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Error Analysis
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Abstract—We present an exact expression for the 2 error that
occurs when one approximates a periodic signal in a basis of shifted
and scaled versions of a generating function. This formulation is
applicable to a wide variety of linear approximation schemes in-
cluding wavelets, splines , and bandlimited signal expansions. The
formula takes the simple form of a Parseval’s-like relation, where
the Fourier coefficients of the signal are weighted against a fre-
quency kernel that characterizes the approximation operator. We
use this expression to analyze the behavior of the error as the sam-
pling step approaches zero. We also experimentally verify the ex-
pression of the error in the context of the interpolation of closed
curves.

Index Terms—Asymptotic performance, curves, error bounds,
periodic representations, sampling.

I. INTRODUCTION

CLASSICAL sampling theory deals with the problem of
reconstructing or approximating a signal from a set

of uniform samples or measurements. In its generalized version,
the reconstructed approximation [1] is

(1)

where the underlying basis functions are rescaled translates of
the generating1 function is the sampling step. The generator
can be selected to yield bandlimited (e.g., sinc), spline, or
wavelet representations of signals. The expansion coefficients

are either determined from the uniform samples of the input
signal (interpolation or quasi-interpolation) or from a se-
quence of inner products with a suitable sequence of analysis
functions [1]. This theory is well developed for the case in which
the input signal is in , which also implies that it is defined
over the whole real line. The approximation quality depends on
the sampling step , the type of algorithm used (e.g., interpo-
lation versus projection), and, most importantly, on the choice
of the generating function. This can be quantified rather pre-
cisely, thanks to the availability of sharp mean square error es-
timates in the setting [3], [4]. Bounds are also available
for the approximation error (worst-case scenario) [5].
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1When the function satisfies a two-scale relation [2], it is called a scaling
function (e.g., splines, Daubechies functions or sinc)

In thispaper,weare interested in thecasewherethe inputsignal
isperiodic,which isanassumption that iscommonlymade in

practice.One example,where the periodic representation is espe-
cially relevant, is the parametric representation of closed curves
in terms of splines [7], [8], [9] or Fourier basis functions [10]. As-
suming the period tobe an integermultipleof the sampling step

2 it is straightforward to adapt most of the tech-
niquestotheperiodiccasebysimplyconsideringperiodizedbasis
functions and by redefining the inner product accordingly [11]
(seeSectionII).However, theerroranalysis forsignals in is
not directly applicable because the square modulus of the Fourier
transform is not defined for periodic signals.

The quantitative error analysis of periodic signals is the main
focus of this paper. In particular, we will derive a general pre-
dictive error formula that depends on the Fourier coefficients of

. Interestingly, the formula bears a strong resemblance to the
error expression of signals in . However, the recipe is dif-
ferent although the ingredients are more or less the same as in
[3]; the average least squares error is obtained as a discrete sum
of the Fourier series coefficients, as opposed to a continuous in-
tegral in [3]. We also study the behavior of the approximation
as the sampling step goes to zero.

II. PRELIMINARIES

A. Notations

We denote the Fourier transform of a continuous signalas

(2)

B. Sampling of Periodic Signals

The general formula for determining the expansion coeffi-
cients in (1) is

(3)

where is an appropriate analysis function. The usual setting
for this formula is (finite energy signals). In partic-
ular, one can show that when is bounded and when
has at least derivatives in the sense [3]. However,
(3) also works for more general cases. For instance, if is
bounded, then the s will be bounded as well, provided that
is a distribution3 of order 0.

2IfwechooseT = Nh, the resultingrepresentation isassuredtobeT periodic.
Otherwise, this property is not satisfied in general.

3~' is a distribution of ordern iff jh~'; sij � Cmax sup js (x)j,
whereC is a constant [12, pp. 24–25], [13, def. 1.3.1], e.g., the Dirac delta
distribution�(x) is of order 0. An absolutely integrable function~' can also be
identified as a distribution of order 0.
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We assume that is -periodic and that , where
is a positive integer. Under those conditions, the sequencede-
fined by (3) is periodic as well, with period . Furthermore, we
can rewrite the synthesis and analysis (1) and (3) using-peri-
odized functions as

(4)

(5)

where

(6)

Equation (5) calls for the definition of an inner product in
. We denote the inner product between

two functions as

(7)

The corresponding norm is written as . We show
in the Appendix A that a sufficient condition for to be in

is that be absolutely integrable and
that the discrete Fourier transform of the autocorrelation se-
quence

(8)

is bounded. Under those assumptions, pro-
vided, of course, that the s are bounded. While these relatively
mild conditions are satisfied by most generating functions used
in practice, they are not applicable to the classical casesinc,
which present some difficulties, i.e., sinc . This case is
dealt with in the next section.

Combining (4) and (5), we get

(9)

where is the approximation operator. This linear operator is
a projector if and only if the functions and are biorthogonal,
i.e., [14]. In this case, is a
consistent reconstruction of the measurements.

As we frequently use Parseval’s relation, we now recall it.
It relates the inner product between two functions

to their Fourier series coefficients as

(10)

Using this expression, the norm of
can be written as

(11)

III. FOURIER SERIESREPRESENTATION

Bandlimited periodic signals can be represented as (4) by
choosing sinc. However, due to the slow decay of sinc,
does not converge when is even. However, when is odd,

converges to a well-defined function in . In this
case, the signal representation can be reformulated as a Fourier
series. Hence, we briefly review the Fourier series description
of a periodic signal when the period is odd.

A -periodic signal can be expanded as

(12)

where the Fourier series coefficients are obtained as

(13)

In most practical applications, the function is not di-
rectly available. Usually, it is only known through its samples

. In such cases, one often assumes that
is bandlimited and, hence, approximates the coefficients
with the point DFT of for
and otherwise.

The corresponding continuous signal is nothing but the
periodized sinc interpolation of the samples [15], [16]. The cor-
responding sinc interpolation with a zooming factoris imple-
mented efficiently by computing the FFT of the input sequence
and performing a larger size IFFT with zero padding the trans-
form upto size . This representation turns out to be a special
case of (9) with sinc and —the Dirac’s delta distri-
bution.

IV. COMPUTATION OF THESQUARE ERROR

The space spanned by the generating functions is not shift-
invariant in general. Hence, the approximation error at a scale

is dependent on a time shift of the function . The shifted
function is denoted by .

The mean square approximation error for a shifted function
is given by

(14)

As the period of the signal is an integer multiple of the sampling
step, is also periodic in . In most applications, the
exact phase of the signal is not known. Hence, we are interested
in obtaining a measure of the error that is averaged over. This
average error is given by

(15)

The following theorem, which is the main result of this paper,
gives an explicit expression for the mean error .

Theorem 1: Let be a -periodic signal with the Fourier-
series coefficients . The mean square approximation error
incurred in approximating as in (9) is given by

(16)
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where the approximation kernel depends only on and
and assumes the expression

(17)

(18)

where .
The proof is given in the Appendix B.
Note that this kernel is identical to the one obtained in the

case of signals in [3]. The main difference with the
case is that the expression of the error (16) is a discrete sum as
opposed to a continuous integral [3]

(19)

Here, is the Fourier transform of the signal ,
and is the sampling step.

Given a reconstruction space, the error kernel attains its min-
imum possible value for all when is the dual of

. It is obvious from (18) as , and de-
pends only on . This case corresponds to the minimum error
approximation (orthogonal projection), as in the case of signals
in [17]. The second part accounts for the additional
error encountered for not choosing the optimal analysis function

. When is bi-orthogonal to but , then the
corresponding operator is called an oblique projection.

V. ASYMPTOTIC PERFORMANCE

The asymptotic performance of the representation is deter-
mined by the behavior of the kernel close to the origin. Using
the Taylor-series expression of the kernel, we show that for
the minimum approximation error to decay as as the
number of sampling points , we need and

for . These
are precisely the Strang–Fix conditions of order[2]; a that
satisfies these conditions is called as anth-order generating
function.

In the following theorem, we give the asymptotic bound for
the projection error. Note that the projection need not be orthog-
onal [18].

Theorem 2: Let and be two mutually bi-orthogonal gen-
erating functions. Then, the oblique projection error in approx-
imating an -times differentiable function as in (9) decays
as as iff is an th-order generating func-
tion. If satisfies the th-order Strang–Fix conditions, the error
in approximation as is asymptotically given as

(20)

where is the th derivative of , and the constant is given
by the expression

(21)

Here, denotes the th derivative of , and
is either or .

The proof is given in Appendix C.
Note that this result is almost the same as the bound derived

in [19], except that the present norm is defined for as
opposed to as in [19]. The minimum value attainable by

this constant is indepen-
dent of the analysis function. This value is achieved when we
have .

VI. EXPERIMENTAL VERIFICATION OF THEERRORFORMULA

In this section, we validate the expression for the error given
by Theorem 1 experimentally. We compare the measured errors
to the ones predicted by the theory for the approximation of a
reference shape as a function of the sampling stepor, equiva-
lently, the number of the samples.

Our reference shape (Switzerland) is polygonal with 807
edges and is represented using two periodic functionsand

. For each experiment, the initial model was
resampled to a specified number of points.

We considered two types of approximations: 1) a cubic spline
interpolation with (cubic spline) and 2) a bandlimited
one with sinc. Note that the second approach is equiva-
lent to a truncated Fourier approximation. In fact, we used an
IFFT padded with zeros to generate the bandlimited interpola-
tion functions at the required scale.

The comparisons between the experimental errors and the
ones predicted by the theory are given in Figs. 1 and 2, respec-
tively. It can be seen for both the graphs (Figs. 1 and 2) that
the experimental error (for ) is in good agreement with
the theoretical prediction. The experimentally obtained curve of

for oscillates around the theoretically pre-
dicted curve of . This is because the theoretical prediction
is an average of over all s.

From Fig. 3, it can be seen that the spline interpolation of
curves perform slightly better (around 1 dB) than the sinc in-
terpolation. This behavior can be explained with the aid of the
error kernel we have just derived. We can see from Fig. 4 that
the spline kernel has lower values, as compared with the sinc
interpolation kernel when . Hence, at low sampling rates
(when the signal has some nonnegligible frequency components
above ), spline interpolation will usually outperform the sinc
one. The differences tend to vanish as the sampling step de-
creases.

The map of Switzerland interpolated from 45 samples using
the spline and sinc functions are shown in Fig. 5. It can be seen
that at some places, the sinc representation results in looping
curves. This effect is less likely with the spline representation
due to the more local behavior of spline interpolation.
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Fig. 1. Decay of the cubic spline interpolation error for the map of Switzerland
as a function of the number of samples.

Fig. 2. Decay of the sinc interpolation error for the map of Switzerland as a
function of the number of samples.

Fig. 3. Comparison of spline and sinc interpolation.

Fig. 4. Error kernels for cubic B-spline and sinc representation.

Fig. 5. Actual map of Switzerland represented using 807 edges is resampled
to 45 points (indicated by dots). These points are then interpolated using cubic
spline and sinc functions. The graphs below are the zoomed portions of the
corresponding positions of the main graph, which illustrates the looping nature
of sinc interpolation.

VII. CONCLUSION

We have derived an exact expression of the mean error in rep-
resenting a periodic signal in a generating function basis. This
expression may be useful for comparing different generating
functions and for choosing the right one for an application. We
have experimentally verified the expression; the experimental
curves are in excellent agreement with the theoretical predic-
tions. Using the expression for the error, we also analyzed the
behavior of the approximation scheme as the sampling step ap-
proaches zero.
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APPENDIX A
SUFFICIENT CONDITION FOR

implies that and that

(22)

in the sense of distributions [20]. Now, the right-hand side of
(22) is in iff

(23)

which is ensured if the the Fourier transform of the autocorre-
lation

(24)

is bounded for all . Thus, .

APPENDIX B
COMPUTATION OF THESQUARE ERROR

Expanding (14), we get

(25)

1) Using Parseval’s theorem, the first term of (25) reduces to

2) To compute the second term of (25), we first compute
the Fourier coefficients of . From (4), they are
obtained as

(26)

We make a change of variables as and rear-
range the terms to get

(27)

We now consider the expression of from (5); the
inner product can be expressed in terms of

the corresponding Fourier coefficients using Parseval’s

theorem. Hence

(28)

Combining (27) and (28), we get

We now use Parseval’s theorem to get

(29)

Making use of the relation between the Fourier coeffi-
cients of the shifted function and the actual one

, we rewrite (29) as

Here, is the periodic function with the
expression

Averaging this expression over
becomes

Here, we again made use of Parseval’s theorem. Substi-
tuting for and making a change of variable, the
above summation can be rewritten as
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3) Making use of (29) and the Parseval’s relation, we rewrite
the third integral as

Rearranging the terms, we get

As before, is a sequence of periodic func-
tions. Now, averaging over as before, the term

becomes

Substituting for the expression of the expression
above reduces to

which is equivalent to

(30)

Combining the three integrals, we get

(31)

where

APPENDIX C
ASYMPTOTIC PERFORMANCE

In this proof, we assume that the kernel istimes con-
tinuously differentiable. Initially, we derive the conditions
for which . As is bounded and

, we use Lebesgue’s dominated convergence
theorem to interchange the limit and the summation in (16) to
obtain

Here, we used the continuity of the kernel. The above expression
is true for any if . We have

As the expression is a sum of positive quantities, it is equal to
zero only if each of them is zero independently. In particular, we
need and . We also need

, which is true iff . These are precisely the
Strang–Fix conditions of order 1.

Now, we look at the conditions for
. This will imply that decays faster than as

. To derive the conditions, we rewrite the expression
for as

Now, computing the limits by interchanging the sum and limit
as is bounded, we get

Here, we made use of the fact that is an even function of
(its Taylor series has only even powers of).

(32)

With the same argument as before, in addition to Strang–Fix
conditions of order 1, we need and

. Continuing in the same fashion, we can
see that will decay as iff is an th-order

generating function, and for
.
The function behaves

as as . Since is bi-or-
thogonal to , it behaves as
as . (This follows from the bi-orthogonality relation

.) Hence, being bi-or-

thogonal to ensures that for
. Thus, the bi-orthogonality and the Strang–Fix conditions of

order are sufficient for the error to decay as .
is the first positive integer for which

(33)

Proceeding as in (32), the expression of is

(34)
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In the above equation, we substituted for and
with and , respectively, where

.

REFERENCES

[1] M. Unser, “Sampling-50 years after shannon,”Proc. IEEE, vol. 88, pp.
569–587, 2000.

[2] G. Strang and T. Q. Nguyen,Wavelets and Filter Banks. Wellesley,
MA: Wellesley-Cambridge, 1996.

[3] T. Blu and M. Unser, “Quantitative Fourier analysis of approximation
techniques: Part I—Interpolators and projectors,”IEEE Trans. Signal
Processing, vol. 47, pp. 2783–2795, Oct. 1999.

[4] , “Quantitative Fourier analysis of approximation techniques: Part
II—Wavelets,”IEEE Trans. Signal Processing, vol. 47, pp. 2796–2806,
Oct. 1999.

[5] A. J. E. M. Janssen, “The Zak transform and sampling theorems
for wavelet subspaces,”IEEE Trans. Signal Processing, vol. 41, pp.
3360–3364, Dec. 1992.

[6] P. Brigger, J. Hoeg, and M. Unser, “B-spline snakes: A flexible tool for
parametric contour detection,”IEEE Trans. Image Processing, vol. 9,
pp. 1484–1496, Sept. 2000.

[7] F. S. Cohen and J. Y. Wang, “Modeling image curves using invariant
3-D object curve models, a path to 3-D recognition and shape estimation
from image contours, part 1,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 16, pp. 1–12, Jan. 1994.

[8] R. H. Bartels, J. C. Beatty, and B. A. Barsky,An Introduction to Splines
for Use in Computer Graphics and Geometric Modeling. San Mateo,
CA: Morgan Kauffmann, 1987.

[9] Z. Huang and F. S. Cohen, “Affine-invariant B-spline moments for curve
matching,”IEEE Trans. Image Processing, vol. 5, pp. 1473–1480, Oct.
1996.

[10] G. H. Granlund, “Fourier preprocessing for hand print character recog-
nition,” IEEE Trans. Comput., vol. C-21, pp. 195–201, 1972.

[11] G. C. H. Chuang and J. Kuo, “Wavelet descriptor of planar curves:
Theory and applications,”IEEE Trans. Image Processing, vol. 5, pp.
56–70, Jan. 1996.

[12] L. Schwartz,Theorie des Distributions. Paris, France: Hermann, 1988.
[13] G. Friedlander and M. Joshi,Introduction to the Theory of Distribu-

tions. Cambridge, U.K.: Cambridge Univ. Press, 1988.
[14] M. Unser and A. Aldroubi, “A general sampling theorem for non-

ideal acquistion devices,”IEEE Trans. Signal Process., vol. 42, pp.
2915–2925, Nov. 1994.

[15] F. Candocia and J. C. Prince, “Comments in sinc interpolation of
discrete periodic signals,”IEEE Trans. Signal Processing, vol. 46, pp.
2044–2047, July 1998.

[16] S. R. Doodey and A. K. Nandi, “Notes on interpolation of discrete peri-
odic signals using sinc function related approaches,”IEEE Trans. Signal
Processing, vol. 48, pp. 1201–1203, Apr. 2000.

[17] A. Aldroubi and M. Unser, “Sampling procedures in function spaces
and asymptotic equivalence with Shannon’s sampling theory,”Numer.
Funct. Anal. Opt., vol. 42, pp. 1–21, 1994.

[18] M. Unser and A. Aldroubi, “A general sampling theory for nonideal
acquisition devices,”IEEE Trans. Signal Processing, vol. 42, pp.
2915–2925, Nov. 1994.

[19] M. Unser, “Approximation power of biorthogonal wavelet expansions,”
IEEE Trans. Signal Processing, vol. 44, pp. 519–527, Mar. 1996.

[20] T. Blu and M. Unser, “Approximation error for quasiinterpolators and
multi-wavelet expansions,”Appl. Comput. Harmon. Anal., vol. 6, pp.
219–251, 1999.

Mathews Jacob (S’00) was born in Kerala, India,
in 1975. He received the M.E. degree in signal pro-
cessing from the Indian Institute of Science, Banga-
lore, in 1999.

Currently, he is a Research Assistant with the
Biomedical Imaging Group at the Swiss Fed-
eral Institute of Technology (EPFL), Lausanne,
Switzerland. His research interests include image
processing, active contour models, sampling theory,
etc.

Thierry Blu (M’96) was born in Orléans, France, in
1964. He received the Diplôme d’ingénieur degree
from École Polytechnique, Paris, France, in 1986 and
from Télécom Paris (ENST) in 1988. He received the
Ph.D degree in electrical engineering in 1996 from
ENST for a study on iterated rational filterbanks ap-
plied to wideband audio coding.

He is currently with the Biomedical Imaging
Group at the Swiss Federal Institute of Technology
(EPFL), Lausanne, on leave from France Télécom
National Centre for Telecommunication Studies

(CNET), Issy-les-Moulineaux, France. His interests include (multi)wavelets,
multiresolution analysis, multirate filterbanks, approximation and sampling
theory, and psychoacoustics.

Michael Unser(F’99) was born in Zug, Switzerland,
on April 9, 1958. He received the M.S. (summa cum
laude) and Ph.D. degrees in electrical engineering in
1981 and 1984, respectively, from the Swiss Federal
Institute of Technology (EPFL), Lausanne.

From 1985 to 1997, he was with the Biomedical
Engineering and Instrumentation Program, National
Institutes of Health, Bethesda, MD, where he headed
the Image Processing Group. He is now Professor
and Head of the Biomedical Imaging Group at
EPFL. His main research area is biomedical image

processing. He has a strong interest in sampling theories, multiresolution
algorithms, wavelets, and the use of splines for image processing. He is the
author of over 90 published journal papers in these areas. He is on the editorial
boards ofSignal Processing, the Journal of Visual Communication and Image
Representation, Sampling Theory in Signal and Image Processing, andPattern
Recognition.

Dr. Unser is an Associate Editor for the IEEE TRANSACTIONS ONMEDICAL

IMAGING and is a Guest Editor for its special issue on Wavelets in Medical
Imaging. He was a member of the Image and Multidimensional Signal
Processing Committee of the IEEE Signal Processing Society from 1993 to
2000 and was former Associate Editor for the IEEE TRANSACTIONS ONIMAGE

PROCESSINGfrom 1992 to 1995 and of the IEEE SIGNAL PROCESSINGLETTERS

from 1994 to 1998. He co-organized the 1994 IEEE-EMBS Workshop on
Wavelets in Medicine and Biology and serves as regular conference chair for
SPIE’s Wavelet Applications in Signal and Image Processing, which has been
held annually since 1993. He is general co-chair for the IEEE International
Symposium on Biomedical Imaging (ISBI’2002), which is a new conference to
be held in Washington, DC, from July 7 to 10, 2002. He received the Dommer
prize for excellence from EPFL in 1981, the research prize of the Brown-Boveri
Corporation (Switzerland) for his thesis in 1984, the IEEE Signal Processing
Society’s 1995 Best Paper Award, and IEEE Signal Processing Society’s 2000
Magazine Award. He is a member of IEEE, EURASIP, SPIE, and SIAM.


