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Abstract

We consider the problem of sampling piecewise sinusoidpias. Classical sampling theory does
not enable perfect reconstruction of such signals sincg #re not bandlimited. However, they can
be characterized by a finite nhumber of parameters namelyrdwpiéncy, amplitude and phase of the
sinusoids and the location of the discontinuities. In trapgr, we show that under certain hypotheses on
the sampling kernel, it is possible to perfectly recovergheameters that define the piecewise sinusoidal
signal from its sampled version. In particular, we show thateast theoretically, it is possible to recover
piecewise sine waves with arbitrarily high frequencies arftrarily close switching points. Extensions
of the method are also presented such as the recovery of patitis of piecewise sine waves and
polynomials. Finally, we study the effect of noise and préserobust reconstruction algorithm that is

stable down to SNR levels of 7 [dB].
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Fig. 1. Sampling setup. The continuous-time signél) is filtered by the acquisition device and sampled with peffodrhe
observed samples aggk| = (o (t/T — k), x(t)).

|. INTRODUCTION
Most digital acquisition systems involve the conversiorsiginals from analog to digital. Usually, the
device is modeled with a smoothing kernglt) and a uniform sampling period@ > 0. Following this
setup, the observed discrete-time signal is given by

o = | (/T — kyz(t)dt = (/T — k), () 1)

—o0
with k£ € Z as shown in Figure 1. The fundamental problem of samplingisetover the original
continuous-time waveform(¢) using the set of samplegk]. In the case where the signal is bandlimited,
the answer due to Shannon is well known [2]. The theoremssthtd the signal is completely determined
by its samples given that the sampling rgte= % is greater or equal to twice the highest frequency
component of:(¢). The original signal is recovered with(t) = °, -, y[k]sind(t/T — k) where sin¢t) =
sin(wt)/mt andy[k] = x(kT). The problems arise when the bandadt) is unlimited for instance due
to a discontinuity. From a Shannon point of view, these evan¢ seen as infinite innovation processes
and therefore require an infinite number of samples. Henaate concentrated in time are not precisely
measurable.

A sampling scheme has recently been developed by Vetterdil.ef3] where it is made possible
to sample and perfectly reconstruct signals that are nodlitmaited but are completely determined by
a finite number of parameters. Such signals are said to havieie Rate of Innovation (FRI). For
instance, the authors derive a method to recover some sla$$eR| signals such as streams of Diracs,
differentiated Diracs and piecewise polynomials using sinGaussian kernels. Later, in [4], [5], it was
shown that these signals can also be recovered using mdigticeeompact support sampling kernels
such as those satisfying the Strang-Fix conditions [6]peential splines [7] and functions with a rational
Fourier transform. The case of non-uniform samples acradsiple channels has been studied in [8].
The reconstruction process for these schemes is based antiiglating filter method, a tool widely

used in spectral estimation [9], error correction codin@][interpolation [11] and for solving inverse
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problems [12], [13], [14], [15]. These results provide arswar for precise time localization (i.e. Diracs
and polynomial signals) but in some sense lack frequenailation capabilities.

In this paper, we extend FRI theory to oscillating functiotrs particular, we investigate the case
where the continuous-time signal is piecewise sinusoigalefore it contains both time and frequency

components. More precisely, we consider signals of the:type
D N

2(t) = ) A cos(want + dan)éalt), (2)

d=1n=1
wherewg ,, Aq, and¢,, are constant parameters and

€a(t) = u(t —ta) — u(t — tat1),
0<t1 <...tg<tgy1 - <tpy1 <00

whereu(t) is the Heaviside step function; and study their reconsooctrom the sampleg[k| given

in (1). Such signals are notoriously difficult to reconstraince they are sparse neither in time nor in

frequency. For this reason, the schemes in [4], [5], [3] aBl a&the Shannon type schemes would not
enable an exact recovery. However such signals have a fatgeof innovation and we demonstrate that
it is possible to retrieve the parameters,,, A,,, andgg,, of the sinusoids along with the exact locations

tq given certain conditions on the sampling kerpgl). Note that similar cases have been studied in the
FRI context. For example, in [16] the authors deal with banitkd signals that are corrupted by additive

shot noise (i.e. Diracs). The case of bandlimited signatteddo piecewise polynomial signals was also
considered in [17]. These types of signals, however, do nobmpass the piecewise sinusoidal signal
defined in (2).

It is also worth mentioning that a lot of attention has retyebéen given to the problem of recovering
sparse signals from a non-uniform set of samples [18], [TBgse works deal with discrete signals that
have a sparse representation in a basis or frame. Extentsidhe case of analog signals belonging to
a union of shift-invariant sub-spaces were considered @}, [[21], [22]. The signals of interest in this
paper, however, are not sparse in a basis or frame nor lie iviod wf shift-invariant sub-spaces, but have
a sparse parametric representation. That is, they can besmyed with a finite number of parameters
per unit of time.

This paper derives two methods to retrieve exactly contistiime piecewise sinusoidal signals from
their sampled version. Sections Il and Il discuss the samgernels that can be used in our scheme and
recall some of the aspects of annihilating filter theory.ngsihese kernels, Section IV derives a global

method for retrieving the parameters of a general piecesiragsoidal signal. Section V discusses local
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reconstruction methods that have a lower complexity. Irti8ed/1, we briefly discuss some extensions of
the algorithm, namely adding piecewise polynomials to @igse sine waves. Section VIl deals with noisy
observations and presents a robust algorithm for sampiiecewise sinusoidal signals in the presence

of noise. Finally, we conclude in Section VIII.

II. SAMPLING KERNELS

Many sampling schemes such as the classical Shannon readgitst [2] and some of the original
FRI schemes [3] rely on the ideal low-pass filter (i.e. thec dimction). This filter is not realizable in
practice since it is of infinite support. It is therefore attiive to develop sampling schemes where the
kernels are physically valid and realizable. It was regestiown that FRI sampling schemes may be

used with sampling kernels that are of compact support $],1h this section, we present these kernels.

A. Polynomial reproducing kernels

A polynomial reproducing kernep(t) is a function that together with its shifted version is alde t
reproduce polynomials. That is, for a given set of values- 0, 1,..., M, it is possible to have

S Cuplt/T — k) = (1/T)"™,

keZ
given the right choice of weights,, .. Strang and Fix [6] proved that the necessary and sufficient

conditions for a function to have the above property are

d"p(w) |
dw™  lw=2knr

»(0) # 0 and =0, k40, m=0,...,M,

where $(w) is the Fourier transform op(¢). Perhaps the most basic and intuitive such kernels are the
classical B-splines [23]. The B-spline of degree zero isracfion with Fourier transform
- 1—e v
Bo(w) = e
The higher order B-splines of degréé are obtained througlV + 1 successive convolutions @) (t)
. o\ N1 _ _
such thatfy (w) = (1‘]€—W> and they are able to reproduce polynomials of degree zemd. tbhis

property follows directly from the Strang-Fix condition ake.

B. Exponential reproducing kernels

Similarly to the polynomial reproducing kernels, an expurad reproducing kernep(¢) is a function

that together with its shifted version is able to reproduqao@entials. That is, for any given set bf + 1
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values(ay, ..., ayr), it is possible to have
Z Cmpp(t/T — k) = ea’"t/T, m=0,1,...,M ©)
kEZ

given the right choice of weights,, . Note thata,, may be complex. One important family of such
kernels are the exponential splines (E-splines) that appdaa early works such as [24], [25], [26], [27]
and were further studied in [7]. These functions are exterssof the classical B-splines described above

in that they are built with exponential segments insteadadyipomial ones. The first order E-spline is a

1—ean—dv

function 3, (¢) with Fourier transformj, (w) = . The E-splines of degre& are constructed

Jw—an,

by N successive convolutions of first-order ones:

5 1 — eI 4
ba(w) = 1] ooy 4)
n=1
where @ = (a1,...,ay). A series of interesting properties are derived in [7]. Irtipalar, it is

shown that an E-spline has compact support and it can repeodny exponential in the subspace
spanned by{e*?t ... e*~t}. Furthermore, since the exponential reproduction prgpertpreserved
through convolution [7], we have that any kernel of the fogft) « 35(¢) is also able to reproduce

the same exponentials as above.

[11. A NNIHILATING FILTERS AND DIFFERENTIAL OPERATORS

In this section, we recall the notions of annihilating filterd differential operator which are at the heart
of the sampling schemes developed in this paper. In paaticule recall the annihilating filter method
and show how the annihilating filters in the case of expoatstgnals are related to the E-splines. We
also show how a piecewise exponential signal may be comé@nte a stream of differentiated Diracs

using an appropriate differential operator.

A. The annihilating filter method

Assume that a discrete-time signgk] is made of weighted exponentials such thigd = > a,uf

with u,, € C and assume we wish to retrieve the exponentigle&nd the weights,, of s[k]. The filter

hlk] with z-transform
N

Ha(z) = [J(1 = unz™) (5)

n=1
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andd = (uq,...,uy) is called annihilating filter ok[k] since(h x s)[k] = 0 Vk € Z. We can therefore

construct the following system of equations:

s[0]  s[-1] s[—N] h|[0]
s[1] s[0] s[—N +1] h1] o
s[N] s[N —1] s[0] R[N]

Notice that/NV + 1 equations are sufficient to determine thi¢] therefore we write the system in matrix

form as
Sh =0, (6)

whereS is the appropriatéV + 1 by N + 1 Toeplitz submatrix involvin@ N + 1 samples ofs[k]. If s[k]
admits an annihilating filter, we havBRank(S) = N hence the matrix is rank deficient. The zeros of
the filter Hz(z) uniquely define theu,s since they are distinct and any filtejk] satisfying the Toeplitz

system in (6) has, as its roots. Note that without loss of generality we may po§é= 1 and solve

the system
sIN —1]  s[N —2] s[0]
s[N] s[N —1] s[1]
s2N —2] s[2N —1] ... s[N—1]
h[1] —s[N]
h|2] _ —s[J\f + 1] | -
h[N] —5[2& —1]

which only require2 N samples of|k]. Given theu,s, the weights:,, are obtained by solving a system

of equations usingV consecutive samples afk|. These form the classic Vandermonde system

1 1 1 ay s[0]
Uy U9 uN as s[1]
AR A uh ! an s[N — 1]
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which also has unique solution given that thegs are distinct.
A straightforward extension of the above annihilating filtethat a signak[k] = Zn 1 ZT 0 Y okl

is annihilated by the filter
N

Hg(z) = JJ(1 = unz™H)", (8)

n=1

which has multiple roots of ordeR,, in the u,,. For a more detailed discussion of the annihilating filter
method we refer to [9].

Let us return to the sinusoidal case. Clearly, a filter of §metH;(z) will also annihilate a discrete
sinusoidal signaly[k] = Zﬁle Ay, cos(wnk + ¢,) since it can be written in the form of a linear

combination of complex exponentials. In this case, therfikeobtained by posing = e and
:(jwl,...,ij,—jwl,...,—ij). (9)

We simplify the notation by expressind,-(z) as Hz(z). By comparing (5) with (4) and using = e/,
we see that the annihilating filter for a linear combinatidnemponentials can be expressed with an
E-spline as

N
Hyz(e?) = H Jw —ap), (20)

where the second term is a differential operator which iswdised in the following section.

B. Differential operators

Let L{z(t)} be a differential operator of ordeY:

N, N-1,,
L{z(t)} = ddt]\([t) + CLN1ddT§t) + ...+ apz(t), (12)

with constant coefficients,, € C. This operator can also be defined by the roots of its chaistite

polynomial
N
Lip) = pV+avap" 4. tag= H(P — ap).
n=1
Using the same notation as in [7], we express the operatdrzashered = (ay,aq,...,ay). Posing

p = jw, we have in the frequency domain
N

La(jw) = [ ] (w — om).

n=1

The null space of the operator, denotdd;, contains all the solutions to the differential equation

Lz{z(t)} = 0. Itis shown in [7] that\V; = spar{e®', ..., e*~t}. It is therefore said that the operator has
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exponential annihilation properties. Moreover, the ofmeraas sinusoidal annihilation properties when
a is defined as in (9). This follows naturally from the fact tlsitusoids are linear combinations of
complex exponentials. Therefore, given the rightthe operator.5; will produce a zero output for the
corresponding sinusoidal input. It is also relevant to nowenhere that the Green functian,, (¢) of the
operatorL,, is a function such thal, {g., (t)} = d6(t) whered(t) is the Dirac distribution. In this
case, the Green function is given by (t) = e*u(t) [7] whereu(t) is the Heaviside step function.
Consequently, we have that

Lo {e®tu(t —t,)} = e*'5(t — t,,). (12)

Finally, by combining (12) with (11), it follows that

N N N-1
L&{ 3 ettt - tn)} =35 w60t~ t), (13)
n=1 n=1 r=0

where §(") (t) is a differentiated Dirac of order andw, , are weights that depend on the,. Hence,
the appropriate differential operator applied to a pieseweéxponential signal will produce a stream of
differentiated Diracs in the discontinuities.

Note that in [3], [5] were piecewise polynomial signals aomsidered, the signal is differentiated with
a, = 0. This differentiation of the piecewise polynomial signehtls to a stream of differentiated Diracs
that can be retrieved from their samples using signal mosnehtsimilar method can be used in the
piecewise sinusoidal case. However, as shown above, tfezatifial operator that produces a stream of
differentiated Dirac impulses requires the knowledge ef fltequencies of the sine waves (ie@.s as

defined in (9)). Therefore, the methods in [3], [5] cannot edly applied.

IV. RECONSTRUCTION OF PIECEWISE SINUSOIDAL SIGNALS USING A GLG® APPROACH

All the necessary tools to sample piecewise sinusoidalatsgnave now been laid down. For mathe-

matical convenience, we write the continuous-time sigisal a
D 2N

p(t) =Y D Agpe/Crttonnlgy(t), (14)

d=1n=1
which is made ofD pieces containing a maximum ¥ sinusoids each. Assume now that this signal

is sampled with a kerneb(t) that is able to reproduce exponentiafs! with a,, = ag + Am where

ag, A € Candm =0,1,..., M. Following previous FRI methods [5], weighting the sampiath the
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appropriate coefficients,, ;, gives

rim] = 3 ekl = (3 emusplt = k), () )
keZ keZ

_ / el (), (15)
—0o0

where we have used (1) and (3) and set the sampling peri@t-tol. Note thatr[m] is an exponential

moment of the original continuous-time waveforrtt). In particular, whenv,, = jmwy, we retrieve the

coefficientst[m| = &(mwy) of the Fourier transform of(¢). Plugging (14) into (15) gives

D 2N [ete+1(Jwantam) _ ola(jwantam)]
E E dn o T o ) (16)
d=1n=1 JWd.n m

where/idm = Admeﬂ’%vn. These moments are a sufficient representation of the piseamusoidal signal
since the frequencies of the sinusoids and the exact losatid the discontinuities can be found using
the annihilating filter method.

Let us define the polynomia)(«,,) = Hd 1 Hn 1(Jwan + o) of degree2DN. Multiplying both

sides of (16), we find the expression

Qlam)r[m] = (17)
D 2N

D00 Ao [l Do) — glubuntan)],
d=1n=1

where®, ,, (o) is a polynomial of maximum degre®D N — 1. Recall that we impose.,,, = ag + Am
which means that the right hand side of (17) is equivaleng 38" 22201 b, ym”eMa™ whereb, 4

are weights that depend an,, but do not need to be computed here. Therefore a filter of the: ty
D+1

H(Z) — H (1 )\tdz—l 2DN Zh

d=1
with K = (D + 1)2DN = 2D?N + 2DN will annihilate (17) as shown in (8). It follows that

Zh (otp_p)T[n — k] = 0, (18)

withn=K K+1,...,M. SinceQ is a polynomial ina,, it can be written as
L

Qlam) =Y rlllay,,

1=0
where L = 2D N. Using this notation, the system in (18) becomes

K L
hlk]r ) (e k) T[n — k] = 0
k=0 1=0
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h[0]r[0]
TIK ag)r[K oo Tl .. (ag)ET[0
(K] ( K)L (K] [0] ( o)L [0] hO (L]
TIK+1] ... (ag+)"7[K+1] ... 7[1] ... (a1)"7[1] ) _0. (19)
) : W0
T[K+U] ... (agsv)“T[K+U] ... 7[U] ... (ap)"7|U] )
h[K]r[L]

Algorithm 1 Global recovery of a piecewise sinusoidal signal

1: Compute moments[m] in (15).

2: Build the system in (19) and retrieve the annihilatingefilk[£]r[l].

3: Seth[0] = 1 and retrieve the[l]. Compute theh[k].

4: Compute the roots of the[k] andr[l] in order to find thet; and
the wq,,, respectively.

5: Build the system in (20) using thelm] as well as the; and
wd,» computed in the previous step.

6: Retrieve thed, ,, and compute thel,,, and thegg,,.

forn = K,..., M. For clarity, we write the system in matrix form which givd®}] wherelU = M — K >
(K +1)(L+1) — 1. Solving this system withh[0] = 1 enables to find the[l|s. Subsequently, we find
the hlk]s. The roots of the filte/ (z) and the polynomiat)(«.,) give the locations of the switching
points: and the frequencies of the sine waves respectively. The auwibexponential moments|im)]
required to build a system with enough equations to find tmamaters of the piecewise sinusoidal signal
iSM+1=K+U+1=4D3N? +4D?*N? + 4D?*N + 6DN + 1.

At this point, we have determined all the frequencies of theusoids and the locations of the
discontinuities. However, the polynomié&l(«,,) does not enable to distinguish which frequencies are

present in which piece. This information, along with the éitades and phases of the sinusoids are found

'Note that in the case where = jwo is purely imaginary, thes, has to be chosen such thay < 27T /tp41 in order to

avoid ambiguities.
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Fig. 2. Sampling a truncated sine wave. (a) The original inopus-time waveform. In this example, we have= 0.3877
[sec] andt, = 0.6035 [sec]. The frequency of the sine waveuds ; = 121« [rad/sec] and the sampling period 5= 1/40
[sec]. (b) The observed samples. The sampling kernel is porential spline with parameters, = 0 and A = ;0.0827. (C)
The reconstructed signal. Note that the signal is not baeni@ld and the frequency of the sine wave itself is higher ttien

Nyquist rate for the given sampling period.

by building a generalized Vandermonde system

D+1 D 2N (jountom)
;;;Adnwd — (20)

which require N D(D + 1) momentsr[m] and enables to determine th; ,,s. This system provides a
unique solution since the exponents are distinct. The fgbrithm is summarized in Algorithm 1. The
derivation above shows that it is possible to reconstruetpiecewise sinusoidal signal in (2) from the
set of samples in (1). We therefore have the following result

Theorem 1: Assume a sampling kerpé) that can reproduce exponential®+t* andm = 0,1,..., M.
A piecewise sinusoidal signal with pieces having a maximum o&f sinusoids in each piece is uniquely
determined by the samplesk] = (o(t/T — k), x(t)) if M > 4D3N? + 4D?N? + 4D?N + 6DN.

Figure 2 illustrates the sampling and perfect reconstractf a truncated sine wave. In this case,
D =1andN =1 and we need to compute exponential moments up to drgleNote that the method
is based on the rate of innovation of the signal only. Thathiste are no constraints, for instance, on the
frequencies of the sine waves. In particular, we are notdichby the Nyquist frequency. It also means
that the locations of the discontinugsand¢, may be arbitrarily close. In fact, the piecewise sinusoidal

signal defined in (2) has a limited number of degrees of freedmce it is zero for ¢ [t1,tp41]. For
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this reason the sampling interval can, in theory, be arbitrarily large.

V. RECONSTRUCTION OF PIECEWISE SINUSOIDAL SIGNALS USING A LOGAAPPROACH

In the previous section, we saw that it is possible to retrithe parameters of a sampled piecewise
sinusoidal signal given that the sampling kernel is ableefaraduce exponentials of a certain degree.
This degree however increases very rapidly with the numibesirusoids and pieces. In this section,
we show that the complexity can be reduced by making furtssumptions on the signal and imposing
constraints on the sampling peridd These assumptions will allow to locally reconstruct thgnai by
retrieving the parameters of two or more consecutive pietestime. In the first case, we assume that
the frequencies of the sine waves are known and we retrievexact locations of the discontinuities. In
the second case, we assume that the discontinuities areiexuiffy far apart such that a classical spectral
estimation method can be run in each piece in order to esiithet frequencies independently of the

discontinuities.

A. Local reconstruction with known frequencies

Consider a piecewise sinusoidal signdt) as defined in (14) and assume the frequencigs are
known at the reconstruction. This can be the case, for instawhen information is transmitted using
the switching points (or the discontinuities) and we wishidtrsieve these locations exactly. The samples
y[k] are again given by (1). Since the frequencies of the sine svave known, we can construct the

annihilating filter

(1-— ejwd'"zfl)(l — eij‘”d'"zfl)

=

D
Hz(2) =[]

d=1n=1

with coefficientshz[k] and
& = (jwl,l, . 7jWD,N7 —ijl, ey —ij7N).

Assume now that we apply this filter to the samplgs]. Assuming7 = 1, the expression for the

annihilated signal/[k] gives

VI = halh] * {olt — ), 2(0) 1)
G (IR p(w) Hale?), ()
m 1 A

= §<6_jwk¢(w) &(w)L&(jw),fc(w»
= (La{e(t — k) = Ba(t — k)}, 2(t))
= (p(t — k) xBa(t — k), La{z(t)}),
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where (a) follows from Parseval’s identity, (b) from (10)dafct) from integration by parts and the fact
that ¢ « 85 is of finite support. This means that the coefficiepts:] represent the samples given by
the inner-product between a modifiedt) that we call2’(t) = Lz{z(¢t)} and a new sampling kernel
¢'(t) = ¢(t) * Bz(t). Now assume that the sampling kernglt) has compact suppoft’. Then the
equivalent kernel’(¢) is of compact suppof’ = W + 2DN. Furthermore, according to (13y,(¢) is
made only of differentiated Diracs of maximum ord@gp N — 1 in the discontinuities. That is, we are left
with a signal of the type(t) = S 24 S22PN=14, 60 (£ —t,) for which a sampling theorem exists [4],
[5]. Hence given that the hypotheses of the theorem are nefare able to perfectly reconstructt)
and retrieve the exact locationg The theorem states that an infinite length signal made tedrdifitiated
Diracs of maximum ordeR—1 can be sampled and perfectly reconstructed given that thplsay kernel
is of compact supporiV/, it can reproduce exponentiad& " or polynomialst™ with M > 2DR — 1
and there are at mo$? Diracs with D R weights in an interval of lengtADWT'. Since, this reproduction
capability is preserved through convolution [7], the ealewnt kernely’(¢) is able to reproduce the same
exponentials or polynomials ag(t). Therefore) ", ;¢ @' (t—k) = et or 33, ¢ @ (t—k) =™
given the right choice of coefficienté;n’k. Hence the classes of kernels used in [4] are also valid # thi
context.

Similarly to the previous approach, the retrieval of theakins¢,; and the weightswg, of 2/(t)
is based on the annihilating filter method. As shown in [4], [Bese parameters can be found using
appropriate linear combinations of the sampé€¢]. Indeed, using an exponential reproducing kernel,

we have the moments

rim] = 3 it/ = (D st — )2’ (0)) (22)
keZ keZ
~ D+12DN—1
— / ety (t)dt = Z Z wy. gm” M
> d=1 r=0
that are made of weighted exponentials. Therefore a filteheftype H(z) = []71' (1 — eMez—1)2PN

will annihilate 7[m| and the problem of finding the locationgis reduced to that of finding the multiple
roots of H(z). This filter can be determined using the Toeplitz matrix i8)(2hich follows directly
from (6). Note that similarly to (7), we may po$e0] = 1 and use onlydDN (D + 1) — 1 samples of
7[m]. A more detailed description of the location retrieval canfbund in [5]. The above discussion is
summarized as follows:

Theorem 2: Assume a sampling kerggt) that can reproduce exponentiat§°**™ or polynomials

t™ with m = 0,1,..., M and of compact suppofi’. A piecewise sinusoidal signal with a maximum
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T2DN(D +1)] ... 1] 7[0] h[0]
7-[2DN(D. F1) 1] . 7[2] (1] h[1] 009
TMDN(D+1)] ... 72DN(D+1)+1] 7[2DN(D +1)] h[2DN(D + 1)]

of N sinusoids in each piece is uniquely determined by the samyté = (o(t/T — k), z(t)) if the
frequenciesv,,, are known and there are at moBt+ 1 sinusoidal discontinuities in an interval of length
2(D+1)(W+2DN)T andM > 4DN(D +1) — 1.

Therefore, given that the sampling kernel satisfies the alpogperties, a piecewise sinusoidal signal
with at mostD + 1 sinusoidal discontinuities in an interval of lengilcan be retrieved if it is sampled

2(D+1)(W+2DN)
P

at a rate of’"~! > whereN is the maximum number of sinusoids in each piece Bnd

is the support of the sampling kerng(t).

B. Local reconstruction with unknown frequencies

In the previous section, we saw that the exact locations efstiitching pointst; of a piecewise
sinusoidal signal can be estimated from its sampled verdibe number of moments required in this
case was less than in the global method presented in Sestisinte in essence the estimation of the
breakpoints is separated from that of the sine waviesthis section, we show how the local method
presented above may be applied even if the frequencies dfitieewaves are unknown. The basic idea
is to impose that the discontinuities are sufficiently famsuch that a classical spectral estimation
method can be run in each piece to estimate the frequencie3 fir

Assume, for the moment, an original continuous-time sidginal is purely sinusoidal with a maximum
of N sinusoids. The signal is sampled with a sampling kegs(@¢) and the samples are given by

ylk] =3 8 [@(_wn)ej(wnkwn)) + P(wn)e Ikt (24)

n=1

From Section IlI-A, we know thattN + 1 samples are sufficient to construct the maixn (6) and
solve the system of equations in order to determine the datmity filter Hz(z). Thew,s are found using

the roots of the filter. Note that as in (7), we may péseél = 1 and use the fact that the annihilating

2For example in the case whefeé = 1, N = 1, we haveM > 7 instead of M > 18.

3This case was also presented in [1].
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Fig. 3. Determining the sinusoidal part of the pieces. F8g8(a) illustrates a truncated sinusoid. Assume, for examgpl
B-spline sampling kernep(¢) = 33(¢) that is of compact suppof” = 4 as is depicted in Figure 3(b). Since the kernel has a
certain support, the samples in the vicinity of the disauuties are not pure discrete sinusoids. Therefore the cdurkatrix
Sis full when S is constructed with the samples in the dashed window debicté=igure 3(c). Howevers is rank deficient

when the window is chosen as shown Figure 3(d) since the sangpk not influenced by the discontinuities.

filter in this case is symmetric. Using these constraintyy 8V samples are necessary to determine the
annihilating filter. Note that, in this case, the roots of &wihilating filter H5(z) are in pairsz = e/*»
andz = e~7“n. It is therefore necessary to limit the frequencie&dg| < « in order to avoid ambiguities.
This constraint becomés,,| < =/7 when the sampling period is not unity. In order to find the atages

A,, and the phases,,, we use2N consecutive samples affk] in order to construct a Vandermonde

system. For example, in the case whéfe= 1, we have the following system:

1 eiwik e—dwik A1¢(—w1)ej¢1

2 | gjwitk+1)  g—jen(k+1) Ayp(wy)e 7
[ vl

ylk + 1]

where the unicity of the solution is guarantied since theoaemts are distinct. Notice that determining
the parameters of the sinusoids is a classical spectraha#din problem [9].
In the piecewise sinusoidal case, the discontinuities émite the samples. Indeed, if the kernel has

compact supportV, the samples in the intervl, — TW/2,t,+TW/2] are not pure discrete sinusoids as
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Fig. 4. Sequential recovery of a piecewise sinusoidal $igamg the local reconstruction method with unknown fretpies.
The observed discrete signal is illustrated in Figure 4if@)this example, we have one sine wave per piece and freqgenci
w1,1, w21 andws 1 in the first, second and third piece respectively. The fragigs are determined using the annihilating filter
method. The annihilated signgl, [k] = (y*ha, *ha,)[k] whered@: = (jwi,1, —jwi,1) andda = (jws,1, —jw2,1) is shown in
Figure 4(b). The non zero samples in the vicinity of the digitwity are sufficient to recover the first breakpoint. Tleeand
breakpoint can be found by looking af, (k] = (y * ha, * ha,)[k] whereds = (jwsz,1, —jws,1) and ds = (jws,1, —jws,1)

which is depicted in Figure 4(c). The recovered continume signal is shown in Figure 4(d).

defined in (24). Hence, the sampling peribdnust be such that there are at leddt+1 samples that are
not influenced by the discontinuities in each interital ¢4, 1]. This enables to use the annihilating filter
method to estimate the,,. The only apparent difficulty lies in finding the right sanmgple each piece
that are not perturbed by the breakpoints. Recall from 8edti-A that the2N + 1 by 2N 4 1 matrix

S admits an annihilating filter whe®Rank(S) = 2N. However, the rank is full whes$ is constructed
with samples that are influenced by the discontinuitiesoliofvs that the samples that contain purely
a sinusoidal contribution can be found by running a windowanglthe k-axis constructing successive
matrices and looking at the rank 8f Figure 3 illustrates the sliding window. In Figure 3(c)e twindow
contains samples that are influenced by the discontinuiytiaa rank ofSis full. However, in Figure 3(d),
the matrix is rank deficient and the annihilating filter methe run to retrieve the parameters of the
sinusoids. Once the frequencies have been estimated, ¢htolos of the discontinuities may be found
using the method in Section V. Note that in this case, we impbat the discontinuities are sufficiently

far apart to retrieve eachy separately. We therefore have = 1. The discussion above is summarized
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Fig. 5. Numerical simulation of the recovery of a truncateecpwise sinusoidal signal withv = 2 sine waves. (a) The

continuous-time waveform. (b) The observed samples usiag(t) sampling kernel. (c) The reconstructed signal.

with the following statement:

Theorem 3: Assume a sampling kergél) of compact suppofi” and that can reproduce exponentials
e A or polynomialst™ with m = 0,1,..., M. A piecewise sinusoidal signal is uniquely determined
by the sampleg/[k] = (p(t/T — k), z(t)) if there are at mostN sinusoids with maximum absolute
frequency|wyq.| < 7/T in a piece of lengtil'(4N + W + 1) and M > 8N — 1.

Therefore, given that the sampling kernel satisfies the qrtms of the statement above, a piecewise
sinusoidal signal with pieces of minimum lengthcan be retrieved if it is sampled at a rate f ' >
max 4N+7[‘)’V+1, “"m—ﬂ‘”'} whereN is the maximum number of sinusoids per pi€lcg,.| is the maximum
absolute frequency of the sinusoids dndis the support of the sampling kerngl(t).

An overview of the algorithm for the local recovery of pieds& sinusoidal signals is presented in
Algorithm 2. A simulation recovering a piecewise sinusoidmnal with three pieces containing one
sinusoid per piece is illustrated in Figure 4. We use a das®-spline sampling kerne#; (¢) as it is
capable of reproducing polynomials of maximum degs@é— 1 = 7. A numerical simulation for the
N = 2 case is shown in Figure 5. In both simulations, the recootcusignal is exact within machine

precision.
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Algorithm 2 Local recovery of a piecewise sinusoidal signal

1: If frequencies of sinusoids are not known:

2: Run window alongk-axis and construct successiematrices
using the sampleg|k].

3 Find rank deficient windowS V k.

4:  For each window:

5 Estimate(wa,n, ¢a,n, Aa,n) ON y[k] whereS is rank deficient.

6: end for

7: end if

8: For each pair of consecutive pieces:

9:  Apply annihilating filters for consecutive windows[k] = ha * y.

10:  Compute moments[m] in (22) and build system in (23).

11: Locationst, are given by the roots of.

12: end for

V1. JOINT RECOVERY OF PIECEWISE SINUSOIDAL AND POLYNOMIAL SIGNAS

Sampling piecewise sinusoidal signals using the schenesepted above is not based on the fact that
the signals of interest are bandlimited but on the fact thay tcan be represented with a finite number
of parameters. It is worth mentioning here that signals #rata combination of piecewise sinusoidal
and polynomials pieces are also defined by a finite number rainpeters and they can also be recovered

from their sampled versions using the same algorithms. &k&mals are of the type:

D
2(t) = wa(t)a(t),
=1

wherez(t) = 0 for t < t1, {4(t) is as previously defined and

N P-1
xq(t) = Z Agn cos(want + Gan) + Z Bypt?.
n=1 p=0

That is, we have a maximum d¥ sinusoids and polynomials of maximum degie- 1 in each piece.
In the following, we will briefly discuss the basic steps taaeer the parameters as they are analogous

to the piecewise sinusoidal cases presented in SectioneadWa
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Fig. 6. Sampling a combination of piecewise polynomials amiisoids. The observed samples are depicted in Figure 6(a)
In the first step, we annihilate the polynomial part by appiythe finite difference operator. As shown in Figure 6(b), are
left only with a piecewise sinusoidal part. The parametdraracterizing the sinusoid are retrieved and the annihgdfilter

is applied. The samples depicted in Figure 6(c) containhedlibformation necessary to find the discontinuity. The veoad
continuous-time signal is shown in Figure 6(d).

Clearly, thePth order derivative of,c(t) is

dP
Z Z oA cos(@ant + da)léalt) +

d=1n=1
D+1P—-1

SN wapdP(t —ta),

d=1 p=0

which is a piecewise sinusoidal signal with differentialicacs in the discontinuities. Both the global and
the local schemes presented above are able to cope withdigesds. Therefore if we are able to relate the
observed samplegk] with the sampleg/("”)[k] that would have been obtained framh”)(t), we will be
able to recover:(")(t). Thez(t) will then be obtained by integration which is uniquely defirsince we
assume that(t) = 0 for ¢t < t;. The relation between the samplgg] andy(")[k] is related to B-spline
theory and was demonstrated in [5]. Assume we apply the fififlerencey ") [k] = y[k+1] —y[k] to the
observed samples. The new set of samplé4k] are equivalent tg/V[k] = (p(t—k) =By (t—k), L (1))

where 3y (t) is the B-spline of degree zero and where we assumeTthat1. Similarly, the Pth order
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Digital Noise e[k]

x(t)
sl o(-t/T) &

Acquisition Device

Fig. 7. Sampling setup in the presence of noise. The sceigiientical to the noiseless case. However, we assumeltbat t

observed sampleglk] are the noiseless samplg:] corrupted by digital additive i.i.d. white Gaussian noigg].

finite differences lead to the samples
P

VD] = ol — k) Bpa (1 — k), (),
which means the obtained samples are equivalent to the loaegsduld have been observed from sampling
x(P)(t) with the kernely(t) * 3p_1(t). Moreover, since the polynomial and exponential repradact
capability are preserved through convolution, the new d&lers able to reproduce the polynomials or
exponentials as well. Hence the sampling schemes presaitse are also valid for piecewise sinusoidal
and polynomial signals. An example of the sampling of the@ise polynomial and sinusoidal case is

depicted in Figure 6.

VIl. DEALING WITH NOISE: PROBLEM SETUR ISSUES AND SOLUTIONS

In the first part of the paper, we showed that in the noiselass e are able to perfectly reconstruct
a continuous-time piecewise sinusoidal signal from its ach version. In the following, we study the
noisy scenario. Reconstruction of finite rate of innovat@mals in the presence of noise has also been
considered in [28], [29], [30], [31]. However, these papeosicentrate mostly on streams of Diracs
and piecewise polynomial signals. Piecewise sinusoidgiads are not considered. In order to study the
effect of noise on the estimation of the parameters that e¢fia piecewise sinusoidal signal, we consider
additive noise on the samples as illustrated in Figure 7.edtiis model, the observed samplgs] are
given by

o0

31K = ylb] + elb] = [ (e — R)a(e)dt + el (25)

—00
where we assume that the sampling peribds unity and that the:[k] are independent, identically
distributed and follow a Gaussian distribution with zeroamend variance?.

For clarity, we consider retrieving parameters of a truedatine waver(t) = cos(wit)[u(t — t1) —

u(t — t9)] using the local method with unknown frequency presentedeictiSn V-B. In this context, we
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are estimating the locatioris, to and the frequency; from the observed samples in (25). We will also
assume that the locatiomgs andt, are sufficiently far apart such that they can be retrievedpeddently.
The sampling kernep(¢) is a polynomial splingd,(t) with Fouriertransfornﬁ(w) = (1;%)5 The first
step in the reconstruction algorithm consists in estingatite frequencys; of the sine wave. However,
we will not delve into this problem here since it is a claskggectral estimation problem which has
been well researched and can be solved using a variety ofithlgs. For a detailed view we refer to [9].
Rather, we will focus on the retrieval of the switching psitit and¢,. Note that the samples that contain
only the sine information may be located in a similar fashtiorthat of Section V-B. However, in this
case, we compare the largest and the smallest eigenvalties sficcessiv8 matrices using the samples
ylk]. The regions where the ratio of the smallest over the largiggtnvalue is smaller than a threshold
~ are chosen to estimate the frequency of the sine wave. Irr todee more robust to noise, we may
chooseN > 1.

Following the method in Section V-B, we apply the annihiigtiilter in order to obtain the annihilated

samples
J'[k] = (ylk] + e[k]) * halk] = y'[k] + €[],

and compute the momentgm| with which we recover the switching points. This straightfard
application, however, becomes unstable in the presenc®isénThe reason for this issue is that the
Signal-to-Noise Ratio (SN of 7/[k] which is used for the estimation @f andt, is usually lower
than that ofy[k]. Indeed, by applying the annihilating filtér;[%], we are effectively killing most of the
power of the signal without reducing the nofs&his effect is particularly visible in Figure 8(b) where
the equivalent Diraa’(t) is buried in the noise. There is therefore a need to desigrigamitam to find

the locations oft; andt, that preserves at least some of the energy of the originaéfoaw =(t).

A. A polyphase reconstruction algorithm

In this section, we show that by applying an additional filterthe samples before computing the
moments in (22), we are able to improve the estimation of thigcking points.

Consider the filterHj(e/) = (1 4+ ¢77“)> and assume we apply it to the B-splink(w). The

“We define the SNR a20 log {4Ei2 where|| - ||, is the l>-norm.

5The noise in this case is no longer white but is a filtered neigé.5.
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resulting function becomes

Bme) = (Fo) ey

1—e 2wy\5
N ( 25w )

A~

= [4(2w), (26)

which is a scaled version of the original B-spline. Simifartonsider the filterH2(e/*) = %(1 +

eI“1e=I@) (1 + e~ Iw1e7I¥) whered@ = (jwi, —jwi). This filter together with the original annihilating

filter H5(e’¥) gives:

Hy(e?)HZ(7%) = (1 — el ¥)(1 — e 9%1e79%)

—~

(14 e/“1e™%) (1 4 e Iwre7Iw)

I N

= (1 = HwreT2W) (1 — e HWrem W)
= (ha(2w)La(jw). (27)

That is, the new annihilating filter can be related to a scilespline and a differential operator. Applying

both filters to the samples, we have

y'[k] = h% * hé « hg * (Ba(t — k), z(t))

= % <67ju}k34(W)H;Qa(ejw)Hé(ej“’)I—IO?(eJ'W)7 #(w))

T, ks 5 A

= %<€ ! kﬁ4(2w)ﬁw(2w)Ld(]w),x(w)>

= (La{Ba(t/2 = k) * Bog(t/2 — k)}, x(t))

= (Ba(t/2 = k) = B2a(t/2 — k), La{z(t)}),
where we have used the same derivation as in (21) togethler(26) and (27). The new noisy samples
are given by

J'[k] = (Ba(t/2 — k) * Baa(t/2 — k), La{z(t)}) + €"[k],

wheree” [k] = h% *hé xhg*e. Thus, these observed samples are equivalent to those diiéd thvave been
observed if the signal’(t) = Lz{x(t)} was sampled with the scaled kernél(t) = 54(t/2) * B2(t/2).

Therefore, we may write the samples as:

7' (k] = (¢"(t — k),2"(2)) + €"[k].
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Since the new kernel is an E-spline scaled by a factor of tweb Bnmemains the same, we have two
times more samples than are necessary to recQvefFhe samples can therefore be decomposed into

their polyphase components:
gkl = ("t —2k),2'(t)) + €"[2K]
k] = (Ot —2k—1),2'(t)) + " [2k — 1].

Each polyphase component is treated independently andthesponding coefficient%% andc’/n’%f1
are obtained using the kerngl (). The locatior; is estimated separately from the even and odd samples
and the final estimate is given by the average of the two obddimcations. This procedure may be iterated
in order to create four, eight or more polyphase componéisinstance the filters in the four-phase case
are Hg(ej“’) = Hé(ej“’)?’—lQ(I + e %)% and Hi(e/¥) = H2(e7)1(1 + eXwre20w)(1 + e~ 2wre—20w),
In the general case of phases, we denote the samplesj8lg] = hg * hg x hg * g and the equivalent
sampling kernel isp?(t) with compact supportV,.

Note that this polyphase reconstruction is somewhat resgemt of the scenario used in [5] for
recovering Diracs in noise. However, while in that paperpghlphase components are obtained through

oversampling, the method presented here does not requinerease the sampling rate.

B. Further denoising with hard thresholding

The sampling kernels assumed in the context of this papeofafiaite support (i.e. B-splines or E-
splines). We may therefore use this property to reduce tisenio the samples. Indeed, if we assume that
the discontinuities are sufficiently far apart, we expedtawe onlyl¥,, non-zero samples af’ (k] where
W, is the support of the equivalent sampling kerp@(t). This is due to the fact that the equivalent signal
2/(t) is a sum of differentiated Diracs. Our hard thresholdingrepph therefore consists in obtaining an
initial estimatek T of the switching location and setting to zero all the nomezeamples that are not in
the intervalkT € [k,T — TW, /2, kyT +TW,/2] since they are assumed to be purely generated by the
additive noise. Assuming the intervals in between switghpoints have been determined, we obtain the
initial estimate of the locatiort; by averaging the locations of the maximum and minimum valfes
the annihilated signaj?[k]. An example of the annihilated signals for different nunsbef phases are

depicted in Figures 8(b-d). The overall algorithm is ddsadiin Algorithm 3.

C. Performance evaluation

It is of interest here to evaluate the performance of the nsitaction algorithm in the presence of

different noise levels. Therefore, we consider the CraR#w bound that provides an answer to the
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Fig. 8. Applying the annihilating and polyphase filters tasyosamples at SNR= 8 [dB]. (a) The observed noisy samples
7lk]. (b) The annihilated sampleg[k] = hs * ¢. In this case, the equivalent signél(t) is buried in noise. (c) The annihilated
samplesj”[k] = h} = hZ = hs = § using the two-phase annihilating filter. (d) The annihilagamplesj* (k] = R} * hs * hg * §
using the four-phase annihilating filter. Note that the tmaof the switching points becomes more distinct when tthditeonal

filters are applied.

Algorithm 3 Recovery of a piecewise sinusoidal signal in noise

1: Run window alongk-axis and construct successi@ematrices using

the samplegj[k].

N

: Perform Singular Value Decomposition 8fV k.

w

: Estimate(wa,n, ¢a,n, Aa,n) ON k] where smallest eigenvalue over

biggest eigenvalue o8 is smaller than threshold.

N

: For each pair of consecutive pieces:

a

Apply annihilating filtersy” (k] = h} * h% x ha *
wherep represents the number of phases.
6:  Estimate switching poinkt,; using the average of
kmas = argmax {g?[k]} and kp,in = argmin, {g”[k]}.
7:  Keep only the sampleBT” € [kqT — TW,/2, kT + TW,/2].

8: For each polyphase component:

9: Compute moments[m] in (22) and build system in (23).
10: Locationst, are given by the roots oi.

11:  end for

12:  Average locations obtained from each polyphase comyone

13: end for
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Fig. 9. Retrieval of the switching point of a step sing (= 12.23x [rad/sec] and; = 0.4907 [sec]) in 128 noisy samples. (a)
Scatter plot of the estimated location. (b) Standard deriataverages over 1000 iterations) of the location resli@ompared

to the Cramér-Rao bound.

best possible performance of an unbiased estimator. Thieatden of the Cramér-Rao bound in the
case of additive white Gaussian noise is presented in Appehdin this experiment, the acquisition
device observes 128 noisy samples with= 1/128 [sec] of a truncated sine wave with frequency
wy; = 12.237 [rad/sec] and switching points, = 0.4907 [sec] andty, = 1 [sec]. Since we assume
that the switching points are sufficiently far apart, theicdtions can be estimated independently. We
therefore show the results only for the first discontinuitye frequency of the sine wave is estimated using
Matlab’s r oot musi ¢ function and the location of the switching point is estingatesing a four phase
approach and additional hard thresholding. Note that wee lzdso experimented with other frequency
estimation methods as well as using the ground truth frequeSimilar results are obtained in all cases.
Figure 9(a) shows the scatter plot for the reconstructionhef switching pointt; for different SNR
levels. The standard deviation of the error (averages o080 lterations) of the location retrieval is
shown in Figure 9(b). These simulations show that the pregp@econstruction algorithm behaves well
down to noise levels of about 7 [dB]. Figure 10 illustrateseample of the recovery of a continuous-
time piecewise sinusoidal signal (with = 0.2441 [sec], t; = 0.7324 [sec] andw; = 12.237 [rad/sec])
given 128 noisy samples at an SNR of 8 [dB]. Note that despite the smniadl én the estimation of the

frequency of the sine wave, the estimation of the switchiomts are accurate.
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Fig. 10. Recovery of a truncated sine wave at SNR = 8 [dB]. (@ ®©bserved noisy samples. (b) The reconstructed signal

along with the ground truth signal (dashed).

VIIl. CONCLUSION

We have set out to show that piecewise sinusoids belong tdatindy of signals with finite rate
of innovation and can be sampled and perfectly reconstlugting sampling kernels that reproduce
exponentials or polynomials. These classes of kernelsharsiqally realizable and are of compact support.
Moreover, combinations of piecewise sinusoids and polyiatsnalso have a finite rate of innovation and
can be dealt with using similar sampling schemes.

Since the sampling scheme is limited by the rate of innowatither than the actual frequency
of the continuous-time signal, we are, in theory, capableetfieving piecewise sine waves with an
arbitrarily high frequency along with the exact locationtloé switching points. We believe therefore that
the sampling scheme presented may find applications, fangbea in spread spectrum and wide band
communications.

Finally, we studied the effect of noise on the performancthefestimation of the switching points. In
doing so, we derived a polyphase reconstruction algorithman together with hard thresholding behaves

well with respect to the Cramér-Rao bounds down to SNRs a@Bi.[

APPENDIX A

DERIVATION OF THE CRAMER-RAO BOUNDS

The piecewise sinusoidal signal we consider in (2) is defimethe parameter vector:

O = (t1,A11,wi,1,01,1,---,tD, AD, N, WD, N, OD, N+ tD+1)-
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These parameters are estimated using the observed samples

jlk] = /OO o(t)T — k)z(t)dt +e[k]  k=0,1,...,K,

— 0o
where e[K] is i.i.d. additive white Gaussian noise with zarean and variance?®. For clarity, we denote

glk] as a function of the parameter vector with

Ikl = f(©, k) + e[k].

The performance of any unbiased estima®ris lower bounded by the Cramér-Rao bound(@) >
I71(®), where(®) is the Fisher Information Matrix defined d$®) = E(VI(©)VI(©)T) and!(©)
is the log-likelihood function of the data, i.e. a functioh® conditioned on the measured sampjé’s.

Recall that the noise[k] follows the Gaussian distribution
2

p(x) = \/21—7“7 exp (—2%)

therefore we have
(y[k]|©) = p(g[k] — f(©,k)).

Hence the log-likelihood function is given by

1(©) = Inp(glo],...,JlK ]I@)=
K
n [ p(@lkll® Zlnp £(©,k)),
k=0

where we have used the independence of the noise saafp|eshe partial derivative of the log-likelihood

function is given by

K
1 8f @ k)
— > clk]

k=0
and

1K
= —QZ K]V £(©, k),
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where theV operator denotes the gradient @, k) with respect to the signal parametés. Finally,
we determine the Fisher information matrix

1(®) = B(VI(Oe)VI(e))

M
Ze m]Vf(©,k)Vf(©,m) )

O

E(e[kle[m])V £(©,k)V f(©,m)T

= QZ F(©,k)V (O k)T

where we have used the fact that the noise is independentificerrelated). The Cramér-Rao bound is

thus given by

K
CRB(©) =0*(Y_V(©.k)VF(©,kT)" (28)
k=0
with Vf(©,%) = [44 - - gomd—].

These bounds are complicated to compute for a general piseamusoidal signal. However, we can
look at the simpler case where we assume that the observeal siga single truncated sine wave with

known amplitude4; = 1 and phase); = 0. The signal is therefore given by
z(t) = cos(wit)éi(t),  &i(t) =u(t —t1) —u(t —ta),

which is characterized by three parameters, nangly (¢1,w;,t2). Computing the partial derivatives

gives
f(Tl’) - 3_751/—00 cos(w1t)&1(t)p(t — k)dt
= —cos(wity)p(t; — k),
ﬂT;) - 3_752/—00 cos(wit)&1(t)p(t — k)dt
= cos(wita)plts — k),
and
8 @,k‘ 8 [e'e)
féTl) N 8—w1/00 cos(w1t)&1 (t)p(t — k)dt

ta
= —/ tsin(wit)p(t — k)dt.
t1

Using these three relations enables to evaluate numeridedl Cramér-Rao bound in (28).
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