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Abstract

Continuous-time modeling of random searches is de-
signed to be robust to the sampling rate while the spatial
model is required to be of rotation-invariant type, which
is often computationally prohibitive. Such computational
difficulty may be circumvented by employing a model
with independent components. We demonstrate that its
disadvantages in statistical properties are blurred under
lower frequency. We propose a quantitative criterion for
choice of the sampling rate at which a spatial model with
independent components resembles a rotation-invariant
model. Our findings have the potential to assist the ob-
server to employ simpler models in the continuous-time
framework to avoid expensive computation required for
statistical inference.

PACS numbers: 87.23.-n, 87.10.Mn, 87.10.Ca

1 Introduction

Mathematical modeling of random searches is of great
relevance in the field of ecology [} 2} 3]. A large num-
ber of existing studies record the movement at equidis-
tant time intervals and model such ordered sets of step
length and turning angles directly with discrete-time ran-
dom walks [4} 5]. Given the increasing availability of
high resolution observation data, however, statistical in-
ference for such time series data at different sampling
rates has raised an important issue of robustness to the
sampling rate, as estimation results for the discrete obser-
vation data depend largely on the sampling rate [6} [7]. In
turn, continuous-time modeling [8] is designed to model
the entire trajectory {X; : r € [0,1, ]} based on the lim-
ited discrete observation (X, ,X;,,,...,X,,,) at equidis-
tant time points #, ; := kA, rather than fitting some ran-
dom walk model, such as Lévy walks and correlated
random walks. This continuous-time framework is thus
purely robust to the sampling rate, while the discrete-time
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random walk framework does not allow for the concept of
super-sampling, for instance. Given the increasing avail-
ability of high resolution data, it is of great interest to
investigate more observations (n 1 +oo) at a higher sam-
pling frequency (A, J 0). The high frequency sampling
reflects the best possible experiment environment in real-
ity. Strictly speaking, observation over a whole interval is
never possible even with recent high technology.

The main objective of this article is to suggest a pos-
sible simplification to modeling and analysis of random
search patterns. To this end, we demonstrate that a simple
motion (composed by two independent walks) resembles
a more detailed model (a rotationally invariant process),
when it is observed at low sampling frequencies. This
fact also reinforces the idea [6} [7] that the temporal sam-
pling of a given process influences the inference that one
can make about it.

Let us begin with the most classical and tractable
model; the Brownian motion. In Figure[Il we draw typi-
cal sample paths of the two-dimensional Brownian motion
{ty+B;:t >0}, where y:= [1,7»] " indicates the deter-
ministic drift, or equivalently the bias in movements, and
where {B, : t > 0} is a centered two-dimensional Brow-

. . . . . ol poio
nian motion with covariance matrix 2 .
pPO102 05

with 61 >0, 02 >0 and p € [-1,+1]. The value p =0
induces the Brownian motion with independent compo-
nents, which is indeed rotationally invariant and thus best
describes no directional preference among various values
of p € [—=1,+1]. All the resulting computations are thus
purely one-dimensional.

Figure 1: Typical sample paths of a two-dimensional Brown-
ian motion with y = 0, 61 = 0, and with p = 0 (left), p = 0.4
(center), and p = 0.8 (right).



2 Spatio-Temporal Modeling

There has been a widely accepted consensus [9] that the
Brownian motion is not appropriate for modeling move-
ment paths, as its sample path returns so frequently to the
same place, which is unrealistic for searching for sparsely
distributed resources. A first alternative to the Brownian
motion is the stable Lévy motion model [10]]. Its univari-
ate motion has been used in several other fields of appli-
cations, such as statistical physics, queueing theory, and
mathematical finance. In this article, we focus on a (non-
Gaussian) two-dimensional symmetric stable (Lévy) mo-
tion {X; : + > 0}, which can be defined through the char-
acteristic function [11}[12]
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where y € R? indicates the bias in movements, where & €
(0,2) is the stability index, and where A(d&) is a finite
positive symmetric measure on S (the unit sphere in R?),
which governs the direction of jumps. The limit « | 0
leads to ballistic motion. This stable motion, with y =0,
that is, no bias in movements, enjoys the self-similarity
(1L 124 131 114} [15]; for any & > 0,

{h‘l/"‘Xh, : rzo}"z{x, L 1> 0}, )
which implies that the resultant patterns are fractal and no
scale is characteristic. Hence, a self-similar set of points
of fractal dimension « is visited by the walker. Unlike the
Brownian motion, discrete observations of a stable mo-
tion is not identical to Lévy walks, that is, a discrete-time
random walk with independent power-law distributed step
lengths [[7].

The two-dimensional symmetric stable Lévy motion
(@ fails to capture all the statistical features of observed
sample paths, while it turns out to be sufficiently useful
for demonstration of the effect of sampling rate. As the
univariate stable motion is thoroughly studied [L1} [12]
and the multivariate motion is still tractable in some in-
stances, our discussion does not require unnecessarily in-
tricate derivations but the basic known facts. In order to
avoid overloading the article with nonessential mathemat-
ical details, we do not aim at ultimately realistic models
in this article.

2.1 Rotational Invariance

We hereafter call rotation-invariant the case where the
control measure A (d&) in () is moreover uniform on the
unit sphere S; every independent jump has no preference

in direction. In this setting, the characteristic function ()
reduces to

E [ei@,xm} — il =20%y|),

with some o > 0. Its sample path on a finite horizon [0, 7]
can be generated through the series representation [[11]
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where {T, },en is a sequence of independent and identi-
cally distributed (iid) uniform random variables on [0, T],
{T' }nen are arrival times of a standard Poisson process,
{Mn}nen is a sequence of iid uniform random variables
on [0,27), &, = [cosn,,sinn,]" for each n € N, and
Coor :=T(1—o)cos(ne/2)/(20%T). In Figure 2] we
draw typical sample paths of a rotation invariant stable
motion in R? on the unit time interval [0, 1] under three
different sampling frequencies.

Figure 2: Typical sample paths of a two-dimensional rotation-
invariant stable motion (¥, o, 0) = (0.0, 1.5, 1.0) on the unit time
interval [0, 1] with three different sampling frequencies; 5000
increments (leftmost), 1000 increments (center), and 100 incre-
ments (rightmost).

Despite its rich description, such rotation-invariant
spatio-temporal models is often out of our reach from
a computational point of view. For instance, maximum
likelihood estimation is far from tractable as the prob-
ability density function of its increments is purely two-
dimensional and is not available in closed form.

2.2 Independent Components

Such practical issues may be circumvented by employ-
ing the stable motion with independent components, as it
consists of two independent one-dimensional stable mo-
tions. In particular, statistical methods are well-studied
[L6] for the one-dimensional setting. Let the control mea-
sure A(d&) in (@) be a sum of four Dirac delta measures
concentrated at [1,0]", [0,1]7, [~1,0]" and [0,—1]", up
to a constant. The characteristic function (I reduces to

E [ei<y.xt>} — I =0%In|%) (210 %val ).



with y = [y1,y2]" and some o > 0, indicating indepen-
dence of the two components. Each component has the
so-called inverse power-law tail; a random variable Z with
E[e??] = exp[—0®|y|%] has the probability tail behavior
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where ’~” above indicates asymptotic equivalence. The

spatial stable motion with independent components can
also be simulated through an infinite shot noise series
representation (3), where {1, },cn here is a sequence of
iid uniform random variables on {0,7/2,7,37/2} in-
stead. We draw in Figure 3] typical sample paths of a two-
dimensional stable motion with independent components
on the unit time interval [0,1] with three different sam-
pling frequencies. Under high frequency sampling, the
trajectory appears to move too orthogonally to correctly
describe movement paths. If the sampling frequency is
relatively low, however, the undesired orthogonal looks
tend to disappear, as the movement of each component
gets more averaged and gives a sufficient impression of
rotation-invariance. Note that the stable motion with in-
dependent increments still satisfies () and is thus free of
scale, while Figure Bldoes not account for the fractal scal-
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where (XlAnl,...,anAnl) and (XlAn3""’X”3An3) corre-
spond respectively to its leftmost and rightmost figures,
with n; = 5000, n3 = 100 and A, := 1/n.

2.3 Asymptotic Isotropicity

The observations made in Figure [Il and B3] can be justi-
fied as follows. Let @ (x; 0, A,) be the probability density
function of the centered symmetric stable distribution on
R whose characteristic function is given by e tna! oI,
that is,

Do (x o.A ) 217[/ e—ixze—A,,aflo-a\z\adZ xeR,
with the scale o > 0 and the stepsize A, > 0. (Note that
this formulation covers the Gaussian case o = 2.) The
probability density function ¢y (x,y;0,A,) of the two-
dimensional stable law with independent components,
each of which admits the probability density function
O (x;0,A,), is given by

¢a(x,y;GaAn) = (Pa(X;G,An)(Pa(y;G,An), [x7y}—r € Rza

due to independence of the two components. Let (x,y) =
(ycosB,ysinO) with some y > 0and 6 € [0,27). In the
Gaussian case o = 2, it is straightforward that
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Independence of the absolute turning angle 6, regardless
of (0,A,), proves that the Gaussian law with independent
components is indeed rotationally invariant. In turn, it
holds that for & € (0,2) and each (x,y),

0 (x,y:0,A,) =
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for a large stepsize A,,, where the equivalence (3] holds by
cos(xA,I]/az) =1+ O(xZA,IZ/azz) as A, T +oo. In partic-
ular, in the case of the Cauchy Lévy motion (¢ = 1) for
which probability density function is available in closed
form, it holds that

. - (840)
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This fact indicates asymptotic independence of the den-
sity function from the turning angle 0 at a relatively low
sampling rate. This accounts for the phenomena of Fig-
ure 3 that is, the stable law on R? with independent com-
ponents looks rotationally invariant, if the stepsize A, is
relatively large.

So far, we have assumed, without justification, that
there exists no bias in movements ¥ = 0 in the model ()
and the series representation (). In fact, such unbiased-
ness is not a crucial assumption, while a bias is not essen-
tial in our discussion either. We draw in Figure (] typical
sample paths of a two-dimensional stable motion with the
bias y # 0. The movement in the left figure is the rotation-
ally invariant movement under high frequency sampling
in the leftmost of Figure 2] together with the artificial bias
y = [+1.0,—1.0]". The right figure indicates the move-
ment with independent components in the leftmost of Fig-
ure[3] together with the same bias. Obviously, the addition
of bias changes the overall tendency of movements; In this
case, by the bias y = [+1.0,—1.0] ", the sample paths are
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Figure 3: Typical sample paths of a two-dimensional stable motion with independent components (y,a,0) =
(0.0,1.5,1.0) on the unit time interval [0, 1] with three different sampling frequencies; 5000 increments (leftmost),

1000 increments (center), and 100 increments (rightmost).

dragged gradually in the right-below direction. As can
be observed, however, neither “’the obvious difference be-
tween rotation invariance and independent components”
nor the orthogonal-looking” is affected by the bias in the
high frequency sampling framework. The reason is quite
simple. In the case of heavy-tailed movements, such as
the stable motion and the Pareto random walk, the sample
paths tend to be dominated by occasional unusually large
jumps, which cannot be much influenced by small gradual
biases. In turn, in the low frequency sampling framework,
since a stable motion with independent components with-
out bias resembles a rotationally invariant process without
bias, the addition of bias does not affect the resemblance
between those two. We thus assume no bias in movements
v = 0 hereafter.
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Figure 4: Typical sample paths of a two-dimensional stable
motion on the unit time interval [0, 1], with (¢¢,0) = (1.5,1.0)
and a strong bias ¥ = [+1.0, —1.0] T. Rotationaly invariant (left)
and independent components (right).

3 Methods and Results

The rigorous criterion for independent components to
look rotationally invariant is evidently a uniform angu-
lar distribution of discrete steps, which is realized exactly
when o = 2 irrespective of the sampling frequency, as
seen in @). In the case of non-Gaussian (& # 2), how-
ever, the asymptotic independence (3) implies that such

uniformity of the angular distribution is impossible with
a finite stepsize A,. Instead, we propose an alternative
quantitative way as to choice of the sampling rate in such a
way that the stable motion with independent components
may look rotationally invariant. Let {Z; : # > 0} be a two-
dimensional stable motion with independent components,
and let Z, =: [X;,Y;]" where {X; : ¢ >0} and {¥; : > 0}
are iid centered symmetric one-dimensional stable mo-
tions. It is well known that the probability tails behave
like L1} 112]

AnGO‘x;a

P (|Xa,| > xp) ~ I'(1—a)cos(ma/2)’
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In the meantime, due to symmetry of the law about the
origin, the small deviation is given by

I'l/a
P (X, | < 1) ~ 20~ /%)
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which is the product of the width 2x; and the height,
that is the probability density function of X, at the ori-
gin, explicitly computable as (27) ! [ e~ Y0=2a0% % gy,
The undesirable event is, in principle, that one compo-
nent moves a lot, while the other barely moves over some
observation interval [f,f 4+ A,], since then such an incre-
ment looks nearly orthogonal in R?. In the other words, it
would be preferable to keep the probability of orthogonal-
looking increments as small as possible over a sample
path. Such orthogonal-looking increments can be ex-
pressed as

{IXa,| < x15 (YA, | > 20} U{IX4, | > 20, [Ya,| <20}, (8)

where arctan(xy,/x;) ~ /2. Suppose, for a moment, that
the thresholds x;, and x; are fixed very large and very
small, respectively. The probability of our interest is then



given by

P({[Xa,| <x1, [Ya,| > x0} U{|Xa,| > X, [Ya,| <x1})
= 2P ({[Xa,| < x1, [Ya,| > x1})
=2P(|Xa,| <x)P([Ya,| > xn)
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where the equalities holds by independence and station-
arity of components and of the stable motion and where
the last asymptotics holds by (@) and (@). Finally, by
definition, a single sample path is observed at n equidis-
tant points in time, thus the probability of k orthogonal-
like increments over a single sample path is given by
ZCrpk (1 — p,)" %, We look at the quantity

n
Z anpﬁ(l_Pn)nik = n,K(a,G,Xh,XZ),
k=K+1

indicating the probability of more than K orthogonal-
looking large increments over a single sample path, which
is very easy to compute. Hereafter, we say that a sample
path with K or more such increments resembles a stable
motion with independent components.

The remaining important factor in our quantitative anal-
ysis is choice of the thresholds x; and x;. Although they
are not required to be constant as the ratio x;/x; only
matters in the definition (@) of “orthogonal-looking in-
crements”, we focus on the setting with prescribed con-
stants x; and x; since (i) from a practical point of view,
just as seen in Figure 3] the overall scale is irrelevant to
the sampling stepsize A,; (ii) from a theoretical point of
view, this validates the use of the deviations (@) and ().
An important point is that a bunch of very orthogonal,
but #iny, jumps do not affect much of the visual look-
ing. In the specific case of Figure 3] a few (for example,
five) orthogonal-looking jumps with length longer than
0.4 seem to make the sample path look truly orthogonal.
Here, we test x;, = 0.2 and x, = 0.4 with x; = x;,/tan 6,
with 8 = 80°,82°,84° 86°. With the aid of graphs like in
Figure[3l one may roughly choose an appropriate observa-
tion number n (and consequently, the observation stepsize
Ay (= T/n)). In short, with smaller thresholds x;, and x;
or with more orthogonal-looking movements allowed, the
observer may look at the higher frequency of a model with
independent components.

4 Discussion

We have demonstrated that a spatio-temporal model with
independent components may look rotationally invariant
when the sampling rate is not very high and have proposed
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Figure 5: Plots of P, x(1.5,1,x;,,x;) against n, with x; =
xp/tan®. The lines with 7+, ”x”, ”¢” and 0" corre-
spond, respectively, to 8 = 80°,82°,84° 86°.

a quantitative criterion for choice of the sampling rate at
which this phenomenon takes place in the stable motion
model. In practice, spatio-temporal models with inde-
pendent components are mathematically more tractable as
it consists of two independent one-dimensional motions,
and may thus be employed so as to avoid prohibitive com-
putation under low frequency sampling. Moreover, in lat-
tice environments [17], such motions are useful by nature
for modeling random searches even in the high frequency
observation framework.

There are further statistical properties to be taken into
account for better modeling, such as aggregational Gaus-
sianity [8]], autocorrelation in step length [6, [19], and
memory in direction [18]. In particular, non-Markovian
properties (such as the latter two) tend to be less observ-
able when movement paths are observed in less detail, that
is, under low frequency sampling. For example, as is well
known [9, 20]], a correlated random walk [[18] resembles
Brownian motion at a low sampling rate, due to the tan-
gling impact of the turning angles. At a relatively low ob-
servation rate where such non-Markovian properties be-
come negligible, the stable Lévy motion is still useful for
modeling random search paths.

The phenomenon “a distant observation veils the pat-
tern” can be seen in various fields of application in which
our approach has been applied in a similar manner. For
example, the raster format is an image digitization tech-
nique based upon this phenomenon. A raster image is
made up by pixels of an equal spatial size (in our con-
text, temporal stepsize A,) with different colors, and



is essentially indistinguishable from its original image
(rotationally invariant movements) through a distant ob-
servation (large A,), while a lattice pattern (orthogonal
movements with independent components) will show up
through a very close look (A, | 0). The raster technique
allows us to store an analog image as digital data with
some loss of accuracy, corresponding to lighter computa-
tional requirements thanks to decomposition of a purely
two-dimensional movement into two independent one-
dimensional movements.

The criterion of Section Blmay be further strengthened
with statistical testing techniques. As far as the two-
dimensional Brownian motion (or equivalently the two-
dimensional normal random vectors) is concerned, for ex-
ample, the well known ¢-test of Gaussian independence
[21]], whether ”p = 0” or ”p # 0”, may be useful for our
purpose. For the two-dimensional stable law, such use-
ful techniques does not seem to exist, as the variance (and
thus the correlation) of the stable distribution is infinite.

Our findings reconfirm importance of super-sampling
and a priori extra conceptual information of the trajec-
tory; without high frequency sampling, the observer may
overlook a hidden essential pattern. For instance, with-
out a priori knowledge, a human walking trajectory in
a lattice-like city (perhaps through satellite observation)
could be interpreted mistakenly as a movement with no
directional preference, when sampling frequency is too
low. In a boarder sense, our study is expected to facilitate
further investigations of timely issues in random search
modeling, such as statistical inference and experimental
settings for complex movements, for instance, with inter-
mittency.
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