequency domain), then its OLCT
f̃ A(y) with parameters A = (a, b = 0, c, d, y0, ω0) can be
fully recovered by its samples �y = �/d apart using the
interpolation formula

f̃ A(y) = e j dc
2 (y−y0)2+ jω0(y−y0)

∑
n∈Z

f̃ A(
n�y + y0

)

×e− j dc
2 (n�y)

2− jω0n�y ϕn[d(y − y0)]. (9)

Proof From definition (1) for the OLCT with b = 0 we may
express f (y) in terms of f̃ A(y):

f (y) = f̃ A
( y

d
+ y0

) 1√
d

e
− j dc

2

(
y
d

)2− jω0

(
y
d
+y0

)
, (10)

which, taken at points y = n�y, n ∈ Z yields

f (n�)= f̃ A(
n�y + y0

) 1√
d

e− j dc
2 (n�y)

2− jω0(n�y+y0),

(11)

where �y = �/d. If f is such that exists a decomposition
f (x) = ∑

n∈Z f (n�)ϕn(x), then by substituting Eqs. (10)
and (11) in the decomposition expression we obtain

f̃ A
( y

d
+ y0

) 1√
d

e
− j dc

2

(
y
d

)2− jω0(
y
d +y0)

=
∑
n∈Z

f̃ A(
n�y +y0

) 1√
d

e− j dc
2 (n�y)

2−jω0(n�y+y0)ϕn (y) .

(12)

Changing the variables y → d(y − y0) in Eq. (12) and
rearranging yields the formula (9). �	
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4 Interpretation in time–frequency domain

4.1 The effect of the OLCT on the Wigner distribution

Let us consider the joint parameter time–frequency represen-
tation of f (x) obtained through the WVD defined by [18,19]:

W f (x, ωx ) = 1

2π

∞∫
−∞

f

(
x + ξ

2

)
f ∗

(
x − ξ

2

)
e− jξωx dξ .

(13)

The WVD of f̃ A(y) is related to that of f (x) by:

W f̃ A

(
y, ωy

) = W f
[
d(y − y0) − b

(
ωy − ω0

)
,

− c(y − y0) + a
(
ωy − ω0

)]
. (14)

Equation (14) can be verified directly from the definitions
(1) and (13) or, alternatively, it can be proved by using the
respective relation for the WVD of the LCT [20] together
with the fact that the OLCT can be obtained by shifting
the (a, b, c, d)-LCT of f (x) by y0 in the time domain and
modulating with e j yω0 (i.e., f̃ (a,b,c,d,y0ω0)(y) = f̃ (a,b,c,d,0,0)

(y − y0)e jω0(y−y0)).
Hence from relation (14) it can be seen that the OLCT per-

forms the most general linear inhomogeneous linear mapping
of the time–frequency domain [3]:

(
y

ωy

)
=

(
a b
c d

)(
x
ωx

)
+

(
y0

ω0

)
, (15)

which is recognized as an affine mapping. With only four
parameters (a, b, c, d) in Eq. (14) a homogeneous linear
mapping is obtained, representing an LCT. The other two
parameters (y0, ω0) perform an offset in the time–frequency
domain, generalizing the LCT to include transforms and
responses of systems that perform frequency modulation and
time delay.

4.2 The inverse OLCT

The inverse of the mapping (15) is given by:

(
x
ωx

)
=

(
d −b

−c a

) (
y

ωy

)
+

(
bω0 − dy0

cy0 − aω0

)
, (16)

implying that the inverse of an OLCT with
parameters A is given (up to a normalization factor) by an
OLCT with parameters A−1 = (d,−b,−c, a, bω0 − dy0,

cy0 −aω0) as mentioned in Sect. 2. The exact inverse OLCT
expression is given by [2]:

f (x) = C

∞∫
−∞

f̃ A (y) hA−1(x, y)dx,

C = e
j
2

(
cdy2

0−2ady0ω0+abω2
0

)
. (17)

4.3 Interpretation of the sampling theorem in the
time–frequency domain

A heuristic interpretation of the sampling and reconstruction
Theorem 1 in the Wigner domain is as follows. Suppose that
the support of the WVD of f (x) is as plotted in Fig. 1a.
The OLCT performs an affine mapping (15) of the Wigner
domain as shown in Fig. 1b. From simple geometrical con-

siderations it can be seen that if f (x) = 0 x /∈
[
− Bx

2 , Bx
2

]
then the WVD of f̃ A(y) vanishes outside the parallel lines
ωy = α(y − y0)+ω0−�/2 and ωy = α(y − y0)+ω0+�/2
where α = d

b and � = Bx|b| . A multiplication of f̃ A(y) by

the term e− j
2b

[
dy2−2y(dy0−bω0)

]
centralizes the WVD around

ωy = 0 and performs a ωy-shearing (“de-chirping”) in the
Wigner domain [20] as shown in Fig. 1c; as a result, WVD is
nonzero only for the frequency range ωy ∈ [−�/2,−�/2].
This infers that the function with the WVD of Fig. 1c is band-
limited in the frequency range [−�/2,−�/2] hence, accord-
ing to Shannon–Whittaker–Kotel’nikov sampling theory [1],
it can be completely recovered from its samples at intervals
�y = 2π

�
using Whittaker’s cardinal (sinc) functions [21].

Then, by applying an inverse ωy-shearing and performing
an inverse frequency shift by multiplication by

e
j

2b
[
dy2−2y(dy0−bω0)

]
, the continuous f̃ A(y) can be obtained.

Following the geometrical description of the OLCT in the
Wigner domain (Fig. 1a, b) together with the relations α = d

b

and � = Bx|b| we can derive the following corollary from
Theorem 1.

Corollary 1 If a function has a compact support in the time–
frequency Wigner domain such that its WVD W f (t, ω) is
zero for frequencies ω /∈ [α(t − t0)+ω0 −�/2, α(t − t0)+
ω0 + �/2] for every time t, where α, t0, ω0 are real finite
constants, then it can be completely reconstructed from its
samples at points spaced T = 2π

�
apart. The interpolation

formula is then given by:

f (t) = e
j
2

[
αt2−2t(αt0−ω0)

] ∑
n /∈Z

f (nT )
sin

[
π

( t
T − n

)]
π

( t
T − n

)
×e− j

2
[
α(nT )2−2nT (αt0−ω0)

]
. (18)

In Corollary 1 we have changed the notations of the
parameter and Fourier reciprocal from (y, ωy) to (t, ω) to
make it clearer in the context of common time signals.
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Fig. 1 a The support in the
Wigner domain of function
f (x). b The WVD of the OLCT
is an affine transform of a. c A
Fourier band limited function is
obtained by multiplying by

e− j
2b [dy2−2y(dy0−bω0)]

x

 x

y

 y

 y

Bx/2-Bx/2

α

y

OLCT

() ( )[ ]00
2

2
2 ωbdyydy

b
j

e
−−−⋅

Ω

Ω

(a)

(c)

(b)

Proof Note that the conditions of the corollary are that of
a function with Wigner domain as shown in Fig. 1b. This
function is the OLCT with parameters A = (a, b, c, d,

y0, ω0), b �= 0 of a function f (x) exactly as considered in
Theorem 1. Therefore, by substituting relations � = Bx|b|
and α = d

b in the sampling condition of Theorem 1 and in
Eq. (3) we obtain the sampling condition of the corollary and
the interpolation formula (18).

Loosely speaking, Corollary 1 states that if a function
has a maximum instant (double sided) bandwidth of � with
respect to some instantaneous frequency α(t − t0)+ω0, then
the sampling rate for lossless uniform sampling is 2π

�
and the

restoration formula is given by Eq. (18). Please note that the
sampling interval depends only on � and not on the angle
α. In the specific case that α = 0, that is the instantaneous
frequency is time independent, the maximum instant band-
width of � equals to the traditional overall bandwidth, and
Corollary 1 reduces to the Shannon sampling theorem.

Figure 2 illustrates some examples of common transforms,
all being special cases of OLCT, as are reflected in the time–
frequency domain. We assume that the signal f (x) has a
compact support therefore its WVD is confined in the x

direction as shown in Fig. 2a. Since the signal is time limited
it has an infinite Fourier bandwidth. However, for illustrative
purposes we will assume that the signal is εω-concentrated

[22] in the range ωx ∈
[
− W ′

2 , W ′
2

]
, i.e., the portion of signal

energy left out of this range is εω.. If we choose εω sufficiently
small we may refer to W ′ as the “effective (double sided)
bandwidth” of f (x). Figure 2b depicts the WVD support
of the OLCT of f (x) with A = {cosϕ, sinϕ,−sinϕ,

cosϕ, 0, 0} which is recognized as a FRFT. It can be seen
that the FRFT performs a rotation of the WVD support of
f (x). The instantaneous frequency of f̃ A(y) is along the
line ωy = 1

tan ϕ
y (dashed) and the instantaneous bandwidth

is � = Bx|sin ϕ| . Hence, from Corollary 1 we have the sam-

pling condition: �y ≤ 2π
Bx

|sin (ϕ)|. The same sampling con-
dition together with the interpolation formula (3) was derived
previously using different analyses in [11–14,16]. A FRFT
with ϕ = π/2 becomes a FT. With a π/2 rotation of the
WVD, the instantaneous bandwidth is � = Bx yielding the
sampling condition �y ≤ 2π

Bx
. If we replace the roles of

f (x) and f̃ A(y) so that we refer to f̃ A(y) as the signal in
the time domain and to f (x) as its Fourier pair, then it is
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Fig. 2 a The support of f (x) in
the Wigner domain. b–f
Examples of the support of the
WVD of several OLCT of f (x)
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evident that Bx in Fig. 2a is the Fourier bandwidth of f̃ A(y).
Consequently, the Nyquist rate [1] is �y ≤ 2π

Bx
, exactly as

indicated by Corollary 1. Figure 2c shows the WVD sup-
port of the OLCT of f (x) with A = {1, b, 0, 1, 0, ω0}.
According to Corollary 1 the sampling condition is �y ≤
2π
Bx

|b|. Note that for � = Bx|b| < W ′ this sampling con-

dition is looser than the Nyquist condition (�y ≤ 2π
W ′ ).

Consequently, recovering the signal from samples below the
Nyquist rate is possible [16]. Figure 2d shows the WVD sup-
port of time shifted and modulated f (x), corresponding to an
OLCT with (1, 0, 0, 1, y0, ω0). The instantaneous frequency
is time independent (α = 0) and equals ω0. The instan-
taneous bandwidth is the same as the effective bandwidth;
i.e., � = W ′. Consequently, according to Corollary 1, the

sampling interval is �y ≤ 2π
W ′ which is the same as indicated

by Nyquist criterion for f (x). Thus we see that time shift-
ing and frequency modulation do not affect the sampling
condition. In Fig. 2e the WVD support of the OLCT of
f (x) with A = {1, 0, c, 1, 0, ω0} is shown. This OLCT
represents a multiplication of f (x) by the quadrature phase
function e j c

2 x2+ jω0x . The instantaneous bandwidth and the
sampling condition are the same as in Fig. 2d. However, note
that the interpolation formula (18) differs from that for the
signal in Fig. 2 because the instantaneous frequency is time
dependent (α �= 0). Finally, in Fig. 2f the support of f̃ A(y)

with A = {a, b, c, d, 0, 0} representing a general LCT is
shown. It can be seen that the WVD support performs a
homogeneous affine transform. According to Theorem 1, the
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sampling condition is�y ≤ 2π
Bx

|b|which can be also obtained

from Corollary 1 with � = Bx|b| . This sampling condition
is the same as derived using a different analysis in [16].

�	

5 Sampling condition and the uncertainty principle
for OLCT pairs

Note that the sampling interval �y ≤ 2π
Bx

|b| given in
Theorem 1 is proportional to the OLCT transform parameter
b. Loosely speaking, this implies that the concentration of
the OLCT of a signal f (x) with a compact support (or more
generally εx -concentrated [22] in the x domain) is dictated by
the parameter b. An OLCT with large b causes a large spread
of the signal, and vice versa. This property can be clearly
seen from geometrical considerations in the time–frequency
domain. It is also interesting to note that this fact is in concor-
dance with the uncertainty relation for OLCT pairs given by:

σ 2
f (x)σ

2
f̃ (y)

≥ |b|2
4

, (19)

where σ 2
f (x) and σ 2

f̃ (y)
are the variances of f (x) and f̃ A(y),

respectively

σ 2
f (x) = 1

‖ f (x)‖2

∞∫
−∞

(x − u)2| f (x)|2dx, (20)

σ 2
f̃ (y)

= 1∥∥∥ f̃ A(y)

∥∥∥2

∞∫
−∞

(y − ξ)2
∣∣∣ f̃ A(y)

∣∣∣2
dy, (21)

and u and ξ are the average moments respectively

u = 1

‖ f (x)‖2

∞∫
−∞

x | f (x)|2dx, (22)

ξ = 1∥∥∥ f̃ A(y)

∥∥∥2

∞∫
−∞

y
∣∣∣ f̃ A(y)

∣∣∣2
dy. (23)

The proof of relation (19) is given in Appendix A. Relation
(19) can be used to study the joint localization of f (x) and
f̃ A(y) in a similar way as to that in which the Heisenberg–
Weyl uncertainty principle is commonly used to study local-
ization in time–frequency analysis (see for example [23]).
From relation (19) we see that for a given σ f (x), the spread
σ f̃ (y)

of f̃ A(y) is dependent on b, implying that the concen-
tration of the OLCT of a signal with a given spread in σ f (x)

the x domain is dependent only on the OCLT parameter b.
Please note that the uncertainty relation (19) generalizes

other uncertainty relations. In the particular cases of an
OLCT with parameters A = {0,−1,−1, 0, 0, 0}, imple-
menting a FT, relation (19) reduces to the well known

Heisenberg–Weyl uncertainty relation. We see also that
the Heisenberg–Weyl uncertainty relation holds for any
OLCT pair with A = (a,±1, c, d, y0, ω0). An OLCT with
parameters A = {cos ϕ, sin ϕ,− sin ϕ, cos ϕ, 0, 0} relation
(19) reduces to the uncertainty principle for FRFT pairs [24].

6 Simulation example

The sampling theorem is illustrated with the OLCT pair
f (x) and f̃ A(y) shown in Fig. 3a and b, respectively. It
can be seen that the function f (x) has compact support
x ∈ [−1/2, 1/2

]
. This function is OLCTed with parameters

A = [1, 0.25, 0, 1, 0, 2] to obtain f̃ A(y) shown in Fig. 3b.
The time–frequency representation of f (x) and f̃ A(y) is as
depicted in Fig. 2a and c, respectively. A OLCT with param-
eter set A of this form, with possibly different b and ω0

values, can be encountered in various physical systems. For
instance, this type of transform can represent the scalar opti-
cal diffraction of the field propagating from a double slit that
is captured with a tilted planar sensor. It can also represent
the echo received from two scatterers spatially distributed
as obtained with a radar system that uses time pulse com-
pression. This type of transform can be found also in digital
holography, sonar systems, and atomic interferometry.

The OLCTed signal f̃ A(y) was uniformly sampled with
sampling period �y = 1. The real and imaginary parts of
the samples of f̃ A(y) are represented by the stem graphs
in Fig. 3c and d, respectively. The sampled signal has been
interpolated using Eq. (3) to obtain the signals with real and
imaginary parts shown in Fig. 3c and d, respectively. It can
be seen that the reconstructed signal denoted by dashed lines
is almost undistinguished from the original signal denoted by
continuous lines. It is noteworthy that the sampling
interval �y is larger than the width of the pulses and the
gap between them in the original signal shown in Fig. 3a.
However, this interval suffices to maintain the signal informa-
tion in the transformed domain due to time spreading shown
in Fig. 2c.

7 Conclusions

In this paper the common Shannon’s sampling theorem for
signals band limited in Fourier domain is generalized to
signals band limited in OLCT domain. The sampling theorem
can be applied to a large class of signals and system outputs.
The sampling theorem developed can be regarded as a uni-
fied and extended version of previously developed sampling
theorems for particular cases of the OLCT. In terms of time–
frequency representation, the presented sampling theorem
appeals to all signals that an inhomogeneous affine mapping
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Fig. 3 a Function f (x) with
compact support, b the absolute

value
∣∣∣ f̃ A(y)

∣∣∣ of the OLCT of

f (x) with parameters
A = [1, 0.25, 0, 1, 0, 2];
c, d real and imaginary parts,
respectively, of f̃ A(y)

(continuous line), of the samples
of f̃ A(y) (stem graph), and of
the signal reconstructed from its
samples (dashed line). For
illustration purposes the real and
imaginary parts of f̃ A(y) are
shown in the reduced range
−4.5 < y < 4.5

of their time–frequency domain yields a time limited signal.
In this work we also present the uncertainty principle for
OLCT pairs which generalizes the well known Heisenberg–
Weyl uncertainty principle. It is shown that the same trans-
form parameter that governs the sampling rate also dictates
the uncertainty relation.

Appendix

Proof of the uncertainty relation for OLCT pairs

Observe that by substituting Eq. (4) in expression (21) we
have

σ 2
f̃ (y)

= 1∥∥∥ f̃ A(y)

∥∥∥2

∞∫
−∞

(y − ξ)2
∣∣∣ f̃ A(y)

∣∣∣2
dy

= 1

‖G(y)‖2

∞∫
−∞

(y − ξ)2|G(y)|2dy ≡σ 2
G(y) (A1)

where σ 2
G(y) is the variance of G(y). Now let us consider the

scaled function G(r) where r = y/b. Its variance is

σ 2
G( y

b )
= 1

|b|2 σ 2
G(y) = 1

|b|2 σ 2
f̃ (y)

. (A2)

From (5) we see that G(r) is the Fourier transform of

g(x) = f (x)e
j

2b
(
ax2+2y0x

)
. Hence, from the Heisenberg–

Weyl uncertainty principle for Fourier pairs G(r) and g(x)

we have σ 2
g(x)σ

2
G(r) ≥ 1

4 which, together with (A2) yields

σ 2
g(x)

1

|b|2 σ 2
f̃ (y)

≥ 1

4
, (A3)

where σ 2
g(x) denotes the variance of g(x). Note that |g(x)| =

| f (x)| therefore the functions g(x) and f (x) have the same
variance, thus replacing σ 2

g(x) by σ 2
f (x) in (A3) yields (19).
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