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Abstract

We consider the problem of sampling piecewise sinusoidal signals. Classical sampling theory does

not enable perfect reconstruction of such signals since they are not bandlimited. However, they can

be characterized by a finite number of parameters namely the frequency, amplitude and phase of the

sinusoids and the location of the discontinuities. In this paper, we show that under certain hypotheses on

the sampling kernel, it is possible to perfectly recover theparameters that define the piecewise sinusoidal

signal from its sampled version. In particular, we show that, at least theoretically, it is possible to recover

piecewise sine waves with arbitrarily high frequencies andarbitrarily close switching points. Extensions

of the method are also presented such as the recovery of combinations of piecewise sine waves and

polynomials. Finally, we study the effect of noise and present a robust reconstruction algorithm that is

stable down to SNR levels of 7 [dB].
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Fig. 1. Sampling setup. The continuous-time signalx(t) is filtered by the acquisition device and sampled with periodT . The

observed samples arey[k] = 〈ϕ(t/T − k), x(t)〉.

I. INTRODUCTION

Most digital acquisition systems involve the conversion ofsignals from analog to digital. Usually, the

device is modeled with a smoothing kernelϕ(t) and a uniform sampling periodT > 0. Following this

setup, the observed discrete-time signal is given by

y[k] =

∫ ∞

−∞
ϕ(t/T − k)x(t)dt = 〈ϕ(t/T − k), x(t)〉 (1)

with k ∈ Z as shown in Figure 1. The fundamental problem of sampling is to recover the original

continuous-time waveformx(t) using the set of samplesy[k]. In the case where the signal is bandlimited,

the answer due to Shannon is well known [2]. The theorem states that the signal is completely determined

by its samples given that the sampling ratefs = 1
T is greater or equal to twice the highest frequency

component ofx(t). The original signal is recovered withx(t) =
∑

k∈Z
y[k]sinc(t/T −k) where sinc(t) =

sin(πt)/πt andy[k] = x(kT ). The problems arise when the band ofx(t) is unlimited for instance due

to a discontinuity. From a Shannon point of view, these events are seen as infinite innovation processes

and therefore require an infinite number of samples. Hence, events concentrated in time are not precisely

measurable.

A sampling scheme has recently been developed by Vetterli etal. [3] where it is made possible

to sample and perfectly reconstruct signals that are not bandlimited but are completely determined by

a finite number of parameters. Such signals are said to have a Finite Rate of Innovation (FRI). For

instance, the authors derive a method to recover some classes of FRI signals such as streams of Diracs,

differentiated Diracs and piecewise polynomials using sinc or Gaussian kernels. Later, in [4], [5], it was

shown that these signals can also be recovered using more realistic compact support sampling kernels

such as those satisfying the Strang-Fix conditions [6], exponential splines [7] and functions with a rational

Fourier transform. The case of non-uniform samples across multiple channels has been studied in [8].

The reconstruction process for these schemes is based on theannihilating filter method, a tool widely

used in spectral estimation [9], error correction coding [10], interpolation [11] and for solving inverse
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problems [12], [13], [14], [15]. These results provide an answer for precise time localization (i.e. Diracs

and polynomial signals) but in some sense lack frequency localization capabilities.

In this paper, we extend FRI theory to oscillating functions. In particular, we investigate the case

where the continuous-time signal is piecewise sinusoidal therefore it contains both time and frequency

components. More precisely, we consider signals of the type:

x(t) =

D
∑

d=1

N
∑

n=1

Ad,n cos(ωd,nt + φd,n)ξd(t), (2)

whereωd,n, Ad,n andφd,n are constant parameters and

ξd(t) = u(t − td) − u(t − td+1),

0 ≤ t1 < . . . td < td+1 · · · < tD+1 ≤ ∞

whereu(t) is the Heaviside step function; and study their reconstruction from the samplesy[k] given

in (1). Such signals are notoriously difficult to reconstruct since they are sparse neither in time nor in

frequency. For this reason, the schemes in [4], [5], [3] as well as the Shannon type schemes would not

enable an exact recovery. However such signals have a finite rate of innovation and we demonstrate that

it is possible to retrieve the parametersωd,n, Ad,n andφd,n of the sinusoids along with the exact locations

td given certain conditions on the sampling kernelϕ(t). Note that similar cases have been studied in the

FRI context. For example, in [16] the authors deal with bandlimited signals that are corrupted by additive

shot noise (i.e. Diracs). The case of bandlimited signals added to piecewise polynomial signals was also

considered in [17]. These types of signals, however, do not encompass the piecewise sinusoidal signal

defined in (2).

It is also worth mentioning that a lot of attention has recently been given to the problem of recovering

sparse signals from a non-uniform set of samples [18], [19].These works deal with discrete signals that

have a sparse representation in a basis or frame. Extensionsto the case of analog signals belonging to

a union of shift-invariant sub-spaces were considered in [20], [21], [22]. The signals of interest in this

paper, however, are not sparse in a basis or frame nor lie in a union of shift-invariant sub-spaces, but have

a sparse parametric representation. That is, they can be represented with a finite number of parameters

per unit of time.

This paper derives two methods to retrieve exactly continuous-time piecewise sinusoidal signals from

their sampled version. Sections II and III discuss the sampling kernels that can be used in our scheme and

recall some of the aspects of annihilating filter theory. Using these kernels, Section IV derives a global

method for retrieving the parameters of a general piecewisesinusoidal signal. Section V discusses local
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reconstruction methods that have a lower complexity. In Section VI, we briefly discuss some extensions of

the algorithm, namely adding piecewise polynomials to piecewise sine waves. Section VII deals with noisy

observations and presents a robust algorithm for sampling piecewise sinusoidal signals in the presence

of noise. Finally, we conclude in Section VIII.

II. SAMPLING KERNELS

Many sampling schemes such as the classical Shannon reconstruction [2] and some of the original

FRI schemes [3] rely on the ideal low-pass filter (i.e. the sinc function). This filter is not realizable in

practice since it is of infinite support. It is therefore attractive to develop sampling schemes where the

kernels are physically valid and realizable. It was recently shown that FRI sampling schemes may be

used with sampling kernels that are of compact support [4], [5]. In this section, we present these kernels.

A. Polynomial reproducing kernels

A polynomial reproducing kernelϕ(t) is a function that together with its shifted version is able to

reproduce polynomials. That is, for a given set of valuesm = 0, 1, . . . ,M , it is possible to have

∑

k∈Z

cm,kϕ(t/T − k) = (t/T )m,

given the right choice of weightscm,k. Strang and Fix [6] proved that the necessary and sufficient

conditions for a function to have the above property are

ϕ̂(0) 6= 0 and
dmϕ̂(ω)

dωm

∣

∣

∣

ω=2kπ
= 0, k 6= 0, m = 0, . . . ,M,

whereϕ̂(ω) is the Fourier transform ofϕ(t). Perhaps the most basic and intuitive such kernels are the

classical B-splines [23]. The B-spline of degree zero is a function with Fourier transform

β̂0(ω) =
1 − e−jω

jω
.

The higher order B-splines of degreeN are obtained throughN + 1 successive convolutions ofβ0(t)

such thatβ̂N (ω) =
(

1−e−jω

jω

)N+1
and they are able to reproduce polynomials of degree zero toN . This

property follows directly from the Strang-Fix condition above.

B. Exponential reproducing kernels

Similarly to the polynomial reproducing kernels, an exponential reproducing kernelϕ(t) is a function

that together with its shifted version is able to reproduce exponentials. That is, for any given set ofM +1

July 31, 2009 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

values(α0, . . . , αM ), it is possible to have

∑

k∈Z

cm,kϕ(t/T − k) = eαmt/T , m = 0, 1, . . . ,M (3)

given the right choice of weightscm,k. Note thatαm may be complex. One important family of such

kernels are the exponential splines (E-splines) that appeared in early works such as [24], [25], [26], [27]

and were further studied in [7]. These functions are extensions of the classical B-splines described above

in that they are built with exponential segments instead of polynomial ones. The first order E-spline is a

function βαn
(t) with Fourier transformβ̂αn

(ω) = 1−eαn−jω

jω−αn
. The E-splines of degreeN are constructed

by N successive convolutions of first-order ones:

β̂~α(ω) =
N
∏

n=1

1 − eαn−jω

jω − αn
, (4)

where ~α = (α1, . . . , αN ). A series of interesting properties are derived in [7]. In particular, it is

shown that an E-spline has compact support and it can reproduce any exponential in the subspace

spanned by{eα1t, . . . , eαN t}. Furthermore, since the exponential reproduction property is preserved

through convolution [7], we have that any kernel of the formϕ(t) ∗ β~α(t) is also able to reproduce

the same exponentials as above.

III. A NNIHILATING FILTERS AND DIFFERENTIAL OPERATORS

In this section, we recall the notions of annihilating filterand differential operator which are at the heart

of the sampling schemes developed in this paper. In particular, we recall the annihilating filter method

and show how the annihilating filters in the case of exponential signals are related to the E-splines. We

also show how a piecewise exponential signal may be converted into a stream of differentiated Diracs

using an appropriate differential operator.

A. The annihilating filter method

Assume that a discrete-time signals[k] is made of weighted exponentials such thats[k] =
∑N

n=1 anuk
n

with un ∈ C and assume we wish to retrieve the exponentialsun and the weightsan of s[k]. The filter

h[k] with z-transform

H~u(z) =
N
∏

n=1

(1 − unz−1) (5)
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and~u = (u1, . . . , uN ) is called annihilating filter ofs[k] since(h ∗ s)[k] = 0 ∀k ∈ Z. We can therefore

construct the following system of equations:






























...
... . . .

...

s[0] s[−1] . . . s[−N ]

s[1] s[0] . . . s[−N + 1]
...

...
. . .

...

s[N ] s[N − 1] . . . s[0]
...

... . . .
...















































h[0]

h[1]
...

h[N ]

















= 0.

Notice thatN + 1 equations are sufficient to determine theh[k] therefore we write the system in matrix

form as

Sh = 0, (6)

whereS is the appropriateN + 1 by N + 1 Toeplitz submatrix involving2N + 1 samples ofs[k]. If s[k]

admits an annihilating filter, we haveRank(S) = N hence the matrix is rank deficient. The zeros of

the filter H~u(z) uniquely define theuns since they are distinct and any filterh[k] satisfying the Toeplitz

system in (6) hasun as its roots. Note that without loss of generality we may poseh[0] = 1 and solve

the system
















s[N − 1] s[N − 2] . . . s[0]

s[N ] s[N − 1] . . . s[1]
...

...
. . .

...

s[2N − 2] s[2N − 1] . . . s[N − 1]

































h[1]

h[2]
...

h[N ]

















=

















−s[N ]

−s[N + 1]
...

−s[2N − 1]

















, (7)

which only requires2N samples ofs[k]. Given theuns, the weightsan are obtained by solving a system

of equations usingN consecutive samples ofs[k]. These form the classic Vandermonde system
















1 1 . . . 1

u1 u2 . . . uN

...
...

. . .
...

uN−1
1 uN−1

2 . . . uN−1
N

































a1

a2

...

aN

















=

















s[0]

s[1]
...

s[N − 1]

















,
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which also has unique solution given that theuns are distinct.

A straightforward extension of the above annihilating filter is that a signals[k] =
∑N

n=1

∑Rn−1
r=0 an,rk

ruk
n

is annihilated by the filter

H~u(z) =

N
∏

n=1

(1 − unz−1)Rn , (8)

which has multiple roots of orderRn in the un. For a more detailed discussion of the annihilating filter

method we refer to [9].

Let us return to the sinusoidal case. Clearly, a filter of the type H~u(z) will also annihilate a discrete

sinusoidal signaly[k] =
∑N

n=1 An cos(ωnk + φn) since it can be written in the form of a linear

combination of complex exponentials. In this case, the filter is obtained by posing~u = e~α and

~α = (jω1, . . . , jωN ,−jω1, . . . ,−jωN ). (9)

We simplify the notation by expressingHe~α(z) asH~α(z). By comparing (5) with (4) and usingz = ejω,

we see that the annihilating filter for a linear combination of exponentials can be expressed with an

E-spline as

H~α(ejω) = β̂~α(ω)

N
∏

n=1

(jω − αn), (10)

where the second term is a differential operator which is discussed in the following section.

B. Differential operators

Let L{x(t)} be a differential operator of orderN :

L{x(t)} =
dNx(t)

dtN
+ aN−1

dN−1x(t)

dtN−1
+ . . . + a0x(t), (11)

with constant coefficientsan ∈ C. This operator can also be defined by the roots of its characteristic

polynomial

L(p) = pN + aN−1p
N−1 + . . . + a0 =

N
∏

n=1

(p − αn).

Using the same notation as in [7], we express the operator asL~α where~α = (α1, α2, . . . , αN ). Posing

p = jω, we have in the frequency domain

L~α(jω) =
N
∏

n=1

(jω − αn).

The null space of the operator, denotedN~α, contains all the solutions to the differential equation

L~α{x(t)} = 0. It is shown in [7] thatN~α = span{eα1t, . . . , eαN t}. It is therefore said that the operator has
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exponential annihilation properties. Moreover, the operator has sinusoidal annihilation properties when

~α is defined as in (9). This follows naturally from the fact thatsinusoids are linear combinations of

complex exponentials. Therefore, given the right~α, the operatorL~α will produce a zero output for the

corresponding sinusoidal input. It is also relevant to mention here that the Green functiongαn
(t) of the

operatorLαn
is a function such thatLαn

{gαn
(t)} = δ(t) whereδ(t) is the Dirac distribution. In this

case, the Green function is given bygαn
(t) = eαntu(t) [7] where u(t) is the Heaviside step function.

Consequently, we have that

Lαn
{eαntu(t − tn)} = eαntδ(t − tn). (12)

Finally, by combining (12) with (11), it follows that

L~α

{

N
∑

n=1

eαntu(t − tn)
}

=
N

∑

n=1

N−1
∑

r=0

wn,rδ
(r)(t − tn), (13)

whereδ(r)(t) is a differentiated Dirac of orderr and wn,r are weights that depend on theαn. Hence,

the appropriate differential operator applied to a piecewise exponential signal will produce a stream of

differentiated Diracs in the discontinuitiestn.

Note that in [3], [5] were piecewise polynomial signals are considered, the signal is differentiated with

αn = 0. This differentiation of the piecewise polynomial signal leads to a stream of differentiated Diracs

that can be retrieved from their samples using signal moments. A similar method can be used in the

piecewise sinusoidal case. However, as shown above, the differential operator that produces a stream of

differentiated Dirac impulses requires the knowledge of the frequencies of the sine waves (i.e.~α is as

defined in (9)). Therefore, the methods in [3], [5] cannot be directly applied.

IV. RECONSTRUCTION OF PIECEWISE SINUSOIDAL SIGNALS USING A GLOBAL APPROACH

All the necessary tools to sample piecewise sinusoidal signals have now been laid down. For mathe-

matical convenience, we write the continuous-time signal as:

x(t) =

D
∑

d=1

2N
∑

n=1

Ad,nej(ωd,nt+φd,n)ξd(t), (14)

which is made ofD pieces containing a maximum ofN sinusoids each. Assume now that this signal

is sampled with a kernelϕ(t) that is able to reproduce exponentialseαmt with αm = α0 + λm where

α0, λ ∈ C andm = 0, 1, . . . ,M . Following previous FRI methods [5], weighting the sampleswith the
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appropriate coefficientscm,k gives

τ [m] =
∑

k∈Z

cm,ky[k] =
〈

∑

k∈Z

cm,kϕ(t − k), x(t)
〉

=

∫ ∞

−∞
eαmtx(t)dt, (15)

where we have used (1) and (3) and set the sampling period toT = 1. Note thatτ [m] is an exponential

moment of the original continuous-time waveformx(t). In particular, whenαm = jmω0, we retrieve the

coefficientsτ [m] = x̂(mω0) of the Fourier transform ofx(t). Plugging (14) into (15) gives

τ [m] =
D

∑

d=1

2N
∑

n=1

Ād,n
[etd+1(jωd,n+αm) − etd(jωd,n+αm)]

jωd,n + αm
, (16)

whereĀd,n = Ad,nejφd,n. These moments are a sufficient representation of the piecewise sinusoidal signal

since the frequencies of the sinusoids and the exact locations of the discontinuities can be found using

the annihilating filter method.

Let us define the polynomialQ(αm) =
∏D

d=1

∏2N
n=1(jωd,n + αm) of degree2DN . Multiplying both

sides of (16), we find the expression

Q(αm)τ [m] = (17)
D

∑

d=1

2N
∑

n=1

Ād,nΦd,n(αm)[etd+1(jωd,n+αm) − etd(jωd,n+αm)],

whereΦd,n(αm) is a polynomial of maximum degree2DN − 1. Recall that we imposeαm = α0 + λm

which means that the right hand side of (17) is equivalent to
∑D+1

d=1

∑2DN−1
r=0 br,dm

reλtdm wherebr,d

are weights that depend onαm but do not need to be computed here. Therefore a filter of the type:

H(z) =
D+1
∏

d=1

(1 − eλtdz−1)2DN =
K

∑

k=0

h[k]z−k,

with K = (D + 1)2DN = 2D2N + 2DN will annihilate (17) as shown in (8). It follows that

K
∑

k=0

h[k]Q(αn−k)τ [n − k] = 0, (18)

with n = K,K + 1, . . . ,M . SinceQ is a polynomial inαm, it can be written as

Q(αm) =
L

∑

l=0

r[l]αl
m,

whereL = 2DN . Using this notation, the system in (18) becomes

K
∑

k=0

L
∑

l=0

h[k]r[l](αn−k)lτ [n − k] = 0
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















τ [K] . . . (αK)Lτ [K] . . . τ [0] . . . (α0)
Lτ [0]

τ [K + 1] . . . (αK+1)
Lτ [K + 1] . . . τ [1] . . . (α1)

Lτ [1]
...

. . .
...

. . .
...

. . .
...

τ [K + U ] . . . (αK+U )Lτ [K + U ] . . . τ [U ] . . . (αU )Lτ [U ]





















































h[0]r[0]
...

h[0]r[L]
...

h[K]r[0]
...

h[K]r[L]





































= 0, (19)

Algorithm 1 Global recovery of a piecewise sinusoidal signal

1: Compute momentsτ [m] in (15).

2: Build the system in (19) and retrieve the annihilating filter h[k]r[l].

3: Seth[0] = 1 and retrieve ther[l]. Compute theh[k].

4: Compute the roots of theh[k] andr[l] in order to find thetd and

the ωd,n respectively.

5: Build the system in (20) using theτ [m] as well as thetd and

ωd,n computed in the previous step.

6: Retrieve theĀd,n and compute theAd,n and theφd,n.

for n = K, . . . ,M . For clarity, we write the system in matrix form which gives (19) whereU = M−K ≥
(K + 1)(L + 1) − 1. Solving this system withh[0] = 1 enables to find ther[l]s. Subsequently, we find

the h[k]s. The roots of the filterH(z) and the polynomialQ(αm) give the locations of the switching

points1 and the frequencies of the sine waves respectively. The number of exponential momentsτ [m]

required to build a system with enough equations to find the parameters of the piecewise sinusoidal signal

is M + 1 = K + U + 1 = 4D3N2 + 4D2N2 + 4D2N + 6DN + 1.

At this point, we have determined all the frequencies of the sinusoids and the locations of the

discontinuities. However, the polynomialQ(αm) does not enable to distinguish which frequencies are

present in which piece. This information, along with the amplitudes and phases of the sinusoids are found

1Note that in the case whereλ = jω0 is purely imaginary, theω0 has to be chosen such thatω0 ≤ 2πT/tD+1 in order to

avoid ambiguities.
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0 0.25 0.5 0.75 1 [sec]
−2

0

2

(a)

0 0.25 0.5 0.75 1 [sec]
−0.5

0

0.5

(b)

0 0.25 0.5 0.75 1 [sec]
−2

0

2

(c)

Fig. 2. Sampling a truncated sine wave. (a) The original continuous-time waveform. In this example, we havet1 = 0.3877

[sec] andt2 = 0.6035 [sec]. The frequency of the sine wave isω1,1 = 121π [rad/sec] and the sampling period isT = 1/40

[sec]. (b) The observed samples. The sampling kernel is an exponential spline with parametersα0 = 0 andλ = j0.082π. (c)

The reconstructed signal. Note that the signal is not bandlimited and the frequency of the sine wave itself is higher thanthe

Nyquist rate for the given sampling period.

by building a generalized Vandermonde system

τ [m] =

D+1
∑

i=1

D
∑

d=1

2N
∑

n=1

Ād,n
eti(jωd,n+αm)

jωd,n + αm
(20)

which requires2ND(D + 1) momentsτ [m] and enables to determine thēAd,ns. This system provides a

unique solution since the exponents are distinct. The full algorithm is summarized in Algorithm 1. The

derivation above shows that it is possible to reconstruct the piecewise sinusoidal signal in (2) from the

set of samples in (1). We therefore have the following result:

Theorem 1: Assume a sampling kernelϕ(t) that can reproduce exponentialseα0+λm andm = 0, 1, . . . ,M .

A piecewise sinusoidal signal withD pieces having a maximum ofN sinusoids in each piece is uniquely

determined by the samplesy[k] = 〈ϕ(t/T − k), x(t)〉 if M ≥ 4D3N2 + 4D2N2 + 4D2N + 6DN .

Figure 2 illustrates the sampling and perfect reconstruction of a truncated sine wave. In this case,

D = 1 andN = 1 and we need to compute exponential moments up to order18. Note that the method

is based on the rate of innovation of the signal only. That is,there are no constraints, for instance, on the

frequencies of the sine waves. In particular, we are not limited by the Nyquist frequency. It also means

that the locations of the discontinuest1 andt2 may be arbitrarily close. In fact, the piecewise sinusoidal

signal defined in (2) has a limited number of degrees of freedom since it is zero fort /∈ [t1, tD+1]. For
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this reason the sampling intervalT can, in theory, be arbitrarily large.

V. RECONSTRUCTION OF PIECEWISE SINUSOIDAL SIGNALS USING A LOCAL APPROACH

In the previous section, we saw that it is possible to retrieve the parameters of a sampled piecewise

sinusoidal signal given that the sampling kernel is able to reproduce exponentials of a certain degree.

This degree however increases very rapidly with the number of sinusoids and pieces. In this section,

we show that the complexity can be reduced by making further assumptions on the signal and imposing

constraints on the sampling periodT . These assumptions will allow to locally reconstruct the signal by

retrieving the parameters of two or more consecutive piecesat a time. In the first case, we assume that

the frequencies of the sine waves are known and we retrieve the exact locations of the discontinuities. In

the second case, we assume that the discontinuities are sufficiently far apart such that a classical spectral

estimation method can be run in each piece in order to estimate the frequencies independently of the

discontinuities.

A. Local reconstruction with known frequencies

Consider a piecewise sinusoidal signalx(t) as defined in (14) and assume the frequenciesωd,n are

known at the reconstruction. This can be the case, for instance, when information is transmitted using

the switching points (or the discontinuities) and we wish toretrieve these locations exactly. The samples

y[k] are again given by (1). Since the frequencies of the sine waves are known, we can construct the

annihilating filter

H~α(z) =

D
∏

d=1

N
∏

n=1

(1 − ejωd,nz−1)(1 − e−jωd,nz−1)

with coefficientsh~α[k] and

~α = (jω1,1, . . . , jωD,N ,−jω1,1, . . . ,−jωD,N ).

Assume now that we apply this filter to the samplesy[k]. AssumingT = 1, the expression for the

annihilated signaly′[k] gives

y′[k] = h~α[k] ∗ 〈ϕ(t − k), x(t)〉 (21)

(a)
=

1

2π
〈e−jωkϕ̂(ω)H~α(ejω), x̂(ω)〉

(b)
=

1

2π

〈

e−jωkϕ̂(ω)β̂~α(ω)L~α(jω), x̂(ω)
〉

= 〈L~α{ϕ(t − k) ∗ β~α(t − k)}, x(t)〉
(c)
= 〈ϕ(t − k) ∗ β~α(t − k), L~α{x(t)}〉,
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where (a) follows from Parseval’s identity, (b) from (10) and (c) from integration by parts and the fact

that ϕ ∗ β~α is of finite support. This means that the coefficientsy′[k] represent the samples given by

the inner-product between a modifiedx(t) that we callx′(t) = L~α{x(t)} and a new sampling kernel

ϕ′(t) = ϕ(t) ∗ β~α(t). Now assume that the sampling kernelϕ(t) has compact supportW . Then the

equivalent kernelϕ′(t) is of compact supportW ′ = W + 2DN . Furthermore, according to (13),x′(t) is

made only of differentiated Diracs of maximum order2DN −1 in the discontinuities. That is, we are left

with a signal of the typex′(t) =
∑D+1

d=1

∑2DN−1
r=0 wd,rδ

(r)(t−td) for which a sampling theorem exists [4],

[5]. Hence given that the hypotheses of the theorem are met, we are able to perfectly reconstructx′(t)

and retrieve the exact locationstd. The theorem states that an infinite length signal made of differentiated

Diracs of maximum orderR−1 can be sampled and perfectly reconstructed given that the sampling kernel

is of compact supportW , it can reproduce exponentialseα0+λm or polynomialstm with M ≥ 2DR− 1

and there are at mostD Diracs withDR weights in an interval of length2DWT . Since, this reproduction

capability is preserved through convolution [7], the equivalent kernelϕ′(t) is able to reproduce the same

exponentials or polynomials asϕ(t). Therefore
∑

k∈Z
c′m,kϕ

′(t−k) = eαmt or
∑

k∈Z
c′m,kϕ

′(t−k) = tm

given the right choice of coefficientsc′m,k. Hence the classes of kernels used in [4] are also valid in this

context.

Similarly to the previous approach, the retrieval of the locations td and the weightswd,r of x′(t)

is based on the annihilating filter method. As shown in [4], [5], these parameters can be found using

appropriate linear combinations of the samplesy′[k]. Indeed, using an exponential reproducing kernel,

we have the moments

τ [m] =
∑

k∈Z

c′m,ky
′[k] =

〈

∑

k∈Z

c′m,kϕ
′(t − k), x′(t)

〉

(22)

=

∫ ∞

−∞
eαmtx′(t)dt =

D+1
∑

d=1

2DN−1
∑

r=0

wr,dm
reλtdm,

that are made of weighted exponentials. Therefore a filter ofthe typeH(z) =
∏D+1

d=1 (1 − eλtdz−1)2DN

will annihilate τ [m] and the problem of finding the locationstd is reduced to that of finding the multiple

roots of H(z). This filter can be determined using the Toeplitz matrix in (23) which follows directly

from (6). Note that similarly to (7), we may poseh[0] = 1 and use only4DN(D + 1) − 1 samples of

τ [m]. A more detailed description of the location retrieval can be found in [5]. The above discussion is

summarized as follows:

Theorem 2: Assume a sampling kernelϕ(t) that can reproduce exponentialseα0+λm or polynomials

tm with m = 0, 1, . . . ,M and of compact supportW . A piecewise sinusoidal signal with a maximum
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















τ [2DN(D + 1)] . . . τ [1] τ [0]

τ [2DN(D + 1) + 1] . . . τ [2] τ [1]
... . . .

...
...

τ [4DN(D + 1)] . . . τ [2DN(D + 1) + 1] τ [2DN(D + 1)]

































h[0]

h[1]
...

h[2DN(D + 1)]

















= 0, (23)

of N sinusoids in each piece is uniquely determined by the samples y[k] = 〈ϕ(t/T − k), x(t)〉 if the

frequenciesωd,n are known and there are at mostD+1 sinusoidal discontinuities in an interval of length

2(D+1)(W+2DN)T andM ≥ 4DN(D + 1) − 1.

Therefore, given that the sampling kernel satisfies the above properties, a piecewise sinusoidal signal

with at mostD + 1 sinusoidal discontinuities in an interval of lengthρ can be retrieved if it is sampled

at a rate ofT−1 ≥ 2(D+1)(W+2DN)
ρ whereN is the maximum number of sinusoids in each piece andW

is the support of the sampling kernelϕ(t).

B. Local reconstruction with unknown frequencies

In the previous section, we saw that the exact locations of the switching pointstd of a piecewise

sinusoidal signal can be estimated from its sampled version. The number of moments required in this

case was less than in the global method presented in Section IV since in essence the estimation of the

breakpoints is separated from that of the sine waves.2 In this section, we show how the local method

presented above may be applied even if the frequencies of thesine waves are unknown. The basic idea

is to impose that the discontinuities are sufficiently far apart such that a classical spectral estimation

method can be run in each piece to estimate the frequencies first.3

Assume, for the moment, an original continuous-time signalthat is purely sinusoidal with a maximum

of N sinusoids. The signal is sampled with a sampling kernelϕ(t) and the samples are given by

y[k] =

N
∑

n=1

An

2

[

ϕ̂(−ωn)ej(ωnk+φn)) + ϕ̂(ωn)e−j(ωnk+φn)
]

. (24)

From Section III-A, we know that4N + 1 samples are sufficient to construct the matrixS in (6) and

solve the system of equations in order to determine the annihilating filter H~α(z). Theωns are found using

the roots of the filter. Note that as in (7), we may poseh[0] = 1 and use the fact that the annihilating

2For example in the case whereD = 1, N = 1, we haveM ≥ 7 instead ofM ≥ 18.

3This case was also presented in [1].
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Fig. 3. Determining the sinusoidal part of the pieces. Figure 3(a) illustrates a truncated sinusoid. Assume, for example, a

B-spline sampling kernelϕ(t) = β3(t) that is of compact supportW = 4 as is depicted in Figure 3(b). Since the kernel has a

certain support, the samples in the vicinity of the discontinuities are not pure discrete sinusoids. Therefore the rankof matrix

S is full when S is constructed with the samples in the dashed window depicted in Figure 3(c). However,S is rank deficient

when the window is chosen as shown Figure 3(d) since the samples are not influenced by the discontinuities.

filter in this case is symmetric. Using these constraints, only 3N samples are necessary to determine the

annihilating filter. Note that, in this case, the roots of theannihilating filterH~α(z) are in pairsz = ejωn

andz = e−jωn . It is therefore necessary to limit the frequencies to|ωn| ≤ π in order to avoid ambiguities.

This constraint becomes|ωn| ≤ π/T when the sampling period is not unity. In order to find the amplitudes

An and the phasesφn, we use2N consecutive samples ofy[k] in order to construct a Vandermonde

system. For example, in the case whereN = 1, we have the following system:

1

2





ejω1k e−jω1k

ejω1(k+1) e−jω1(k+1)









A1ϕ̂(−ω1)e
jφ1

A1ϕ̂(ω1)e
−jφ1





=





y[k]

y[k + 1]



 ,

where the unicity of the solution is guarantied since the exponents are distinct. Notice that determining

the parameters of the sinusoids is a classical spectral estimation problem [9].

In the piecewise sinusoidal case, the discontinuities influence the samples. Indeed, if the kernel has

compact supportW , the samples in the interval[td−TW/2, td+TW/2] are not pure discrete sinusoids as
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Fig. 4. Sequential recovery of a piecewise sinusoidal signal using the local reconstruction method with unknown frequencies.

The observed discrete signal is illustrated in Figure 4(a).In this example, we have one sine wave per piece and frequencies

ω1,1, ω2,1 andω3,1 in the first, second and third piece respectively. The frequencies are determined using the annihilating filter

method. The annihilated signaly′
t1 [k] = (y ∗h~α1

∗h~α2
)[k] where~α1 = (jω1,1,−jω1,1) and~α2 = (jω2,1,−jω2,1) is shown in

Figure 4(b). The non zero samples in the vicinity of the discontinuity are sufficient to recover the first breakpoint. The second

breakpoint can be found by looking aty′
t2 [k] = (y ∗ h~α2

∗ h~α3
)[k] where~α2 = (jω2,1,−jω2,1) and ~α3 = (jω3,1,−jω3,1)

which is depicted in Figure 4(c). The recovered continuous-time signal is shown in Figure 4(d).

defined in (24). Hence, the sampling periodT must be such that there are at least4N +1 samples that are

not influenced by the discontinuities in each interval[td, td+1]. This enables to use the annihilating filter

method to estimate theωn. The only apparent difficulty lies in finding the right samples in each piece

that are not perturbed by the breakpoints. Recall from Section III-A that the2N + 1 by 2N + 1 matrix

S admits an annihilating filter whenRank(S) = 2N . However, the rank is full whenS is constructed

with samples that are influenced by the discontinuities. It follows that the samples that contain purely

a sinusoidal contribution can be found by running a window along thek-axis constructing successive

matrices and looking at the rank ofS. Figure 3 illustrates the sliding window. In Figure 3(c), the window

contains samples that are influenced by the discontinuity and the rank ofS is full. However, in Figure 3(d),

the matrix is rank deficient and the annihilating filter method is run to retrieve the parameters of the

sinusoids. Once the frequencies have been estimated, the locations of the discontinuities may be found

using the method in Section V. Note that in this case, we impose that the discontinuities are sufficiently

far apart to retrieve eachtd separately. We therefore haveD = 1. The discussion above is summarized
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Fig. 5. Numerical simulation of the recovery of a truncated piecewise sinusoidal signal withN = 2 sine waves. (a) The

continuous-time waveform. (b) The observed samples using the β7(t) sampling kernel. (c) The reconstructed signal.

with the following statement:

Theorem 3: Assume a sampling kernelϕ(t) of compact supportW and that can reproduce exponentials

eα0+λm or polynomialstm with m = 0, 1, . . . ,M . A piecewise sinusoidal signal is uniquely determined

by the samplesy[k] = 〈ϕ(t/T − k), x(t)〉 if there are at mostN sinusoids with maximum absolute

frequency|ωmax| ≤ π/T in a piece of lengthT (4N + W + 1) and M ≥ 8N − 1.

Therefore, given that the sampling kernel satisfies the properties of the statement above, a piecewise

sinusoidal signal with pieces of minimum lengthρ can be retrieved if it is sampled at a rate ofT−1 ≥
max{4N+W+1

ρ , |ωmax|
π } whereN is the maximum number of sinusoids per piece,|ωmax| is the maximum

absolute frequency of the sinusoids andW is the support of the sampling kernelϕ(t).

An overview of the algorithm for the local recovery of piecewise sinusoidal signals is presented in

Algorithm 2. A simulation recovering a piecewise sinusoidal signal with three pieces containing one

sinusoid per piece is illustrated in Figure 4. We use a classical B-spline sampling kernelβ7(t) as it is

capable of reproducing polynomials of maximum degree8N − 1 = 7. A numerical simulation for the

N = 2 case is shown in Figure 5. In both simulations, the reconstructed signal is exact within machine

precision.
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Algorithm 2 Local recovery of a piecewise sinusoidal signal

1: If frequencies of sinusoids are not known:

2: Run window alongk-axis and construct successiveS matrices

using the samplesy[k].

3: Find rank deficient windowsS ∀ k.

4: For each window:

5: Estimate(ωd,n, φd,n, Ad,n) on y[k] whereS is rank deficient.

6: end for

7: end if

8: For each pair of consecutive pieces:

9: Apply annihilating filters for consecutive windowsy′[k] = h~α ∗ y.

10: Compute momentsτ [m] in (22) and build system in (23).

11: Locationstd are given by the roots ofh.

12: end for

VI. JOINT RECOVERY OF PIECEWISE SINUSOIDAL AND POLYNOMIAL SIGNALS

Sampling piecewise sinusoidal signals using the schemes presented above is not based on the fact that

the signals of interest are bandlimited but on the fact that they can be represented with a finite number

of parameters. It is worth mentioning here that signals thatare a combination of piecewise sinusoidal

and polynomials pieces are also defined by a finite number of parameters and they can also be recovered

from their sampled versions using the same algorithms. These signals are of the type:

x(t) =
D

∑

d=1

xd(t)ξd(t),

wherex(t) = 0 for t < t1, ξd(t) is as previously defined and

xd(t) =

N
∑

n=1

Ad,n cos(ωd,nt + φd,n) +

P−1
∑

p=0

Bd,pt
p.

That is, we have a maximum ofN sinusoids and polynomials of maximum degreeP − 1 in each piece.

In the following, we will briefly discuss the basic steps to recover the parameters as they are analogous

to the piecewise sinusoidal cases presented in Sections IV and V.
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Fig. 6. Sampling a combination of piecewise polynomials andsinusoids. The observed samples are depicted in Figure 6(a).

In the first step, we annihilate the polynomial part by applying the finite difference operator. As shown in Figure 6(b), weare

left only with a piecewise sinusoidal part. The parameters characterizing the sinusoid are retrieved and the annihilating filter

is applied. The samples depicted in Figure 6(c) contain all the information necessary to find the discontinuity. The recovered

continuous-time signal is shown in Figure 6(d).

Clearly, theP th order derivative ofx(t) is

x(P )(t) =

D
∑

d=1

N
∑

n=1

dP

dtP
[Ad,n cos(ωd,nt + φd,n)]ξd(t) +

D+1
∑

d=1

P−1
∑

p=0

wd,pδ
(p)(t − td),

which is a piecewise sinusoidal signal with differentiatedDiracs in the discontinuities. Both the global and

the local schemes presented above are able to cope with thesesignals. Therefore if we are able to relate the

observed samplesy[k] with the samplesy(P )[k] that would have been obtained fromx(P )(t), we will be

able to recoverx(P )(t). Thex(t) will then be obtained by integration which is uniquely defined since we

assume thatx(t) = 0 for t < t1. The relation between the samplesy[k] andy(P )[k] is related to B-spline

theory and was demonstrated in [5]. Assume we apply the finitedifferencey(1)[k] = y[k+1]−y[k] to the

observed samples. The new set of samplesy(1)[k] are equivalent toy(1)[k] = 〈ϕ(t−k)∗β0(t−k), d
dtx(t)〉

whereβ0(t) is the B-spline of degree zero and where we assume thatT = 1. Similarly, theP th order
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Fig. 7. Sampling setup in the presence of noise. The scenariois identical to the noiseless case. However, we assume that the

observed samples̃y[k] are the noiseless samplesy[k] corrupted by digital additive i.i.d. white Gaussian noisee[k].

finite differences lead to the samples

y(P )[k] = 〈ϕ(t − k) ∗ βP−1(t − k),
dP

dtP
x(t)〉,

which means the obtained samples are equivalent to the ones that would have been observed from sampling

x(P )(t) with the kernelϕ(t) ∗ βP−1(t). Moreover, since the polynomial and exponential reproduction

capability are preserved through convolution, the new kernel is able to reproduce the polynomials or

exponentials as well. Hence the sampling schemes presentedabove are also valid for piecewise sinusoidal

and polynomial signals. An example of the sampling of the piecewise polynomial and sinusoidal case is

depicted in Figure 6.

VII. D EALING WITH NOISE: PROBLEM SETUP, ISSUES AND SOLUTIONS

In the first part of the paper, we showed that in the noiseless case we are able to perfectly reconstruct

a continuous-time piecewise sinusoidal signal from its sampled version. In the following, we study the

noisy scenario. Reconstruction of finite rate of innovationsignals in the presence of noise has also been

considered in [28], [29], [30], [31]. However, these papersconcentrate mostly on streams of Diracs

and piecewise polynomial signals. Piecewise sinusoidal signals are not considered. In order to study the

effect of noise on the estimation of the parameters that define the piecewise sinusoidal signal, we consider

additive noise on the samples as illustrated in Figure 7. Under this model, the observed samplesỹ[k] are

given by

ỹ[k] = y[k] + e[k] =

∫ ∞

−∞
ϕ(t − k)x(t)dt + e[k], (25)

where we assume that the sampling periodT is unity and that thee[k] are independent, identically

distributed and follow a Gaussian distribution with zero mean and varianceσ2.

For clarity, we consider retrieving parameters of a truncated sine wavex(t) = cos(ω1t)[u(t − t1) −
u(t− t2)] using the local method with unknown frequency presented in Section V-B. In this context, we
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are estimating the locationst1, t2 and the frequencyω1 from the observed samples in (25). We will also

assume that the locationst1 andt2 are sufficiently far apart such that they can be retrieved independently.

The sampling kernelϕ(t) is a polynomial splineβ4(t) with Fourier transform̂β4(ω) =
(

1−ejω

jω

)5
. The first

step in the reconstruction algorithm consists in estimating the frequencyω1 of the sine wave. However,

we will not delve into this problem here since it is a classical spectral estimation problem which has

been well researched and can be solved using a variety of algorithms. For a detailed view we refer to [9].

Rather, we will focus on the retrieval of the switching points t1 andt2. Note that the samples that contain

only the sine information may be located in a similar fashionto that of Section V-B. However, in this

case, we compare the largest and the smallest eigenvalues ofthe successiveS matrices using the samples

ỹ[k]. The regions where the ratio of the smallest over the largesteigenvalue is smaller than a threshold

γ are chosen to estimate the frequency of the sine wave. In order to be more robust to noise, we may

chooseN > 1.

Following the method in Section V-B, we apply the annihilating filter in order to obtain the annihilated

samples

ỹ′[k] = (y[k] + e[k]) ∗ h~α[k] = y′[k] + e′[k],

and compute the momentsτ [m] with which we recover the switching points. This straightforward

application, however, becomes unstable in the presence of noise. The reason for this issue is that the

Signal-to-Noise Ratio (SNR4) of ỹ′[k] which is used for the estimation oft1 and t2 is usually lower

than that ofỹ[k]. Indeed, by applying the annihilating filterh~α[k], we are effectively killing most of the

power of the signal without reducing the noise.5 This effect is particularly visible in Figure 8(b) where

the equivalent Diracx′(t) is buried in the noise. There is therefore a need to design an algorithm to find

the locations oft1 andt2 that preserves at least some of the energy of the original waveform x(t).

A. A polyphase reconstruction algorithm

In this section, we show that by applying an additional filterto the samples before computing the

moments in (22), we are able to improve the estimation of the switching points.

Consider the filterH2
β(ejω) = 1

32(1 + e−jω)5 and assume we apply it to the B-splinêβ4(ω). The

4We define the SNR as20 log ||y[k]||2
||e[k]||2

where|| · ||2 is the l2-norm.

5The noise in this case is no longer white but is a filtered noisee ∗ h~α.
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resulting function becomes

β̂4(ω)H2
β(ejω) =

(1 − e−jω

jω

)5 1

32
(1 + e−jω)5

=
(1 − e−2jω

2jω

)5

= β̂4(2ω), (26)

which is a scaled version of the original B-spline. Similarly, consider the filterH2
~α(ejω) = 1

4(1 +

ejω1e−jω)(1 + e−jω1e−jω) where ~α = (jω1,−jω1). This filter together with the original annihilating

filter H~α(ejω) gives:

H~α(ejω)H2
~α(ejω) = (1 − ejω1e−jω)(1 − e−jω1e−jω)

1

4
(1 + ejω1e−jω)(1 + e−jω1e−jω)

=
1

4
(1 − e2jω1e−2jω)(1 − e−2jω1e−2jω)

= β̂2~α(2ω)L~α(jω). (27)

That is, the new annihilating filter can be related to a scaledE-spline and a differential operator. Applying

both filters to the samples, we have

y′′[k] = h2
β ∗ h2

~α ∗ h~α ∗ 〈β4(t − k), x(t)〉

=
1

2π
〈e−jωkβ̂4(ω)H2

β(ejω)H2
~α(ejω)H~α(ejω), x̂(ω)〉

=
1

2π

〈

e−jωkβ̂4(2ω)β̂2~α(2ω)L~α(jω), x̂(ω)
〉

= 〈L~α{β4(t/2 − k) ∗ β2~α(t/2 − k)}, x(t)〉

= 〈β4(t/2 − k) ∗ β2~α(t/2 − k), L~α{x(t)}〉,

where we have used the same derivation as in (21) together with (26) and (27). The new noisy samples

are given by

ỹ′′[k] = 〈β4(t/2 − k) ∗ β2~α(t/2 − k), L~α{x(t)}〉 + e′′[k],

wheree′′[k] = h2
β ∗h2

~α ∗h~α ∗e. Thus, these observed samples are equivalent to those that would have been

observed if the signalx′(t) = L~α{x(t)} was sampled with the scaled kernelϕ′′(t) = β4(t/2) ∗β2~α(t/2).

Therefore, we may write the samples as:

ỹ′′[k] = 〈ϕ′′(t − k), x′(t)〉 + e′′[k].
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Since the new kernel is an E-spline scaled by a factor of two and T remains the same, we have two

times more samples than are necessary to recovert1. The samples can therefore be decomposed into

their polyphase components:

ỹ′′1 [k] = 〈ϕ′′(t − 2k), x′(t)〉 + e′′[2k]

ỹ′′2 [k] = 〈ϕ′′(t − 2k − 1), x′(t)〉 + e′′[2k − 1].

Each polyphase component is treated independently and the corresponding coefficientsc′′m,2k andc′′m,2k−1

are obtained using the kernelϕ′′(t). The locationt1 is estimated separately from the even and odd samples

and the final estimate is given by the average of the two obtained locations. This procedure may be iterated

in order to create four, eight or more polyphase components.For instance the filters in the four-phase case

are H4
β(ejω) = H2

β(ejω) 1
32 (1 + e−2jω)5 and H4

~α(ejω) = H2
~α(ejω)1

4 (1 + e2jω1e−2jω)(1 + e−2jω1e−2jω).

In the general case ofp phases, we denote the samples asỹp[k] = hp
β ∗ hp

~α ∗ h~α ∗ ỹ and the equivalent

sampling kernel isϕp(t) with compact supportWp.

Note that this polyphase reconstruction is somewhat reminiscent of the scenario used in [5] for

recovering Diracs in noise. However, while in that paper thepolyphase components are obtained through

oversampling, the method presented here does not require toincrease the sampling rate.

B. Further denoising with hard thresholding

The sampling kernels assumed in the context of this paper areof finite support (i.e. B-splines or E-

splines). We may therefore use this property to reduce the noise in the samples. Indeed, if we assume that

the discontinuities are sufficiently far apart, we expect tohave onlyWp non-zero samples ofyp[k] where

Wp is the support of the equivalent sampling kernelϕp(t). This is due to the fact that the equivalent signal

x′(t) is a sum of differentiated Diracs. Our hard thresholding approach therefore consists in obtaining an

initial estimatekdT of the switching location and setting to zero all the non-zero samples that are not in

the intervalkT ∈ [kdT − TWp/2, kdT + TWp/2] since they are assumed to be purely generated by the

additive noise. Assuming the intervals in between switching points have been determined, we obtain the

initial estimate of the locationkd by averaging the locations of the maximum and minimum valuesof

the annihilated signal̃yp[k]. An example of the annihilated signals for different numbers of phases are

depicted in Figures 8(b-d). The overall algorithm is described in Algorithm 3.

C. Performance evaluation

It is of interest here to evaluate the performance of the reconstruction algorithm in the presence of

different noise levels. Therefore, we consider the Cramér-Rao bound that provides an answer to the
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Fig. 8. Applying the annihilating and polyphase filters to noisy samples at SNR= 8 [dB]. (a) The observed noisy samples

ỹ[k]. (b) The annihilated samples̃y′[k] = h~α ∗ ỹ. In this case, the equivalent signalx′(t) is buried in noise. (c) The annihilated

samples̃y′′[k] = h2
β ∗ h2

~α ∗ h~α ∗ ỹ using the two-phase annihilating filter. (d) The annihilated samples̃y4[k] = h4
β ∗ h4

~α ∗ h~α ∗ ỹ

using the four-phase annihilating filter. Note that the location of the switching points becomes more distinct when the additional

filters are applied.

Algorithm 3 Recovery of a piecewise sinusoidal signal in noise

1: Run window alongk-axis and construct successiveS matrices using

the samples̃y[k].

2: Perform Singular Value Decomposition ofS ∀ k.

3: Estimate(ωd,n, φd,n, Ad,n) on ỹ[k] where smallest eigenvalue over

biggest eigenvalue ofS is smaller than thresholdγ.

4: For each pair of consecutive pieces:

5: Apply annihilating filtersỹp[k] = hp
β ∗ hp

~α ∗ h~α ∗ ỹ

wherep represents the number of phases.

6: Estimate switching pointkd using the average of

kmax = argmaxk{ỹ
p[k]} andkmin = argmink{ỹ

p[k]}.

7: Keep only the sampleskT ∈ [kdT − TWp/2, kdT + TWp/2].

8: For each polyphase component:

9: Compute momentsτ [m] in (22) and build system in (23).

10: Locationstd are given by the roots ofh.

11: end for

12: Average locations obtained from each polyphase component.

13: end for
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Fig. 9. Retrieval of the switching point of a step sine (ω1 = 12.23π [rad/sec] andt1 = 0.4907 [sec]) in 128 noisy samples. (a)

Scatter plot of the estimated location. (b) Standard deviation (averages over 1000 iterations) of the location retrieval compared

to the Cramér-Rao bound.

best possible performance of an unbiased estimator. The derivation of the Cramér-Rao bound in the

case of additive white Gaussian noise is presented in Appendix A. In this experiment, the acquisition

device observes 128 noisy samples withT = 1/128 [sec] of a truncated sine wave with frequency

ω1 = 12.23π [rad/sec] and switching pointst1 = 0.4907 [sec] andt2 = 1 [sec]. Since we assume

that the switching points are sufficiently far apart, their locations can be estimated independently. We

therefore show the results only for the first discontinuity.The frequency of the sine wave is estimated using

Matlab’s rootmusic function and the location of the switching point is estimated using a four phase

approach and additional hard thresholding. Note that we have also experimented with other frequency

estimation methods as well as using the ground truth frequency. Similar results are obtained in all cases.

Figure 9(a) shows the scatter plot for the reconstruction ofthe switching pointt1 for different SNR

levels. The standard deviation of the error (averages over 1000 iterations) of the location retrieval is

shown in Figure 9(b). These simulations show that the proposed reconstruction algorithm behaves well

down to noise levels of about 7 [dB]. Figure 10 illustrates anexample of the recovery of a continuous-

time piecewise sinusoidal signal (witht1 = 0.2441 [sec], t2 = 0.7324 [sec] andω1 = 12.23π [rad/sec])

given 128 noisy samples at an SNR of 8 [dB]. Note that despite the small error in the estimation of the

frequency of the sine wave, the estimation of the switching points are accurate.
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Fig. 10. Recovery of a truncated sine wave at SNR = 8 [dB]. (a) The observed noisy samples. (b) The reconstructed signal

along with the ground truth signal (dashed).

VIII. C ONCLUSION

We have set out to show that piecewise sinusoids belong to thefamily of signals with finite rate

of innovation and can be sampled and perfectly reconstructed using sampling kernels that reproduce

exponentials or polynomials. These classes of kernels are physically realizable and are of compact support.

Moreover, combinations of piecewise sinusoids and polynomials also have a finite rate of innovation and

can be dealt with using similar sampling schemes.

Since the sampling scheme is limited by the rate of innovation rather than the actual frequency

of the continuous-time signal, we are, in theory, capable ofretrieving piecewise sine waves with an

arbitrarily high frequency along with the exact location ofthe switching points. We believe therefore that

the sampling scheme presented may find applications, for example, in spread spectrum and wide band

communications.

Finally, we studied the effect of noise on the performance ofthe estimation of the switching points. In

doing so, we derived a polyphase reconstruction algorithm that together with hard thresholding behaves

well with respect to the Cramér-Rao bounds down to SNRs of 7 [dB].

APPENDIX A

DERIVATION OF THE CRAMÉR-RAO BOUNDS

The piecewise sinusoidal signal we consider in (2) is definedby the parameter vector:

Θ = (t1, A1,1, ω1,1, φ1,1, . . . , tD, AD,N , ωD,N , φD,N , tD+1).
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These parameters are estimated using the observed samples

ỹ[k] =

∫ ∞

−∞
ϕ(t/T − k)x(t)dt + e[k] k = 0, 1, . . . ,K,

where e[k] is i.i.d. additive white Gaussian noise with zeromean and varianceσ2. For clarity, we denote

ỹ[k] as a function of the parameter vector with

ỹ[k] = f(Θ, k) + e[k].

The performance of any unbiased estimatorΘ̂ is lower bounded by the Cramér-Rao bound var(Θ̂) ≥
I−1(Θ), whereI(Θ) is the Fisher Information Matrix defined asI(Θ) = E(∇l(Θ)∇l(Θ)T ) and l(Θ)

is the log-likelihood function of the data, i.e. a function of Θ conditioned on the measured samplesỹ[k].

Recall that the noisee[k] follows the Gaussian distribution

p(x) =
1√
2πσ

exp
(

− x2

2σ2

)

,

therefore we have

p(ỹ[k]|Θ) = p(ỹ[k] − f(Θ, k)).

Hence the log-likelihood function is given by

l(Θ) = ln p(ỹ[0], . . . , ỹ[K]|Θ) =

ln
K
∏

k=0

p(ỹ[k]|Θ) =
K

∑

k=0

ln p(ỹ[k] − f(Θ, k)),

where we have used the independence of the noise samplese[k]. The partial derivative of the log-likelihood

function is given by

∂l

∂Θi
=

1

σ2

K
∑

k=0

e[k]
∂f(Θ, k)

∂Θi

and

∇l(Θ) =
1

σ2

K
∑

k=0

e[k]∇f(Θ, k),
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where the∇ operator denotes the gradient off(Θ, k) with respect to the signal parametersΘi. Finally,

we determine the Fisher information matrix

I(Θ) = E(∇l(Θ)∇l(Θ)T )

= E
( 1

σ4

K
∑

k=0

M
∑

m=0

e[k]e[m]∇f(Θ, k)∇f(Θ,m)T
)

=
1

σ4

K
∑

k=0

M
∑

m=0

E(e[k]e[m])∇f(Θ, k)∇f(Θ,m)T

=
1

σ2

K
∑

k=0

∇f(Θ, k)∇f(Θ, k)T

where we have used the fact that the noise is independent (i.e. uncorrelated). The Cramér-Rao bound is

thus given by

CRB(Θ) = σ2(
K

∑

k=0

∇f(Θ, k)∇f(Θ, k)T )−1 (28)

with ∇f(Θ, k) = [ ∂f
∂Θ1

, . . . , ∂f
∂Θ3ND+D+1

].

These bounds are complicated to compute for a general piecewise sinusoidal signal. However, we can

look at the simpler case where we assume that the observed signal is a single truncated sine wave with

known amplitudeA1 = 1 and phaseφ1 = 0. The signal is therefore given by

x(t) = cos(ω1t)ξ1(t), ξ1(t) = u(t − t1) − u(t − t2),

which is characterized by three parameters, namelyΘ = (t1, ω1, t2). Computing the partial derivatives

gives

∂f(Θ, k)

∂t1
=

∂

∂t1

∫ ∞

−∞
cos(ω1t)ξ1(t)ϕ(t − k)dt

= − cos(ω1t1)ϕ(t1 − k),

∂f(Θ, k)

∂t2
=

∂

∂t2

∫ ∞

−∞
cos(ω1t)ξ1(t)ϕ(t − k)dt

= cos(ω1t2)ϕ(t2 − k),

and

∂f(Θ, k)

∂ω1
=

∂

∂ω1

∫ ∞

−∞
cos(ω1t)ξ1(t)ϕ(t − k)dt

= −
∫ t2

t1

t sin(ω1t)ϕ(t − k)dt.

Using these three relations enables to evaluate numerically the Cramér-Rao bound in (28).
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