
Sampling Search-Engine Results∗

Aris Anagnostopoulos†

Yahoo! Research

701 First Avenue

Sunnyvale, CA 94089, USA

aris@yahoo-inc.com

Andrei Z. Broder†

Yahoo! Research

701 First Avenue

Sunnyvale, CA 94089, USA

broder@yahoo-inc.com

David Carmel

IBM Haifa Research Lab

Haifa 31905, ISRAEL

carmel@il.ibm.com

Abstract

We consider the problem of efficiently sampling Web search engine query results. In turn,
using a small random sample instead of the full set of results leads to efficient approximate
algorithms for several applications, such as:

• Determining the set of categories in a given taxonomy spanned by the search results;

• Finding the range of metadata values associated with the result set in order to enable
“multi-faceted search”;

• Estimating the size of the result set;

• Data mining associations to the query terms.

We present and analyze efficient algorithms for obtaining uniform random samples applicable
to any search engine that is based on posting lists and document-at-a-time evaluation. (To our
knowledge, all popular Web search engines, for example, Google, Yahoo Search, MSN Search,
Ask, belong to this class.)

Furthermore, our algorithm can be modified to follow the modern object-oriented approach
whereby posting lists are viewed as streams equipped with a next method, and the next method
for Boolean and other complex queries is built from the next method for primitive terms. In our
case we show how to construct a basic sample-next(p) method that samples term posting lists
with probability p, and show how to construct sample-next(p) methods for Boolean operators
(AND, OR, WAND) from primitive methods.

Finally, we test the efficiency and quality of our approach on both synthetic and real-world
data.

1 Introduction

Web search continues its explosive growth: according to the Pew Internet & American Life Project [12],
there are over 107 million Web-search users in United States alone, and they did over 3.9 billion
queries in the month of June 2004. At the same time, the Web corpus grows: a study during the
beginning of 2005 argues that the size of the indexable Web is at least 11.5 billion pages [16].

∗A preliminary version of this work has appeared in [3]
†Work performed while this author was at IBM T. J. Watson Research Center.

1

Thus search algorithmic efficiency is as important as ever: although processor speeds are in-
creasing and hardware is getting less expensive every day, the size of the corpus and the number
of searches is growing at an even faster pace.

On the other hand, Web-search users tend to make very short queries (less than 3 words
long [21]), which result in very large result sets. Although by now search engines have become
very accurate with respect to navigational queries (see [7] for definitions), for informational queries
the situation is murkier: quite often the responses do not meet the user’s needs, especially for
ambiguous queries.

As an example, consider a user that is interested in finding out about famous opera sopranos
and enters the query “sopranos” in the Google search box. It turns out that the most popular
responses refer to the HBO’s TV-series with the same name: in the top 100 Google results, only 7
documents do not refer to the HBO program. (All Google numbers, here and below, refer to
experiments conducted in early 2005.)

This situation has stimulated search engines to offer various “post-search” tools to help users
deal with large sets of somewhat imprecise results. Such tools include query suggestions or refine-
ments (e.g., yahoo.com and ask.com), result clustering and the naming of clusters (e.g., wisenut.com
and vivisimo.com), and mapping of results against a predetermined taxonomy, such as ODP (the
Open Directory Project used by Google and many others), Yahoo, and LookSmart. All these tools
are based in full or in part on the analysis of the result set.

For instance in the previous example, the search engine may present the categories “TV series,”
“Opera,” etc., or the query extensions “HBO sopranos,” “mezzo sopranos,” etc. Ideally, in order to
extract the most frequent categories within the results set, all the documents matching the query
should be examined; for Web size corpora this is of course prohibitive, as thousands or millions
of documents may match. Therefore, a common technique is to restrict attention only to the top
few hundreds ranked documents and extract the categories from those. This is much faster since
search engines use a combination of static (query-independent) rank factors (such as PageRank [6])
and query dependent factors. By sorting the index in decreasing order of static rank and using a
branch-and-bound approach, the top 200 (say) results can be produced much faster than the entire
set of results.

The problem with this approach is that the highly-ranked documents are not necessarily repre-
sentative for the entire set of documents, as they may be biased towards popular categories. In the
“sopranos” example, although 93 of the top 100 documents in Google refer to the HBO series, the
query for “sopranos AND HBO” matches about 265,000 pages in Google (per Google report), while
the query “sopranos AND opera -HBO” matches about 320,000, a completely different picture.

Many corporate search engines, and especially e-commerce sites, implement a technique called
multi-faceted or multidimensional search. This approach allows the refinement of full-text queries
according to meta-data specifications associated to the matching items (e.g., price range, weight) in
any order, but only nonempty refinements are possible. The refinement is presented as a “browsing”
of those results that satisfy certain metadata conditions, very similar to narrowing results in a
particular category.

As an example, consider a user who visits an online music store such as towerrecords.com, and
performs a query, say, the string “james.” The engine (from mercado.com) provides a number of
hits, but also numerous possible refinements, according to various “facets,” for instance by “Genre”
(Blues, Children’s, Country, . . .), by price (Under $7, Under $10, Under $15, . . .), by “Format”
(Cassette, CD, Maxi-Single, Compact Disc, . . .), and so on. The refinements offered depend on the

2

initial query, so that only nonempty categories are offered, and sparse subcategories are merged
into an “Other” subcategory. Similar approaches are used by many other e-tailers.

Multi-faceted search is used in other contexts as well, for instance, Yee et al. [25] show the
benefits of this approach as applied within the “Flamenco” project at U. C. Berkeley for searching
images using metadata refinement.

Since the categories displayed for multi-faceted search depend on the result set of the query,
they have to be extracted quickly, a procedure that becomes a problem when the corpus is large. It
seems that some current multi-faceted search engines are limited to corpora that can be represented
in memory.

1.1 Sampling the Search Results

The applications described above require significant processing time; in order to apply them to
large corpora we propose to only sample the set of documents that match the user’s query. Asymp-
totically, the average running time of one of our sampling approaches is only proportional to the
sample size. On the other hand, sampling allows us to extract information that is unbiased with
respect to the search-engine’s ranking, and therefore produce better coverage of all topics or all
meta-data values present in the full result set.

The main technical difficulty in sampling follows from the fact that we do not have the results
of the query explicitly available, but instead the results are generated one after the other, by a
rather expensive process, potentially involving numerous disk accesses for each query term. The
straightforward implementation is to pay the price, find and store pointers to all the documents
matching the original query, and build a uniform sample from these results. However, as we
already mentioned, our algorithm will obtain the sample after generating and examining only a
small fraction of the result set and yet the sample produced is uniform, that is, every set of
matching pages of size k (the desired sample size) has an equal probability to be selected as the
output sample.

Although, to the best of our knowledge, the idea of sampling query results from search engines
is new, sampling has been applied in different contexts as a means to give fast approximate answers
to a particular problem. The areas of randomized and approximation algorithms provide numerous
examples. In the area of data streams, where the input size is very large, sampling the input and
operating on it is a common technique (see e.g., [4, 14, 19]). Even databases allow the user to
specify a sampling rate in a select operation that instead of performing the query on the full set
of data operates on a sample [17]; as a result the DB2 relational database has been augmented to
support this option.

1.2 Further Applications

Besides the two applications already mentioned, result categorization and multi-faceted search, a
random sample of the query results has more potential uses. In Theorem 2.3 we show that after the
execution of our algorithm we can obtain an unbiased estimator of the total number of documents
matching the user’s original query, while in Theorem 2.4 we show that the estimator can achieve
any prespecified degree of accuracy and confidence. Many users seem to like such estimates, maybe
to help them decide whether they should try to refine the query further. In any case, Web search
engines generally provide estimates of the number of results matching a query. For instance, both
Google and Yahoo provide such estimates at the top of the search results page. However these

3

estimates are notoriously unreliable, especially for disjunctions (see the discussion in [5]). As an
example, as of early 2005, Google reports about 105M results containing the term “George,” about
185M pages containing the term “Washington,” while its estimate for the documents satisfying the
query “George OR Washington” is about 33M. We get similar inconsistencies with other search
engines, such as MSN Search. In contrast, in our experiments (see Section 5) even a 50-result
uniform sample yielded estimates within 15% of target in all cases.

Yet another application of random sampling is to identify terms or other properties associated
to the query terms. For instance one might ask “Who is the person most often mentioned on the
Web together with Osama bin Laden?” The approach we envisage is to sample the results of the
query “Osama bin Laden,” fetch the sample pages, run an entity detection text analyzer that can
recognize people names, extract these names, and so on. Again the advantage of this approach
compared to using the top results for the query “Osama bin Laden” is that the top results might
be biased towards a particular context.

A similar application is suggested by Amitay et al. [2] where the authors demonstrate how
finding (by “hand”) new terms relevant or irrelevant to a given query can be useful for building
“corpus independent” performance measures for information retrieval systems. The main idea is
that by providing a set of relevant and a set of irrelevant terms for a given query, we can evaluate
the performance of the information retrieval system by checking whether the documents retrieved
contained the specified relevant and irrelevant terms. However, discovering these sets of terms is a
daunting task, which requires the time and skill of an IR specialist; a sample of the search results
for the query can help the specialist identify both relevant and irrelevant terms. Again the lack of
bias is probably useful.

Yet another application is suggested by Radev et al. [20], who propose the use of the Web as
a knowledge source for domain-independent question answering by paraphrasing natural language
questions in a way that is most likely to produce a list of hits containing the answer(s) to the
question. It might well be the case that the results would be better when using a random sample
of matches rather than a ranked set of matches, since the ranking is based on a very different idea
of “best” results.

Finally, it might be possible to use sampling on the results of search-engine queries in order to
extract summary information from the ensemble of the results and then we can use this information
as a means of providing feedback to the user in order to refine his query.

The list of potential applications of search-results sampling that we proposed above is probably
far from complete. We hope that our work will stimulate search engines to implement a random
sampling feature, and this in turn will lead to many more uses than we can conceive now.

1.3 Alternative Implementations

A very simple way of producing (pseudo) random samples is to keep the index in a random order.
Then the first k matches of a query can be viewed as a random sample, or, if more than one sample
is needed, we can take matches x to x+k as our sample. In fact this is the approach used in IBM’s
WebFountain [15], a system for large scale Web data mining.

However, in a standard Web search engine, there are many disadvantages for such an architec-
ture:

1. If the index is in random order, rather than in decreasing static rank order, ranking regular
searches (“top-k”) is very expensive since no branch-and-bound optimization can be used.

4

Thus the random-order index has to be stored separately from the search index, and this
doubles the storage cost. (This is not an issue in WebFountain where “top-k” searches are a
small fraction of the load.)

2. Maintaining a true random order as documents are added and deleted is nontrivial. A good
solution is to have a “random static score” associated to each document and keep the index
sorted by this “random score.” This allows having an old index and a delta index to deal
with additions.

3. Creating multiple truly independent random samples for the same query is nontrivial.

Thus, for regular Web search engines, sampling is a much better alternative.

1.4 Retrieval Model and Notations

Our model is a traditional Document-at-a-time (DAAT) model for IR systems [22]. Every document
in the database is assigned a unique document identifier (DID). The DIDs are assigned in such a
way that increasing DIDs corresponds to decreasing static scores; however this is not relevant to
the rest of our discussion. Every possible term is associated with a posting list. This list contains
an entry for each document in the collection that contains the index term. The entry consists of
the document’s DID, as well as any other information required by the system’s scoring model such
as number of occurrences of the term in the document, offsets of occurrences, etc. Posting lists are
ordered in increasing order of the document identifiers.

Posting lists are stored on secondary storage media, and we assume that we can access them
through stream-reader operations. In particular, each pointer to the posting list of some term A
supports the following standard operations.

1. A.loc(): returns the current location of the pointer.

2. A.next(): advances the pointer to the next entry in the term’s posting list and returns this
entry’s DID.

3. A.next(r): moves the pointer to the first document with DID greater than or equal to r, and
returns this DID.

For our purposes, we need a special operator

4. A.jump(r, s): moves the pointer to the sth entry in the posting list after the document with
DID greater than or equal to r, and returns this DID. (Equivalent to A.next(r) followed by s
A.next() operations. However, simulating A.jump(r, s) this way would cost s moves rather
than one—see below.)

Operations loc() and next() are easily implemented with a linked-list data structure, while for
next(r) search engines augment the linked lists with tree-like data structures in order to perform the
operation efficiently. For example, one can use a binary tree where the leaves are posting locations
corresponding to the first posting in consecutive disk records and every inner node x contains the
first location in the subtree rooted at x.

The jump(r, s) operation is not traditionally supported but can be easily implemented using the
same tree data-structures needed for next(r)—we simply augment the inner nodes with a count of
all the postings contained within the rooted subtree.

5

In the modern object-oriented approach to search engines based on posting lists and DAAT
evaluation, posting lists are viewed as streams equipped with the next method above, and the next
method for Boolean and other complex queries is built from the next method for primitive terms.
For instance, (AORB).next() = min(A.next(), B.next()). We will show later how to construct a
basic sample-next(p) method that samples term posting lists with probability p, and show how
to construct sample-next(p) methods for Boolean operators (AND, OR, WAND) from primitive
methods.

Since the posting lists are stored on secondary storage, each next or jump operation may result
in one or more disk accesses. The additional search-engine data structures ensure that we have at
most one disk access per operation. Our goal is to minimize the number of disk accesses, and hence
we want to minimize the number of the stream-reader pointer move operations. In the rest of the
paper, we assume that these moves (i.e., next, jump, and sample-jump) have unit cost, while any
other calculation has a negligible cost. (This assumption is of course only a first approximation,
but it is well correlated with observed wall clock times [8]. A more accurate model would have to
distinguish at least between “within-a-block” moves and “block-to-block” moves.)

For easy reference, we list here the notations used in the remainder of the paper. The total
number of documents is N , while the number of documents containing term Ti is Ni. For the query
under consideration, we let t be the number of terms contained in the query, and m ≤ N be the
number of documents that satisfy the query. The sample size that we require is of size k; we expect
in general to have k � m, and we let ps = k/m to be the ideal sampling probability.

The most general sampling technique that we propose is applicable to many search engine archi-
tectures. We describe it in Section 2. Next, in Section 3, we specialize to a particular architecture
based on the WAND operator, which was first introduced in [8], and this specialization allows
us to achieve better performance. Subsequently, in Section 4, we present an alternative scheme to
sample results; this method is more efficient theoretically, but probably less efficient in practice.
We implemented some of our algorithms and performed various experiments, and we present the
results in Section 5. In Section 6 we summarize and discuss our results.

2 A General Scheme for Sampling

2.1 Two Motivating Examples

In order to build some intuition for the sampling problem, we present two examples: one where the
query is a conjunction (AND) of two terms and another where the query is a disjunction (OR)
of two terms. Later in the paper we will provide more details about the sampling mechanism, and
generalize it to a broader class of queries.

For the AND example consider some term A that appears in 10M documents, a term B that
appears in 100M documents, and assume that the number of documents containing both terms
is 5M . Assume, moreover, that we want a sample of 1000 results. Then sampling each document
that satisfies the AND query with probability equal to ps = 1000/5M = 1/5000 creates a random
sample with the desired expected size.

We use the notation A (resp. B, C, etc.) to mean both the term A and the set of postings
associated to A. The meaning should be clear from context.

An initial problem arises from the fact that although we may know how many documents contain
the term A and how many contain the term B, we do not know a priori the number of documents

6

that contain both terms, and thus we do not know the proper sampling probability. There are ways
to circumvent this issue and we discuss them later in Section 2.3. For now, assume that we know
the correct sampling probability, and the question is how to sample efficiently.

The naive approach would be to identify every document that contains both terms and, for
each document independently, add it to the sample with probability ps. This means checking at
least all the postings for the rarest of the terms, so we need to examine at least the 10M postings
on A’s posting list.

Instead consider the following approach: Sample the posting list of A (the rarest term) with
probability ps and create a virtual term Aps whose posting list contains the sampled postings of
A. Then the posting list for Aps contains roughly 10M/5000 = 2000 documents. We return the
documents satisfying the query Aps ANDB. It is easy to verify that the result is a uniform sample
over all the documents containing AANDB. Later we will show how, given ps, we can create the
posting list of Aps online in time proportional to |Aps |; hence, this method allows us to examine
only 2000 postings, a clear gain over the 10M postings examined by the naive approach.

Now let us look at the OR example that turns out to be somewhat more complicated. Consider
another term C that appears also in 10M documents and assume that there are 15M documents
containing AORC. Again we want a sample of 1000 documents, so in this case ps = 1000/15M =
1/15000. The naive approach is to check every document in AORC and insert it into the sample
with probability ps, which means traversing the posting lists of both A and C, or 20M operations.
However we can apply the same technique as before and create a term Aps in time proportional
to |Aps |. However, a document may satisfy the query even if it does not contain A, so we create
also a virtual term Cps in the same manner, and return documents in Aps ORCps. Thus the total
number of postings examined is |Aps | + |Cps | = 20M/15000 ' 1333, so we have a factor of 15000
improvement. But now we need to be more careful: if a document contains only the term A then
it is inserted in Aps with probability ps, and, similarly, if it contains only the term C then it is
inserted in Cps with probability ps. But if a document contains both terms, the probability to be
contained in either Aps or Cps is 2ps − p2

s. Hence, every document containing both A and C and
contained in Aps ORCps must be rejected from the sample with probability 1−ps/(2ps−p2

s). This
will ensure that every document in AORC is included in the sample with probability exactly ps.

2.2 Sampling Search Results for a General Query

We now generalize the examples of the previous section and show how to apply the same procedure
for sampling query results to any search engine based on inverted indices and a Document-at-a-time
retrieval strategy. This class includes Google [6], AltaVista [9], and IBM’s Trevi [13].

Consider a query Q, which can be as simple as the prior examples, or a more complicated
boolean expression (including NOT terms, but not exclusively NOT terms). It could even contain
more advanced operators such as phrases or proximity operators. Every such query contains a
number of simple terms, say T1, T2, . . . , Tt, to which the operators are applied, and each term is
associated with a posting list. Although the exact details depend on the specific implementation,
every search engine traverses those lists and evaluates Q over the documents in the lists and several
heuristics and optimization techniques are applied to reduce the number of documents examined
(so, for example, for an AND query the engine will ideally traverse only the most infrequent
term). Recall that the total number of documents satisfying the query is m, and that we need a
sample of size k, which means that every document satisfying the query should be sampled with
probability ps = k/m. Assume, moreover, for the moment that we know m, and therefore we know

7

the sampling probability ps—in Section 2.3 we show how to handle this.
The way to sample the results is simple in concept. In a nutshell, we use rejection sampling

to sample uniformly from the union of the posting lists T1, T2, . . . , Tt, conditional on the sample
satisfying the query.

For every term Ti (but not for terms NOTTi) we create a pruned posting list of document
entries that contains every document from the posting list of Ti with probability ps, independently
of anything else. The naive way to create the pruned list is to traverse the original posting list
and insert every document into the pruned list with probability ps. An efficient equivalent way is
to skip over a random number X of documents, where X is distributed according to a geometric
distribution with parameter ps. We can create a geometrically distributed random variable with
parameter ps, in constant time, by using the formula

X =

⌈

ln(U)

ln(1− ps)

⌉

,

where U is a real random variable uniformly distributed in the interval [0, 1] (see [11]).
The random skip is then performed by executing a jump(r, X) operation, where r is the last

document considered. (Recall from the discussion of Section 1.4 that the data structure used for
postings allows for efficiently skipping documents in the posting lists and thus in our model the
skip has unit cost.) We then insert the document into the pruned list and we skip another random
number of documents, continuing until the posting list is completely traversed. Note that the
pruned lists can be precomputed at the beginning of the query, or they can be created on the fly,
as the documents are examined.

We now perform the query by considering only documents that contain at least one term in the
pruned lists. This is equivalent to replacing the original query Q(T1, T2, . . .) with the query

Q(T1, T2, . . .)AND
(

T1,ps ORT2,ps OR · · ·
)

.

By this construction, every document that appears in some posting list has probability at
least ps to be considered. There are, however, documents that originally appear in more than
one posting list. Consider some document that appears in the posting lists of r terms that are
also being pruned. Then this document has increased chances to appear in some pruned list, the
probability being exactly 1− (1− ps)

r. Therefore, for every document that satisfies the query, we
should also count the number r of posting lists subject to pruning, in which it originally appears.
Then we insert the document into the sample with probability ps/(1 − (1 − ps)

r), so that overall
the probability that the document is accepted becomes exactly ps.

There are several remarks to be made about this technique:

• First we want to stress its generality, which allows it to be incorporated in a large class of
search engines.

• Second, the method is very clean and simple, since it does not require any additional nontrivial
data structures; indeed, although the pruned lists can be precomputed (and, to improve
response time, even stored on disk for common search terms and fixed pruning probabilities),
the pruned lists can exist only at a conceptual level. When an iterator traverses a pruned list,
in the actual implementation, it may traverse the original posting list and skip the necessary
documents. Our implementation that we describe in detail in Section 3, demonstrates this

8

approach. The only addition we require is the support of the jump operation described in
Section 1.4, which is not significantly different from the next operation. Therefore from a
programming point of view, the needed modifications are very transparent.

• Furthermore, the modern object-oriented approach to search engines is to view posting lists
as streams that have a next method, and to build a next method for Boolean and other com-
plex queries from the basic next method for primitive terms. Our geometric jumps method
provides a method that samples term posting lists with probability ps providing the primi-
tive sample-next(ps) method, and the approach described above provides a sample-next(ps)
method for arbitrary queries: we first advance to the minimum posting in all pruned posting
lists via the primitive sample-next(ps) method, we evaluate the query, and if we have a match,
we perform the rejection method as described.

• Finally, we want to mention that the general mechanism can be appropriately modified and
made more efficient for particular implementations. For example, in the AND example of
the previous section, we saw that we need to create the pruned list of only one of the terms.
In Section 3 we show how we apply the technique to the WAND operator used in IBM’s
Trevi [13] and JURU [10] search engines and gain similar benefits.

2.3 Estimating the Sampling Probability

During the previous discussion we assumed that we know the total number of documents m match-
ing the query and hence that we can compute the sampling probability ps = k/m. In reality we do
not know m, and therefore we have to adjust the probability during the execution of the algorithm.
The problem of sequential sampling (sample exactly k out of m elements that arrive sequentially)
when m is unknown beforehand, has been considered in the past. Vitter [23] was first to propose
efficient algorithms to address that problem, using a technique called reservoir sampling. The main
idea is that when the ith item arrives we insert it into the sample (reservoir) with probability k/i
(for i ≥ k) replacing a random element already in the sample. This technique ensures that at
every moment, the reservoir contains a random sample of the elements seen so far. Vitter and
subsequent researchers proposed efficient algorithms to simulate this procedure, which instead of
checking every element skip over a number of them (see, for example, [23, 18]).

It seems, however, that those techniques cannot be applied directly to our problem, because the
list of matching documents represents the union or intersection of several lists. If we simply skip
over a number of documents, we do not know how many skipped documents matched the query
and, therefore, we cannot decide what the acceptance probability of the chosen document should
be.

Instead we apply the following technique, related to the method used in [14] in the context
of stream processing: We maintain a buffer of size B > k (e.g., B can equal 2k), and set the
initial sampling probability equal to some upper bound for the correct sampling probability, p0;
trivially we can set p0 = 1. In other words, we accept every document that satisfies the query with
probability p = p0. Whenever the buffer is full, that is, the number of documents accepted equals B
(which indicates that p was probably too large) we set a new sampling probability p′ = α · p, for
some constant k/B < α < 1. Then every already accepted document is retained in the sample
with probability α and deleted from the sample with probability 1 − α, all random choices being
independent. Thus the expected sample size becomes Bα > k and a Chernoff bound shows that
with high probability the actual size is close to Bα, if B is large enough. Subsequent documents

9

that satisfy the query are inserted into the sample with probability p = p′ independently of all
other documents and p is decreased again whenever the buffer becomes full.

Eventually, the algorithm goes over all the posting lists and it ends up with a final sampling
probability equal to some value p∗, and with a final number of documents in the sample, K, where
K < B always, and K ≥ k with high probability. Assuming the latter holds, we can then easily
sample without replacement from this set and extract a sample of exactly k documents.

To recapitulate, we present in Figure 1 a high-level description of the entire algorithm for
sampling the results of a general query. Note that, for the sake of simplicity, the description does
not give any details, nor does it present the most efficient implementation. For example, in Figure 1,
in order to consider the next candidate document we consider only the pruned posting lists; in an
actual implementation, we would consider both the pruned lists and the posting lists of the actual
terms.

1. Function getSample()
2. /* First some initializations. */
3. curDoc ← 0
4. p← 1
5. /* We assume that initially the pointers of all

the terms’ posting lists point to DID 0 */
6.
7. foreach (term Tj)
8. create a term Tj,p with the same posting list

as Tj

9.
10. repeat

11. foreach (j : Tj,p.loc() = curDoc)
12. Tj,p.nextPruned(curDoc)
13. curDoc← min{Tj,p.loc(), j = 1, . . . , t}
14. if (curDoc = lastID)
15. return /* Finished with all the

documents */
16. foreach (j : Tj .loc() < curDoc)
17. Tj.next(curDoc)
18. r ← |{j : Tj.loc() = curDoc}|

19. if (curDoc satisfies Q)
20. with probability normalizedProbability(r)

addToSample(curDoc)
21. end repeat

1. Function T .nextPruned(r)
2. X ← Geometric(p)
3. T .jump(r, X)

1. Function normalizedProbability(r)
2. return p/(1− (1− p)r)

1. Function addToSample(DID)
2. Add DID to the sample
3. /* Let B be the size of the buffer. */
4. while (size of sample = B)
5. /* we should take a smaller sample */
6. p′ ← α · p
7. foreach (i ∈ sample)
8. keep i with probability α = p′/p
9. p← p′

Figure 1: The General Sampling Scheme. We assume that we want to sample a query Q where
terms T1, T2, . . . , Tt appear nonnegated.

To estimate the running time of the algorithm, observe that the number of times that the
sampling probability is decreased is bounded by

ln(1/p∗)

ln(1/α)
≈ ln(m/k)

ln(1/α)
.

Every time the probability is decreased the expected number of samples removed from the buffer
is (1− α)B. Thus, assuming that B = Θ(k), the expected total number of samples considered can

10

be bounded by approximately

(1− α)B
ln(m/k)

ln(1/α)
+ B = O

(

k ln(m/k)
)

. (1)

Using this fact, and under independence assumptions that are common in information retrieval
for the containment of terms in documents, we can show that the expected running time of this
sampling scheme is bounded by approximately

O
(

k ln(m/k)
)

,

for any fixed query, and k,m → ∞. The analysis is similar to the one that we present later in
Section 3.3 so we omit it.

It is tempting to assert that the algorithm chooses independently every document with proba-
bility p∗. Unfortunately this is not the case: for every independent sampling probability p∗ there is
some probability that the sample will be larger than B; however, our algorithm never produces a
sample larger than B. What holds is that, conditional on its size, the sample is uniform. Further-
more, we can use the final size and the final sampling probability to compute m, the size of the set
that we sampled from. This is captured by Theorems 2.1, 2.3, and 2.4.

Theorem 2.1. Assume that at the end of the sampling algorithm the actual size of the sample
is K. Then the produced sample set is uniform over all sets of K documents that satisfy the query.

Proof. We use a coupling (simulation) argument. Assume that each of the m documents that
satisfy the query has an associated real random variable Xi, chosen independently uniformly at
random in the interval (0, 1].

We build a new algorithm that proceeds exactly as before except that whenever the buffer is
full, p is reduced to p′ and we keep in the buffer only those documents i that have Xi < p′. Every
new document j is inserted in the buffer if and only if it has Xj < p′.

Let Sp = {i | Xi < p}. Then p∗ is the largest value in the set {p0, αp0, α
2p0, . . .} such that

|Sp∗| = |{i | Xi < p∗}| < B,

and the final sample is Sp∗. Clearly the set Sp∗ is uniform over all sets of size K = |Sp∗|. On the
other hand the original algorithm and the new algorithm are in an obvious 1-1 correspondence, and
thus, conditional on its size, the final sample is uniform.

Notice that the algorithm does not know initially the number of documents that satisfy the
query, a value that is usually hard to estimate. As we mentioned, an additional feature of the
algorithm is that we can estimate the number of documents matching the query. Theorem 2.3
summarizes the result.

The main tool that we use in the proof of Theorem 2.3 is the concept of a martingale, and here
we present the definition and the main result that we are using.

Definition 2.1. Consider a sequence {Xt, t = 0, 1, . . . } of random variables, and a family of sets
of random variables {Ht, t = 0, 1, . . . }, where Ht−1 ⊂ Ht. We say that the sequence {Xt} forms a
martingale with respect to {Ht} if for every t ≥ 0 the following three properties hold:

1. Xt is a function of Ht.

11

2. Xt is integrable, that is, E[|Xt|] <∞.

3. E[Xt+1 | Ht] = Xt.

Intuitively, Ht corresponds to the history up to time t.

Definition 2.2. A random variable T taking values in {0, 1, 2, . . . }∪{∞} is called a stopping time
with respect to {Ht}, if for every t ∈ {0, 1, 2, . . . } the indicator function of the event {T = t} can
be written as a function of the random variables in Ht.

This means that T is a stopping time if it is decidable whether or not T = t with a knowledge
only of the past and present, Ht, and with no further information about the future.

Having defined a martingale and a stopping time, we are now able to present and prove a
(nonstandard) version of the Optional Sampling Theorem that we use in our proof.

Theorem 2.2 (Optional Sampling Theorem). Consider a martingale {Xt, t = 0, 1, . . . } with respect
to {Ht} and assume that T is a stopping time, such that Pr(T < ∞) = 1. Then we have that
E[XT] = E[X0] if there is a constant A independent of t, such that for every t = 0, 1, 2, . . . we have
that E[|Xt∧T |2] < A, where t ∧ T = min{t, T}.
Proof. Since the process {Xt} forms a martingale with respect to {Ht}, also the stopped process
{Xt∧T } forms a martingale with respect to {Ht}, so, in particular, E[Xt∧T] = E[X0] for t =
0, 1, 2,

The fact that E[|Xt∧T |2] < A implies that the sequence {Xt∧T } is uniformly integrable, and the
fact that Pr(T <∞) = 1 implies that Xt∧T → XT almost surely. Therefore (see, for example, [24,
page 131]),

lim
t→∞

E[Xt∧T] = E[XT],

which concludes the proof.

We are now in position to state and prove that our algorithm provides an unbiased estimator
for the number of matches.

Theorem 2.3. Assume that at the end of the algorithm the size of the sample is K, and the
final sampling probability is p∗. Then the ratio K/p∗ is an unbiased estimator for the number of
documents m matching the query, that is, E[K/p∗] = m.

Proof. View the algorithm as performing two types of steps: if the buffer is full then the algorithm
reduces the sampling probability and resamples the buffer with probability α; if the buffer is not
full, the algorithm considers the next candidate document and inserts it with probability p.

Assume that after t steps there are Kt documents in the sample, the sampling probability
is pt, and we have considered mt candidate documents. Thus if the algorithm stops after f steps,
Kf = K, pf = p∗, and mf = m. If mt = m, we also define mt+1 = mt = m, Kt+1 = Kt, and
pt+1 = pt. Now we define a sequence of random variables {Xt, t = 0, 1, . . . } as follows. We let
X0 = 0 and for t ≥ 1 we have

Xt =
Kt

pt
−mt.

We now show that the sequence {Xt} is a martingale with respect to {Ht}, where Ht =
(K0, p0,m0,K1, p1,m1, . . . ,Kt, pt,mt). This will finally imply that E[Kf/pf] − E[mf] = 0, which
is what we want to prove.

12

It’s clear that Xt is a a function of Ht, while for the integrability notice that

E[|Xt|] = E

[
∣

∣

∣

∣

Kt

pt
−mt

∣

∣

∣

∣

]

≤ B

αt
+ m <∞,

where we used the fact that Kt ≤ B, and mt ≤ m.
It remains to show that E[Xt+1 | Ht] = Xt, the basic martingale property. If mt = m, then

the property holds trivially; if mt < m we consider two cases: First, if Kt < B then the sampling
probability does not change (pt+1 = pt) but we consider a new document, which is inserted with
probability pt+1 = pt. Therefore, if we let Z be the indicator of the event that at time t + 1 a
document is accepted, we get

E[Xt+1 | Ht] = E

[

Kt + Z

pt+1
−mt+1

∣

∣

∣

∣

Ht

]

= E

[

Kt + Z

pt
− (mt + 1)

∣

∣

∣

∣

Ht

]

=
Kt + pt

pt
−mt − 1 = Xt.

On the other hand, if Kt = B then every document already in the sample is resampled with
probability pt+1/pt = α but we are not considering any new document, that is, mt+1 = mt.
Therefore

E[Xt+1 | Ht] = E

[

Binomial(Kt, pt+1/pt)

pt+1
−mt+1

∣

∣

∣

∣

Ht

]

= E

[

Binomial(Kt, α)

αpt
−mt

∣

∣

∣

∣

Ht

]

=
Ktα

αpt
−mt = Xt.

Hence, we conclude that the sequence {Xt} forms a martingale with respect to {Ht}. We define
the stopping time f = min{t : mt = m}. We will apply Theorem 2.2 for the martingale {Xt}
and the stopping time f , which will allow us to conclude that E[Xf] = E[X0] = 0, therefore
E[Kf/pf] = E[mf] = m.

It is not hard to show that Pr(f < ∞) = 1, but in order to apply Theorem 2.2 we have also
to show that the second moment E[|Xt∧f |2] is uniformly bounded (over t) by some constant. To
this end, it helps to define for t = 0, 1, 2, . . . the random variable Yt = logα pt. Then Yt counts how
many times the algorithm resampled from the buffer up to time t. We have

E[|Xt∧f |2] = E

[

∣

∣

∣

∣

Kt∧f

pt∧f
−mt∧f

∣

∣

∣

∣

2
]

≤ E

[

K2
t∧f

p2
t∧f

]

+ E[m2
t∧f] + 2E

[

Kt∧f

pt∧f
mt∧f

]

≤ B2 E

[

1

p2
t∧f

]

+ m2 + 2BmE

[

1

pt∧f

]

,

(2)

13

where we used the fact that Kt∧f ≤ B, and mt∧f ≤ m. We now show that the term E

[

1
p2

t∧f

]

is

uniformly bounded. We have

E

[

1

p2
t∧f

]

≤
∞
∑

i=0

Pr

(

1

p2
t∧f

≥ i

)

=

∞
∑

i=0

Pr

(

1

pt∧f
≥
√

i

)

=

(1/α)2m−1
∑

i=0

Pr

(

1

pt∧f
≥
√

i

)

+

∞
∑

i=(1/α)2m

Pr

(

1

pt∧f
≥
√

i

)

≤
(

1

α

)2m

+

∞
∑

i=(1/α)2m

Pr

(

(

1

α

)Yt∧f

≥
√

i

)

=

(

1

α

)2m

+
∞
∑

i=(1/α)2m

Pr
(

Yt∧f ≥ log1/α

√
i
)

≤
(

1

α

)2m

+

∞
∑

i=(1/α)2m

Pr
(

Yf ≥ log1/α

√
i
)

,

since Yt is increasing with t.
We will now bound the probability of the event Ei = {Yf ≥ log1/α

√
i}. Recall that Yt counts

how many times the algorithm resampled from the buffer up to time t, so, since there are m
documents in total, event Ei implies that in at least log1/α

√
i−m resample steps no document was

evicted from the buffer. Since in every resampling step each document that is in the buffer stays in
the buffer with probability α, and since the buffer contains B documents at every resampling step,

the probability of event Ei is bounded by αB(log1/α

√
i−m). Therefore we get

E

[

1

p2
t∧f

]

≤
(

1

α

)2m

+

(

1

α

)Bm ∞
∑

i=(1/α)2m

αlog1/α iB/2

=

(

1

α

)2m

+

(

1

α

)Bm ∞
∑

i=(1/α)2m

1

iB/2
,

which is bounded for B > 2.
This implies that also E

[

1
pt∧f

]

is uniformly bounded, and by Equation (2) the expectation E[|Xt∧f |2]
is also uniformly bounded. So, we can apply Theorem 2.2 and get that E[Xf] = E[X0] = 0, which
finally implies that

E

[

K

p∗

]

= E

[

Kf

pf

]

= E[mf] = m.

Hence, K/p∗ is an unbiased estimator for the number of documents satisfying the query.

Besides having the correct expectation, a good estimator should be close to the correct value
with high probability.

14

Definition 2.3. An (ε, δ)-approximation scheme for a quantity X is defined as a procedure that
given any positive ε < 1 and δ < 1 computes an estimate X̂ of X that is within relative error of ε
with probability at least 1− δ, that is,

Pr(|X̂ −X| ≤ εX) ≥ 1− δ.

The following theorem shows that our sampling procedure, using a buffer size quadratic in 1/ε
and logarithmic in 1/δ, is in fact an (ε, δ)-approximation scheme.

Theorem 2.4. There are constants c1, c2 such that for any positive ε < 1 and δ < 1, the algorithm
above with a buffer size B = c1

ε2
ln c2

δ is an (ε, δ)-approximation scheme, that is, if at the end of the
algorithm the size of the sample is K and the final sampling probability is p∗ we have:

Pr

(
∣

∣

∣

∣

K

p∗
−m

∣

∣

∣

∣

≤ εm

)

≥ 1− δ.

Proof. The proof is similar to that of Theorem 3 in [14]. We assume that the initial sampling
probability is p0 = 1 and we have pi = αpi−1, so that pi = αi. In order to simplify some calculations
we assume that α ≤ 3/4. We set the buffer size to be

B =
1 + ε

α
· 3

ε2
ln

8

δ
.

We use the coupling argument (the one used in Theorem 2.1) and think of the algorithm as
sampling from all documents and working by levels. Let Y0 be the number of all the matching
documents, Y1 be a random variable counting the number of documents that got sampled with
probability α, Y2 be a random variable that counts the documents that further got sampled with
probability α and so on. Then Yi is distributed as Binomial(m,αi).

Here is the main idea. The final outcome size K equals one of the Yi’s (the one for which we have
Yi−1 ≥ B and Yi < B) and then p∗ equals αi. The idea is that for small i, with good probability,
the estimates Yi/α

i are accurate and if K equals one of those then the algorithm provides a good
estimate. Otherwise K equals one of the later Yi’s, but this has small probability.

We define the events

Bi =

{∣

∣

∣

∣

Yi

αi
−m

∣

∣

∣

∣

> εm

}

= {|Yi −mαi| > εmαi}.

We also define

` = max i s.t. mαi ≥ 3

ε2
ln

8

δ
,

and therefore we have

mα`+1 <
3

ε2
ln

8

δ
.

So, the probability that the estimator fails to be within a factor of ε close to m is bounded by

∑̀

i=1

Pr(Bi) + Pr(Y` ≥ B).

By applying a Chernoff bound we have that for i ≤ `

Pr(Bi) ≤ 2e−
ε2

3
mαi

.

15

If f(i) = e−
ε2

3
mαi

, then for i ≤ ` we have f(i)/f(i − 1) ≥ (8/δ)(1−α)/α , which for α ≤ 3/4 is at
least 2, for any δ < 1. So for the summation we have

∑̀

i=1

Pr(Bi) ≤
∑̀

i=1

2e−
ε2

3
mαi

≤ 4e−
ε2

3
mα`

≤ 4e−
ε2

3

3

ε2
ln 8

δ

=
δ

2
.

For Pr(Y` ≥ B) we have

Pr(Y` ≥ B) = Pr

(

Y` ≥
1 + ε

α

3

ε2
ln

8

δ

)

≤ Pr

(

Y` ≥
1 + ε

α
mα`+1

)

= Pr
(

Y` ≥ (1 + ε) ·mα`
)

≤ e−
ε2

3
mα`

≤ δ

8
.

Therefore, the probability that the algorithm fails is less than δ.

3 Efficient Sampling of the WAND Operator

Although we described a general sampling mechanism that can be applied to diverse settings, we
have also seen that when we specialize to some particular operator such as AND we can achieve
improved performance. In this section we describe the operator WAND, introduced in [8], which
generalizes AND and OR, and we present an efficient implementation for sampling the results of
WAND.

3.1 The WAND Operator

Here we briefly describe the WAND operator that was introduced in [8] as a means to optimize the
speed of search queries. WAND stands for Weak AND, or Weighted AND. It takes as arguments
a list of Boolean variables X1,X2, . . . ,Xk, a list of associated positive weights, w1, w2, . . . , wk, and
a threshold θ. By definition, WAND(X1, w1, . . . Xk, wk, θ) is true iff

∑

1≤i≤k

xiwi ≥ θ, (3)

where xi is the indicator variable for Xi, that is,

xi =

{

1, if Xi is true
0, otherwise.

16

Observe that WAND can be used to implement AND and OR via

AND(X1,X2, . . . Xk) ≡WAND(X1, 1,X2, 1, . . . Xk, 1, k),

and
OR(X1,X2, . . . Xk) ≡WAND(X1, 1,X2, 1, . . . Xk, 1, 1).

For the purposes of this paper we shall assume that the goal is simply to sample the set of
documents that satisfy Equation (3) with Xi indicating the presence of query term Ti in document
d. We note however that the situation considered in [8] is more complicated: there each term Ti

is associated with an upper bound on its maximal contribution to any document score, UB i, and
each document d is subject to a preliminary filtering given by

WAND(X1,UB1,X2,UB2, . . . ,Xk,UBk, θ),

where Xi again indicates the presence of query term Ti in document d. If WAND evaluates to
true, then the document undergoes a full evaluation, hence a document that matches WAND does
not necessarily match the query. We can deal with this approach by doing a full evaluation on
every document that we would normally insert into the buffer (that is, a document that won the
coin toss). The document is then inserted into the buffer only if it passes the full evaluation. This
insures that p is reduced only as needed. Further refinements considered in [8], such as varying the
threshold θ during the algorithm, are meant to increase the efficiency of finding the top k results
and thus are beyond the scope of this paper.

3.2 Sampling WAND Results

In the AND example that we saw previously, we can sample only the rarest term, and hence
minimize the total number of next, jump, and sample-next operations. In contrast, in the OR

example, we must sample the posting lists of all terms. Since the WAND operator varies between
OR and AND, a good sampling algorithm must handle efficiently both extremes.

Let T = {T1, . . . , Tt} be the set of the query terms with associated positive weights, w1, w2, . . . , wt.
Our goal is to sample uniformly at random documents from the set of documents {j} that satisfy
the inequality

∑

1≤i≤t

xi,jwi ≥ θ, (4)

where xi,j is given by

xi,j =

{

1, if document j contains Ti

0, otherwise.

We divide T it into two subsets, the set S that contains the terms that must be sampled, and
the set Sc that contains the rest of the terms in T . In the AND example, the set S contains only
the least frequent term, while in the OR example the set S contains all the terms.

The first issue is how to select the set S. We will discuss the optimal way to do it, after
discussing the running time of the algorithm. For the time being, assume that we choose the set S
arbitrarily such that

∑

i∈Sc

wi < θ.

17

Hence S is such that any document that satisfies Equation (4) must contain at least one term from
S. It is easy to check that the AND and the OR examples of Section 2.1 expressed as WAND

obey this inequality for their respective choices of S.
Following the description in Section 2.2, we create pruned lists for the terms in S (but not for

the terms in Sc), and again as before, a document in the posting list of a term is included in the
pruned list of that term with probability ps, independently of other documents and other terms.

Of course the algorithm does not know ps beforehand, so it initially starts accepting all the
documents with some probability p = p0, maybe p = 1, and it reduces p over time, using the
process described in Section 2.3.

The algorithm guarantees that every document that contains at least one term in S has prob-
ability at least p to be selected. If it becomes selected and it satisfies WAND, we normalize the
probability to be exactly p using the rejection method described in Section 2.2. If a document does
not contain any term from S, its total weight is strictly smaller than θ and, therefore, it does not
satisfy WAND.

We now give a high-level description of the sampling algorithm. The details appear in Figure 2,
while a complete description and a formal proof of correctness can be found in Section 3.4; Figure 3
contains a visual example.

Every term in the set S is associated with a producer, which is an iterator traversing the
pruned list, selecting documents for evaluation against the query. Furthermore, in order to perform
the evaluation, every term in the query is also associated with a checker that traverses the original
posting list. At one iteration of the algorithm we advance the producers that point to the document
with the smallest DID, and some document is selected (with probability p) by some of them. Then
the checkers will determine the terms that are contained in the document and if the sum of their
weights exceeds the threshold θ, then the document becomes a candidate to be selected for the
sample. Like in the general approach, the pruned list may exist only at the conceptual level, and
the producers may traverse the original posting lists and jump over a random number of documents,
which is geometrically distributed.

Once a document, whose DID is held in the variable global, is selected for consideration, we use
the checkers to determine if global satisfies the query. Some checkers point to documents with DID
smaller than global and these are terms that, as far as we know at this point, might be contained
in the document with DID = global. The algorithm maintains an upper bound equal to the sum
of the weights of the terms whose checkers point to a document with DID not greater than global.
As long as the upper bound exceeds the threshold θ (and therefore global might satisfy the query),
we advance some term’s checker to the first document with DID ≥ global. Assume its DID is doc.
If doc = global then the term is contained in global. We continue by advancing the rest of the
checkers that are behind global until either the total sum of weights of the terms whose checkers
are in positions ≤ global is less than the threshold θ, in which case the document does not satisfy
the query, or until the sum of the weights of the terms that were found to be contained in global
exceeds the threshold θ, in which case the document becomes a candidate to be selected for the
sample. In the latter case, the next step is to count the exact number of terms in S that are
contained in the document. Each of these terms offers a chance to the document to be inserted
to the corresponding pruned list, therefore, by counting the terms in S that are contained in the
document we can apply the rejection method, described in Section 2.2, and accept the document
with the correct probability (i.e., with probability p).

Notice that the algorithmic description leaves some details unspecified. For instance, whenever

18

1. Function getWANDSample()
2. /* First some initializations. */
3. curDoc ← 0
4. global ← 0
5. p← 1
6. foreach (term i)
7. checker[i].next(0)
8. foreach (term i ∈ S)
9. producer[i].nextPruned(0)
10.
11. repeat

12. advance global to smallest DID for which
∑

i:checker[i].DID ≤ global wi ≥ θ

13. if (global < min DID of producers)
14. global ← min DID of producers
15. /* Now at least one producer is ≤ global. */
16. A←

{terms i ∈ S s.t. producer[i].DID < global}
17. while (A 6= ∅ && no producer points to

global)
18. pick i ∈ A
19. producer[i].nextPruned(global)
20. if (no producer points to global)
21. global ← min DID of producers
22. if (global = lastID)
23. return /* Finished with all the

documents */
24. /* Now the global points to a DID that

exists in some pruned list, and such that the
accumulated weight behind it is at least θ. */

25. B ←
{terms i ∈ T s.t. checker[i].DID ≤ global}

26. /* B contains the terms that contribute to
the upper bound */

27. if (global ≤ curDoc)
28. /* document at global has already been

considered */
29. pick i ∈ B
30. /* it is probably best to pick an

i ∈ B ∩ S */
31. checker[i].next(curDoc + 1)
32. else /* global > curDoc */

33. if (
∑

i∈B:checker[i].DID = global wi ≥ θ)

34. /* Success, we have enough mass on
global. */

35. curDoc ← global
36. /* We consider curDoc as a candidate.

Now we must count exactly how many
posting lists in S contain global in order
to perform the probability normalization
correctly. */

37. foreach

(i ∈ S ∩B s.t. checker[i].DID < curDoc)
38. checker[i].next(curDoc)
39. D ←

{terms i ∈ S s.t. checker[i].DID = global}
40. with probability

normalizedProbability(|D|)
addToSample(curDoc)

41. else (of line 33)
42. /* Not enough mass yet on global,

advance one of the preceding terms. */
43. pick i ∈ B s.t. checker[i].DID < global
44. /* it is probably best to pick an

i ∈ B ∩ S */
45. checker[i].next(global)
46. end repeat

1. Function producer[i].nextPruned(r)
2. X ← Geometric(p)
3. producer[i].jump(r, X)

1. Function normalizedProbability(r)
2. return p/(1− (1− p)r)

1. Function addToSample(DID)
2. Add DID to the sample
3. /* Let B be the size of the buffer. */
4. while (size of sample = B)
5. /* we should take a smaller sample */
6. p′ ← α · p
7. foreach (i ∈ sample)
8. keep i with probability α = p′/p
9. p← p′

Figure 2: Sampling WAND.

some checker has to be advanced there is usually more than one choice. The goal is to select the

19

Term 4

Producer

Checker

22DID

curDoc global

Term 1

Term 2

Term 3

Term 5

Term 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S

Figure 3: An example of the posting lists. A bullet indicates that the term exists in the corre-
sponding document. A black bullet indicates that the document was sampled (or will be), hence it
exists in the pruned list.

checker that will advance the farthest possible, and a simple heuristic is to select the checker of the
most infrequent term. This problem appears in the general context of query-constraints satisfaction
for posting list iterators and there are more advanced heuristics that try to guess the best move
based on the results seen so far (see [9]). In our particular case, at some point during the execution
of the algorithm, there is even more flexibility: we can either advance a checker or a producer
(e.g., at line 31 we can advance a producer instead of a checker). Hence in principle, we can select
whether it is better to advance a producer or a checker, based on our experience so far and the
expected benefit of the choice and, indeed, our implementation reduces the running time by using
this heuristic.

3.3 Running-Time Estimation and the Choice of the Set S

We now bound the running time of the algorithm, assuming that we know the correct value of the
sampling probability ps = k/m. Consider a query with t terms, and recall that Ni is the total
number of documents containing the ith term and that wi is the weight of the ith term in the
WAND operator. In order to obtain an upper bound for the number of pointer advances, we note
that whenever we advance a checker we advance it to at least past a producer, since during the
execution of the algorithm the document under consideration (global) has been originally selected
by some producer. Therefore, the total number of each checker’s advances is bounded by the total
number of producer advances, which is expected to be ps

∑

i∈S Ni. Therefore, the running time is
expected to be

O

(

tps

∑

i∈S

Ni

)

= O

(

t
k

m

∑

i∈S

Ni

)

. (5)

If the sampling probability is not known in advance, then in the worst case sampling will not
help much. For instance if the standard search WAND spends a large amount of time getting the

20

first B matches and then starts producing matches very fast, the sampling WAND will spend an
equal amount of time until the first decrease of p from 1 to α. This is of course unlikely but entirely
possible.

Hence for the average case we need to assume that the results are uniformly distributed with
respect to DID numbers. To this end we assume the often-used probability model in IR, that is,
we assume that each document contains the query terms independently with certain probabilities.
In this case, conditional on a document d containing a term ti ∈ S, there is a fixed probability πi

that d satisfies the query. Similarly there are fixed probabilities, πi,1, πi,2, . . . , πi,s that d satisfies
the query and contains exactly 1, 2, . . . , s terms from S, where s = |S|. Now consider the first time
a document d is selected by a producer, say for the term ti. Assume that at that time the sampling
probability was p. In view of the above, the probability that d satisfies the query and also passes
the rejection procedure is

s
∑

j=1

πi,jp

1− (1− p)j
≥

s
∑

j=1

πi,j

j

4
= ρi.

On the other hand, in view of Equation (1), we know that the expected total number of samples
ever inserted in the buffer is bounded by approximately O

(

k ln(m/k)
)

. Hence the expected number
of occurrences of the term ti selected by its producer is bounded by approximately

O

(

k

ρi
ln(m/k)

)

,

and therefore the expected total number of moves (producers and checkers) is approximately

O

(

tk ln(m/k)
∑

i∈S

1

ρi

)

= O
(

k ln(m/k)
)

, (6)

for any fixed query, and k,m→∞.
In order to minimize the running time of the algorithm, we want to select S so that the sum

∑

i∈S ρ−1
i is minimized. Of course ρi is not known in advance, but it can be estimated as the query

progresses. Another approach, for m � Ni, is to make the rough estimate ρi ≈ m/Ni. Then
Equation (6) again suggests that a good choice for S is to try to minimize

∑

i∈S Ni.
A simple way to achieve a good selection for S in this vein is to sort the terms in increasing

order of frequencies (and decreasing order of weights in case of ties), and let

s = min
i

s.t. :

t
∑

j=i+1

wj < θ.

Then let S = {1, 2, . . . , s}. Notice that this greedy approach includes both the examples of AND

and OR as special cases.
The optimal choice for the set S to minimize

∑

i∈S Ni is obtained by solving the following
integer program:

min
∑

i∈S

Ni

s.t. :
∑

i∈Sc

wi < θ,

21

or, equivalently,

max
∑

i∈Sc

Ni

s.t. :
∑

i∈Sc

wi < θ,

which can be interpreted as a Knapsack problem. Since the values Ni are integral we can solve it
exactly in polynomial (in t and N) time through dynamic programming, but since we have a small
number of terms we can solve it much more efficiently by brute force. Sometimes we have some
flexibility in assigning weights (usually we want terms with low frequency to have large weight), in
which case the greedy approach will suffice to obtain an optimal solution.

The analysis above is based on the independence assumptions for the containment of terms in
documents; in reality, however, the running time will depend on the actual joint distribution of the
query terms, which generally changes as the algorithm iterates through the posting lists. In practice
we can achieve better performance by observing the performance of each producer and dynamically
changing the set S as the algorithm progresses. We want to insert terms that both produce large
jumps and are well correlated with successful samples so that the sampling probability will go down
quickly.

3.4 Detailed Description of the Algorithm and Proof of Correctness

Here we present a detailed description as well as a formal proof of the correctness of the algorithm
presented in Figure 2. The essence of the proof is to show that a set of four invariants is maintained
throughout the execution of the protocol. For i ∈ S, let

Ci = {DIDs that appear in the pruned list of term i},

and C =
⋃

i∈S Ci. The four invariants are the following:

1. All documents with DID ≤ curDoc have either been considered as candidates, or do not
belong to C.

2. For any term i ∈ T , any document containing i with DID < checker [i].DID has either been
considered as a candidate, or does not belong to C.

3. At every given time point, every document with DID < global has either been considered or
does not belong to C.

4. For all terms i ∈ S, every document containing i with DID < producer [i].DID has either been
considered or does not belong to Ci.

It is easy to verify that all for of them are true after the initializations (line 9).
We next try to find the next candidate document. We increase global to equal the minimum

DID that could be a potential candidate, which happens when the sum of the weights of terms
whose checkers are behind (i.e., point to documents with DID smaller than or equal to) global
reaches the threshold θ. Since we increase global we must verify that invariant 3 is maintained after
the execution of line 12. This is indeed true by invariant 2. [2⇒ 3]

22

The next candidate document must be pointed to by some producer . Therefore, at lines 13–14,
if all the producers are ahead of global we increase global to the smallest producer . The validity of
invariant 3 follows from invariant 4. [4⇒ 3]

The next candidate document is the one with the smallest DID ≥ global that exists in some
pruned list. In order to discover it, we advance all the producers that are behind global in their
pruned list to their first document with DID ≥ global (lines 16–19). Notice that we can stop if we
discover a pruned list that contains global . [3⇒ 4]

By line 20, either some producer points to global , or we have advanced all the producers past
global . In the latter case (lines 20–21) we increase global to the smallest of the producers. [4⇒ 3]

At lines 22–23 we check whether we have traversed all the documents and in that case the
sampling is finished. Otherwise global points to the next candidate document. Notice that if the
DID of that document is ≤ curDoc, then the document has been considered in the past (invariant
1) so we can advance one of the checkers past curDoc (lines 27–31). (Actually global cannot be
strictly smaller than curDoc.) [1⇒ 2]

Otherwise we have a candidate new document. The next step (line 33) is to check whether we
have discovered enough terms contained in the document, that is, we check whether the sum of the
weights of terms whose checkers point to global exceeds the threshold θ. If this is the case, then we
consider the new document as a candidate and we set curDoc to its DID [3⇒ 1]. Now the document
should be inserted to the sample after applying the rejection scheme described in Section 2.3. Since
we want the probability of the document being sampled to be exactly p, we must compute the
probability that at least some pruned list contains the document. Consider all the terms S that
have producers (and associated pruned lists). Assume that the document appears in the posting
lists of r such terms. Then for each of those, the probability to appear to the corresponding pruned
list is p, therefore the probability to appear in some pruned list equals 1− (1− p)r. Hence we must
normalize and accept the document with probability p/(1− (1− p)r) (lines 39–40). Previously, at
lines 37–38, we advance the checkers of all terms in S in order to compute r. [1⇒ 2]

In the case that the sum of the weights of terms whose checkers point to global is less than θ
(i.e., in the case that the if clause of line 33 evaluates to false) we chose one of the terms whose
checker is behind global (and therefore contributed to the upper bound at line 12) and we advance
the corresponding checker to the first smallest DID ≥ global . [1⇒ 2]

When the execution of the algorithm is over, invariant 1 proves that every document in C gets
at some point to be considered as a candidate. At line 39, the set D contains exactly those terms
that exist in set S and are contained in document global . This follows from the definition of the
set D and from invariant 2, combined with the foreach loop at line 37. (If a posting list contains
the document global then its checker cannot be ahead of global , otherwise invariant 2 would have
been violated. It is therefore behind, and the foreach loop makes sure that the checker will point
exactly to global .) Therefore we count all the terms in S that exist in document global , hence
(because of the normalization) the document becomes accepted with probability exactly p.

4 An Alternative Sampling Scheme

In this section we present a different way for adjusting the sampling probability. As we will see,
this technique is faster theoretically, but in practice it may not be as efficient, as it may require
traversing a term’s posting list more than once.

Here is the main idea. For concreteness, we present the algorithm for sampling a WAND query,

23

although the same method can be applied for a general query (where the set S will include all the
query terms that appear in the query and are not negated, as in Section 2.2). Recall that Ni is the
number of documents in the posting list of the ith term. We let N =

∑

i∈S Ni. By Equation (5),
whenever we sample with probability p, the expected running time is bounded by O(tpN). In this
scheme we sample initially with some small probability p0 = 1/N . Then the expected time needed
to scan all the lists is O(t). If we sample at least k documents, then we stop and we have a uniform
sample (like previously, if we end with more than k documents then we further select a sample
of exactly k documents, by sampling from the final set without replacement). Otherwise, we set
p1 = 2p0, and repeat. In general, if in the ith step the buffer did not become full, then we increase
the sampling probability pi+1 = 2pi (so pi = 2i/N), and we restart. Let ` = log2

kN
m . We are

expected to finish when pi ' p` = k/m, so we expect the total time to be about

O

(

t

(

∑̀

i=0

piN

))

= O

(

t

(

1 + 2 + 4 + · · ·+ k

m
N

))

= O

(

t
k

m
N

)

.

Let us try now to analyze the running time and the performance more rigorously. We prove the
following lemma, which bounds the total number of producer advances.

Lemma 4.1. The expected number of producer advances is bounded by 6kN/m.

Proof. We call the traversing of the posting list with probability pi round i. Notice that for the ith
round, the total number of producer advances is stochastically dominated by a binomial random
variable, Binomial(N, pi). Let the number of producer advances at round i be Xi (Xi equals 0 if
the algorithm stopped before round i) and the total number of producer advances be X =

∑∞
i=0 Xi.

We then have

E[X] =
`+1
∑

i=0

E[Xi] +
∞
∑

i=`+2

E[Xi] ≤
`+1
∑

i=0

E[Binomial(N, pi)] +
∞
∑

i=`+2

E[Xi].

We denote by Ai the event that “the algorithm has not terminated up to (and including) round i.”
First notice that conditioning on Ai−1 we have Xi = 0. Also, event Ai implies that at round i
there were fewer than k documents sampled. Since at level i the number of documents that become
sampled is distributed as Binomial(m, pi), the expected number of sampled documents is m2i/N ,
and for i ≥ ` + 1 we get by a Chernoff bound

Pr(Ai) = Pr(Binomial(m, 2i/N) < k)

= Pr

(

Binomial(m, 2i/N) <
k

m2i/N
m2i/N

)

≤ e
− 1

2

m2
i

N

“

1− k
m2i/N

”2

≤ e−
1

8

m2
i

N .

From the previous calculation and from the fact that conditional on event Ai−1 the random
variable Xi is stochastically dominated by a Binomial(N, pi), we get for i ≥ ` + 2

E[Xi] = E[Xi | Ai−1] ·Pr(Ai−1) + E[Xi | Ai−1] ·Pr(Ai−1)

≤ N
2i

N
e−

1

8

m2
i−1

N + 0,

24

and so

E[X] ≤
`+1
∑

i=0

2i +

∞
∑

i=`+2

2ie−
1

8

1

N
m2i−1

≤ 2`+2 + 2`
∞
∑

i=`+2

2i−`e−
1

8

1

N
m2i−1

=
4kN

m
+

kN

m

∞
∑

j=2

2je−
1

8

1

N
m2`+j−1

=
4kN

m
+

kN

m

∞
∑

j=2

2je−
1

16
k2j

≤ 6kN

m
,

for k ≥ 6.

Since, as we argued right before Equation (5), the number of advances that each checker performs
is bounded by the total number of producer advances, and by making use of Lemma 4.1, we have
proven the following theorem.

Theorem 4.1. The expected running time of the algorithm is O(tkN/m).

Let us compare now the running time of this scheme with the one of the first algorithm. Ac-
cording to Equation (6) the expected running time of the first algorithm under independence
assumptions is approximately

O

(

tk ln(m/k)
∑

i∈S

1

ρi

)

.

Recall from the discussion after Equation (6) that ρi ≈ m/Ni, therefore the expected running time
is approximately

O

(

tk ln
(m

k

) N

m

)

.

Therefore, we can see that the first scheme is slower by a logarithmic factor than the second scheme.
More importantly, Theorem 4.1 holds without the independence assumptions that are introduced
in the analysis of the first scheme. Nevertheless, as we mentioned previously, we expect the second
scheme to be less efficient in practice, since it requires accessing the terms’ posting lists several
times.

Now we show that the second algorithm also provides an (ε, δ)-approximation scheme to the
number of documents that match the query.

Theorem 4.2. There are constants c1, c2 such that for any positive ε < 1 and δ < 1, the algorithm
above with a requested sample size k = c1

ε2
ln c2

δ is an (ε, δ)-approximation scheme, that is, if at the
end of the algorithm the size of the sample is K and the final sampling probability is p∗ we have:

Pr

(
∣

∣

∣

∣

K

p∗
−m

∣

∣

∣

∣

≤ εm

)

≥ 1− δ.

25

Proof. The main idea is to show that the algorithm will not terminate in the first rounds (up
to round ` − 1), while if it terminates later it provides a good approximation to the number of
documents matching the query.

Let Bi be the event that “the algorithm terminated at round i,” and Ci the event that “the
algorithm terminated at round i and failed to provide an estimation within ε to m.” Finally, let B
be the event that “the algorithm failed.” Then we have

Pr(B) ≤
`−1
∑

i=0

Pr(Bi) +
∞
∑

i=`

Pr(Ci).

In order to bound Pr(Bi), we notice that the number of matches at the ith round is a random
variable distributed as a Binomial(m, 2i/N). Therefore,

Pr(Bi) ≤ Pr(Binomial(m, 2i/N) ≥ k)

≤ Pr

(

Binomial(m, 2i/N) ≥ k

2im/N

2im

N

)

≤ e
− 1

3

2
im
N

“

kN
2im

−1
”2

.

Notice that if f(i) = e
− 1

3

2
im
N

“

kN
2im

−1
”2

, then for i ≤ `−1 and k ≥ 2 we have f(i)/f(i−1) ≥ e7k/12 > 2.
Therefore,

`−1
∑

i=0

Pr(Bi) < 2 ·Pr(B`−1) ≤ 2e−
k
6 .

Also,

Pr(Ci) ≤ Pr

(
∣

∣

∣

∣

Binomial(m, 2i/N)

2i/N
−m

∣

∣

∣

∣

> εm

)

= Pr

(
∣

∣

∣

∣

Binomial(m, 2i/N)− 2im

N

∣

∣

∣

∣

> ε
2im

N

)

≤ 2e−
1

3

2
im
N

ε2.

So,

∞
∑

i=`

Pr(Ci) ≤ 2 ·
∞
∑

j=0

e−
1

3

2
`+jm

N
ε2

≤ 2 ·
∞
∑

j=0

e−
1

3
2jkε2

≤ 3e−
1

3
kε2.

Putting everything together, we get

Pr(B) ≤ 2e−
k
6 + 3e−

1

3
kε2,

which for

k =
6

ε2
ln

3

δ
is less than δ.

26

Query

Q1 Schumacher and (Joel or Michael)

Q2 Olympic and (Airline or Games or Gods)

Q3 Turkey and Customs

Q4 Long and Island and Tea

Q5 Schwarzenegger and (California or Terminator)

Q6 Taxi and Driver

Q7 Dylan and (Musician or Poet)

Q8 Football and (Lazio or Patriots)

Q9 Indian and (America or Asia)

Table 1: The queries that we inserted to the sampling algorithm.

5 Experiments

We implemented the sampling mechanism for the WAND operator and performed a series of
experiments to test the efficiency of the approach as well as the accuracy of the results. We used
the JURU search engine developed by IBM [10].

The data consisted of a set of 1.8 million Web pages, consisting of a total of 1.1 billion words (18
million total distinct words). Each document was classified according to its content to several cate-
gories. The taxonomy of the categories, as well as the classification of the documents to categories,
were performed by IBM’s Eureka classifier described in [1]. We used a total of 3000 categories, and
each document belonged to zero, one, or more categories. Eureka’s taxonomy contains additionally
a number of broader super-categories that form a hierarchical structure. Although we did not make
use of this structure in our experimental evaluation, we argue later in this section that it can be
used to provide more meaningful results for the category-suggestion problem.

In order to estimate the gain in run-time efficiency, we count the number of times a pointer is
advanced (via next, jump, or sample-next) over the terms’ posting lists. As we argued previously,
the total running time depends heavily on the number of those advances, since the posting lists
are usually stored on secondary storage and accessing them is the main bottleneck in the query
response time.

We experimented by creating nine ambiguous queries depicted in Table 1 chosen to produce
results in many different categories. For each query we created different samples of sizes k = 50,
200, and 1000. In all the experiments the resampling probability equals α = 3/4 and the buffer
size is B = 2k. In Table 2 we compare the number of pointer advances for different sample sizes.
Notice that even though the total number of matching documents is small (in the order of several
thousands, while the motivation for our techniques is for applying them to queries with result sizes
in the millions) we show a significant gain for small sample sizes. In order to further establish
this point we performed additional queries using artificially created documents built from random
sequences of numbers, such that the result sets would be larger. We present the results in Table 3.

From the two tables it is clear that sampling is justified if the sampling size k is at least 2 orders
of magnitude smaller than the actual result size m. In this case the total time can be reduced by a
factor of 10, 100, or even more, depending on the ratio k/m, as well as on the query type. On the
other hand, if k is comparable to m, the overhead of the sampling (due to more than one pointer
for each term) might even increase the total time.

27

Query Matches No Sampl. 50 200 1000

Q1 587 3275 2627 4297 4561

Q2 5109 31121 4323 12716 31231

Q3 3111 33849 13841 24192 35461

Q4 1111 28604 12120 28547 40151

Q5 407 2497 1532 3278 3314

Q6 1028 6491 3783 6401 7475

Q7 356 3678 3173 4967 4967

Q8 566 8796 5060 8699 9123

Q9 15721 96997 6437 19423 55248

Table 2: Number of pointer advances for the nine queries. The second column contains the total
number of pages matching each query. The rest of the columns contain the number of pointer
advances performed without sampling, and for samples of 50, 200, and 1000 pages.

Query Matches No Sampling 10 100

T1 and T2 13011 104087 977 7161

T3 or T4 57046 120102 566 4392

T3 or T4 or T5 62890 134874 715 5351

Table 3: Comparison of pointer advances for queries performed on artificially created documents
with samples of sizes 10 and 100.

5.1 Estimating the Most Frequent Categories of the Search Results

We also evaluated the suitability of our approach for a particular application, namely the discovery
of the most frequent categories spanned by the set of documents matched by a given query. We
emphasize that we are not testing the uniformity of the samples: our samples are provably uniform;
what we test here is whether uniform samples capture popular categories, something which of
course depends on the distribution of categories over the result set. To this end we consider the
same queries of Table 2. Each of these query results induces a set of categories from the Eureka
Taxonomy. In order to determine whether the sampling succeeds in discovering the most frequent
categories, we measured, for each sample size, how many of the 10 most frequent categories in the
full result set are present in the sample; we show the results in Table 3(a).

Furthermore, it is desirable for the frequent categories in the full result set to be also frequent in
the sample so that we can identify them. For that, for each query, we check how many of the top-10
frequent categories in the result set are present within the top-10 frequent categories according to
the sample, and we show the results in Table 3(b).

There are some facts worth noticing with respect to the results of sampling, some of which
are not revealed in the tables. First observe that in most cases, even small sample sizes succeed
in sampling documents from the frequent categories (Table 3(a)) but a somehow larger sample
size is needed in order to ensure that the frequent categories are frequent in the sample as well
(Table 3(b)). It also seems that a sample of size 1000 is always successful in our examples, but this
is somewhat misleading since in some of the examples the total number of documents is small, and
therefore the sampling extracts all the original categories.

A final important remark, explains the poor performance in most of the cases of Table 3(b),

28

(a) Number of the top-10 fre-
quent categories that appear in
the samples.

Query 50 200 1000

Q1 10 10 10

Q2 7 10 10

Q3 7 10 10

Q4 4 8 10

Q5 5 10 10

Q6 7 9 10

Q7 7 10 10

Q8 8 10 10

Q9 2 9 10

(b) Number of the top-10 fre-
quent categories that appear in
the 10 most frequent sample cat-
egories.

Query 50 200 1000

Q1 7 8 10

Q2 6 5 8

Q3 4 6 9

Q4 3 6 10

Q5 3 7 10

Q6 3 4 10

Q7 5 10 10

Q8 7 8 10

Q9 0 3 7

Table 4: Results from experiments on discovering popular categories using a random sample.

compared with Table 3(a). Let us focus, for concreteness, on Q9 (corresponding to the query
“Indian and (America or Asia)”). The total number of matching documents is 15721, and the
sample of size 50 fails completely to identify the frequent categories, while the sample of size 200
also fails to spot out the most frequent categories in Table 3(b) (although, notice in Table 3(a)
that it does manage to sample some documents related to 9 out of the 10 frequent categories).
This is due to the Eureka categorization: the 3000 categories used to tag the documents are very
fine, resulting in documents matching very specific categories. For query Q9, the 15721 matching
documents were found to be related to 1935 categories, from which we tried to extract the top
10. Each of these categories contains a rather small number of documents: the most frequent one
contains 125 documents, the 10th most frequent contains 54; the accumulated mass in the top 10
categories (sum of the number of documents contained within the top 10 categories) is 753, while
the total mass is 9404. Therefore, each of the 50 sampled documents, has less than 10% chance
to be a document contained within the top-10 categories, and negligible probability (0.57%) to be
contained within the top 10th category.

The solution to this categorization artifact is straightforward: after obtaining the samples, we
must aggregate the categories to coarser super-categories according to the taxonomy (e.g., the
categories Lions, Cheetahs and Monkeys can be aggregated to Mammals, or Animals). Then the
final result is a sample of a smaller number of categories each with a large mass, in which case even
a small sample size can efficiently discover the popular super-categories and present them to the
user. Since the emphasis of our work lies mainly on the method for sampling, we have not pursued
this line of research any further.

5.2 Estimating the Size of the Result Set

Finally we evaluate the quality of the estimator for the size of the result set. Table 5 shows the
estimates and the relative errors. We mention again that many commercial Web search engines fail
to provide an accurate estimation of the number of results. In contrast, notice that for even the
smallest sampling size the error never exceeds 15%, and usually it is negligible for a sample size

29

Match 50 200 1000
Query

Count Est. Err Est. Err Est. Err

Q1 587 562 4.3 597 1.7 587 0

Q2 5109 5388 5.5 5088 0.4 5050 1.1

Q3 3111 2652 14.8 3376 8.5 3150 1.3

Q4 1111 1119 0.7 1150 3.5 1111 0

Q5 407 433 6.4 395 2.9 407 0

Q6 1028 1172 14.0 989 3.8 1028 0

Q7 356 316 11.2 356 0 356 0

Q8 566 545 3.7 596 5.3 566 0

Q9 15721 17028 8.3 15448 1.7 15902 1.2

Table 5: Evaluation of the estimates for the sizes of the query results. The table shows the actual
value, and for each sampling size the estimate and the percentage of the error.

greater than 200. Here, however, the fact that the result sets are rather small plays to our advantage:
our samples are relatively large, occasionally larger than the result set. Further research is needed
to elucidate the case of very large result sets and to compare against the current performance of
commercial search engines.

6 Summary

We propose performing sampling on the results of search-engine queries in order to support a
plethora of applications, ranging from determining the set of categories in a given taxonomy spanned
by the search results to estimating the size of the result set. We develop two general schemes for
performing the sampling efficiently, in time essentially proportional to the sampling size, and we
show how we can increase the performance for particular implementations. Finally, we test the
efficiency and quality of our methods on both synthetic and real-world data.

There are several issues worth of further investigation. First, for general WAND sampling
there are many choices that might improve the running time, such as the optimal selection of the
set S and the selection of the checkers and producers to advance. One approach inspired by [9],
is to use an adaptive mechanism that keeps track of the effect of past choices while the query is
running. Second, it would be interesting to understand which classes of queries can be sampled
with a more efficient method than the general procedure of Section 2.2. In particular simple but
common Boolean combinations, even if expressible as a single WAND, could probably be sampled
more efficiently than either the general procedure or even the general WAND mechanism. Third, a
model for the average running time for the first scheme for sampling WAND that allows a rigorous
analysis and requires fewer or no independence assumptions, remains a challenge.

7 Acknowledgements

We would like to thank Steve Gates and Wilfried Teiken for many useful discussions and suggestions,
as well as for providing us with all the experimental set-up (hardware, the Eureka taxonomy, and
the Web crawled data), which allowed us to perform our experiments. We are indebted to Andrew

30

Tomkins for his observations regarding an early draft of our paper and we benefitted from comments
received from Andreas Neumann, Ronny Lempel, Runping Qi, Jason Zien, and the anonymous
referees of both the conference and, especially, the journal version.

References

[1] C. C. Aggarwal, S. C. Gates, and P. S. Yu. On using partial supervision for text categorization.
IEEE Trans. Knowl. Data Eng., 16(2):245–255, 2004.

[2] E. Amitay, D. Carmel, R. Lempel, and A. Soffer. Scaling IR-system evaluation using term
relevance sets. In Proceedings of the 27th Annual International Conference on Research and
Development in Information Retrieval, pages 10–17. ACM Press, 2004.

[3] A. Anagnostopoulos, A. Z. Broder, and D. Carmel. Sampling search-engine results. In WWW
’05: Proceedings of the 14th International Conference on World Wide Web, pages 245–256.
ACM Press, 2005.

[4] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
633–634. Society for Industrial and Applied Mathematics, 2002.

[5] J. P. Bagrow and D. ben-Avraham. On the Google-fame of scientists and other populations. In
Proceedings of the 8th Granada Seminar on Computational and Statistical Physics, “Modeling
Cooperative Behavior in the Social Sciences”, pages 81–89, 2005.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
WWW7/Computer Networks and ISDN Systems, 30:107–117, April 1998.

[7] A. Z. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.

[8] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query evaluation
using a two-level retrieval process. In Proceedings of the Twelfth International Conference on
Information and Knowledge Management, pages 426–434. ACM Press, 2003.

[9] M. Burrows. Sequential searching of a database index using constraints on word-location pairs.
United States Patent 5 745 890, 1998.

[10] D. Carmel, E. Amitay, M. Herscovici, Y. S. Maarek, Y. Petruschka, and A. Soffer. Juru at
TREC 10 - Experiments with Index Pruning. In Proceedings of the Tenth Text REtrieval
Conference (TREC-10). National Institute of Standards and Technology (NIST), 2001.

[11] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

[12] D. Fallows, L. Rainie, and G. Mudd. The popularity and importance of search engines, August
2004. The Pew Internet & American Life Project, http://www.pewinternet.org/pdfs/PIP_
Data_Memo_Searchengines.pdf.

[13] M. Fontoura, E. J. Shekita, J. Y. Zien, S. Rajagopalan, and A. Neumann. High performance
index build algorithms for intranet search engines. In VLDB 2004, Proceedings of the Thirtieth
International Conference on Very Large Data Bases, pages 1158–1169. Morgan Kaufmann,
2004.

31

[14] P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams.
In SPAA ’01: Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 281–291. ACM Press, 2001.

[15] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins, and J. Zien. How
to build a WebFountain: An architecture for very large-scale text analytics. IBM Systems
Journal, 43(1), 2004.

[16] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In WWW ’05:
Special Interest Tracks and Posters of the 14th International Conference on World Wide Web,
pages 902–903. ACM Press, 2005.

[17] P. J. Haas, J. F. Naughton, and A. N. Swami. On the relative cost of sampling for join
selectivity estimation. In Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 14–24. ACM Press, 1994.

[18] K.-H. Li. Reservoir-sampling algorithms of time complexity O(n(1+ log(N/n))). ACM Trans.
Math. Softw., 20(4):481–493, 1994.

[19] S. Muthukrishnan. Data streams: Algorithms and applications. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-03), pages 413–413.
ACM Press, 2003.

[20] D. R. Radev, H. Qi, Z. Zheng, S. Blair-Goldensohn, Z. Zhang, W. Fan, and J. Prager. Mining
the web for answers to natural language questions. In Proceedings of the Tenth International
Conference on Information and Knowledge Management, pages 143–150. ACM Press, 2001.

[21] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a very large web search
engine query log. SIGIR Forum, 33(1):6–12, 1999.

[22] H. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Information Process-
ing and Management, 31(6):831–850, 1995.

[23] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, 1985.

[24] D. Williams. Probability with Martingales. Cambridge University Press, 1991.

[25] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search and
browsing. In Proceedings of the Conference on Human Factors in Computing Systems, pages
401–408. ACM Press, 2003.

32

