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Sampling of the diffraction field

Levent Onural

When optical signals, like diffraction patterns, are processed by digital means the choice of sampling
density and geometry is important during analog-to-digital conversion. Continuous band-limited sig-
nals can be sampled and recovered from their samples in accord with the Nyquist sampling criteria. The
specific form of the convolution kernel that describes the Fresnel diffraction allows another, alternative,
full-reconstruction procedure of an object from the samples of its diffraction pattern when the object is
space limited. This alternative procedure is applicable and yields full reconstruction even when the
diffraction pattern is undersampled and the Nyquist criteria are severely violated. Application of the
new procedure to practical diffraction-related phenomena, like in-line holography, improves the process-
ing efficiency without creating any associated artifacts on the reconstructed-object pattern. © 2000
Optical Society of America
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1. Introduction

Sampling of continuous signals, effects of undersam-
pling, and related issues are very well understood, and
the related signal-processing literature is abundant
~see, for example, Ref. 1!. Optical wave propagation,
diffraction, and holography are also well-known and
well-documented physical phenomena ~see, for exam-
ple, Ref. 2!. Furthermore, there is an increasing ten-
dency to apply, or combine, digital signal-processing
techniques with optics and other wave-propagation-
related fields.3–5 However, because of the specific
form of the convolution kernel that represents scalar
wave propagation, the sampling of the Fresnel diffrac-
tion field and the reconstruction from those samples
seem to be confusing; clarification of this fundamental
issue is essential for digital processing of diffraction-
based phenomena. The purpose of this paper is to
provide that clarification.

What makes scalar wave propagation special is the
quadratic-phase function
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which has interesting properties. The Fresnel dif-
fraction field, under coherent illumination and at a
distance z that is due to a two-dimensional ~2-D!
object f ~x, y!, is given by

cz~x, y! 5 f ~x, y! pp hz~x, y!, (2)

here l is the wavelength and the double asterisks
enote 2-D convolution. For notational simplicity 2-D
ariables ~x, y! are denoted as a vector: x 5 @x y#T.
It is clear that, if f ~x! is band limited, cz~x! is also

band limited and has the same band. Therefore
both the diffraction field and the object can be recov-
ered fully from the object’s samples by use of the sinc
interpolation ~low-pass filtering! if the sampling rate
s higher than the Nyquist rate. However, as a re-
ult of some unusual properties of the kernel, there is
nother simpler and potentially more useful recon-
truction condition and procedure.

2. Sampling of the Diffraction Field

The Fourier transform of hz~x, y! can be found ana-
lytically as

Hz~u, v! 5 Hz~u!

5 expSj
2p

l
zDexpF2j
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where u 5 @u v# , as usual. Therefore the Fourier
transform of the diffraction field, if we assume a
band-limited object f ~x, y!, is

Cz~u, v! 5

5F~u, v!expSj
2p

l
zDexpF2j

lz
4p

~u2 1 v2!G
0

if ~u, v! [ B
else ,

(4)

where B is the band occupied by f ~x, y!. Let us
denote the sampled version of cz~x, y! as czs~x! 5

zs~x, y! for which the periodic-sampling geometry is
indicated by the sampling matrix V as

czs~x! 5 (
n

cz~Vn!d~x 2 Vn!, (5)

here n 5 @n1 n2#T and n1 and n2 are integers.
Therefore the Fourier transform of czs can be written
as

Czs~u! 5 ^$czs~x!%

5
1

udet Vu (k
Cz~u 2 Uk!, (6)

where U 5 2pV2T, k 5 @k1 k2#T, and k1, and k2 are
integers. As expected, the sampling of cz~x! by the
matrix V results in superposed, shifted replicas of the
riginal Fourier transform in which the replicas are
ocated at the Uk.

The reconstruction of f ~x, y! from its diffraction
cz~x, y! is simple: Just convolve cz~x, y! by h2z~x, y!,
which represents reverse propagation. In other
words, in the Fourier domain

Cz~u, v!H2z~u, v! 5 F~u, v!Hz~u, v!H2z~u, v!

5 F~u, v! (7)

because Hz~u, v!H2z~u, v! 5 1.
It is interesting to see the result of the same back-

propagation as applied to the sampled diffraction.
In the Fourier domain, we have

Czs~u!H2z~u! 5
1

udet Vu (k
Cz~u 2 Uk!H2z~u!

5
1

udet Vu (k
F~u 2 Uk!Hz~u 2 Uk!H2z~u!, (8)

but

Hz~u 2 Uk!H2z~u! 5 expFj
lz
4p

~2kTUTu

2 kTUTUk!G . (9)
930 APPLIED OPTICS y Vol. 39, No. 32 y 10 November 2000
Therefore from Eqs. ~8! and ~9!, we have

Czs~u!H2z~u! 5
1

udet Vu (k
F~u 2 Uk!

3 expS2j
lz
4p

kTUTUkDexpSj
lz
2p

kTUTuD . (10)

Taking the inverse Fourier transform to find the re-
sult of backpropagation, we find

^21$Czs~u!H2z~u!%

5 (
k

ckfSx 2
lz
2p

UkDexp~ jkTUTx!, (11)

where ck is the complex constant

@1yudet Vu#exp@2j~lzy4p!kTUTUk#.

Therefore, as a consequence of the sampling of the
diffraction by the sampling matrix V, we get super-
posed, shifted replicas of the original object function
f ~x! for which the replicas are the envelopes of com-
plex sinusoids. For each k, the location is ~lzy
2p!Uk, and the modulation carrier is given by
exp~ jkTUTx!.

3. Recovery from Samples

After the observations given in Section 2, we can
state that the recoverability conditions of a continu-
ous object f ~x! from the samples of its Fresnel diffrac-
ion pattern by a sampling matrix V are

~1! If f ~x! is band limited, say, within a band u [ B
and if the matrix V is chosen to satisfy nonoverlap-
ping replicas in the Fourier domain @no aliasing, see
Eq. ~6!#, the f ~x! can be fully recovered by low-pass-
filtering ~the band is B! the result of the backpropa-
ated sampled ~discrete! Fresnel diffraction field.
his process is simply the 2-D Nyquist sampling and
econstruction case. If f ~x! is recovered its continu-
us diffraction field is also known and vice versa.
athematically, we have

f ~x! 5 ^21$Czs~u!H2z~u!HLP~u!%, (12)

where

HLP~u! 5 Hudet Vu if u [ B
0 else (13)

and the subscript LP denotes the low-pass filtering.
~2! If f ~x! is space limited, say, within a region x [
and if the matrix V is chosen to satisfy nonover-

apping replicas of f ~x! after backpropagating the
ampled ~discrete! Fresnel diffraction field @see Eq.
11!#, f ~x! can be recovered fully by the windowing of
he results of backpropagation
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f ~x! 5 WR~x!F(
k

ck fSx 2
lz
2p

UkDexp~ jkTUTx!G ,

(14)

where

WR~x! 5 51
ck

if x [ R

0 else
(15)

and R is the window support.

Note that the above two requirements are not the
same; indeed, they are alternative requirements be-
cause a band-limited signal cannot be space limited
at the same time. Also note that either condition 1
or condition 2 is sufficient for complete recovery of the
image. Indeed, this is the reason that makes this
sampling–recovery problem an interesting one. In
straightforward digital signal-processing applica-
tions it is quite common to perform the sampling–
recovery in accord with the requirement 1, which is a
general and a very-well-known result for any kind of
convolution kernel. However, the rather obscure
second result might have a wider application in typ-
ical optical environments and could provide great
savings during digital signal processing because it is
quite common to have rather small objects in typical
applications. A small object can still be recovered
fully even if the sampling strategy significantly vio-
lates the first condition ~i.e., from severe aliasing!
because sampling can still easily satisfy the second
condition.

In optical applications space limitedness is a con-
sequence of finite-sized objects. Band limitedness,
on the other hand, is a consequence of the imaging
device and the imaging environment. Knowing the
above two recoverability conditions and having the
freedom to choose either one depending on the appli-
cation would definitely give the signal-processing en-
gineer an advantage.

It is also interesting to show that, as the depth
approaches zero, Eq. ~11! tends to converge to simple
sampling of the object:

lim
z30

(
k

ck fSx 2
lz
2p

UkDexp~ jkTUTx!

5 f ~x! (
k

exp~ jkTUTx!

5 f ~x! (
k

d~x 2 Vk!. (16)

4. Simulated Examples

The simple one-dimensional ~1-D! example shown in
Fig. 1 gives further insight. A space-limited object
~a slit! is shown in Fig. 1~a!, and the real part of its

iffraction pattern at a particular z is shown in Fig.
~b!. The diffraction pattern is sampled at a rate
hat is significantly lower than the Nyquist rate.
ecause this is a 1-D example, the sampling matrix is
1

scalar: V 5 T; the result of the sampling is shown
n Fig. 1~c!. Figures 1~d! and 1~e! display the real
nd the imaginary parts, respectively, of the recon-
truction from the sampled diffraction pattern. No
hysical units are presented because the dimensions

Fig. 1. Reconstruction of a 1-D object from its undersampled
diffraction pattern: ~a! a 1-D object ~slit!, ~b! its diffraction pat-
tern, ~c! the sampled diffraction pattern ~the sampling rate is below
the Nyquist rate!, ~d! the reconstruction of the real part from the
undersampled diffraction pattern, and ~e! the reconstruction of the
imaginary part from the undersampled diffraction pattern.
0 November 2000 y Vol. 39, No. 32 y APPLIED OPTICS 5931
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were normalized in discrete simulations that yielded
these results.

The original object and its shifted and modulated
replicas are clearly seen from Fig. 1. What we
mean by modulation is multiplication by a complex
sinusoidal function; therefore the modulation alters
only the phase. As is expected from Eq. ~11!, the

odulation frequency increases as the replica
oves away from the origin. Full reconstruction

an easily be achieved from Fig. 1~d! by use of a
indow that keeps the desired center pulse and
liminates the others. Furthermore, as a conse-
uence of the modulation of the shifted pulses, we
an also explain why low-pass filtering works for
he purpose of full reconstruction in the case of a
and-limited object. The sampling rate can be re-
uced, and the result will be more closely spaced,
odulated replicas. This outcome can be seen

rom Eq. ~11!, where U 5 2pyT for this 1-D example.
he frequency of the carrier signal is k~2pyT!,
here k represents the index associated with the
odulated replicas. Interestingly, the effect of

liasing for this particular sampling problem has a
onvenient form, as is shown in Figs. 1~d! and 1~e!.
n most practical applications most of the signal
nergy of a band-limited object is still concentrated
ver a limited space; therefore either one of the
econstruction techniques would be satisfactory.
he choice should depend on the convenience of the
ssociated signal-processing implementation.
A 2-D simulated example is given in Fig. 2. Fig-

re 2~a! shows a simple circular hole. The diffrac-
ion pattern at a particular distance is shown in Fig.
~b!. The diffraction pattern of Fig. 2~b! is sampled
ith a hexagonal geometry. Therefore the associ-
ted sampling matrix is

V 5 FT T
T 2TG .

Again, to show the effect of the undersampling, we
chose T to be rather large, and therefore significant
aliasing occurs. In this example the corresponding
U is

U 5 3
p

T
p

T
p

T
2

p

T
4 .

The reconstructed field is shown in Fig. 2~c!. As is
expected, as a consequence of the discussions of Sec-
tion 2 and of Eq. ~11!, the form of the aliasing is very
convenient: the aliasing generates modulated rep-
licas of the reconstructed original, which is seen as
the plain white spot at the center of the image. Full
reconstruction, even when there is severe aliasing, is
possible just by the windowing of the desired object at
the center and the elimination of the modulated rep-
licas. The reconstruction obtained in this way does
not suffer any losses, and there is no blurring or other
artifacts on the object.
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5. Applications to In-Line Holography

The results described in Section 4 can be applied
easily to in-line holography, which is related intrin-
sicly to diffraction.5 The coherent illumination in
in-line holography comes directly from the back.

Fig. 2. Simulated data used in the reconstruction of a 2-D object
from its undersampled diffraction pattern: ~a! a 2-D object ~a
transparent circular hole on an opaque background!, ~b! its diffrac-
tion pattern, and ~c! reconstruction from the undersampled diffrac-
tion field ~the black background is shifted to a gray value to permit
the observation of negative field values, as well!. The darkest
values represent the most negative values, whereas the lightest
tones correspond to the highest ~most positive! values.



~

Therefore, if the object’s opacity is denoted as a~x, y!,
where 1 and 0 represent total opacity and total trans-
parency, respectively, the in-line hologram is the in-
tensity of the diffraction pattern of the mask, 1 2 a~x,
y!, at a distance z. So that the desired object infor-
mation is not lost because of the nonlinear cross term,

Fig. 3. Simulated data used to show the application of in-line hol
b! its in-line hologram, ~c! the conventional reconstruction of an ob

from the undersampled in-line hologram’s field, and ~e! the recons
1

a~x, y! must block only a small fraction of the back-
ground illumination. Reconstruction from an in-
line hologram can be achieved by the illumination of
the hologram by coherent light; in this case, the re-
constructed pattern will be seen to be superposed on
the hologram ~this hologram is the hologram of the

hy: ~a! a small 2-D opaque object on a transparent background,
rom its in-line hologram, i.e., the intensity, ~d! the reconstructions
tion from the undersampled hologram’s intensity.
ograp
ject f
truc
0 November 2000 y Vol. 39, No. 32 y APPLIED OPTICS 5933
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original object at a distance of 2z!, which is called the
twin image.

The effect of the undersampling of an in-line holo-
gram on reconstruction is shown in Fig. 3 by simula-
tion. Figure 3~a! shows the object-plane mask:

Fig. 4. Real data used to show the application to in-line hologra-
phy: ~a! portion of a real optical in-line hologram of a dust particle
n a glass substrate, ~b! the conventional reconstruction by digital

means, and ~c! the reconstruction from the undersampled hologram.
934 APPLIED OPTICS y Vol. 39, No. 32 y 10 November 2000
There is a small, opaque, circular object at the center
of a transparent background. The in-line hologram
of this object at a particular distance is shown in Fig.
3~b!. Reconstruction from this hologram ~with no
undersampling! is displayed in Fig. 3~c!. Figure 3~e!
hows the reconstruction from the intensity from the
ame hologram when the hologram is severely under-
ampled; the replicas are as expected. To provide
nsight about the modulation of the replicas, we show
he imaginary part of the field amplitude in Fig. 3~c!.
lease note that the information recovery from the
ndersampled diffraction pattern, as given by Eq.
14!, is useful when the object has a finite size. In-
ine holography violates this condition because the
lluminated background ~theoretically! extends to in-
nity even if the object size is small. However, this

s not a severe problem and can be overcome in var-
ous ways as long as the object size is still small. In
he simulations given here this problem is solved by
he elimination of the average illumination level ~the
c part! of the hologram; this technique is straight-
orward in a digital signal-processing environment.

The same undersampling and reconstruction pro-
esses are also applied to an optical hologram, as
hown in Fig. 4~a!. The reconstruction from this ho-
ogram ~with no undersampling! is shown in Fig. 4~b!.
econstruction is carried out by digital signal pro-
essing.5 Reconstruction from the same hologram

but after severe ~hexagonal! undersampling is shown
n Fig. 4~c!. Again, the average illumination level of
he hologram is eliminated before reconstruction.

6. Physical Interpretation of the Information Recovery
from Samples

The mathematical foundations of the recovery of the
original object field from the samples of its diffraction
pattern are given in Section 2; the rules and the
procedures for recovery are stated in Section 3. It is
also interesting to add a physical interpretation to
the recovery process.

The key analogy is to consider the sampling grid as
a diffraction grating. The diffraction grating for the
case of sampling is a periodic diffracting element that
is opaque everywhere except at the sample locations,
where it is totally transparent. Let us assume that
the diffraction pattern cz~x! is recorded as a 2-D
complex-valued ~both amplitude and phase! mask.
If this mask were illuminated by a reverse-
propagating plane wave, the result would be the re-
construction of the original object at its original
location, as given by Eq. ~7!. However, a plane wave
passing through the diffraction grating ~the sampling
grid! would generate a number of plane waves that
each propagate at a different angle; the directional
cosines of these diffracted plane waves can be found
easily from the sampling grid. Therefore if the re-
corded cz~x! is first multiplied by the sampling grid
and then illuminated by a backpropagating plane
wave the overall effect is equivalent to the illumina-
tion of cz~x! by a number of plane waves that each

ropagate backward at a different angle. Each such
lane-wave component ~usually called a diffraction
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order! will result in a modulated term in which the
carrier is a complex sinusoid and the envelope is a
shifted replica of the original, as given by Eq. ~11!.

he density and the pattern of the sampling grid will
ffect the angular separation of the plane-wave com-
onents; this, in turn, will affect the locations of the
econstructed replicas.

7. Conclusion

Contrary to the common belief that it is necessary to
avoid undersampling ~sampling below the Nyquist
rate! for complete object recovery, objects can be re-
covered fully from their undersampled diffraction
patterns even if the undersampling is severe. The
condition for full recoverability from the under-
sampled diffraction patterns is to have finite-sized
objects. There is full theoretical support for this re-
sult, as has been given in this paper. Simulations
and applications to physical in-line holograms have
shown that the presented procedure is feasible and
useful. The ability to undersample the diffraction
pattern without sacrificing the quality of the recon-
structed object pattern gives computational ~both
torage and CPU time! savings when digital signal-

processing techniques are employed in diffraction-
related imaging applications. Further significant
savings are possible when there is no need to keep the
full image size during reconstruction. The results
are valid for any arbitrary depth z except in the near
field, where the Fresnel approximation is no longer
valid.
1

The results that we have given in this paper are
consequences of the special form of the convolution
kernel that represents Fresnel diffraction. Because
the fractional Fourier transform6–8 is also based es-
sentially on this kernel, the obtained results can be
applied to the discretization of this transform, too.
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