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Sampling Rate Impact on the Tuning of PID

Controller Parameters
Michal Laskawski, Miroslaw Wcislik

Abstract—The paper deals with an analysis of automatic
control system with continuous and discrete PID controllers. A
method of tuning the parameters of the continuous controller is
presented, which is optimal according to the ITAE criterion. The
behavior of control systems with discrete controllers whose pa-
rameters were tuned using the mentioned method are described.
The impact of changes in the sampling period of controlled signal
on the control quality is shown. Changes of the values of optimal
parameters of discrete PID controllers in relation to changes of
the sampling rate of controlled signal are characterized.
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I. INTRODUCTION

THE general rules of the sampling period selection in

control systems use the parameters of the identified

controlled system model. The parameters are often: Tmax - the

dominant time constant, L - the transport delay time constant,

T - inertia time constant [1], [2]. There are also known rules

determining sampling period with respect to the control quality

indicators such as: ts - settling time and tr - rise time, [2],

[3]. These rules allow one to estimate the signal sampling

period with respect to the identified controller parameters (Ti

- integration time, Td - differentiation time constant) and are

presented in: [2], [4]. All of these rules do not specify precisely

what value of sampling period ∆t ought to be used. They allow

one to only roughly estimate the acceptable value of interval

∆t.
For modeling and analysis of discrete control system, it is

assumed that the continuous control system is the reference

system. It makes it easier to analyze the impact of sampling

period of control signal on the control quality of the discrete

system and the to choose of the optimal settings of discrete

controllers. In the continuous system, the controller constantly

monitors the controlled signal (process value) and the refer-

ence signal (setpoint value). On the basis of these signals it

generates a control signal.

The settings of PI and PID controller are often selected

using methods that are designed for continuous controllers

[5], [6], [7]. Badly selected continuous controller parameters

can cause poor quality of control. The quality of control can

deteriorate even more if the selected settings are used with a

controller which responds to the input signals periodically, just

like discrete controller. To avoid this, the controller parameters

are selected using an optimization method taking into account
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the sampling period. Such a method was proposed in [8] and

it is briefly described in the next section.

II. OPTIMAL SETTINGS OF CONTINUOUS PI AND PID

CONTROLERS

A closed-loop control system with continuous PID con-

troller analyzed in [8] is shown in Fig. 1. It was assumed

CONTROLLER

PI(D)

CONTROLLED 

SYSTEM

x(t) e(t) u(t) y(t)

set 

point 

value

error control 

signal

controlled 

signal

Fig. 1. The diagram of a basic control system with continuous PID controller.

that PID controller has the form:

Gc(s) = Kc

[

1 +
1

sTi

+
sTd

sTd

N
+ 1

]

(1)

where: Kc proportional gain, Ti - integral time, Td - derivative

time, N - dimensionless coefficient.

The value of the dimensionless coefficient N is determined by

bibliography analysis. Usually the value of the coefficient is

in the range of 2 to 30 [9]. It was assumed that N = 20 [8].

The dynamics of the controlled system is approximated by

a first-order inertial model with transport delay.

G(s) =
Ke−sL

1 + sT
(2)

where: K - static gain, T - inertia time constant, L - transport

delay time constant.

The model description can map the dynamics of a wide

range of industrial processes with satisfactory accuracy. It also

makes it possible to model the steady state. The presence of a

transport delay allows an approximation of potentially unstable

processes.

The ITAE (integral of time-weighted absolute error) was

selected as an optimality criterion [10]:

ITAE =

∫ t

0

t
∣

∣e(t)
∣

∣ dt (3)

A. The Tuning Procedure

The procedure for the selection of the optimal settings of

PI and PID controllers consists of a few steps.

• First, the proportional and derivative parts of the PID

controller are disconnected. For the PI controller, only

the proportional part is disconnected.

Leaving the integral part of the controller at this stage

of the procedure is a distinctive feature of the method.
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It approximates the current system characteristic to the

target systems characteristics with PI or PID controllers

and facilitates the selection of the optimal controller

parameters.

According to the assumption that controlled system can

be approximated by model (2) the transfer function of the

open-loop control system which consists of connected in

series integral controller and model (2) is described by

the equation:

GO(so) =
TKKie

−soθ

so (1 + so)
(4)

where: so = sT , θ = L

T

The module of the spectral transfer function is as follows:

|GOωo
| = KKiT

ωo

√

1 + ω2
o

(5)

where: ωo = ωT .

• At the next stage of the procedure, the gain of the integral

part of the controller is increased to get the closed loop

system to border stability.

At this stage, the controller ultimate gain Ki and the sus-

tained oscillation angular frequency ωosc of the controlled

variable y are assessed.

• On the basis of these parameters and taking into account

that |GOωosc
| = 1 and (5) the time constant T of an

approximating model is identified.

T =

√

(KKi)2 − ω2
osc

ωosc

(6)

• The coefficient θ is calculated from the equation describ-

ing an argument of (5) at the stability border:

−π =
−π

2
− arctan(ωo osc)− ωo oscθ (7)

Taking into account that ωo osc = ωoscT the θ coefficient

is described by the equation:

θ =
π

2 − arctan(ωoscT )

ωoscT
(8)

• The set of equations (9) describe the optimal settings of

the PI controller [8].

Kc =
10

0.49
√

θ
−0.67

K
Ti =

(

0.0058θ2 + 0.31θ + 0.91
)

T

(9)

The optimal settings of the PID controller are described

by set of equations 10 [8].

Kc =
10

0.81

3√
θ

−0.79

K
Ti = (0.4θ + 0.97)T

Td =
(

0.48
√
θ − 0.16

)

T

(10)

The equations (9) and (10) were obtained using the ap-

proximation of the set of PI and PID optimal settings. The

least squares method was used in this purpose. The obtained

formulas provide acceptable accuracy for θ = [0.2, 2].

B. The Impact of the Proposed Settings on Control Quality

Examples of step responses of the continuous systems

with PID controllers were shown in Fig. 2. The controllers

parameters were selected using the Ziegler-Nichols method

[5] and the proposed method [8]. The controlled system has a

transfer function described by (2) with θ = L

T
= 0.2.

Fig. 2. The transients of the continuous control system with the PID
controller.

The use of the proposed method causes a slight increase of

the rise time as well as a decrease of the settling time and

the overshoot value. The control quality is significantly better

than for the Ziegler-Nichols method.

The transients for the proposed method in Fig. 2 have some

pulse disturbances. They arise from an interaction between the

derivative part of the PID controller and the transport delay of

the controlled system.

III. OPTIMAL SETTINGS OF DISCRETE TIME PI AND PID

CONTROLERS

The block diagram of an automatic control system with

discretized control signal with sampling period ∆t is shown

in Fig. 3.
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Fig. 3. Discretized automatic control system.

Simulation of the system presented in Fig. 3 requires the

separation of the elements that are solved with different

periods. The summation node as well as the controller are

solved with period ∆t. For the continuous part of the system,

the model of the controlled system is solved with the step δt.
The step δt may be either fixed or variable. It depends on the

chosen method of solving differential equations describing the

controlled system.
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A. An Implementation of the Discrete-time Controller

In SIMULINK environment, the above discrete control

system requires two ZOH (zero-order hold) extrapolators,

which must be placed before and after the continuous model

of the controller (Fig. 4).
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Fig. 4. Diagram of the discrete control system in SIMULINK.

Simulation results show that the insertion of the ZOH

extrapolators into the continuous system (Fig. 4) causes system

instability, even if the original continuous system was stable

and the transient of the controlled signal was optimal.

For the coefficient N = 20 the instability occurs even

for small values of the period ∆t. Optimal settings of the

controller (1) which are used with the system of Fig. 4 have

to be selected taking into account the sampling period ∆t. The

problem may be avoided by using the discrete form of the PID

controller.

The discrete controller form discussed above was used in

control system shown in Fig. 5.
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Fig. 5. Diagram of control system with a discrete controller in SIMULINK.

In block diagram in Fig. 5 the controller equations were

obtained using the Euler-Forward method [11], which gives

the PID controller equation applied to (1). It makes the system

in Fig. 5 correspond to the system in Fig. 4. That form of

equation of the PID controller is often implemented in control

devices [13]:

uk = Kc

[

ek +
∆tSk

Ti

+
Td (ek − ek−1)

∆t

]

(11)

where: Sk = Sk−1 + ek.

Equation (11) is called the position algorithm. Its

SIMULINK diagram is shown in Fig. 6. The block diagram

from the Fig. 6 is placed within the Triggered Subsystem

PID(z) block in diagram in Fig. 5.

B. Simulation Results

The transients of the output (controlled) signal for the

control systems with the continuous (1) controller and with
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Fig. 6. Position PID algorithm diagram in SIMULINK.

the discrete (11) controller are shown in Fig. 7 for the signal

sampling period: ∆t = 0.001. According to the time scaling

of the control system, the sampling period ∆t is related to the

inertia time constant T .

Fig. 7. Transients of the continuous and discrete control system.

Settings for both controllers were calculated from equations

(10). The controlled system was defined by the formula (2)

with coefficient θ = L/T = 0.2. Transients of the controlled

signal obtained from discrete and continuous control systems

are very close (Fig. 7). The similar behavior of the continuous

(1) and the discrete (11) controllers is observed for a relatively

high value of the coefficient N . As was previously mentioned,

the value of N is equal to 20. This value of the coefficient N
lowers the filtering influence in the derivative component of

the continuous controller (1).

The step responses of the control systems with the PI and

the PID controllers are shown in Figs. 8 and 9. Simulations

were made for various values of ∆t. In each simulation

the controller parameters were set up to the optimal values

calculated for the continuous controller (1). It can be seen

that despite the selecting optimal parameters, the increase of

the ∆t causes loss of the control quality for both types of

controllers. The PID controller is more sensitive to the change

of ∆t (Fig. 9).
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Fig. 8. Transients of the controlled variable in the control system with PI
controller for different sampling periods.

Fig. 9. Transients of the controlled variable in the control system with PID
controller for different sampling periods.

C. Influence of the Sampling Rate on the Discrete-time PI

Controller Parameters

The Nelder-Mead method was used to find optimal (3)

settings of PI controller [12]. Optimal parameters of the PI

controller are shown in Fig. 10. The results show the influence

of the sampling period of the control signal on the control

quality and optimal parameters of the controller. It can be

seen that the increase of the sampling period ∆t causes the

decrease of the optimal value of the proportional gain Kc.

Simultaneously, the optimal value of the integral time Ti

increases. The system behaves this way for small values of

θ. Along with the increase of the coefficient θ, the optimal

values of Kc decrease and are almost independent of the

sampling time. The optimal values of Ti are more sensitive

to the sampling period. It means that for systems with small

θ the use of the optimal settings of the continuous controller

for the discrete controller requires one to change both of its

parameters: Kc and Ti. For the systems with larger θ only the

Ti value ought to be changed.

Fig. 10. Optimal parameters of the PI controllers for different values of: the
θ coefficient and the sampling period ∆t.

The ITAE index optimal values as a function of the sampling

period ∆t of control signal are shown in Fig. 11. These values

correspond to the settings shown in Fig. 10.

Fig. 11. ITAE optimal values as a function of ∆t, for a system with PI
controller.

Continuous control systems are characterized by the lowest

values of the ITAE index (Fig. 11). The phenomenon occurs

for all values of θ. It means that the continuous system gives

the best control quality. The use of a discrete controller only

degrades the quality of control. The controller responds to

the system signals in a periodic manner with the period ∆t,
therefore a part of information about the control system state

between samples is lost. The discrete controller generates the

control signal based on the deficient data. It has to lead to a

loss of control quality.

The step responses of the system with PI controller are

shown in Fig. 12. The controller settings were chosen accord-

ing to Fig. 10. The controlled system has θ = 0.2.
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Fig. 12. Transients of the controlled signals of control system with PI
controller for optimal settings related to the period ∆t.

Plots in Figs. 8 and 12 show that the overshoot was reduced,

especially for the system with a large value of sampling period

∆t. The rise time was elongated. It causes the slowing down of

the transient of the controlled variable. However, the settling

time has been improved.

D. Influence of the sampling rate on the discrete-time PID

controller parameters

Optimal PID controller settings were identified with use of

the Nelder-Mead method. These settings as a function of θ
and ∆t coefficients are shown in Figs. 13, 14 and 15.

Fig. 13. Optimal values: Kc, Ti of the PID controllers for different values
of: the θ coefficient and the sampling period ∆t.

As it is shown in Fig. 13 for the small value of θ the optimal

value of the proportional gain Kc decreases with the increase

of ∆t. Simultaneously, the optimal value of integral time Ti

increases. The optimal value of derivative time Td decreases

along with an increase in ∆t - Fig. 14. It should be noted

that for small values of θ the change of Td is relatively small

Fig. 14. Optimal values: Kc, Td of the PID controllers for different values
of: the θ coefficient and sampling period ∆t.

Fig. 15. Optimal values: Td, Ti of the PID controllers for different values
of: the θ coefficient and sampling period ∆t.

(Figs. 14 and 15). Along with the increase of θ the range of

optimal values of Kc decreases, while the ranges of changes

of optimal values of Ti and Td increase.

It means that for systems with small θ the use of the optimal

settings of the continuous controller for the discrete controller

requires a significant change of Kc, small changes of Ti and

almost no change of Td. For the systems with larger θ both:

Ti and Td must be changed, while Kc may remain almost

unchanged. In relation to the PI controller the control system

with use of PID controller is more sensitive to proportional

gain Kc (Figs. 10 and 13).

The ITAE index optimal values as a function of the sampling

period of the controlled signal for a system with PID controller

are shown in Fig 16.

Just as for the system with PI controller the best control

quality is observed for continuous control system with PID

controller. The use of the discrete controller only degrades

control quality. The use of the PID controller improves control
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Fig. 16. ITAE optimal values as a function of ∆t, for a system with PID
controller.

Fig. 17. Step responses of the control system with PID controller for optimal
settings related to the period ∆t.

quality, especially for the systems with large values of the θ
(Figs. 11 and 16).

The optimal step responses of the system with PID con-

troller are shown in Fig. 17. The controller settings cor-

responding to the values are shown in Figs. 13 and 14.

Comparing the plots in Figs. 9 and 17 it can be seen that

the control quality has been significantly improved especially

for the systems with large value of the sampling period. The

overshoot has been reduced and the settling time became

shorter.

IV. CONCLUSION

The settings of the PI and the PID controllers chosen using

the authors method [8] allows one to achieve optimal (3)

control quality of the controlled system. These settings used

with discrete controllers do not provide optimal control quality.

The control quality decreases with the increase of the sampling

period ∆t of the control signal. To maintain the required

quality, value correction of the controller settings is needed.
Changes of control quality and the changes of controller

settings they require depend on the chosen form of the discrete

controller. It was noted that the discrete implementation of

continuous controller whose equation was derived using the

Euler-Forward method is very sensitive to changes of the

control signal sampling rate, especially for the higher values

of the N coefficient in (1). Even a small value of ∆t may

destabilize a system which is stable and optimally tuned with

the continuous controller.
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