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Previous approaches of constructing mul-
tiresolution hierarchy for irregular meshes
investigated how to overcome the connec-
tivity and topology constraints during the
decomposition, but did not consider the ef-
fects of sampling information on editing and
signal processing operations. We propose
a sampling-sensitive downsampling strat-
egy and design a decomposition framework
that produces a hierarchy of meshes with
decreasing maximum sampling rates and in-
creasingly regular vertex support sizes. The
resulting mesh hierarchy has good quality
triangles and enables more stable editing.
The detail vectors better approximate the fre-
quency spectrum of the mesh, thus making
signal filtering more accurate.

Key words: Meshes – Multiresolution – Ir-
regular connectivity – Sampling sensitive

Traditionally, multiresolution representation and
modeling were proposed in the context of para-
metric surfaces [4, 5] and subdivision surfaces [22]
because these schemes provide well-structured re-
finement rules. With the help of wavelets techniques,
the design of decomposition and reconstruction op-
erations for these surfaces is made mathematically
elegant.
For meshes, traditional multiresolution frame-
work [22, 23] assumes that the input mesh has sub-
division connectivity and uniform parameteriza-
tion. However, many real world meshes have irreg-
ular connectivity and vertex distribution. Finding
the scaling and wavelet functions for each resolu-
tion and determining the stencils are difficult for
these meshes. One way to overcome these difficul-
ties is by remeshing [3, 7, 18]. However, remesh-
ing is a resampling process, thus it may cause
artifacts and need many more vertices and trian-
gles to recover the model shape. Also, if each
triangle or vertex has some associated attributes
(e.g., color or normal), finding the correct attribute
value for the samples in the remeshed output is
difficult.
Some researchers have built multiresolution rep-
resentations directly for irregular meshes with-
out remeshing. Kobbelt et al. [16] used progres-
sive meshes (PM) [10] with the discrete umbrella
smoothing to build a multiresolution representation
for editing. Guskov et al. [8] employed a nonuni-
form smoothing operator and the progressive mesh
to build a hierarchy for signal processing. The off-
sets (detail information) of the vertices that are re-
moved by the simplification are interpreted as the
frequency spectrum of the input mesh – the ver-
tices removed earlier have their corresponding off-
sets taken as higher frequencies. Thus the derived
frequency information is according to the order of
vertex removal. After building the hierarchy, sig-
nal filtering is performed on the frequencies. Both
these approaches use shape-sensitive simplification
algorithms that focus on shape preservation in the
decomposition process.
We argue that the computed offsets in a hierar-
chy built using a shape-sensitive simplification do
not correspond to the actual frequency information.
This leads to unexpected filtering output. We also
contend that using shape-sensitive simplification in
the decomposition process leads to irregular trian-
gle areas and edge lengths in the lower resolution
meshes, which is undesirable for low resolution edit-
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ing that results in large deformation of the original
shape.
To achieve more accurate signal filtering and to fa-
cilitate editing in low resolution, we believe that the
downsampling in the construction of mesh hierar-
chy should be based on the vertex distribution, rather
than the geometry of the input mesh. In this paper,
we propose a sampling-sensitive downsampling al-
gorithm and use it to design a decomposition frame-
work for irregular meshes to overcome these prob-
lems. We note that the idea of sampling-sensitive
simplification is not new, but it has so far been used
only for shape preservation and level-of-details ren-
dering [6, 10]. In addition to adopting a new down-
sampling algorithm, we use the umbrella smoothing
operator in our framework in order to produce a hi-
erarchy of meshes with smoother geometry and more
regular edge lengths and triangle shapes in the lower
resolutions.
The remainder of this paper is organized as fol-
lows. We first state some assumptions and defini-
tions in Sect. 2. In Sect. 3, we illustrate the weak-
nesses of the previous approaches with two exam-
ples and present an overview of the proposed solu-
tion. Section 4 presents the related previous work.
Section 5 describes our sampling-sensitive down-
sampling algorithm and the decomposition frame-
work. Some experimental data and comparison with
alternative hierarchies are given in Sect. 6. Sec-
tion 7 shows the advantages of our hierarchy in
applications such as signal filtering, editing and
remeshing. Finally the conclusions are offered in
Sect. 8.

2 Assumptions and definitions

We assume that the model to be decomposed is a tri-
angular mesh, which is a topological manifold. It can
have any connectivity, topology and sampling distri-
bution, and may contain boundary loops. The geo-
metric realization of the mesh is considered as the
union of points, which consists of the vertex posi-
tions and the linear interpolation of vertex positions
such that the corresponding vertices form edges and
triangles.
The support size of a vertex is defined as its one-ring
triangles area. This is because only the positions of
the one-ring triangles are modified when the vertex is
moved. The sampling rate at a vertex is defined as the
inverse of its support size.

3 Problems and proposed solution

We focus on two problems of previous decompo-
sition frameworks. (1) Shape-sensitive simplifica-
tion does not remove vertices in an order such that
the extracted detail information corresponds to the
correct frequency information. (2) Shape-sensitive
simplification results in unequal vertex support sizes
and unequal edge lengths in the low resolution
meshes.
Figure 1 illustrates the above two problems with a
2D example. The top row shows the results when
a shape-sensitive simplification is used in the de-
composition process. The low-resolution version is
obtained by first removing those points with zero
offset distance since these points cause the least ge-
ometric change. These offsets are then taken as the
high frequency information. Consequently, filtering
(smoothing and enhancement) these offsets does not
change the shape, even though the original struc-
ture clearly contains some high frequency details in
the inner loop that should have been filtered. The
rightmost column shows the result of repositioning
the white points in the low-resolution version (and
then adding the details back). It is observed that
the modification of the vertices in the outer loop
affects a larger region than the vertices in the in-
ner loop. This is undesirable since users expect that
editing different sample points in a low resolution
mesh would affect regions of similar size in the finest
mesh. This clearly cannot be achieved in a highly un-
equal sampling setting.
The top row of Fig. 2 illustrates the second problem
in a 3D mesh setting. A low-resolution mesh with
vertices of highly unequal support sizes is produced
by a shape-sensitive simplification. The model is
bent in low resolution and then the details are added
back. It contains apparent artifacts because the bend-
ing is in the minimum curvature direction. Shape-
sensitive simplification tends to produce edges that
are longer in the minimal curvature direction because
fewer vertices are needed to represent the shape un-
der the same error tolerance. Since it is impossi-
ble to predict the editing direction intended by the
user, meshes with edges of similar lengths in all
directions are deemed to have a greater degree of
freedom for editing without producing undesirable
artifacts.
Broadly speaking, in order to solve the above two
problems, we need to achieve the following three
goals:
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Fig. 1. Shape-sensitive downsampling (top row) and sampling-sensitive downsampling (bottom row) produce different low-
resolution structures (middle left column) and thus have different effects on subsequent signal filtering (middle and middle-
right columns) and multiresolution editing (far right column). Sampling-sensitive downsampling is able to remove vertices in
an order corresponding to frequency, and thus produces the desired filtering results. It also produces a low-resolution version
that contains vertices with a more regular support size, which is desirable for editing
Fig. 2. Shape-sensitive simplification produces longer edges in the minimum curvature direction (top row), while the
sampling-sensitive method produces edges of similar length in all directions (bottom row), which gives better result when
editing in low resolution (center right and far right columns)

(1) The downsampling algorithm used in the decom-
position framework should depend on the sam-
pling setting, and not the geometry of the mesh.

(2) The vertices of a lower resolution mesh should
have similar support sizes. The edges along any
direction should be of similar lengths, i.e., edge
length is isotropic over the mesh.

(3) A lower-resolution mesh should have smoother
geometry. This is required because high fre-
quency information has to be removed from the
higher resolution mesh.

To achieve these three goals, we propose an L2-
norm downsampling algorithm, which is sampling-
sensitive in the sense that it removes the vertices
in the regions with the highest sampling rate first.
It produces a hierarchy of meshes with decreasing
maximum sampling rates. Since this downsampling
algorithm depends heavily on the support size of ver-
tices, the triangle sizes of the resulting downsampled
meshes are more equal compared with the shape-
sensitive downsampling methods. We also apply um-
brella smoothing to the mesh during decomposition,
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which improves the quality of the meshes in the hier-
archy such that they have more similar edge lengths
and smoother geometry.
The results of our decomposition framework are
shown in the bottom rows of Figs. 1 and 2. In Fig. 1,
the offsets of the vertex positions are stored in the
normal fields of the low resolution. It is observed that
the low and high frequency details are now correctly
filtered. Additionally, the editing result is more intu-
itive due to the more uniform sampling distribution
in the low-resolution version. The 3D example in
Fig. 2 shows that the low-resolution mesh produced
by our downsampling algorithm has edges of simi-
lar lengths in all directions, leading to fewer artifacts
after a large deformation.

4 Previous work

Signal processing on meshes was first introduced
by Taubin [20, 21] in the context of surface fair-
ing. Eigenvectors of Laplacian operators are viewed
as frequencies on meshes. Their filtering framework
can be used to smooth and denoise meshes.
Our framework builds upon ideas from two previous
approaches for constructing multiresolution hierar-
chies for irregular meshes. In [16], Kobbelt et al. pro-
posed a multiresolution framework to smooth a re-
gion chosen for editing. The approach can be seen
as single-level decomposition for editing. The sim-
plification algorithm mainly considers the fairness of
the resulting mesh and aims at minimizing the error
with respect to the original mesh [15]. Guskov et al.
were the first to generalize signal processing opera-
tions to irregular meshes [8]. They defined upsam-
pling, downsampling and filtering operations and
built mesh pyramids for irregular meshes. Editing
and filtering operations are preformed efficiently on
the mesh hierarchy just as the traditional (semi-) uni-
form subdivision surfaces. However, they employed
quadric error metric (QEM) [6], which also mea-
sures error with respect to original mesh, as a priority
criterion for mesh decimation. Both approaches em-
ploy shape-sensitive simplification, which can lead
to problems in signal filtering and editing as men-
tioned before.
Our decomposition framework closely resembles
Guskov’s [8], which is shown in Fig. 3. The multires-
olution framework decomposes an irregular mesh
M = Mn into a sequence of meshes M j , j = n, n −
1, . . ., 0, with decreasing resolution and sets of detail

Fig. 3. Guskov’s decomposition framework

vectors D j , j = n, n −1, . . ., 0. The detail vectors
in D j record the difference between the meshes M j

and M j−1. The coarsest resolution mesh M0 is the
base mesh of the hierarchy, and the original mesh
can be rebuilt from the base mesh M0 and the de-
tail vectors D1, D2, . . ., Dn . In addition to the use of
a new downsampling algorithm, our decomposition
framework differs from that of Guskov et al. in two
aspects. First, their framework is an interpolating one
– the positions of the vertices in the lower resolu-
tions are the same as those in the original mesh. We
believe this restriction is not necessary for multires-
olution modifications; it is more important that the
lower resolution meshes have smoother geometry
and sampling information. Second, due to the use of
shape-preserving decimation, their framework does
not require a pre-smoothing step when constructing
a lower resolution mesh. Upsampling and smooth-
ing steps are applied to predict a corresponding point
for detail vector computation. Since they store detail
vectors as 3D vectors capturing the difference be-
tween topologically corresponding points, the orig-
inal parameter information has to be preserved in
the lower meshes. Thus, they proposed a nonuniform
operator for parameterization preserving smoothing,
which requires storing the smoothing weights for
reconstruction. In our framework, we employ the
normal field detail encoding scheme in [17], which
makes only the geometry, not the parameterization,
of the lower meshes relevant. Therefore nonuniform
smoothing and storing of weights for reconstruction
become unnecessary.
Our mesh representation has some commonalities
with the normal mesh [9]. Both representations com-
prise a base domain mesh and some sets of de-
tail vectors, produce a sequence of multiresolution
meshes, and represent the details in the normal field
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Fig. 4. Our decomposition framework
Fig. 5. Surface function of a mesh

of the next lower resolution mesh. However, the con-
struction of a normal mesh is from coarse to fine,
whereas our method computes the details in a fine-
to-coarse fashion. In addition, our setting is aimed
at editing and filtering operations, while the normal
mesh is designed for remeshing and compression
purposes [12], thus their representation is optimized
by removing the parameter information of the ver-
tices as much as possible.

5 Sampling-sensitive framework

Figure 4 shows our sampling-sensitive decomposi-
tion framework. The decomposition of a mesh M j

into the lower resolution M j−1 and the set of de-
tail vectors D j involves three procedures: downsam-
pling, pre-smoothing, and detail encoding (the lower
processing line in Fig. 4). The downsampling proce-
dure uses our selection criteria, which has the effect
of removing a number of vertices from the high sam-
pling regions of M j . Next, a smoothing step is ap-
plied to remove the high-frequency content for con-
structing the smoother and coarser mesh M j−1. Then
we apply the umbrella operator, which does not only
smooth the geometry, but also regulates the triangle
shapes and edge lengths of the intermediate mesh.
Finally, the detail vectors in D j are computed for all
the vertex positions in M j with respect to the local
frames F j−1 of M j−1. To find a corresponding base
point, we employ the Phong normal field [17]. We
note that since most of the vertices in M j are un-
changed, we only need to encode the detail vectors
for vertices that are removed in M j and those corre-
spond to the smoothed vertices in M j−1.

5.1 L2-norm error metric

To design a suitable decomposition framework for
function analysis, we need to express meshes as con-

tinuous surface functions defined on a base domain.
However, meshes with different topologies clearly
do not have a common base domain. Hence we put
all meshes of the same connectivity and topology
into the same class of functions, and compute the
difference of two meshes in terms of the norm dif-
ference. We use this mesh difference metric in our
downsampling algorithm.

5.1.1 Surface function

We consider a mesh M as a piecewise linear function
defined on a base domain mesh B of the same con-
nectivity and topology. There is a continuous map-
ping between B and M that maps the corresponding
vertices of the two surfaces and maps the interior of
the corresponding triangles using barycentric coor-
dinates. Given a base surface B, a mesh M can be
represented as a surface function g : B → R3 such
that, for a point p ∈ B, the corresponding point on M
is q = p+ g(p) (Fig. 5).

5.1.2 Mesh difference

Let M1 and M2 be two meshes of the same connec-
tivity, and let g1 and g2 be their respective surface
functions defined on a common base domain B. We
define the inner product of M1 and M2 as the integra-
tion of the dot product of the surface functions over
the base surface

〈M1, M2〉 =
∫

p∈B

g1(p) · g2(p) dp.

The L2 norm of a mesh M with surface function g(p)
is then

‖M‖2 =



∫

p∈B

|g(p)|2 dp




1/2
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and the difference between M1 and M2 in the L2

norm sense becomes

‖M1 − M2‖2 =



∫

p∈B

|g1(p)− g2(p)|2 dp




1/2

=



∫

p∈B

|p1 − p2|2 dp




1/2

where p1 = p + g1(p) and p2 = p + g2(p) are the
mapped points on the meshes M1 and M2, respec-
tively.
We discretize the integration over each triangle Ti in
B with its area as the measure, then the mesh differ-
ence becomes

‖M1 − M2‖2 =

∑

Ti

A (Ti) IP(Ti)




1/2

(1)

where A(T) denotes the area of the triangle T in B
and

IP(T) =
∫

p∈T

|p1 − p2|2 dp

=
1∫

0

1−β∫

0

(α∆pa +β∆pb

+ (1−α−β)∆pc)
2 dα dβ (2)

where pa, pb, pc are the vertices forming the trian-
gle T , ∆pa,∆pb,∆pc are the differences in posi-
tions of the corresponding vertices in M1 and M2,
and (α, β, 1−α−β) are the barycentric coordinates
of an interior point.
However, since the mesh can have any connectiv-
ity and topologically structure, the base function
is unknown. So we have to relax the definition of
‖M1 − M2‖2 by using the area of triangles in M1
instead of the area of triangles in B, as the mea-
sure. We denote this augmented mesh difference as
‖M1, M2‖, and note that ‖M1, M2‖ and ‖M2, M1‖
are different in general. This derivation, though in-
formal, produces good results in our implementation.
This mesh difference metric considers the distances
between all the corresponding points on the mesh,

not just the vertices, and it produces different re-
sults compared with other distance functions such
as the sum of the squared vertex displacements or
the total Hausdorff distance. The sum of squared
vertex displacements cannot distinguish the dispar-
ity in shape caused by different sampling rates of
vertices. It is possible for two pairs of meshes to
have the same mesh difference and yet the sam-
pling setting for one pair of meshes to be totally
different from the other pair. On the other hand, the
total Hausdorff distance can distinguish the dispar-
ity in shape, but does not consider the difference
in vertex positions. For example, moving the ver-
tices in a planar region of a mesh does not affect
its total Hausdorff distance with another mesh. Our
difference metric considers both the shape and the
vertex positions of the meshes, and can distinguish
some cases that cannot be distinguished by the other
measures.

5.2 Downsampling

We employ the half-edge collapse as the basic oper-
ation to remove vertices. For the purpose of deriving
the mesh difference metric, we assume that a half-
edge collapse produces a mesh of the same connec-
tivity: collapsing a half-edge e = {s, t} in a mesh M1
produces a mesh M2 in which the position of ver-
tex s is set to be the same as vertex t, producing two
degenerate triangles. Thus, only the one-ring neigh-
bor faces of s, denoted F1(s), are changed by the
edge collapse. By setting only one of the differences
∆pa,∆pb,∆pc as nonzero in Eq. 2, the mesh differ-
ence in Eq. 1 becomes

‖M1, M2‖ =

 1

12

∑
Ti∈F1(s)

A(Ti) ‖ps − pt‖2




1/2

.

where A(Ti) denotes the area of triangle Ti , and
‖ps − pt‖ is the distance between the vertices s and
t. We define the cost of collapsing an edge e = {s, t}
as cost(s, t) = ‖M1, M2‖. The edge with the mini-
mum cost is chosen to be collapsed next. The sum-
mation of triangle areas in the cost function implies
that vertices with small one-ring triangle areas are
removed first. The edge-length term in the equation
decides which of the surrounding vertices should
vertex s be collapsed, given that vertex s is one of
the endpoints of the edge collapse; it favors the re-
moval of small triangles. We refer to this downsam-
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pling algorithm as L2-norm downsampling in this
paper.
If the mesh has boundaries, we do not allow an edge
{s, t} to be collapsed if s is a boundary vertex and t is
not. Collapses that result in closing a hole or chang-
ing the topology are also disallowed. An infinite cost
is assigned to such forbidden edge collapses.
There are several possible criteria for determining
the boundary between levels of resolution. The sim-
plest one is to let M j be the coarsest mesh that
has an upper bound ε j on the cost. Another way
is to remove a fixed percentage of vertices at each
level. For signal processing, a good choice is to de-
fine the threshold according to the one-ring trian-
gles area of the collapsed vertex, and to quadru-
ple the threshold at the next level. This is analo-
gous to doubling the scale of the scaling functions
in wavelet transform. In our implementation, we use
the cost of edge collapse as the separator: the mesh
is downsampled until the cost of collapse reaches
a threshold, and the threshold is doubled at the next
level. To begin, the threshold is initialized to be the
cost when a quarter of the original vertices are re-
moved.
The cost function of our downsampling algorithm is
very simple compared to many simplification algo-
rithms. There are two other main differences. First,
most simplification algorithms (e.g., QEM, PM) se-
lect the element (vertex, edge or face) to be re-
moved by comparing the resulting mesh with the
input mesh. Our cost function compares the current
mesh with the previous mesh; this is analogous to
traditional signal analysis where the analysis of the
next coarser resolution depends only on the current
resolution. Second, we can view shape-sensitive sim-
plification algorithms as removing samples in the or-
der of increasing magnitude of error, whereas our
downsampling algorithm removes samples in the or-
der of their support size. Note that in our setting,
the cost of an edge collapse is nonzero even if it
does not change the geometry (e.g., in the planar re-
gions). Figure 6 shows a close-up of the skull model
at different levels of resolution (after applying the
pre-smoothing described in the next subsection). No-
tice the increasingly smoother sampling rates in the
different levels.

5.3 Pre-smoothing

To extract the high frequency details from the low
frequency global features, after downsampling we

Fig. 6. Different levels of resolution of the skull model:
the 1st level (original model) (top left), the 3rd (top
right), 5th (bottom left) and 7th level (bottom right)

smooth the mesh by re-positioning the surrounding
vertices of the removed vertices to some weighted
average of their one-ring neighbors.
Smoothing of nonhierarchical meshes usually re-
quires the parameter information to be retained as
much as possible [8]. However, in a multiresolution
setting, we believe that it is desirable to produce
intermediate meshes with smooth parameter infor-
mation (i.e., to regulate the triangle areas and edge
lengths) as they give better results in filtering and
editing. Moreover, since we encode the detail vec-
tors of the current mesh using the normal field of
the next coarser mesh as in [17], which is indepen-
dent of the parameterization of the coarser levels (see
details in next subsection), parameterization preser-
vation in intermediate meshes is not a necessary
criterion.
To smooth the geometry and the parameter informa-
tion of a current mesh, we employ the simplest and
most efficient umbrella smoothing operator. Since
the regions without edge collapses do not have de-
tails removed at this level, we only need to smooth
the one-ring neighbors of the vertices removed at this
level. Note that the smoothed vertices may not have
been involved in any edge collapse; in fact, there is
no specific correspondence between the smoothed
vertices and the removed vertices in a level. So we
use two data structures to store the information for
reconstruction, one for the split records of the re-
moved vertices and one for the original positions of
the smoothed vertices. Figure 7 shows the different
levels of resolution of the bunny model produced
by our decomposition framework. Even though the
original model contains obtuse and long triangles,
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Fig. 7. Decomposition of the bunny model using our
downsampling algorithm.

each of the lower resolution meshes produced by
our framework is of almost uniform triangle size
and sampling rate. In very low resolution meshes,
some features may be collapsed or degenerated (e.g.,
Fig. 7, bottom right). This is mainly caused by the
shrinkage effect of the smoothing. The umbrella λ|µ
smoothing algorithm can be applied to eliminate this
effect [21].
If an intermediate mesh of the decomposition is
needed as an input to some applications that re-
quire the parameter information to be preserved,
then a nonuniform smoothing operator can be em-
ployed [2, 8]. However, our experiments show that
the umbrella smoothing operator gives more stable
mesh hierarchy in terms of vertex position depen-
dency and triangle quality (see Sect. 6 for details)
than parameterization-preserving smoothing (curva-
ture flow smoothing is used for comparison).

5.4 Detail encoding

In order to reconstruct the fine features of the mesh
after signal processing or editing an intermediate
mesh, the original positions of the removed vertices
and smoothed vertices must be encoded with respect
to the local frames at a lower resolution mesh. In gen-
eral, we want to encode the vertex positions in M j

based only on the geometry and connectivity infor-
mation of M j−1. For greater stability of the recon-
struction, the lengths of the detail vectors should be
as short as possible. The optimal choice is to find the
base point in M j−1 such that the vertex to be encoded
is in the normal direction of this base point [16]. Fol-
lowing [17], we denote a detail vector by (d1, d2, h),
where d1 and d2 are the barycentric coordinates of
the base point on M j−1 and h is the offset distance in
the normal direction. This encoding scheme means
that the detail vectors are only dependent on the ge-
ometry of the coarser mesh M j−1, i.e., only d1 and
d2, neither the base point nor the normal offset, are
affected by the parameterization of M j−1.
We use the Phong normal field proposed by
Kobbelt [17] to find the base point. This normal field
is continuous for a closed mesh and covers all di-
rections. So any point in space can be encoded with
positive barycentric coordinates. Since we know in
advance the order of edge collapses and the level in
which a vertex is smoothed, we can very closely es-
timate in which region the corresponding base point
is located. For each half-edge collapse e = {s, t}, to
encode the removed vertex s, we search the base
point within the one-ring triangles of t in the coarser
mesh M j−1. To encode a vertex in M j correspond-
ing to a smoothed one in M j−1, we simply search
for its base point within the one-ring triangles of the
smoothed vertex in M j−1. If no base point with pos-
itive coordinates is found in the triangles of the first
searching region, we continue searching in the sur-
rounding triangles in a breath-first-search fashion.
If the search for a base point is near a boundary, it is
possible that no base point with positive coordinates
exists (because the normal field ends at the bound-
ary). In this case, we simply find a base point with the
minimum sum of absolute barycentric coordinates
within the first-guess region, and do not enter a recur-
sive search.
The encoding scheme we use requires three floating-
point numbers (for the two barycentric coordinates
and the normal distance) and one integer (for the face
index) per vertex. Comparatively, the weight-storing
method in [8] needs three floats for detail encoding
plus the storage space for the weight information.
Storing the weight information explicitly (six floats
per vertex in average) or storing the face areas and
edge lengths of the mesh hierarchy both require more
space than one integer per encoded vertex. Thus, we
conclude that the weight-storing method needs more
space than the barycentric-based method.
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Fig. 8. Dependence of vertex positions for the bunny model using different decomposition and smoothing methods

6 Experimental data and
comparisons with alternative
methods

Table 1 shows the execution times of the decompo-
sition and reconstruction of the input models using
our framework. All data is generated on an Intel Pen-
tium 4 2 GHz machine with 256 Mb of memory.
We compare our decomposition framework, which
uses L2-norm downsampling and umbrella smooth-
ing, with frameworks that use alternative downsam-
pling or smoothing methods. More specifically, we
investigate the four possible combinations involving
the L2-norm downsampling versus volume-based

Table 1. Execution times for decomposition and reconstruction
(in second)

Bunny Horse Venus Rocker arm

# Vertices 34 834 48 485 67 173 20 088
# Base vertices about 1000
Decomposition 17 s 24 s 41 s 13 s
Reconstruction 6 s 11 s 13 s 3 s

simplification [19], and umbrella smoothing versus
curvature flow smoothing [2]. Kim [13] proved that
volume simplification is essentially a distance sim-
plification (QEM) weighted by the area of triangles
adjacent to the collapsed edge, thus our experimen-
tal results for volume-based simplification also apply
to shape-preserving simplification, and we use these
two terms interchangeably.
Except the vertices in the base mesh, the positions
of all other vertices are encoded in the local frames
of some mesh in the hierarchy. Thus a set of vertices
at the finest level is moved when a vertex is edited
in a lower resolution. This means that the position
of a vertex depends on the positions of other ver-
tices in the coarser resolutions. A mesh hierarchy is
stable and useful for editing if the vertex position de-
pendence has a small variance over all vertices. For
example, in subdivision surfaces with uniform sub-
division rules, the number of vertices that depend on
a given vertex is fixed and is decided by the num-
ber of subdivision steps. Figure 8 plots the number
of vertices whose positions depend on the ith ver-
tex of the bunny model. The vertices are indexed
according to their order of removal, with those re-
moved earlier having higher indices. The X-axis is
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the vertex indices and Y-axis is the number of ver-
tices depending on ith vertex. The yellow line indi-
cates the moving average of period 1000. The graphs
show that vertex position dependency of decompo-
sition using volume simplification coupled with cur-
vature flow smoothing (similar to Guskov’s frame-
work) has a higher variance than our decomposi-
tion framework. This is because shape-sensitive sim-
plification leads to higher variation in the one-ring
triangles area (size of support) in the lower resolu-
tion meshes. Table 2 lists the variances, which are
computed using the moving averages of the differ-
ent downsampling and smoothing combinations for
some input models. Tables 3 and 4 list the variances
of the edge lengths and triangle areas, respectively, in
their base meshes. Among these four combinations,
the experimental data show that the L2-norm down-
sampling coupled with the umbrella smoothing gives
the lowest variance in vertex position dependence, as
well as lowest variances in edge lengths and face ar-
eas in the base meshes. These data confirm that our

Table 2. Variance of vertex position dependence of input mod-
els

Bunny Horse Venus Rocker arm

# Vertices 34 834 48 485 67 173 20 088
# Base vertices about 1000
L2Norm + Umb 269.5 243.9 370.9 229.0
L2Norm + CF 266.2 278.3 485.9 212.4
Volume + Umb 561.2 507.6 1303.5 353.0
Volume + CF 393.6 372.8 961.3 248.1

Umb: umbrella operator CF: curvature flow smoothing

Table 3. Variance of edge lengths in base meshes of different
input models

Bunny Horse Venus Rocker arm

L2Norm + Umb 0.034 0.048 0.029 0.026
L2Norm + CF 0.068 0.082 0.065 0.066
Volume + Umb 0.152 0.203 0.097 0.243
Volume + CF 0.255 0.273 0.197 0.359

Table 4. Variance of triangle areas in base meshes of different
input models

Bunny Horse Venus Rocker arm

L2Norm + Umb 0.061 0.107 0.051 0.045
L2Norm + CF 0.122 0.168 0.111 0.114
Volume + Umb 0.195 0.179 0.144 0.328
Volume + CF 0.420 0.354 0.357 0.576

framework produces a hierarchy that is more suitable
for editing.

7 Applications

In this section, we illustrate the advantages of using
our decomposition hierarchy in signal filtering and
multiresolution editing. All the editing and filtering
examples demonstrated in this section are done inter-
actively within a few seconds. We also show that our
downsampling algorithm can be used for isotropic
remeshing.

7.1 Signal filtering

Signal filtering should only affect the positions of
the vertices in the normal direction, and not change
the parameterization. This means that for each detail
vector in D j , only the normal component is multi-
plied by a scaling constant λ j ≥ 0. The choice of λ j

at different levels depends on the desired filtering op-
eration: values close to one retain the details in the
level, values less than one smooth out the details, and
values greater than one enhance the details.
Since our decomposition framework is different
from the previous frameworks, in particular, there
is no smoothing step in the reconstruction pipeline,
we need a slightly different filtering algorithm. More
specifically, if we multiply the normal components
of the details by zero at all the levels greater than
j, instead of getting a smooth mesh, we would get
a faceted surface (Fig. 9, left). This is because the
added vertices at higher resolutions all fall on the
chosen base surface. To achieve the expected smooth
result, we have to apply a post-smoothing step to re-
locate the base positions.
Post-smoothing is performed as follows. Let the base
point in the lower resolution mesh computed from
the barycentric coordinates in a detail vector be b,
and the position of the vertex indicated by the de-
tail vector without filtering be p. We upsample the
lower resolution mesh and initialize each new vertex
to coincide with the base point b, and then apply the
curvature flow smoothing with a small update factor
(we use 0.3 in our implementation) on the point b to
generate b′. The difference between p and b′ is then
multiplied by the factor λ j to obtain the new vertex
position p′:

p′ = b′ +λ j(p−b′).
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10

11

12

Fig. 9. Only filtering the normal components of detail vectors causes artifacts (left). Adding a post-smoothing operation
improves the result and yet does not affect the sharp features (right)
Fig. 10. The filtered mesh (right) has the same connectivity and similar parameter information as the input one (left)
Fig. 11. Different downsampling strategies produce different effects on smoothing. On the left is the input model (# vertices
= 521). The middle column is the base mesh (# vertices = 72) (top) and the filtered model (bottom) using our L2-norm
downsampling. The right column is the base (#vertices = 76) (top) and filtered (bottom) models using volume simplification
Fig. 12. Enhancement of different levels of details. The upper left is the original model, and the others are obtained by
enhancing different sets of details, from high to low frequency

The bunny on the right in Fig. 9 is produced by
adding the post-smoothing operation in the filtering
process. Figure 10 shows that filtered meshes retain
the connectivity and parameter information of the in-
put mesh.
To illustrate the advantage of our framework in sig-
nal filtering, Fig. 11 compares the results of using
the hierarchies produced by our L2-norm downsam-
pling and by volume-based simplification. Volume-
based simplification removes the vertices in the pla-
nar regions first and the high frequency informa-

tion remains in the base mesh. With the L2-norm
downsampling, high frequency details are removed
first and a desired smoothed model is produced. Fig-
ure 12 shows the results of enhancing the details in
a molecule example using our decomposition frame-
work. It is observed that our framework can distin-
guish the frequency spectrum accurately, and thus
smooth or enhance the relevant levels of geometric
detail.
Selective filtering can be performed on different
parts of a mesh (Fig. 13). The user specifies a region
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13

14

15

Fig. 13. Selective filtering of the skull model
Fig. 14. Bending the bunny’s ear in low resolution. The
top row shows the low-resolution meshes produced using
our L2-norm downsampling (# vertices = 2310) (left) and
volume simplification (# vertices = 2487) (right). The bot-
tom row shows the corresponding edited models. The mesh
generated by volume simplification contains artifacts after
editing because the edges are longer in the minimum curva-
ture direction
Fig. 15. Editing a horse model. The original model (left)
and the modified model (right)

in a mesh at a specific level and only the detail vec-
tors associated with the vertices within the region are
filtered. For the vertices removed at the finer levels,
we can use the barycentric coordinates in the detail
vectors to determine whether or not such a vertex is
in the selected region.

7.2 Multiresolution editing

As illustrated in Fig. 2, smooth parameterization
in intermediate meshes provides more stable and
uniform representational ability for editing. Fig-
ure 14 gives another example, comparing the re-
sults of bending the bunny’s ear in two low resolu-
tion meshes, one created using our downsampling
algorithm and the other using volume simplifica-
tion.

Figure 15 shows the result of editing a horse model
in low resolution. To perform this editing, we im-
plemented a simple interface based on the trans-
formation operation of the sketching interface in
Teddy [11]. The user selects a region of the mesh
to be modified, and sketches a reference stroke and
a target stroke. The selected vertices are first encoded
in the local frames of the reference stroke. The sys-
tem then moves these vertices such that their new
positions are offset from the target stroke, with the
same offset distances as those encoded with respect
to the reference stroke. The movements are only par-
allel to the screen and are restricted to be horizontal.
Clearly, artifacts can appear at the boundary of the
selected region due to a nonsmooth vertex displace-
ment field there. To get around this problem, we ex-
tend the displacement field to the whole surface by
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Fig. 16. Uniform remeshing of the Venus model. Input model (# vertices = 33k) (left), resampled model (middle) and final
output (# vertices = 20k) (right)

setting the initial displacement of the vertices outside
the selected region to be zero vectors, then diffuse the
displacement field before moving the vertices, using
a local smoothing filter.

7.3 Isotropic remeshing

We can also design a simple algorithm for isotropic
remeshing using our downsampling algorithm. This
application illustrates the ability of our algorithm
to generate uniform sampling. In previous work by
Pierre et al. [1], the resampling uses an error dif-
fusion technique in either the spatial domain or the
parameterization domain, and the meshing and op-
timization are done in the parameterization space.
Our remeshing algorithm is performed totally in the
spatial domain and no global parameterization is
needed. The whole procedure involves four steps:
resampling, connectivity improvement, parameteri-
zation smoothing and re-projection.
First, the user decides on the final sampling rate for
the resultant mesh. The system computes the aver-
age triangle area and edge length under this sampling
rate, then upsamples the input mesh by edge split
(split the edge in the middle and connect the new ver-
tex to the two vertices opposite the edge) until every

edge in the mesh is shorter than half of the average
edge. Next, the mesh is downsampled using the L2-
norm downsampling until the user’s targeted number
of vertices is reached (Fig. 16, middle).
The mesh now has a roughly uniform sampling rate.
To improve the connectivity quality, we maximize
the number of vertices with valence six by flipping an
edge if it reduces the sum of the square of valences.
This technique is used in the dynamic connectivity
mesh in [14].
Next, a local smoothing operation is applied to
smooth the parameterization of the vertices over
the mesh surface. The vertices are shifted to the
weighted average density of its adjacent triangles, in
the tangential direction, that is, for a vertex i with
adjacent triangles Tj ∈ F1(i), which is formed with
vertices i, a j , b j , we apply the following update rule:

v =
∑

Tj∈F1(i)
A(Tj)(pi + pa j + pb j )/3∑

Tj∈F1(i)
A(Tj)

,

pi ← pi + (v− (v ·ni)ni)

where A(Tj) is the area of Tj and ni is the normal
of the vertex i. We apply several steps of smoothing
until the vertices stabilize.
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Now the vertices may not be on the surface of the
input mesh. Hence the final step is to re-project the
vertices onto the original surface. We use the oper-
ator described in Sect. 8 of [13] for this purpose.
Figure 16 shows a remeshed Venus model.

8 Conclusions

We have developed a decomposition framework for
constructing a multiresolution hierarchy for meshes
with arbitrary connectivity and topology. By devis-
ing a sampling-sensitive mesh difference error mea-
sure, we design a simple and efficient downsampling
algorithm that attacks the high sampling density re-
gions, and use the umbrella operator as the smooth-
ing operator to filter out high frequency and also to
regulate the triangles of the intermediate meshes in
the hierarchy. This gives a better approximation of
the frequency spectrum, according to the size of sup-
port of the vertices. Our approach has advantages in
multiresolution editing and signal filtering.
The proposed framework should also be useful in
other applications. Future research may explore its
use in applications such as texture mapping, feature
cut-and-paste editing, inter-model morphing for ir-
regular meshes, and curvature-sensitive remeshing.
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