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Sampling Rate Reduction for Digital Predistortion

of Broadband RF Power Amplifiers
Yue Li, Student Member, IEEE, Xiaoyu Wang, Student Member, IEEE, and Anding Zhu, Senior Member, IEEE

Abstract—In this paper, we present a novel technique to build
digital predistorters (DPD) that can linearize broadband power
amplifiers (PA) using reduced sampling rates. In contrast to con-
ventional DPDs where oversampling is necessary to avoid aliasing
effect, the proposed method cancels the aliasing distortion using
a sliced multi-stage cancellation scheme. A large reduction of
sampling rate can be achieved in digital implementation of DPD,
significantly reducing power consumption and implementation
cost. Experimental results show that a DPD with a sampling rate
of merely 1.5 times, instead of 5 times, signal bandwidth, can
still produce satisfactory performance within the linearization
bandwidth but consume only one third of power, compared with
that using the conventional approaches. The proposed technique
provides a promising solution for next generation 5G systems
where large signal bandwidths are required.

Index Terms—Aliasing effect, behavioral model, digital pre-
distortion, linearization, power amplifiers, wireless transmitter

I. INTRODUCTION

In next generation communication systems, e.g., 5G, wider

bandwidth at higher frequency bands will be used to meet the

increasing demand for higher data rates [1]. Broadband signals

however may excite more severe nonlinearities of wireless

transmitters, especially that induced by radio frequency (RF)

power amplifiers (PA), making linearity a serious issue in

system design. Digital predistortion (DPD) has been widely

recognized as a highly effective approach to the linearization

of RF PAs [2], [3]. Many DPD models have been devel-

oped, including memory polynomials (MP) [4], generalized

memory polynomial (GMP) [5], dynamic deviation reduction

(DDR) [6], decomposed vector rotation (DVR) [7], magnitude-

selective affine (MSA) [8], etc. To ensure the performance of

DPD models, conventional DPD methods use high sampling

rates, typically 5 times signal bandwidth. Such configuration

requires high clock rates of digital circuits and high speed data

converters, as well as wideband transmitters and observation

receiver chains.

Recent research has demonstrated that several techniques

can be used to reduce the sampling rate requirement of DPD.

In [9], authors proposed to constrain the bandwidth of DPD

model and linearize PA within a limited bandwidth. In this

way, the feedback signal can be filtered before sampling

without affecting system performance. A different approach
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was developed in [10]–[14], where the feedback signal is

also filtered before sampling but the DPD produces full-band

signals. In this case, the model extraction algorithms need to

apply spectral extrapolation to the loss function to achieve

full-band distortion cancellation. Another method is to remove

the anti-aliasing filter before sampling [15]–[18]. The aliased

feedback signal is then used together with specially processed

input signals to extract model coefficients. Up to date, these

techniques only reduce the sampling requirement for the data

converters. To generate the predistortion signal, a high clock

rate is still required in the digital signal processing unit.

With increasing demands for wide signal bandwidths in

the 5G systems, high speed digital signal processing in DPD

will lead to high power consumption and greatly increase the

overhead of base stations [19]. Unfortunately, simply reducing

the sampling rate will cause aliasing effect that deteriorates

performance. New methods to lower sampling rate and power

consumption of DPD without sacrificing performance is thus

desired. A joint in-band/out-of-band DPD [20] used multiple

signal chains to form a wideband signal, which does not

necessarily reduce the overall power consumption. In [21],

authors targeted at sideband replica modeling and proposed to

add cross-terms into existing model expressions to partially

compensate for aliasing distortion at a low sampling rate.

A different work [22] employed a decomposed piecewise

technique where each piecewise segment is filtered before used

as basis functions. Aliasing distortion is alleviated as high-

order polynomials are avoided, though the piecewise operation

itself may introduce additional aliasing distortion.

In this paper, a novel systematic approach to building DPD

at reduced sampling rates is presented. After theoretical exam-

ination of the distortion generated by aliasing effect, a general

aliasing cancellation framework is developed to eliminate its

detrimental effects. The complexity of the baseline architecture

is significantly reduced by applying new techniques to build

memory terms and reorganize DPD basis functions. It is shown

that, by employing the proposed method, DPD with a sampling

rate of merely 1.5 times signal bandwidth can still produce

satisfactory linearization performance. Thus, the sampling rate,

and more importantly the power consumption, of DPD systems

can be significantly reduced, leading to a highly energy-

efficient digital linearization system for broadband 5G PAs.

The rest of this paper is organized as follows: In Section

II, the outline of system architecture and the major problems

caused by down-sampling are described. Section III discusses

a general aliasing cancellation scheme and several complexity

reduction techniques. Section IV reports the experimental

results and complexity analysis, followed by a conclusion in
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Section V.

II. SAMPLING RATE ISSUE OF DPD

The PA is a nonlinear device that creates spectral re-

growth to the transmit signal. DPD uses an inverse model

to compensate for the nonlinearity induced by the PA and

thus DPD is also a nonlinear function. To effectively remove

the distortion, DPD usually needs to generate a predistorted

signal with 5 times bandwidth of the original transmit signal.

According to Nyquist Theorem, the sampling rate of DPD

must be high enough, e.g., 5 times bandwidth of the original

signal if baseband complex I/Q signals are used, to avoid

aliasing effect. As the bandwidth of wireless communication

systems continues to increase, the sampling rate of DPD can

become a serious issue in system design. For example, to

process a 200-MHz signal, a 1-GHz clock is required in DPD

implementation, which is not only power hungry but also

challenging to design even with the most advanced CMOS

technology.

A. Band-limited DPD

As discussed in [9], in practice, it may not be necessary

to linearize the PA in the full bandwidth, e.g., up to 5

times bandwidth, because we may only need to remove the

distortion near the center frequency band while the distortion

beyond that band can be filtered by using a bandpass filter

at the PA output. In [9], a band-limited DPD technique was

proposed, in which a band-limiting function is inserted into

the general Volterra operators in the DPD model to control the

signal bandwidth under modeling, which logically transforms

the general Volterra series-based model into a band-limited

version. This approach allows users to arbitrarily choose the

bandwidth to be linearized in the PA output according to the

system requirement without sacrificing performance, making

the DPD system design much more flexible and feasible.

Fig. 1. System architecture of band-limited DPD.

In the band-limited DPD framework, two immediate ben-

efits can be obtained: 1) Because the signal components be-

yond the linearization bandwidth are filtered, the DPD output

becomes band-limited and thus we can use low sampling rate

Digital to Analog Converters (DAC) when converting the DPD

signal to the analog domain. For instance, as shown in Fig.

1, if the linearization bandwidth is only 1.5 times the original

signal bandwidth, the sampling rate of DAC can be as low

as the Nyquist rate of 1.5 rather than 5 times the original

signal bandwidth. 2) Since we only focus on distortion within

a specific bandwidth, we don’t have to capture the signal

outside that frequency range, and the sampling rate of Analog

to Digital Converters (ADC) in the feedback loop can also be

reduced, e.g., using a sampling rate at 1.5 rather than 5 times

the original signal bandwidth. The band-limited DPD approach

also releases some bandwidth requirements for the up- and

down-conversion chains since a narrower signal bandwidth is

required. To remove the distortion beyond the linearization

bandwidth, a bandpass filter is required at the PA output.

Fig. 2. Example implementation of high-speed band-limited DPD.

DPD

model

(a)

DPD

model

Aliasing

distortion

(b)

Fig. 3. Band-limited DPD processing at (a) high sampling rate and (b) low
sampling rate.

B. Aliasing Effect in Digital Signal Processing

The band-limited DPD approach reduces the sampling rate

of data converters. However, to generate the band-limited

output signal, high speed digital signal processing must be

conducted. Specifically, during the signal generation process,

a high clock rate is still required inside the DPD. This is

because the bandwidth reduction is achieved by inserting a

digital filter after the nonlinear functions. As shown in Fig.

2, the signal bandwidth may expand to multiple times the

original bandwidth during the nonlinear DPD operation. A

high sampling rate must be used before filtering, otherwise

alias will be introduced into the signal. In real operation, the

input signal is usually interpolated to a higher sampling rate

before entering the DPD model. After the nonlinear process,

a band-limiting filter is applied to the signal to filter out

unwanted out of band signals and then the output signal can

be decimated to a lower sampling rate before entering DAC,

as shown in Fig. 3(a). Otherwise, if the nonlinear function

runs at low speed, aliasing effect will appear immediately after



3

DPD function and before the band-limiting filters. As shown

in Fig. 3(b), in this case, the aliasing elements will fall into the

filtered signal. Once the aliasing distortions are present, they

are indistinguishable from the desired signal. These distortions

will degrade the linearization performance.

III. SAMPLING RATE REDUCED DPD

In this work, we aim to develop a new approach that enables

DPD to operate at a reduced sampling rate without losing

performance. Our goal is to generate an aliasing-free output

with low speed digital signal processing in DPD directly, as

shown in Fig. 4. To achieve this, the concept of aliasing

cancellation is first introduced. A new sampling rate reduced

DPD architecture is subsequently proposed by identifying the

redundancy in the system and restructuring the DPD to reduce

computational complexity. Please note that the sampling rate

here is referred to the number of data samples per second to

be processed in the digital circuit.

Low-speed

DPD

Aliasing-free

predistorted signal
DAC

Input signal

Fig. 4. Desired low speed DPD signal generation.

A. Aliasing Cancellation

To reduce the sampling rate of DPD without changing its

behavior, a time-interleaved architecture as shown in Fig. 5

can be adopted. The high sampling rate DPD is transformed

into a parallel structure where each path includes a copy

of DPD operating at a lower sampling rate, resulting in an

implementation similar to [23]. This architecture however still

needs high speed interpolation before DPD and high speed

filtering after DPD. The overall system complexity is also high

because multiple replicated DPD blocks must be deployed.

Nevertheless, this architecture provides us with a starting point

to derive a new solution.

DPD

DPD

DPD

Interpo-

lation

Deci-

mation

Fig. 5. Time-interleaved DPD for reducing sampling rate.

First of all, let’s use a frequency domain analysis to gain

some insights of this parallel system. Here, we denote the

high-speed output signal of DPD as u(n), and its Fourier

transform as U(jω). The time-interleaved signals are directly

down-sampled versions of u(n), which are u(Dn), u(Dn+1),
etc. The Fourier transform of u(Dn) can be derived as [24]:

F [u(Dn)] =
1

D

D−1
∑

p=0

U

(

j(ω − 2pπ)

D

)

=
1

D

[

U

(

jω

D

)

+

D−1
∑

p=1

U

(

j(ω − 2pπ)

D

)

]

,

(1)

where U(jω/D) is the desired signal, and other terms are

frequency-shifted signals that create aliasing effect. For sim-

plicity, we define

Up(jω) , U

(

j(ω − 2pπ)

D

)

. (2)

Thus, (1) becomes

F [u(Dn)] =
1

D

[

U0(jω) +

D−1
∑

p=1

Up(jω)

]

. (3)

If we focus on the first Nyquist zone, i.e. 0 ≤ ω < 2πFs/D,

the implication of (3) is clear: the down-sampled signal is

linear combination of the desired signal U0(jω) and the

aliasing distortion components.

The remaining parallel signals are simply delayed in time

domain and their spectrum in the first Nyquist zone can be

derived as:

F [u(Dn−∆i)] =
1

D

D−1
∑

p=0

U

(

j(ω − 2pπ)

D

)

e−j∆i
ω−2pπ

D

=
e−

j∆iω

D

D

D−1
∑

p=0

U

(

j(ω − 2pπ)

D

)

e
2jp∆iπ

D

=
e−

j∆iω

D

D

[

U0(jω) +

D−1
∑

p=1

Up(jω)e
2jp∆iπ

D

]

.

(4)

Although aliasing distortions appear in each branch, they

are cancelled when the digital samples are combined in the

time interleaved manner in the output. By using this parallel

architecture, the clock rate of DPD operation can be lower

but the output samples must be combined in high speed

and then filtered by a high speed band-limiting filter that

can increase power consumption. In the band-limited DPD

operation, decimation is normally used after filtering to reduce

the final sampling rate, which means that not all high speed

samples are needed in the final output. This leads that, if

we can combine the low speed data directly without time

interleaving, high speed signal process can thus be avoided.

Let’s re-check (4), one thing to notice is that there is an

extra group delay e−j∆iω/D in (4) compared to (3). If we can

invert the effect of group delay via an delay adjustment filter

(DAF), the resulting expression is also a linear combination

of desired signal and aliasing components:

F [u(Dn−∆i)] e
j∆iω

D =
1

D

[

U0(jω) +

D−1
∑

p=1

Up(jω)e
2jp∆iπ

D

]

(5)
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This means that, instead of combining the signal samples

into output in the time interleaved manner, we can add

them together directly after delay adjustment. The process

is illustrated in Fig. 6 for the case of D = 2. In the upper

branch, the spectra replica simply overlaps with the desired

signal. In the lower branch, however, the replica has a 180-

degree phase shift, so the aliasing components are actually

“subtracted” from the signal. Therefore, after adjusting the

group delay and summing them up, aliasing distortions will

cancel out, resulting in a clean spectrum.

Fig. 6. Frequency and time domain demonstration of aliasing cancellation.

It is worth noting that the derivation in (4) and (5) also holds

for non-uniform sampling system, i.e., ∆i can take non-integer

values. Thus, one can arbitrarily choose the delay for each

parallel branch. (3) and (5) can then be written into matrix

format by gathering different delayed signals:

UDA = H







U0(jω)
U1(jω)

...






, (6)

where

UDA =











F [u(Dn)]
F [u(Dn−∆1)] e

j∆1ω/D

F [u(Dn−∆2)] e
j∆2ω/D

...











(7)

H =
1

D











1 1 1 · · ·
1 ej2∆1π/D ej4∆1π/D · · ·
1 ej2∆2π/D ej4∆2π/D · · ·
...

...
...

. . .











. (8)

It can be easily shown that U0(jω) can be reconstructed

from UDA since H is invertible:

U0(jω) = hrecUDA. (9)

where hrec is the first row of H−1.

Herein, the principle of a general aliasing cancellation

method has been developed, which can in theory perfectly re-

cover the original high speed information by first adjusting the

group delay of different parallel signals and then calculating

their linear combination. A demonstration of such a system

with a parallel architecture is depicted in Fig. 7, where the

sampling rate of the entire system is reduced.

DPD 1

DPD 2

DPD D

Interpo-

lation

DPD DAF

Fig. 7. Basic parallel cancellation architecture.

B. System Architecture

The parallel architecture “unrolls” the conventional band-

limited DPD by converting high-speed operations to their

parallel low-speed equivalence. As each branch still requires

a complete DPD model, it is desirable to further reduce the

hardware complexity.

1) Memory Terms Based on Delay Adjustment: The anal-

ysis and transformation start from the generation of parallel

delayed input signals. Within the aliasing cancellation frame-

work, the delays between different branches are allowed to

be distributed in a non-uniform way. Thus, traditional interpo-

lation methods need to be modified to adapt to the changes.

Instead of conventional interpolation, the input signal of each

branch is generated individually by a specially designed delay

adjustment FIR filter aimed to reconstruct the high sampling

rate input signals with corresponding delays.

The delayed signals here serve two purposes: 1) each

x(n−∆i) is fed into the corresponding i-th DPD branch; 2)

if the DPD model in use includes memory effect, the delayed

signals also construct memory terms in other DPD branches.

From a behavioral modeling perspective, both of them repre-

sent memory effect in the system, so delay adjustment filters

actually build memory terms.

A natural question follows, can we simplify the design while

maintaining its modeling capability? The answer is positive.

In [25], the author proposed that for two basis functions of

the same polynomial order and group delay, we may use one

in model extraction and the other in predistorter, implying

that the two terms have similar characteristics. That is to

say, nonlinear terms may be modified without significantly

affecting modeling performance if the nonlinear order and

group delay are kept the same.

In the case of delay adjustment filters, no matter how the

filters are designed, the nonlinear orders of memory terms are

not affected by these linear filters. Therefore, the filters only

need to have the correct group delay, and other factors may

have little influence on the modeling performance. It suggests

that delay adjustment filters don’t have to perfectly reconstruct

the high-speed signal, especially its amplitude. The constraints

on filter design are reduced, resulting in filters with much

lower orders. In this work, simple 3-tap FIR filters are enough

to achieve satisfactory performance, in contrary to eighth order

filters needed by full interpolation.

To design such FIR filters, the design objective is to ensure

proper group delay and relatively flat amplitude response

within linearization bandwidth. A simple method is to use

the Fourier series method with a rectangular window, which
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Fig. 8. FIR filter-based delay adjustment.

ensures linear phase response and constant group delay. The

filter coefficients can be directly derived as

hk = sinc(k −∆), (10)

where k is used to index the filter coefficients.

The weighted least squares method can also be adopted, and

other methods are available in [26], [27]. The desired response

at different frequencies can be written as

Hd = [Hd(ω1), Hd(ω2), ...]
T (11)

where ωk refers to uniformly spaced frequencies within band-

width of interest. The desired frequency response can be

represented as

Hd(ωk) = ske
−j∆ωk (12)

where sk is either 1 or 0.

Suppose the filter coefficients is h = [h0, h1, · · · , hL], its

frequency response at frequency ωk can be expressed as

Hd(ωk) =

L
∑

n=0

hne
jωk(n−

L
2
). (13)

If we consider all frequencies of interest, (13) can be rewritten

in matrix format

Hd = Ah (14)

where

A =







e−j L
2
ω1 ej(−

L
2
+1)ω1 · · · ej

L
2
ω1

e−j L
2
ω2 ej(−

L
2
+1)ω2 · · · ej

L
2
ω2

...
...

...






. (15)

And it can be solved as

ĥ = (AH
A)−1

A
H
Hd. (16)

As the filter specification is only related to the down-sampling

ratio D and fraction delay ∆, the filter coefficients do not

change with PA or input signal characteristics, so they can be

calculated offline and viewed as constants in implementation.

Under the situations where signal bandwidth needs to be

dynamically reconfigured, the downsampling ratio D may be

adapted for better trade-off between performance and com-

plexity. In this case, the filter coefficients can be determined

using analytical expressions like (10), thus the complexity of

design process can be kept very low.

2) Model Slicing and Reorganization: In this part, we

further reduce the computational complexity of the time-

interleaved DPD models. To better illustrate the redundancy

in the parallel structure, the original DPD model is first

divided into sub-models, where each sub-model is composed

of memory terms with the same memory depth. For instance,

the input matrix containing all basis functions of the GMP

model can be written as

XGMP = [XGMP,0,XGMP,1, · · · ] , (17)

where memory sub-models XGMP,i only include terms with

specific memory depth. Cross terms like |x̃n−i−m|kx̃n−i are

grouped according to subscript i. The first two memory sub-

models are elaborated below to better illustrate the model

slicing process:

XGMP,0 =











x̃n |x̃n|x̃n · · · |x̃n−1|x̃n · · ·
x̃n−1 |x̃n−1|x̃n−1 · · · |x̃n−2|x̃n−1 · · ·

...
...

. . .
...

. . .

x̃2 |x̃2|x̃2 · · · |x̃1|x̃2 · · ·











(18)

XGMP,1 =











x̃n−1 |x̃n−1|x̃n−1 · · · |x̃n−2|x̃n−1 · · ·
x̃n−2 |x̃n−2|x̃n−2 · · · |x̃n−3|x̃n−2 · · ·

...
...

. . .
...

. . .

x̃1 |x̃1|x̃1 · · · |x̃0|x̃1 · · ·











,

(19)

where x̃n is the complex-valued baseband signal.

Based on Fig. 7, a new architecture highlighting the sliced

sub-models is shown in Fig. 9. Each parallel DPD block is

decomposed into multiple sub-models, and the interpolation

process is replaced by the delay adjustment filters. Also,

similar to Fig. 7, the parallel DPD blocks all operate at low

sampling rate, so each DPD block is related to only one of

D successive rows in the matrices of (17)-(19), while their

memory terms are all built by the high-speed memory samples

obtained from 3-tap interpolation.

DPD D

DPD 1

Sub-model 0

Sub-model 1

DPD 2

Sub-model 0

Sub-model 1

Other Terms

Other Terms

Fig. 9. Memory terms in parallel structure.

An interesting observation from (18), (19) and Fig. 9 is

the similarity between the arrangement of different DPDs and

different sub-models within one DPD. Take DPD 1 as an

example. The input samples to build its sub-model 1 is delayed



6

by one sample compared with sub-model 0. In the meantime,

the input samples to build the DPD 2, or more precisely sub-

model 0 of DPD 2, are also delayed by one sample compared

with DPD 1. It leads that the input for the sub-model 1 of

DPD 1 and the sub-model 0 of DPD 2 are the same. Thus, one

sub-model can share the same input samples with a different

sub-model of another parallel DPD block. By organizing all

sub-models with the same input samples together, Fig. 9 is

changed to Fig. 10(a).

In the example above, all sub-models of a GMP model

have the same nonlinear expressions, and only differ in the

input samples. In this case, if two sub-models are built using

the same input data, their basis functions will be exactly the

same. Therefore, as shown in Fig. 10(b), sub-models that are

grouped together in Fig. 10(a) can share the same nonlinear

basis functions but still have their own coefficients and filter

taps.

To further reduce hardware complexity, we force the mul-

tiple branches in Fig. 10(b) to share the same coefficients.

The multipliers can be combined into one and built into

the sub-model. The parallel delay adjustment filters can also

be merged because they are all linear operators. While the

complexity is reduced dramatically, the performance may be

compromised because the modeling capability of memory

effect is much weaker. To compensate for it, an embedded

FIR filter is cascaded with the memory sub-model to better

shape the frequency response of model. As both embedded

and delay adjustment filters are FIR-type, they can be merged

together through a convolution. Therefore, only one FIR filter

is required in each path, resulting in the structure shown in

Fig. 10(c). By gathering all sub-models, the time-interleaved

DPD structure is finally transformed into a sliced two-stage

architecture depicted in Fig. 11.

Sub-model 0

(DPD 2)

Sub-model 1

(DPD 1)

(a)

Sub-model

(m=1)

Coefficient

(m=1)

Coefficient

(m=0)

(b)

Adjustable

FIR filter
Sub-model (m=1)

(c)

Fig. 10. Steps to reorganize sub-models.

It is worth noting that the original low-speed model is

already included in the new architecture, because setting all

embedded filters to 1 will reduce the proposed model to

Adjustable

FIR filter

Adjustable

FIR filter

DPD Model Embedded Filters

Sub-model (m=0)

Sub-model (m=M)

Sub-model (m=1)

Adjustable

FIR filter

Fig. 11. Illustration of model slicing and enhancement.

conventional low-speed model. Therefore, unlike the parallel

structure in previous part, proposed model integrates DPD and

aliasing cancellation into the same model structure, and does

not need to explicitly include a main path (the one with no

delay adjustment). DPD models other than GMP can also be

sliced and cascaded with embedded filters in a similar way

without significantly affecting the cancellation performance.

Since the aliasing distortion comes from frequencies far from

in-band, the power of aliasing distortion is typically much

smaller than the nonlinearity generated by the model, so

aliasing cancellation may have a much lower accuracy require-

ment than DPD modeling. As the embedded filters are only

responsible for aliasing cancellation, the approximation with

a parallel two-stage model is enough to produce satisfactory

performance.

3) Complete System Structure: The overall system archi-

tecture is summarized in Fig. 12, which includes memory

interpolation and sliced parallel compensation, both operating

at a reduced sampling rate. A low-order band-limiting filter

can be optionally adopted to further constrain the linearization

bandwidth so that better performance can be achieved.

Low-complexity

Delay Adjustment
Low-speed

DPD

Adjustable

FIR filter

Adjustable

FIR filter

Model Embedded Filters

Sub-model (m=0)

Sub-model (m=M)

Sub-model (m=1)

Adjustable

FIR filter

3-tap

FIR filter

3-tap

FIR filter

3-tap

FIR filter

Fig. 12. Complete architecture of the proposed DPD.

Compared with conventional DPD systems, the proposed

architecture significantly reduces computational complexity
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and the related power consumption. The original interpolation

operation is replaced by a low-complexity delay adjustment

block operating at low clock rate. The core DPD function can

also run at a lower sampling rate. The significant saving on

power consumption from the reduced sampling rate makes the

additional complexity from embedded filters negligible. The

original high-order band-limiting filter becomes an optional

low-order filter, and can be completely removed to keep

minimal hardware complexity. Moreover, as all blocks run at

the same reduced sampling rate, the original high-rate system

is transformed into a low-rate system, so simpler hardware

design rules and procedures can be adopted.

The proposed method also favors a different design method-

ology. The conventional thinking may first determine the

sampling rate of the original high-speed system and then

choose an appropriate down-sampling ratio. Instead, we start

the design process by determining the reduced sampling

rate, which reflects the clock rate of digital circuits and is

usually subject to hardware and power constraints. Once the

“real” sampling rate is set, the amount of aliasing distortion

generated by a given DPD model is determined. Thereby, the

next parameters to decide are the number of parallel delay

adjustment filters and the length of each embedded filter.

We view these parameters as a trade-off between hardware

complexity and the performance of aliasing cancellation. By

employing more complex filter configurations, the proposed

method can access to more high sampling rate information

and provide better aliasing cancellation performance. The final

step is to choose the delay for each parallel branch. Uniform

delays are straightforward, but it is also possible to manually

set different delays. Additional design space can be exploited

to fully optimize the expressive power of memory terms, and

the non-uniformity may also lead to suppression of aliasing

effect.

C. Model Extraction

As a consequence of the modified model structure, the

model cannot be directly extracted with least squares (LS).

Herein, an iterative two-step methodology is adopted: The

coefficients of original model, C, is first extracted, followed

by the coefficients in the embedded FIR filters, Ch.

Before model extraction, a set of input and output data

samples from PA measurements are captured. To facilitate the

discussion, we express the DPD process in matrix format. As

the model includes multiple paths, for convenience, the two

sets of coefficients C and Ch are both arranged according to

the memory depth:

C =











C0

C1

...

CM











(20)

Ch =











Ch,0

Ch,1

...

Ch,M











(21)

where Cm and Ch,m are the coefficients of original model

and embedded filter of memory depth m, respectively.

In step one, we write the matrix formula by keeping Ch

constant:

U = XC (22)

where U is the output vector of DPD, and

X =
[

X0 ∗Ch,0 X1 ∗Ch,1 · · · XM ∗Ch,M

]

(23)

where Xm is the input matrix within m-th memory sub-model.

∗ represents convolution operation. The formulation of Xm is

the same as the model slicing operation shown in (17) to (19).

The original model can thus be extracted using LS method

as

C =
(

X
H
X
)

−1
X

H
U. (24)

Note that in the first iteration where the value of Ch is not

available, the convolution in (23) should be ignored.

The next step is to extract the embedded filters. We first

calculate the output of every memory sub-model

um = XmCm. (25)

As the sub-models are filtered individually, the adjustable

filter in each path can be written into the following matrix

representation:

uh,m = UmCh,m (26)

where

Um =
















um(n) 0 0 · · · 0
um(n− 1) um(n) 0 · · · 0

...
...

...
. . .

...

um(n− l) um(n− l + 1) um(n− l + 2) · · · um(n)
...

...
...

...
...

















,

(27)

and l is the length of adjustable filter.

Therefore, the predistorted signal U can be expressed in

terms of Ch by

U = UhCh (28)

where

Uh = [U0,U1, · · · ,UM ] . (29)

The embedded FIR filter can thus be extracted using LS

method as

Ch =
(

U
H
h Uh

)

−1
U

H
h U. (30)

The full model can be accurately extracted by iterating

between the two steps. As both steps employ the LS method,

fast and stable convergence is still ensured. Typically, 2-3

iterations are enough to obtain satisfactory results. Also, as the

number of coefficients in adjustable FIR filters is much smaller

than that in the main DPD model, there is little additional

complexity in model extraction for the proposed method.
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IV. RESULTS

A. Experimental Results

To validate the model performance, a test platform was set

up, as shown in Fig. 13, which includes PC, signal generator,

driver amplifier, PA, attenuator and spectrum analyzer. The PA

under test is an in-house designed broadband Doherty power

amplifier operating at 3.75 GHz with 31.3 dBm output power.

The excitation input signal is a 100 MHz LTE signals with 6.5

dB peak-to-average power ratio (PAPR). Recorded I/Q input

and output samples were time aligned and normalized before

training the model. The model extraction and predistorted

signal generation were performed in MATLAB. GMP model

and indirect learning method were employed in the test, though

other models and model extraction algorithms could also be

used. The GMP model had memory depth 7, polynomial order

7 and cross term memory delay 2, resulting in 248 coefficients.

The proposed method divided the GMP model into 8 sub-

models (determined by the memory depth). The adjustable

filter in the proposed method has length 9 for 150 MHz

sampling rate tests and length 3 for 200 MHz sampling rate

tests.

Spectrum

Analyzer

Signal

Generator

Driver

Amplifier

PA

Attenuator

Power

Supply PC

Fig. 13. The photograph of the DPD test bench.

First, no additional band-limiting filters were used. To

produce strong aliasing distortions, sampling rates for conven-

tional low-speed and proposed methods were set to 150 MSPS,

while the conventional high-speed case used 600 MSPS. In

real band-limited test, the PA output is supposed to be filtered

and thus the un-linearized out of band distortion should be

removed. In our test, the RF filter was not used in order to

make better comparisons between different cases, e.g., keep

the sideband distortion of the proposed case in the spectrum

plots. Because of the limited linearization bandwidth, adjacent

channel power ratio (ACPR) was measured at ±55 MHz

offset and the measurement bandwidth was set to 9 MHz.

The spectrum results using GMP model are depicted in Fig.

14. It is shown that the proposed DPD architecture achieved

around 10 dB better ACPR over the conventional low sampling

rate DPD in the test. AM-AM and AM-PM results using the

proposed DPD are shown in Fig. 15.

A summary of more experimental results using various

sampling rates in the tests are reported in Table I. Normalized

mean squared error (NMSE) performance was measured after

applying the band-limiting filter to remove the sideband distor-

tions. It is observed that the proposed method exhibits robust

performance across different sampling rate settings, while the

performance of conventional method can degrade quickly with

reduction in sampling rate. Compared with conventional high

sampling rate DPD, proposed method produces a similar near-

band linearization results with a much lower sampling rate.

Though it needs more coefficients, the overall computational

complexity is significantly reduced, thanks to its low sampling

rate.
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Fig. 14. Output spectra comparison for 100 MHz LTE signal using GMP
model.
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Fig. 15. AM/AM and AM/PM plots with and without proposed DPD.

TABLE I
RESULT SUMMARY WITHOUT BAND-LIMITING FILTER

Sampling Rate
(MSPS)

No. of
Coefficients

ACPR (dBc)
(±55MHz)

NMSE
(dB)

w/o DPD N/A N/A -26.5/-24.7 -20.6

Conven-
tional

600 248 -46.7/-46.1 -41.3

200 248 -43.5/-41.4 -38.6

150 248 -36.5/-34.7 -33.7

Proposed
200 320 -47.0/-46.8 -40.7

150 272 -47.1/-45.4 -42.6
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More tests were performed after employing band-limiting

filters. The band-limiting filters are FIR filters placed after

DPD model. They further constrain the bandwidth of pre-

distorted signal and force DPD to concentrate on narrower

bandwidth, so better performance can be achieved at the

expense of reduced linearization bandwidth. GMP model with

the same configuration as the previous test was used. The

results depicted in Fig. 16 had a similar setting as in Fig.

14, despite the use of a 65 MHz band-limiting filter. Proposed

method achieved 9 dB better ACPR than conventional DPD

of the same sampling rate. AM-AM and AM-PM results using

the proposed DPD are shown in Fig. 17. More experimental

results using different band-limiting filter settings are reported

in Table II.
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Fig. 16. Output spectra comparison with 130MHz band-limiting filter and 4
times down-sampling.
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Fig. 17. AM/AM and AM/PM plots with and without proposed DPD using
65MHz band-limiting filter.

B. Complexity and Power Consumption Comparison

The complexity of DPD block using conventional and

proposed configurations are compared in Table III. The same

GMP model used for experimental test was employed. Since

multipliers take up most of the hardware resources, hardware

TABLE II
RESULT SUMMARY WITH BAND-LIMITING FILTER

Sampling
Rate

(MSPS)

Filter Cut-off
Bandwidth (MHz)

ACPR (dBc)
(±55MHz)

NMSE
(dB)

w/o DPD N/A N/A -26.5/-24.7 -20.0

Conven-
tional

600 80 -49.0/-49.0 -43.6

600 65 -49.0/-48.2 -43.3

200 80 -44.2/-42.6 -38.3

200 65 -44.1/-43.0 -39.4

150 65 -36.8/-35.2 -34.1

Proposed

200 80 -49.1/-48.1 -43.5

200 65 -49.9/-47.9 -41.5

150 65 -46.9/-45.2 -42.9

complexity was represented by the number of real multipliers.

Another important metric, the required hardware performance,

is typically measured by the number of operations per second

[19]. In this work, this computational load was measured by

the required real multiplication operations per second (Mult/s).

Despite a larger number of coefficients, the comparison in-

dicates that the total computational load was reduced by

65%, which is mainly because a lower sampling rate is used

in the digital signal process in the proposed solution. The

complexity for LS-based model extraction is given in Table IV.

20,000 I/Q samples were used for model extraction complexity

comparison, showing that our method requires slightly more

computation due to the two-step model extraction strategy.

TABLE III
DPD COMPLEXITY COMPARISON

Conventional Proposed

No. of Coefficients 248 320

Sampling Rate (MSPS) 600 150

No. of Multipliers 528 744

Computational Load (Mult/second) 316,800 111,600

TABLE IV
MODEL EXTRACTION COMPLEXITY COMPARISON

Conventional Proposed

No. of Coefficients 248 320

No. of Real Multiplication 642,692,992 698,506,240

Relative Complexity 100% 108.7%

The hardware power consumption of DPD block is es-

timated using Xilinx Power Estimator [28]. The resource

utilization is estimated by counting the required resources for

the IP cores of the computational components, e.g. adders,

multipliers, complex multipliers, etc. The FPGA board em-

ployed was Virtex-7 XC7VX485T. Each I/Q sample of both

input and output was kept as 32-bit data, where real and

imaginary part each had 16 bits. A 50% toggle rate is assumed

for power estimation. The FPGA resource utilization and

power consumption are estimated and reported in Table V,

showing the proposed DPD consumes merely 37% dynamic

power of conventional DPD methods.
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It is worth noting that the complexity comparison and

power estimation above are indicative and aims to show the

relative number/trend only. The absolute numbers and power

consumption depend on the specific model used and the actual

circuit implementation in real applications. Furthermore, the

referred signal processing speed in Table V is defined as the

number of data samples needed to be processed per second,

which may not always be the same as the FPGA clock rate.

For example, the 600-MHz design may be implemented using

a polyphase configuration to reduce the clock rate, which may

also result in slightly different power consumption [23].

TABLE V
FPGA UTILIZATION AND POWER ESTIMATION

Conventional Proposed

Processing Speed (MHz) 600 150

Slice LUT 9161 12905

Slice Register 9613 17821

DSP 528 744

Dynamic Power (W) 5.110 1.875

V. CONCLUSION

A novel DPD architecture has been proposed to linearize

broadband RF PAs with reduced sampling rate based on a

new aliasing cancellation scheme. As the power consumption

of DPD may become a main obstacle for future DPD applica-

tions, the dynamic power consumption should be considered

a more important factor than digital hardware resource uti-

lization. Under this context, the proposed sliced multi-stage

cancellation technique demonstrates reduced clock rate while

only slightly increasing the complexity, such that a dramatic

reduction in power consumption is achieved. Experimental

tests have also validated the linearization performance of

the proposed method, making it a feasible solution to the

linearization of wideband signals in 5G.
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