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The spectrum and coherency are useful quantities for characterizing the
temporal correlations and functional relations within and between point
processes. This article begins with a review of these quantities, their
interpretation, and how they may be estimated. A discussion of how
to assess the statistical signi�cance of features in these measures is in-
cluded. In addition, new work is presented that builds on the framework
established in the review section. This work investigates how the es-
timates and their error bars are modi�ed by �nite sample sizes. Finite
sample corrections are derived based on a doubly stochastic inhomoge-
neous Poisson process model in which the rate functions are drawn from
a low-variance gaussian process. It is found that in contrast to continuous
processes, the variance of the estimators cannot be reduced by smooth-
ing beyond a scale set by the number of point events in the interval.
Alternatively, the degrees of freedom of the estimators can be thought
of as bounded from above by the expected number of point events in
the interval. Further new work describing and illustrating a method for
detecting the presence of a line in a point process spectrum is also pre-
sented, corresponding to the detection of a periodic modulation of the
underlying rate. This work demonstrates that a known statistical test,
applicable to continuous processes, applies with little modi�cation to
point process spectra and is of utility in studying a point process driven
by a continuous stimulus. Although the material discussed is of gen-
eral applicability to point processes, attention will be con�ned to se-
quences of neuronal action potentials (spike trains), the motivation for
this work.

1 Introduction

The study of spike trains is of central importance to electrophysiology. Often
changes in the mean �ring rate are studied, but there is increasing interest in
characterizing the temporal structure of spike trains and the relationships
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between spike trains more completely (Gray, König, Engel, & Singer, 1989;
Gerstein, Perkel, & Dayhoff, 1985; Abeles, Deribaupierre, & Deribaupierre,
1983). A natural extension to estimating the rate of neuronal �ring is to esti-
mate the autocorrelation and the cross-correlation functions. De�nitions of
these quantities are given in section 2.3. This article discusses the frequency
domain counterparts of these quantities. Auto- and cross-correlations corre-
spond to spectra and cross-spectra, respectively. The coherency, which is the
normalized cross-spectrum, does not in general have a simple time-domain
counterpart.

The frequency domain has several advantages over the time domain.
First, often subtle structure can be detected with the frequency domain esti-
mators that is dif�cult to observe with the time domain estimators. Second,
the time domain quantities have problems associated with the sensitivity
of the estimators to weak nonstationarity and the nonlocal nature of the er-
ror bars (Brody, 1998). These problems are greatly reduced in the frequency
domain. Third, reasonably accurate con�dence intervals may be placed on
estimates of the second-order properties in the frequency domain, which
permits the statistical signi�cance of features to be assessed. Fourth, the co-
herency provides a normalized measure of correlations between time series,
in contrast with time-domain cross-correlations that are not normalizable
by any simple means.

This article begins by reviewing the population spectrum and coherency
for point processes and motivating their use by describing some example
applications. Next, direct, lag window, and multitaper estimators of the
spectrum and coherency are presented. The concept of degrees of freedom
is introduced and used to obtain large sample error bars for the estimators.
Many elements of the work discussed in the review section of this arti-
cle can be found in the references (Percival & Walden, 1993; Cox & Lewis,
1966; Brillinger, 1978; Bartlett, 1966). Most of the material in these refer-
ences is targeted at either spectral analysis of continuous processes or at
the analysis of point processes but with less emphasis on spectral analysis.
Building on this framework, corrections, based on a speci�c model, will be
given for �nite sample sizes. These corrections are cast in terms of a re-
duction in the degrees of freedom of the estimators. For a homogeneous
Poisson process, the modi�ed degrees of freedom is the harmonic sum of
the asymptotic degrees of freedom and twice the number of spikes used
to construct the estimate. Modi�cations to this basic result are given for
structured spectra and tapered data. A section is included on the treatment
of point process spectra that contain lines. A statistical test for the pres-
ence of a line in a background of colored noise is given, and the method
for removal of such a line is described. An example application to periodic
stimulation is given. Sections 2 through 5 contain the review portion of this
article; sections 6 through 12 decribe new results and illustrative applica-
tions.
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Figure 1: Example illustrating how the processes N, N, and dN/dt relate to each
other. The vertical lines in the process dN/dt depict delta functions.

2 Population Measures and Their Interpretation

2.1 Counting Representation of a Spike Train. A spike train may be
regarded as a point process. If the spike shapes are neglected, it is completely
speci�ed by a series of spike times ftig and the start and end points of the
recording interval [0, T]. It is convenient to introduce some notation that
enables the subsequent formulas to be written in a compact form (Brillinger,
1978). The counting process N(t) is de�ned as the number of spikes that
occur between the start of the interval (t D 0) and time t. The counting
process has the property that the area beneath it grows as t becomes larger.
This is undesirable because it leads to an interval-dependent peak at low
frequencies in the spectrum. To avoid this, a process N(t) D N(t) ¡ lt,
where l is the mean rate, which has zero mean, may be constructed. Note
that dN(t) D N(t C dt) ¡N(t), which is either 1 ¡ldt or ¡ldt depending on
whether there is a spike in the interval dt. Thus dN(t)/dt is a series of delta
functions with the mean rate subtracted.1 Figure 1 illustrates the relationship
between N(t), N(t), and dN(t)/dt.

2.2 Stationarity. It will be assumed in what follows that the spike trains
are second-order stationary. This means that their �rst and second moments
do not depend on the absolute time. In many electrophysiology experi-
ments, this is not the case. In awake behaving studies, the animal is often
trained to perform a highly structured task. Nevertheless, it may still be
the case that over an appropriately chosen short time window, the statisti-
cal properties are changing slowly enough for reasonable estimates of the
spectrum and coherency to be obtained. As an example, neurons in primate
parietal area PRR exhibit what is known as memory activity during a de-
layed reach task (Snyder, Batista, & Andersen, 1997). The mean �ring rate
of these neurons varies considerably during the task but during the mem-
ory period is roughly constant. The assumption of stationarity during the
memory period is equivalent to the intuitive notion that there is nothing
special about 0.75 seconds into the memory period as compared to, say,

1 A delta function is a generalized function. It has an area of one beneath it but has
zero width and therefore in�nite height.
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0.5 seconds. Second-order stationarity implies that the mean �ring rate (l)
is independent of time and that the autocovariance depends on only the lag
(t ) and not the absolute time.

Nonstationary spectral methods have been developed that can be used to
test for stationarity (Thomson, 2000). Such methods are beyond the scope of
this article and may be of limited use when small amounts of point process
data are available. Instead we use the following simple rule. If the average
rate (peristimulus time histogram) is approximately �at to within the error
bars expected based on a Poisson process, then we consider the process to
be approximately stationary. Spectral analysis can be applied even if this
criterion is not met. In this case, however, con�dence intervals should be
evaluated using a jackknife method, as this is insensitive to the stationarity
assumption and care should be taken when interpreting structure, particu-
larly at low frequencies.

2.3 De�nitions. Equations 2.1 to 2.4 give the �rst- and second-order
moments of a single spike train for a stationary process. The spectrum S( f )
is the Fourier transform of the autocovariance function (m (t ) C ld(t )),

EfdN(t)g
dt

D l (2.1)

EfdN(t)g
dt

D 0 (2.2)

m (t ) C ld(t ) D
E[dN(t)dN(t C t )]

dtdt
(2.3)

S( f ) D l C
Z 1

¡1
m (t ) exp(¡2p if t )dt, (2.4)

where E denotes the expectation operator.
The autocovariance measures how likely it is that a spike will occur at

time t C t given that one has occurred at time t. Usually m (t ) is estimated
rather than the full autocovariance, which includes a delta function at zero
lag.2 However, in order to take the Fourier transform, the full autocovariance
is required. The inclusion of this delta function leads to a constant offset of
the spectrum.This offset isan important differencebetweencontinuous time
processes and point processes. The population coherency c ( f ) is de�ned in
equations 2.5 to 2.7:

m ab(t ) D
E[dNa(t)dNb(t C t )]

dtdt
(2.5)

2 When estimating the autocovariance using a histogram method, one generally omits
the spike at the start of the interval that would always fall in the bin nearest zero.
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Sab( f ) D
Z 1

¡1
m ab(t ) exp(¡2p if t )dt C ladab (2.6)

c ( f ) D
S12 ( f )

p
S11 ( f )S22 ( f )

, (2.7)

where indices 1 and 2 denote simultaneously recorded spike trains from
different cells.

Unlike the spectrum, which is strictly real and positive, the coherency is
a complex quantity. The modulus of the coherency, which is known as the
coherence, can vary only between zero and one.3 This makes coherence par-
ticularly attractive for detecting relationships between spike trains because
it is insensitive to the mean spike rates.

3 Examples and Their Interpretation

Before discussing the details regarding how to estimate the spectrum and
coherency, it will be helpful to consider some simple examples.

3.1 Example Population Spectra. For a homogeneous Poisson process
of constant rate l, the autocovariance is simply ld(t ), and hence the spec-
trum is a constant equal to the rate l. At the opposite extreme, consider the
case where the spikes are spaced by intervals Dt . This is not a stationary
process, but if a small amount of drift is permitted, so that over an extended
period there is nothing special about a given time, it becomes stationary. The
spectrum of this process contains sharp lines at integer multiples of f D 1

Dt .
Due to the drift, the higher harmonics will become increasingly blurred,
and in the high-frequency limit, the spectrum will tend toward a constant
value of the mean rate l. As a �nal example, consider the case where m (t ) is
a negative gaussian centered on zero t . This form of m (t ) is consistent with
the probability of �ring being suppressed after �ring.4 The spectrum of this
process will be below l at low frequencies and will go to a constant value l

at high frequencies. Figure 2 illustrates these different population spectra.

3.2 Example Population Coherency. The population coherency of two
homogeneous Poisson processes is zero. In contrast, if two spike trains are
equal, then the coherence is one and the phase of the coherency is zero at all
frequencies. If two spike trains are identical but offset by a lag Dt , then the
coherence will again be one, but the phase of the coherency will vary linearly
with frequency with a slope proportional to Dt and given by w ( f ) D 2p fDt .

3 Some authors de�ne coherence as the modulus squared of the coherency.
4 This need not necessarily correspond to the biophysical refractive period; it could

arise instead from a characteristic integration time.
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Figure 2: Example population spectra for different types of underlying process.
(a) Homogeneous Poisson process with rate l. (b) Regularly spaced spikes with
jitter. (c) Spike trains in which the probability of �ring is suppressed immediately
after �ring.

4 Estimating the Spectrum

Section 3 demonstrated that the population spectrum may provide insights
into the nature of a spike train. In this section, the question of how to estimate
the spectrum from a �nite sectionof data will be introduced. In what follows,
the population quantity l in the de�nition of N(t) is replaced by a sample
estimate N(T)/T.

4.1 Direct Spectral Estimators.

4.1.1 De�nition. A popular, though seriously �awed, method for esti-
mating the spectrum is to take the modulus squared of the Fourier transform
of the data dN(t). This estimate is known as the periodogram and is the sim-
plest example of a direct spectral estimator. More generally, a direct spectral
estimator is the modulus squared of the Fourier transform of the data, but
with the data being multiplied by an envelope function h(t), known as a
taper (Percival & Walden, 1993). Equations 4.1 through 4.3 de�ne the direct
estimator. On substituting N(t) into equation 4.2, a form amenable to im-
plementation on a computer is obtained (see equation 4.4). In this form, the
Fourier transform may be computed rapidly and without the need for the
binning of data. Note that equation 4.3 results in h(t) scaling as 1/

p
T as the

sample length is altered. This ensures proper normalization of the Fourier
transformation as sample size varies:

ID( f ) D |JD( f )|2 (4.1)

JD( f ) D
Z T

0
h(t)e¡2p if tdN(t) (4.2)

where,
Z T

0
h(t)2dt D 1 (4.3)
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JD( f ) D
N(T)X

jD1

h(tj)e¡2p if tj ¡
N(T)H( f )

T
, (4.4)

and H( f ) is the Fourier transform of the taper.
The direct estimator suffers from bias and variance problems, described

below, and is of no practical relevance for a single spike train sample.

4.1.2 Bias. It may not be immediately apparent why the above proce-
dure is an estimate of the spectrum, especially when one is permitted to
multiply the data by an arbitrary, albeit normalized, taper. The relation be-
tween ID( f ) and the spectrum may be obtained by taking the expectation
of equation 4.1.

EfID( f )g D E
»Z 1

¡1

Z 1

¡1
h(t)h(t0 )e¡2p if (t¡t0 )dN(t)dN(t0 )

¼
. (4.5)

Assuming that the integration and expectation operations may be inter-
changed and substituting equation 2.3 yields5

EfID( f )g D
Z 1

¡1

Z 1

¡1
h(t)h(t0 )e¡2p if (t¡t0 )fm (t ¡ t0 ) C ld (t ¡ t0 )gdtdt0 , (4.6)

which may be rewritten in the Fourier domain as

EfID( f )g D
Z 1

¡1
S( f 0 )|H( f ¡ f 0 )|2df 0 . (4.7)

The expected value of the direct estimator is a convolution of the true
spectrum and the modulus squared of the Fourier transform of the taper.
The normalization condition on the taper (see equation 4.3) is equivalent to
the requirement that the kernel of the convolution has unit area underneath
it. Sharp features in the true spectrum will be thus be smeared by an amount
that depends on the width of the taper in the frequency domain. If the taper
is well localized in the frequency domain, the expected value of the direct
estimate is close to the true spectrum, but if the taper is poorly localized,
then the expected value of the direct estimator will be incorrect, that is,
the direct spectral estimator is biased. There is a fundamental level beyond
which the bias cannot be reduced due to the uncertainty relation forbidding
simultaneous localization of a function in the time and frequency domains
below a given limit. Since themaximum widthof the taper isT, theminimum

5 For the moment, we assume that the population quantity l is known. This is, of
course, not the case in practice, and one employs the estimate N(T)/T as stated before.
The effect of this extra uncertainty is given in equation 4.8.
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Figure 3: Smoothing kernel |H( f )|2. This is the expected direct estimate of the
spectrum in the case of a population spectrum that has a delta function (very
sharp feature) at the center frequency. A rectangular taper of length 0.5 second
was used. Solid vertical lines are drawn at § the Raleigh frequency.

frequency spread is 1/T, which is known as the Raleigh frequency. Figure 3
shows the smoothing kernel for a rectangular taper and a T of 0.5 second.
Note that this kernel has large side lobes, which is the primary motivation
for using tapering.

In the above argument, equation 2.3 was used in spite of theappearanceof
the population quantity l rather than the sample estimate N(T)/T for which
equation 4.5 was de�ned. A more careful treatment, which includes this cor-
rection, leads to an additional term at �nite sample sizes in the expectation
of the direct spectral estimator at low frequencies. The full expression is

EfID( f )g D
Z 1

¡1
S( f 0 )|H( f ¡ f 0 )|2df 0 ¡ |H( f )|2S(0)/T. (4.8)

In the case of the periodogram, where h(t) D 1/
p

T, the effect is clear
since in this case, JD(0) D 0 and hence ID(0) D 0 for any set of spike times
and any T.

4.1.3 Asymptotic Variance. In the previous section it was shown that
provided the taper is suf�ciently local in frequency, the expected value of
the direct spectral estimator will be close to the true spectrum. However,
the fact that the estimate is on average close to the true spectrum belies a se-
rious problem with direct spectral estimators: the estimates have very large
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Figure 4: An example of a direct spectral estimate. A 40% cosine taper was
used. A sample of duration 20 seconds was drawn from a homogeneous Poisson
process with a constant rate of 50 Hz. The population spectrum for this process,
shown by the solid horizontal line, is �at. The direct spectral estimate is clearly
noisy, although on average the correct spectrum is obtained.

�uctuations about this mean. The underlying source of this problem is that
one is attempting to estimate the value of a function at an in�nite number of
points using a �nite sample of data. The problem manifests itself in the fact
that direct spectral estimators are inconsistent estimators of the spectrum.6

In fact it may be shown that under fairly general assumptions, the estimates
are distributed exponentially (or equivalently as S( f )Â2

2 /2) for asymptotic
sample sizes (i.e., T ! 1) (Brillinger, 1972). Figure 4 illustrates that di-
rect spectral estimators are noisy and untrustworthy, a fact emphasized by
the observation that the Â2

2 distribution has a standard deviation equal to its
mean. In the next three sections, methods for reducing the variance of direct
spectral estimators using different forms of averaging will be discussed.

4.2 Trial Averaging. If a number of trials (NT) is available, then the vari-
ance of the direct estimator may be reduced by trial averaging,

IDT ( f ) D
1

NT

NTX

nD1

ID
n ( f ), (4.9)

where ID
n ( f ) is the direct spectral estimate based on the nth trial.

6 Inconsistent estimators have a �nite variance even for an in�nite length sample.
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In the large T limit, taking the average entails summing NT independent
samples from a Â2

2 distribution, the result of which is distributed as Â2
2NT

.
The reduction in variance is inversely proportional to the number of trials
corresponding to a reduction in standard deviation, which is the familiar
factor of 1/

p
NT.

At �rst sight, it appears one would be getting something for nothing
by breaking a single section of data into NT segments and treating them
as separate trials. This is not the case. The reason is that if the data are
segmented into short length samples, there is loss of frequency resolution
proportional to the inverse of segment length. Lag window and multitaper
estimators use the information from these independent estimates without
arti�cially segmenting the data.

4.3 Lag Window Estimates. A powerful property of the frequency do-
main is that unless two frequencies are very close together, direct estimates
of the spectrum of a stationary process at different frequencies are nearly
uncorrelated. This property arises when the covariance between frequen-
cies falls off rapidly. If the true spectrum varies slowly over the width of the
covariance, then the large sample covariance of a direct spectral estimator is

covfID( f1), ID( f2)g ’ EfID( f )g2

Z 1

¡1
h(t)2e¡2p iDf tdt


2

(4.10)

where f D ( f1 C f2)/2 and Df D f1 ¡ f2.

For Df D 0, this expression reduces to the previously mentioned result
that the variance of the estimator is equal to the square of the mean. For
Df À 1/T, |

R 1
¡1 h(t)2e¡2p iDf tdt|2 ! 0, since h(t)2 is a smooth function with

extent T. This implies that covfID( f1), ID( f2)g ¼ 0 for | f1 ¡ f2 | À 1/T. The
approximate independence of nearby points means that if the true spec-
trum varies slowly enough, then closely spaced points will provide several
independent estimates of the same underlying spectrum. This is the moti-
vation for the lag window estimator, which is simply a smoothed version
of the direct spectral estimator (Percival & Walden, 1993). The lag window
estimator is de�ned as

ILW( f ) D
Z 1

¡1
K( f ¡ f 0 )ID( f 0 )df 0 (4.11)

where
Z 1

¡1
K( f )df D 1. (4.12)

Averaging over trials may be included by using the trial-averaged direct
spectral estimate IDT (see equation 4.9) in place of ID in the above expression.
It is assumed that K( f ) is a smoothing kernel with reasonable properties.



Spectrum and Coherency of Sequences of Action Potentials 727

4.3.1 Bias. The additional smoothing of the lag window kernel modi�es
the bias properties of the estimator from those expressed in equation 4.8.
The expected value of the lag window estimator is given by

EfILW ( f )g D
Z 1

¡1
K( f ¡ f 0 )|H( f 0 ¡ f 00)|2S( f 00)df 0df 00

¡
S(0)

T

Z 1

¡1
K( f ¡ f 0 )|H( f 0 )|2df 0. (4.13)

4.3.2 Asymptotic Variance. The large sample variance of this estimator
is readily obtained using equation 4.10:

varfILW ( f )g D
j

NT
EfILW( f )g2 (4.14)

where

j D
Z 1

¡1

Z 1

¡1
K( f )K( f 0 )|H( f ¡ f 0 )|2df df 0 (4.15)

and

H( f ) D
Z 1

¡1
h(t)2e¡2p if tdt. (4.16)

Equation 4.14 includes the reduction in variance due to trial averaging.
1/j can be interpreted as the effective number of independent estimates
beneath the smoothing kernel, as demonstrated by the following qualita-
tive argument. If Df is the frequency width of the smoothing kernel K( f )
and d f is the frequency width of the taper H( f ), then since K( f ) » 1/Df ,
it follows that j » 1/(Df )2 R

Df

R
Df |H( f ¡ f 0 )|2df df 0 and hence that j »

d f/Df.

4.4 Multitaper Estimates. While the lag window estimator is based on
the idea that nearby frequencies provide independent estimates, the es-
timation is not very systematic, since one should be able to decorrelate
explicitly nearby frequencies from the knowledge of the correlations in-
troduced by a �nite window size. This is achieved in multitaper spectral
estimation. The basic idea of multitaper spectral estimation is to average
the spectral estimates from several orthogonal tapers. The orthogonality of
the tapers ensures that the estimates are uncorrelated for large samples (con-
sider substituting h1(t)h2(t) for h(t)2 in equation 4.10). A critical question is
the choice of a set of orthogonal tapers. A natural choice are the discrete pro-
late spheroidal sequences (dpss) or Slepian sequences, which are de�ned
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by the property that they are maximally localized in frequency. The dpss
tapers maximize the spectral concentration de�ned as

l D

R W
¡W |H( f )|2df

R 1
¡1 |H( f )|2df

, (4.17)

where in the time domain h(t) is strictly con�ned to the interval [0,T].

For given values of W and T, a �nite number of tapers have concentrations
(l) close to one and therefore have well-controlled bias. This number, known
as the Shannon number, is 2WT. This sets an upper limit on the number of
independent estimates that can be obtained for a given amount of spectral
smoothing.

A direct multitaper estimate of the spectrum is de�ned as

IMT ( f ) D
1
K

K¡1X

kD0

ID
k ( f ). (4.18)

The eigenspectra ID
k are direct spectral estimates based on tapering the

data with the kth dpss function. As previously, trial averaging can be in-
cluded by using IDT rather than ID. More sophisticated estimates involve
adaptive (rather than constant) weighting of the data tapers (Percival &
Walden, 1993). Multitaper spectral estimation has been recently shown to
be useful for analyzing neurobiological time series, both continuous pro-
cesses (Mitra & Pesaran, 1999) and spike trains (Pesaran, Pezaris, Sahani,
Mitra, & Andersen, 2000).

4.4.1 Bias. The bias for the multitaper estimate is given by equation 4.8
but with |H(¢)|2 replaced by an average over tapers 1

K
PK¡1

kD0 |Hk(¢)|2.

4.4.2 Asymptotic Variance. The asymptotic variance of the multitaper
estimator, including trial averaging, is given by

varfIMT( f )g D
1

NTK
EfIMT ( f )g2 (4.19)

4.5 Degrees of Freedom. At this point it is useful to introduce the con-
cept of the degrees of freedom (º0) of an estimate. The degrees of freedom
is twice the number of independent estimates of the spectrum. Degrees of
freedom is a useful concept as it permits the expressions for the variance of
the different estimators to be written in a common format:

varfIX( f )g D
2EfIX( f )g2

º0
, (4.20)
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where

X D DT LW MT
º0 2 2NT 2NT /j 2NTK

Degrees of freedom is also a useful framework in which to cast both �nite
size corrections and the con�dence limits for the spectra and coherence.

The variance of estimators of the spectrum can be estimated using inter-
nal methods such as the bootstrap or jackknife (Efron & Tibshirani, 1993;
Thomson & Chave, 1991). Jackknife estimates can be constructed over trials
orover tapers. Ifº0 is large (> 20), then the theoretical and jackknife variance
are in close agreement. If distributional assumptions can be validly made
about the point process, theoretical error bars have an important advantage
over internal estimates since they enable the understanding of different fac-
tors that enter into the variance in order to guide experimental design and
data analysis. However, jackknife estimates are less sensitive to failures in
distributional assumptions, and this provides them with statistical robust-
ness.

It is conventional to display spectra on a log scale because taking the
log of the spectrum stabilizes the variance and leads a distribution that is
approximately gaussian.

4.6 Con�dence Intervals. The expected values of the estimators and
their variance have been discussed for several different spectral estimators,
but it is desirable to put con�dence intervals on the spectral estimates rather
than standard deviations.

As mentioned in section 4.2, the averaging of direct spectral estimates
from different trials yields, in the large sample limit, estimates that are dis-
tributed as Â2

2NT
. In general for the other estimates, a well-known approxi-

mation (Percival & Walden, 1993) is to assumethat the estimate is distributed
as Â2

º0
. Con�dence intervals can then by placed on estimates on the basis

of this Â2
º0

distribution. The con�dence interval applies for the population
spectrum S( f ) and is obtained from the following argument:

P
h
q1 · Â2

º0
· q2

i
D 1 ¡ 2p, (4.21)

where P indicates probability, q1 is such that P[Â2
º0

· q1] D p, and q2 is such
that P[Â2

º0
¸ q2] D p. It follows that

P
h
q1 · º0IX( f )/S( f ) · q2

i
D 1 ¡ 2p. (4.22)

Hence an approximate 100% £ (1 ¡ 2p) con�dence interval for S( f ) is given
by

P
h
º0IX( f )/q2 · S( f ) · º0IX ( f )/q1

i
. (4.23)
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For large º0 (> 20) these con�dence intervals do not differ substantially
from those based on a gaussian (§2 standard deviations) but at small º0,
the difference can be substantial as for these values the Â2

º0
distribution has

long tails.

4.7 High-Frequency Limit. The population spectrum goes to a constant
value equal to the rate l in the high-frequency limit. In practice, spectra
calculated from a �nite sample will go to a value close to l, but �uctuations
in the number of spikes in the interval will lead to an error in this estimate.
For a given sample, the spectrum will go to the value given by

I( f ! 1) D
1

NTK

K¡1X

kD0

NTX

nD1

Nn (T)X

jD1

hk(t
n
j )2, (4.24)

where tn
j is the jth spike in the nth trial and Nn(T) is the total number of

spikes in the nth trial. In the case of direct and lag window estimators, the
averaging over tapers need not be performed.

This expression yields a value that is typically very close to the sample
estimate of the mean rate.7 Signi�cant departures from this high-frequency
limit are of interest when interpreting the spectrum, as these indicate en-
hancement or suppression relative to a homogeneous Poisson process.

4.8 Choice of Estimator, Taper, and Lag Window. The preceding sec-
tion discussed the large sample statistical properties of direct, lag window,
and multitaper estimates of the spectrum. The choice of which estimator
to use remains a contentious one (Percival & Walden, 1993). The multita-
per method is the most systematic of the estimators, but the lag window
estimators should perform almost as well for spike train spectra that have
reasonably small dynamic ranges.8 However, it is possible to construct spike
trains with widely different timescales, which can possess a large, dynamic
range. In addition, the multitaper technique leads to a simple jackknife pro-
cedure by leaving out one data taper in turn. A further important property
of the multitaper estimator is that it gives more weight to events at the edges
of the time interval and thus ameliorates the arbitrary downweighting of
the edges of the data introduced by single tapers.

When using the lag window estimator, there are many choices available
for both the taper and the lag window. The choice of taper is generally
not critical provided that the taper goes smoothly to zero at the start and
end of the interval. A rectangular taper has particularly large side lobes

7 It is exactly the sample estimate of the mean rate for a rectangular taper.
8 Dynamic range is a measure of the variation in the spectrum as a function of frequency

and is de�ned as 10 log10

±
maxf S( f )
min f S( f )

²
.
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in the frequency domain, which can lead to signi�cant bias. The choice of
lag window is also usually not critical; typically a gaussian kernel will be
satisfactory.

5 Estimating the Coherency

Sample coherency, which may be estimated using equation 5.1, may be
evaluated using any of the previously mentioned spectral estimators. The
principal difference is that the direct estimator, in terms of which the other
estimators are expressed, is given by equations 5.2 and 5.3 rather than 4.1
and 4.2:

C( f ) D IX
12 /

q
IX
11IX

22 (5.1)

ID
12 ( f ) D JD

1 ( f )JD
2 ( f )¤ (5.2)

JD
a ( f ) D

Z 1

¡1
h(t)e¡2p if tdNa(t), (5.3)

where the N1(t) and N2(t) are simultaneously recorded spike trains from
two different cells and X denotes the type of spectral estimator. Possible
choices of estimator X include D direct, DT trial-averaged direct, LW lag
window, or MT multitaper.

Lag window and multitaper coherency estimates may be constructed by
substituting ID

12(¢) in place of ID(¢) in equations 4.11 and 4.18. The estimates
are biased over a frequency range equal to the width of the smoothing,
although the exact form for the bias is dif�cult to evaluate.

5.1 Con�dence Limits for the Coherence. The treatment of error bars
is somewhat different between the spectrum and the coherency, since the
coherency is a complex quantity. Usually one is interested in establishing
whether there is signi�cant coherence in a given frequency band. In order to
do this, the sample coherence should be tested against the null hypothesis of
zero population coherence. The distribution of the sample coherence under
this null hypothesis is

P(|C|) D (º0 ¡ 2)|C|(1 ¡ |C|2) (º0/2¡2) 0 · |C| · 1. (5.4)

A derivation of this result is given in Hannan (1970). In outline, the
method is to rewrite the coherence in such a way that it is equivalent to a
multiple correlation coef�cient (Anderson, 1984). The distribution of a mul-
tiple correlation coef�ent is then a known result from multivariate statistics.
In the case of coherence estimates based on lag window estimators, the ap-
propriateº0 may be used, although this is only approximately valid because
this method of derivation assumes integer º0/2.
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It is straightforward to calculate a con�dence level based on this distri-
bution. The coherence will exceed

p
1 ¡ p1/ (º0 /2¡1) only in p £100% of exper-

iments. In addition, it is notable that the quantity (º0/2 ¡ 1)|C|2 / (1 ¡ |C|2) is
distributed as F2(º0¡2) under this null hypothesis. It is useful to apply a trans-
formation to the coherence before plotting it, which aids in the assessment
of signi�cance. The variable q D

p
¡(º0 ¡ 2) log(1 ¡ |C|2) has a Raleigh dis-

tribution with density p(q) D qe¡q2/2. This density function does not depend
onº0 and furthermore has a tail that closely resembles a gaussian. For certain
values of a �tting parameter b ,9 a further linear transformation r D b (q ¡b )
leads to a distribution that closely resembles a standard normal gaussian
for r > 2. This means that for r > 2, one can interpret r as the number of
standard deviations by which the coherence exceeds that expected under
the null hypothesis.

5.2 Con�dence Limits for the Phase of the Coherency. If there is no
population coherency, then the phase of the sample coherency is distributed
uniformly. If there is population coherency, then the distribution of the sam-
ple phase is approximately gaussian provided that the tails of the gaussian
do not extend beyond a width 2p . An approximate 95% con�dence inter-
val for the phase (Rosenberg, Amjad, Breeze, Brillinger, & Halliday, 1989;
Brillinger, 1974) is

Ow ( f ) § 2

s
2

º0

³
1

|C( f )|2
¡ 1

´
, (5.5)

where Ow ( f ), the sample estimate of the coherency phase, is evaluated using
tan¡1fIm(C)/Re(C)g.

6 Finite Size Effects

In the preceding sections, error bars were given for estimators of the spec-
trum and the coherence. However, these error bars were based on large sam-
ple sizes (they apply asymptotically as T ! 1). Neurophysiological data
are not collected in this regime, and particularly in awake behaving studies
where data are often sparse, corrections arising at small T are potentially im-
portant. In order to estimate the size of these corrections, a particular model
for the point process is required. The model studied was chosen primarily
for its analytical tractability while still maintaining a nontrivial spectrum.

The model and the �nal results are presented here, but the details of the
analysis are reserved for the appendix. The model is a doubly stochastic
inhomogeneous Poisson process with a gaussian rate function. A speci�c
realization of a spike train is generated from the model in the following

9 A reasonable choice for b is 23/20.
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Figure 5: Schematic illustrating the model for which �nite size corrections to the
asymptotic error bars will be evaluated. (a) A spectrum SG( f ) is de�ned. (b) A
realization lG (t) is drawn from a gaussian process with this spectrum. (c) The
mean rate l is added to lG(t) to obtain l(t). (d) This rate function is used to
generate a realization of an inhomogeneous Poisson process, yielding a set of
spike times.

manner. First, a population spectrum SG( f ) is speci�ed. From this, a real-
ization of a zero mean gaussian process lG( f ) is generated. A constant l, the
mean rate, is then added to this realization. This function is then considered
to be the rate function for an inhomogeneous Poisson process. A realization
of this inhomogeneous Poisson process is then generated. A schematic of
the model is shown in Figure 5.

Technically this is not a valid process because the rate function l(t) may
be negative. However, if the area underneath the spectrum is small enough,
then the �uctuations about the mean rate seldom cross zero, and corrections
due to this effect are negligible. In addition, large violations of this area
constraint have been tested by Monte Carlo simulation, and the results still
apply to a good approximation.

An important feature of this model is that the population spectrum of the
spike trains is simply the spectrum of the inhomogeneous Poisson process
rate function plus an offset equal to the mean rate.10 The spectrum of the
rate function is a positive real quantity, and therefore within this model the
population spectrum cannot be less than the mean rate at any frequency.
Intuitively, the reason is that the process must be more variable than a ho-
mogeneous Poisson process at all frequencies.

To make the nature of the result clear, a simpli�ed version is given in
equation 6.1.This version is for the particular caseofa homogeneous Poisson
process (which has a �at population spectrum) and a rectangular taper:11

varfIX( f )g D l2
µ

2
º0

C
1

NTTl

¶
, (6.1)

where l is the mean rate.

10 This result does not depend on the gaussian assumption.
11 The expression also holds approximately for the multitaper estimate provided all

tapers up to the Shannon limit are used.
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A sample-based estimate of NTTl is the total number of spikes over all
trials. It is to be noted that �nite-size effects reduce the degrees of freedom.
This result implies that there is a point beyond which additional smoothing
does not decrease the variance further, and this point is approximately when
º0 is equal to twice the total number of spikes. The full result is given in
equations 6.2 to 6.7:

varfIX( f )g D
2EfIX( f )g2

º( f )
(6.2)

1
º( f )

D
1

º0
C

CX
h W( f )

2TNTEfIX ( f )g2 , (6.3)

where

CX
h D

(R 1
0 f (t)4dt if X D LW, D or DT
1

K2

P
k,k0

R 1
0 fk(t)2 fk0 (t)2dt if X D MT

(6.4)

f (t/T) D
p

Th(t) (6.5)

and

W ( f ) D lhf C 4[EfIX( f )g ¡ lhf ] C 2[EfIX (0)g ¡ lhf ]

C [EfIX(2 f )g ¡ lhf ] (6.6)

lhf D EfIX ( f ! 1)g. (6.7)

CX
h is a constant of order unity, which depends on the taper. When a taper

is used to control bias, some of the spikes are effectively disregarded, and
this has an effect on the size of the correction. The function f (t) has the
same form as the taper h(t) but is de�ned for the interval [0, 1]. CX

h is the
integral of the fourth power of f and obtains its minimum value of one for
a rectangular taper. It is typically between 1 and 2 for other tapers. In the
multitaper case, cross-terms between tapers are included.

Equation 6.6 describes how the �nite-size correction depends on the
structure of the spectrum. W ( f ) is the sum of four terms. The �rst term
is the only one present for a �at spectrum. The second term is a correction
that depends on the spectrum at the frequency being considered. The next
two terms depend on the spectrum at zero frequency and the spectrum at
twice the frequencybeingconsidered. The �nal three terms all depend onthe
difference between the spectrum at some frequency and the high-frequency
limit. Equation 6.6 applies provided that the spike train is well described by
the model. However, this is not necessarily the case, and a suppression of
the spectrum, which cannot be described by the model, often occurs at low
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frequencies.12 In the event that there is a signi�cant suppression of the spec-
trum, W ( f ) may become small or even negative. To avoid this, a modi�ed
form for W ( f ) that prevents this may be used:

W( f ) D lhf C 4 max([EfIX ( f )g ¡ lhf ], 0)

C2 max([EfIX (0)g ¡ lhf ], 0) . . .

C max([EfIX(2 f )g ¡ lhf ], 0). (6.8)

The modi�cation to the result is somewhat ad hoc, so Monte Carlo simu-
lations of spike trains with enforced refractory periods have been performed
to test its validity. These simulations demonstrated that although the cor-
rection derived using equation 6.8 was signi�cantly different from that ob-
tained from the Monte Carlo simulations in the region of the suppression,
equation 6.8 provided a pessimistic estimate in all cases studied. This in-
creases con�dence that applying �nite-size corrections using equation 6.8
will provide reasonable error bars for small samples.

Equation 6.3 gives the �nite-size correction in terms of a reduction in
º0. The new º( f ) may be used to put con�dence intervals on the results,
as described in section 4.6, although the accuracy of the Â2

º assumption
will be reduced. In the case of coherence, an indication of the correction to
the con�dence level can be obtained by using the smaller of the two º( f )
from the spike train spectra to calculate the con�dence level using equation
5.4. In all cases, if the effect being observed achieves signi�cance only by
an amount that is of the same order as the �nite-size correction, then it is
recommended that more data be collected.

7 Experimental Design

Often it is useful to know in advance how many trials or how long a time
interval one needs in order to resolve features of a certain size in the spec-
trum or the coherence. To do this, one needs to estimate the asymptotic
degrees of freedom º0. This depends on the size of feature to be resolved
a, the signi�cance level for which con�dence intervals will be calculated p,
and the fraction of experiments that will achieve signi�cance P . In addition,
the reduction in the degrees of freedom due to �nite size effect depends on
the total number of spikes Ns and also Ch (see section 6).

An estimate of v0 may be obtained in two stages. First, a,p and P are
speci�ed and used to calculate degrees of freedom º. Second, the asymp-
totic degrees of freedom º0 is estimated usingº, Ns, and Ch. The feature size
a D (S¡l)/l is the minimum size of feature that the experimenter is content
to resolve. For example, a value of 0.5 indicates that where the population

12 Note that any spike train spectra displaying signi�cant suppression below the mean
�ring rate can immediately rule out the inhomogeneous Poisson process model.
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spectrum exceeds 1.5l, the feature will be resolved. The signi�cance level
should be set to the same value that will be used for calculating the con�-
dence interval for the spectrum, typically 0.05. For a given p, there is some
probability P that an experiment will achieve signi�cance. To calculate º,

one begins with a guess ºg. Then q1 is chosen such that P
h
Â2

ºg
¸ q1

i
D p/2.

On the basis of this, one then evaluates P0 D 1 ¡ W
£
q1 / (1 C a)

¤
where W

is the cumulative Â2
ºg

distribution.13 If P0 is equal to the speci�ed fraction
P , then º D ºg; otherwise a different ºg is chosen. This procedure is readily
implemented as a minimization of (P ¡ P0(ºg))2 on a computer. Having
obtained º, one can estimate º0 using

1
º0

D
1
º

¡ Ch [1 C 4a]

2Ns [1 C a]2 , (7.1)

where the 4a is omitted from the numerator if a < 0.
Figure 6 illustrates example design curves generated using this method.

These curves show the asymptotic degrees of freedom as a function of fea-
ture size for different total numbers of spikes.

The existence of a region bounded by vertical asymptotes implies that
as long as the total number of measured spikes is �nite, modulations in the
spectrum below a certain level cannot be detected no matter how much the
spectrum is smoothed. These curves may be used to design experiments
capable of resolving spectral features of a certain size.

In the case of the coherence, one calculates how many degrees of freedom
are required for the con�dence line to lie at a certain level as described in
section 5.1.

8 Line Spectra

One of the assumptions underlying the estimation of spectra is that the
population spectrum varies slowly over the smoothing width (W for multi-
taper estimators). While this is often the case, there are situations in which
the spectrum contains very sharp features, which are better approximated
by lines than by a continuous spectrum. This corresponds to periodic mod-
ulations of the underlying rate, such as when a periodic stimulus train is
presented. In such situations, it is useful to be able to test for the presence of a
line in a background of colored noise (i.e., in a locally smooth but otherwise
arbitrary continuous population spectrum). Such a test has been previously
developed, in the context of multitaper estimation, for continuous processes

13 These formulas apply for a > 0. If a < 0, then P
h

Â2
ºg

· q1

i
D p/2 and P0 D

W
£
q1 / (1 C a)

¤
should be used.
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Figure 6: Example design curves for the case when p D 0.05, P D 0.5, and
Ch D 1.5. The three curves correspond respectively to Ns D 1 (solid line),
Ns D 100 (dashed line), and Ns D 20 (dotted line).

(Thomson, 1982). In the following section the analogous development for
point processes is presented.

8.1 F-Test for Point Processes. A line in the spectrum has an exactly
de�ned frequency, and consequently the process N(t) has a nonzero �rst
moment. The natural model in the case of a single line is given by

EfdN(t)g/dt D l0 C l1 cos(2p f1t C w ). (8.1)

A zero meanprocess (N) maybe constructed by subtraction of an estimate
of l0t. Provided that the product of the line frequency( f1) and the sample
duration(T) is much greater than one, the sample quantity N(T)/T is an
approximately unbiased estimate of l0. The resultant zero mean process N
has a Fourier transform that has a nonzero expectation:

Jk( f ) D
Z 1

¡1
hk(t)e¡2p if tdN(t) (8.2)

EfJk( f )g D c1Hk( f ¡ f1) C c¤
1Hk( f C f1), (8.3)

where,

c1 D l1eiw /2. (8.4)
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In the case where f > 0 and f1 > W,

EfJk( f )g ’ c1Hk( f ¡ f1). (8.5)

The estimates of Jk( f1) from different tapers provide a set of uncorre-
lated estimates of c1Hk(0). It is hence possible to estimate the value of c1 by
complex regression:

Oc1 D
P

k Jk( f1)Hk(0)P
k |Hk(0)|2

. (8.6)

Under the null hypothesis that there is no line in the spectrum (c1 D 0), it
may readily be shown that EfOc1g D 0 and varfOc1g D S( f1)/

P
k |Hk(0)|2. The

residual spectrum,14 which has the line removed, may be estimated using

OS( f ) D
1
K

X

k

| Jk( f ) ¡ Oc1Hk( f ¡ f1)|2. (8.7)

In the large sample limit, the distributions of both Oc1 and OS( f1) are known
(Percival & Walden, 1993) and may be used to derive

| Oc1 |2
P

k |Hk(0)|2(K ¡ 1)P
k |Jk( f1) ¡ Oc1Hk(0)|2

.D F2,2(K¡1), (8.8)

Where .D denotes “is distributed as.”
The null hypothesis may be tested using this relation; if it is rejected, the

line can be removed using equation 8.7 to estimate the residual spectrum.
It is worth noting that although relation 8.8 was derived for large samples,
the test is remarkably robust as the sample size is decreased. Numerical
tests indicate that the tail of the F distribution is well reproduced even in
situations where there are as few as �ve spikes in total.

8.2 Periodic Stimulation. A common paradigm in neurobiology where
line spectra are particularly important is that of periodic stimulation. When
a neuron is driven by a periodic stimulation of frequency f1, the spectrum
may contain lines at any of the harmonics nf1. Provided that f1 > 2W, the
analysis of section 8.1 applies with each harmonic being separately tested
for signi�cance.

The �rst moment of the process, which has period 1/ f1, is given by equa-
tion 8.9 and may be estimated using Ocn:

l(t) D l0 C
X

n
ln cos(2p nf1t C wn). (8.9)

14 It is also possible to estimate a residual coherency. In order to do this, one uses
a residual cross-spectrum OSxy ( f ) D 1

K

P
k
(Jx

k
( f ) ¡ Ocx

1Hk( f ¡ f1 ))¤ (Jy
k
( f ) ¡ Ocy

1Hk( f ¡ f1 )),
together with the residual spectra to evaluate the usual expression for coherency.
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where ln D 2|cn |, wn D tan¡1fIm(cn)/Re(cn)g, the sum is taken over all the
signi�cant coef�cients.

This rate function l(t) is the average response to a single stimulus or
impulse response. The coef�cients cn are the Fourier series representation
of l(t).

8.3 Error Bars. It is possible to put con�dence intervals on both the mod-
ulus and the phase of the coef�cients Ocn. For large samples (more than 10
spikes), the real and imaginary parts of Ocn are distributed as independent

gaussians, each with standard deviation sn D
q

S(nf1)/ (2
P

k |Hk(0)|2). For
cn/sn > 3, the distribution of | Ocn | is well approximated by a gaussian cen-
tered on |cn | and with standard deviation sn. In addition, the estimated
phase angle ( Own) is also almost gaussian with mean wn and standard devia-
tion sn/ |cn | . Approximate error bars or con�dence intervals may be obtained

using a sample-based estimate of sn, Osn D
q

OS(nf1)/(2
P

k |Hk(0)|2).
Estimating error bars for the impulse response function is more involved

due to their nonlocal nature (if one of the Fourier coef�cients is varied the
impulse response function changes everywhere). It is therefore of interest
to estimate a global con�dence interval, de�ned as any interval such that
the probability of the function crossing the interval anywhere is some pre-
de�ned probability. A method for estimating a global con�dence band is
detailed in Sun and Loader (1994) and outlined here. First, a basis vector
W(t) is constructed:

W(t) D

2

666666664

Os1 cos(2p f1t)
...

OsN cos(2p fNt)
Os1 sin(2p f1t)

...
OsN sin(2p fNt)

3

777777775

(8.10)

where N is the total number of harmonics.
The elements of this vector have unit variance, and a standard approxi-

mation, which relies on sn being gaussian, may be applied.

P(sup|l(t) ¡ Efl(t)g| > c| |W(t)| |) · 2(1 ¡ N(c)) C (k/p )e¡c2 /2 (8.11)

Where sup is the maximum value of its operand, | |W(t)| | denotes the length
of vector W(t), N(c) is the cumulative standard normal distribution, and k
is a constant. k may be evaluated by constructing the 2 £ N matrix X(t) D
[W (t) dW(t)/dt], forming its QR decomposition (Press, Teukolsky, Vetterling,
& Flannery, 1992) and then evaluating k D

R T
0 |R22(t)/R11(t)|dt.
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Figure 7: (a) Gaussian kernel (100 ms width) smoothed �ring rate with 2s error
bars based on a stationarity assumption. The vertical lines indicate the period
over which the spectrum was calculated. A light is �ashed at time zero, and the
spectrum is evaluated over the interval when the monkey is required to remem-
ber the target location. (b) The spectrum evaluated over this interval using a lag
window estimator with a 40% cosine taper and a gaussian lag window of width
3.5 Hz. 95% con�dence limits are shown with the �nite size correction included
(this typically resulted in a decrease in º( f ) from about 50 to 36). The horizontal
line indicates the high-frequency limit. (c) The same spectrum evaluated using
a multitaper estimator. A bandwidth (W) of 5 Hz was used allowing �ve tapers.
Both estimators have the same degrees of freedom.

Con�dence intervals for the residual spectrum are calculated in the usual
manner (using Â2

º ), although at the line frequencies, the interval is slightly
broadened due to the loss of two degrees of freedom incurred by estimation
of cn. Section 11 contains an example application of the methods described
in this section.

9 Example Spectra

Figure 7 is a spectrum calculated from data collected from a single cell
recorded from area PRR in the parietal cortex of an awake behaving mon-
key during a delayed memory reach task (Snyder et al., 1997). The spectrum
is calculated over an interval of 0.5 second during which the �ring rate is
reasonably stationary (the average �ring rate lies within the error bars) and
is averaged over �ve trials. The spectrum shows two features that achieve
signi�cance. There is enhancement of the spectrum in the frequency band
20–40 Hz, indicating the presence of an underlying broadband oscillatory
mode in the neuronal �ring rate. In addition, there is suppression of the spec-
trum at low frequencies. As discussed previously, a suppression of this sort
is consistent with an effective refactory period during which the neuron is
less likely to �re. Care must be taken at low frequencies since at frequencies
comparable to the smoothing width, the spectrum is particularly sensitive
to any nonstationarity in the data.

It may be useful for the practitioner to review parameter choice and the
relative merits of multitaper and lag window estimators. First, there is the
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choice of time interval. This was chosen to be as short as possible, consistent
with resolving the structure of interest. Choice of bandwidth is a subject on
which a considerable literature exists and which is beyond the scope of this
article (Loader, 1999). However, in practice, it is usually straightforward
to choose a reasonable bandwidth by trial and error. A balance should be
sought between undersmoothing, where the structure is not clear due to
the high variance of the estimator, and oversmoothing, where the structure
is blurred out because of excessive frequency averaging. One of the advan-
tages of the multitaper method over the lag window method is that once
the time interval and bandwidth have been set, the calculation of the spec-
trum is automatic and, in the sense de�ned in section 4.4, optimal. If a lag
window estimate is used, then the trade-off between bias and variance is
not formalized and one has to choose the taper and kernel smoother sepa-
rately (see section 4.8). Although both the lag window and the multitaper
estimates reveal the same structure in the example, this may not have been
the case if the spectrum had a larger dynamic range. Whichever method is
used, exploratory data analysis is always recommended when choosing the
time interval and bandwidth.

10 Example Coherency

To illustrate the estimation of coherency, simulated spike trains were gen-
erated from a coupled doubly stochastic Poisson process. For a given trial,
a pair of rate functions was drawn from a gaussian process. The realiza-
tions share a coherent mode that is linearly mixed into the rates of both
cells. These coupled rate functions are then used to draw a realization of
an inhomogeneous Poisson process for each cell independently. Using this
method, 15 trials of duration 0.5 second were generated. The coherent mode
was set such that the population coherence was a gaussian of height 0.35
and standard deviation 5 Hz centered on 20 Hz. The phase of this mode was
set to 180 degrees. Figure 8 indicates that this coherent mode is reasonably
estimated.

11 Example Periodic Stimulation

An example of an analysis of a periodic stimulus paradigm is shown in
Figure 9. The datum is a single cell recording collected from the barrel
cortex of an awake behaving rat during periodic whisker stimulation at
5.5 Hz (Sachdev, Jenkinson, Melzer, & Ebner, 1999). There is a single trial
of duration 50 seconds. During the trial, the average �ring rate, estimated
using a 2 second kernel, is constant to within the error bars expected for a
Poisson process.

The estimated impulse response function Ol(t) is seen to have two distinct
sharp peaks, outside of which the response does not differ signi�cantly from
zero. The moduli of the Fourier coef�cients are signi�cant out to n D 25. This
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Figure 8: (a) Coherence (left axis) and phase of the coherency (right axis). Fifteen
trials of 0.5 second duration were simulated using a doubly stochastic Poisson
process as described in the text. A multitaper estimator with a smoothing width
of 7 Hz was used. Finite size corrections were used and resulted in 25% reduc-
tion in the degrees of freedom. A horizontal line has been drawn at the 95%
con�dence level under the null hypothesis of no coherency. Where the null hy-
pothesis is rejected, the phase of the coherency is estimated and shown with
an approximate 95% con�dence interval. (b) The standardized coherence is a
transformation that maps the null distribution onto an approximately standard
normal variate (as described in section 5.1). The estimated coherence at 20 Hz
would therefore lie at three standard deviations if there were no population
coherence.

automatically sets the smoothing of Ol(t) as structure on a timescale of less
than 1/(25 £ 5.5) D 7 ms does not achieve signi�cance. Note that the coef-
�cients are enhanced at multiples of 6 (approximately 33 Hz), which comes
from having two peaks in the time domain l(t) separated by approximately
30 ms. The phase of the coef�cients closely follows a straight line, but there is
a small,periodic deviation from this line, which isagain at index multiples of
6. The gradient of the straight line depends on the time delay of the response.
The residual spectrum was calculated by �rst evaluating a multitaper esti-
mate from which the signi�cant harmonics were removed. This spectrum
had a bandwidth of 1.5 Hz, chosen to avoid overlap of the harmonics leading
to the multitaper estimate being undersmoothed. A further smoothing was
performed using a lag window.15 The resultant spectrum displays a slight
but signi�cant suppression relative to a Poisson process out to almost 200
Hz. Such a spectrum is characteristic of a short timescale refractive period.
The residual spectrum is particularly useful because rate nonstationarity has

15 The previous theory developed for lag window estimators applies to this hybrid
estimator with |H(¢)|2 replaced by 1

K

PK¡1
kD 0

|Hk(¢) |2 in equation 4.13 and |H (¢)|2 replaced

by 1
K

PK¡1
k,k0 D 0

| H kk0 (¢)|2 in equation 4.15.
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Figure 9: Response to a periodic stimulation of frequency 5.5 Hz. (a) Impulse
response function with global 95% con�dence interval. (b) |Ocn | versus index n
with 95% con�dence interval. Dots indicate points that achieved signi�cance in
the F-test. (c) Residual spectrum with �nite-size-corrected con�dence interval.
A multitaper spectrum with 100 tapers and a bandwidth of 1.5 Hz was used ini-
tially to avoid overlap of harmonics. This spectrum was then further smoothed
using a gaussian lag window with standard deviation 9 Hz. (d) The coef�cient
phases Own (in radians) versus index n after subtraction of a �tted straight line
of gradient 2p /3 § 0.01. The black dashed lines are a 95% con�dence interval
about zero.

been removed. As was the case for the spectrum, the choice of bandwidth
for the residual spectrum depends on the observed structure in the data.
The large bandwidth of 9 Hz was chosen because the residual spectrum is
very �at and can therefore tolerate a high degree of smoothing.

12 Summary

It is our belief that spectral analysis is a fruitful and underexploited analysis
technique for spike trains. In this article, an attempt has been made to collect
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Table 1: Basic Direct Spectral Estimator in Terms of Which
the Other Estimators Can Be Written.

Jkn
a ( f ) D

R T
0

hk(t)e¡2p if tdN
n
a (t)

Ikn
ab

( f ) D Jkn
a ( f )Jkn¤

b
( f )

Notes: For clarity, the superscript D on the direct spectral estimate
has been omitted. The index n labels trials, index k labels tapers, and
indices a and b label cells.

Table 2: Estimators and Large Sample Degrees of Freedom
º0 of Estimates of the Spectrum (ab D 11).

Equation
X IX

ab
( f ) Number º0

D I01
ab

( f ) 4.1 2

DT 1
NT

PNT
nD1 I0n

ab
( f ) 4.9 2NT

LW 1
NT

PNT
nD 1

R 1
¡1 K( f ¡ f 0 )I0n

ab
( f 0 )df 0 4.11 2NT /j

MT 1
NTK

PNT
nD1

PK¡1
kD 0 Ikn

ab
( f ) 4.18 2NTK

Note: The indices on the Ikn
ab are as follows: ab label the cells from

which the estimates are constructed, k labels the taper, and n labels
the trial.

the machinery necessary for performing spectral analysis on spike train
data into a single document. Starting from the population de�nitions, the
statistical properties of estimators of the spectrum and coherency have been
reviewed. Estimation methods for both continuous spectra and spectra that
contain lines have been included. In addition, new corrections to asymptotic
error bars have been presented that increase con�dence in applying spectral
techniques in practical situations where data are often sparse. Tables 1 to
5 summarize the important formulas. Matlab software implementing the
methods discussed in this article is available online from http://www.vis.
caltech.edu/»WAND/.

Appendix: Derivation of Finite Size Correction

Following is an outline derivation of the �nite-size corrections described in
section 6. First, the characteristic functionals (Bartlett, 1966) for the processes
N and the inhomogeneous Poisson process rate l(t) are related:

CN(h (t)) D E

(
exp

Á
i
Z T

0
h (t)dN

!)

http://www.vis.caltech.edu/%7EWAND/
http://www.vis.caltech.edu/%7EWAND/
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Table 3: Main Formulas Required for Estimating Spectral Error Bars.

Equation
Equation Number Comment

Use º0 for asymptotic

Variance varfIX
aa ( f )g D 2EfIX

aa ( f )g2

º( f ) 4.20 or º( f ) if using �nite
size correction

Degrees 1
º( f ) D 1

º0
C

CX
h

W ( f )

2TNTEfIX ( f )g2 6.3 See text for de�nitions

of freedom of CX
h and W ( f )

Con�dence
£
ºIX ( f )/q2, ºIX ( f )/q1

¤
4.23 q1 s.t P[Â2

º · q1] D p
(1 ¡ 2p) £ 100% q2 s.t P[Â2

º ¸ q2] D p

Note: Refer to section 4 for additional information.

Table 4: Main Formulas Required for Coherency Estimation.

Equation
Equation Number Comment

Coherency CX ( f ) D
IX
abp
IX
aa IX

bb

5.1

Distribution P(|C |) D (º ¡ 2) |C| (1 ¡ |C|2 )(º/2¡2) 5.4 Under null
for coherence hypothesis c D 0

Con�dence Ow ( f ) § 2

r
2
º

±
1

|C( f )|2
¡ 1

²
5.5 Approximately

for phase 95%

Note: Refer to section 5 for additional information.

Table 5: Main Formulas Required for the Detection and Removal of a Line from
the Spectrum.

Equation
Equation Number Comment

Complex amplitude Oc1 D

P
k

Jk ( f1 )Hk (0)P
k

|Hk (0)|2
8.6

of line

F-test to access the
| Oc1 |2

P
k

|Hk (0)|2 (K¡1)P
k

| Jk ( f1 )¡Oc1Hk (0)|2
.D F2,2(K¡1) 8.8 Null

signi�cance of a line c1 D 0

Residual spectrum OS( f ) D 1
K

P
k

| Jk( f ) ¡ Oc1Hk ( f ¡ f1 )|2 8.7

Note: Refer to section 8 for additional information.
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D El

(
exp

ÁZ T

0
l(t)b(h (t))dt

!)
(A.1)

b(h (t)) D exp

"
ih (t) ¡

i
T

Z T

0
h (t0 )dt0

#
. (A.2)

Under the gaussian process assumption for l(t), this integral may be done:

CN D exp

"
1
2

Z T

0

Z T

0
b(t)L (t, t0 )b(t0 )dtdt 0 C l

Z T

0
b(t)dt

#
(A.3)

L (t, t0 ) D Elf(l(t) ¡ l)(l(t0 ) ¡ l)g. (A.4)

Note that l denotes the mean rate. Taking the log of the characteristic func-
tionals now yields the following relation between the resultant cumulant
functionals:

KN D lnE

(
exp(i

Z T

0
h (t)dN)

)
D

1
2

Z T

0

Z T

0
b(t)L (t, t0 )b(t0 )dtdt0

C l

Z T

0
b(t)dt. (A.5)

Next, h (t) is chosen appropriately and substituted into KN . The form for
h (t), which is required to obtain the covariance of multitaper estimators, is

ih (t) D h1hk(t)e¡2p if1 t C h2hk(t)e2p if1t C h3hk0 (t)e¡2p if2t

C h4hk0 (t)e2p if2t. (A.6)

Substituting into the cumulant functional for N yields

KN D lnEfexp(h1JD
k ( f1) C h2JD¤

k ( f1) C h3JD
k0 ( f2) C h4JD¤

k0 ( f2))g, (A.7)

where JD
k is the Fourier transform of the data tapered by a function indexed

by k. Application of the cumulant expansion theorem (Ma, 1985) then leads
to

KN D Efexp(h1JD
k ( f1) C h2JD¤

k ( f1) C h3JD
k0 ( f2) C h4JD¤

k0 ( f2)) ¡ 1gC. (A.8)

This may then be differentiated and set to zero:

Klmno D
@KN

@h l
1@hm

2 @hn
3 @h o

4


h1 Dh2 Dh3 Dh4 D0

D EfJDl
k ( f1)JDm¤

k ( f1)JDn
k0 ( f2)JDo¤

k0 ( f2)gC. (A.9)
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Moments of the estimators may be expressed in terms of these cumulant
derivatives. The expressions are simpli�ed by the fact that all cumulant
derivatives that have indices summing to an odd number are zero because
N is a zero mean process:

EfID
k ( f )g D K1100 (A.10)

varfIMT( f )g D
1

K2

K¡1X

kD0

K¡1X

k0 D0

covfID
k ( f ), ID

k0 ( f )g (A.11)

covfID
k ( f ), ID

k0 ( f )g D K1010K0101 C K1111 C K1001K0110. (A.12)

The problem has now been reduced to that of calculating these derivatives
within the model. This is done by substituting the expression for h (t) into
the right-hand side of equation A.5. Considerable algebra then leads to the
following exact result:

Klmno D KA
lmno C KB

lmno, (A.13)

where

KA
lmno D

1
2

X

li ,mi ,ni ,oi

l!m!n!o!
Pli!Pmi!Pni!Poi!

µ
¡H1( f1)

T

¶l2 Cl4 µ
¡H1( f1)¤

T

¶m2 Cm4

¢ ¢ ¢

µ
¡H1( f2)

T

¶n2 Cn4
µ

¡H1( f2)¤

T

¶o2 Co4

Il1,m1 ,n1,o1
l3,m3,n3,o3

(A.14)

where
P

i li D l and cases where l1 C l2 D l or l3 C l4 D l are excluded (and
also for n, m, o):

Il1,m1 ,n1,o1
l3,m3,n3,o3

D
Z 1

1
Sl( f )Hl1 Cm1 Cn1 Co1 [ f1(l1 ¡ m1) C f2(n1 ¡ o1) ¡ f ] . . .

H¤
l3 Cm3 Cn3 Co3

[ f1(l3 ¡ m3) C f2(n3 ¡ o3) ¡ f ]df, (A.15)

where Sl( f ) is the spectrum of the gaussian process and Hl is

Hl ( f ) D
Z 1

¡1
hl(t) exp(¡2p if t)dt (A.16)

H0( f ) D T exp(¡ip fT)sinc(p f T) (A.17)
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KB
lmno D l

lX

pD0

mX

qD0

nX

rD0

oX

sD0

[
l
p ][

m
q ][

n
r ][

o
s ]HpCqCrCs

£[ f1(p ¡ q) C f2(r ¡ s)] ¢ ¢ ¢
µ ¡H1( f1)

T

¶(l¡p)

£
µ ¡H1( f1)¤

T

¶(m¡q) µ ¡H1( f2)
T

¶(n¡r) µ ¡H1( f2)¤

T

¶(o¡s)

. (A.18)

The preceding result is somewhat cumbersome but readily evaluated
computationally for a given spectrum. The expression simpli�es greatly
whenonly frequencies above the smoothing width are considered and many
of the terms may be neglected. Restricting attention to the second-order
properties, thereare only a few remaining dominant terms. Terms from K1001
lead to the previously discussed asymptotic results, but there are corrections
that arise from the term K1111 . Assuming that the population spectrum varies
slowly over the width of the tapers leads to the result given by equations 6.2
through6.7.The validity of this assumption has been tested computationally
and was found to be very accurate even for spectra with sharp peaks.
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