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Abstract

Information extraction systems discover structured information in natural lan-
guage text. Having information in structured form enables much richer querying
and data mining than possible over the natural language text. However, infor-
mation extraction is a computationally expensive task, and hence improving the
efficiency of the extraction process over large text collections is of critical inter-
est. In this paper, we focus on an especially valuable family of text collections,
namely, the so-called deep-web text collections, whose contents are not crawlable
and are only available via querying. Important steps for efficient information
extraction over deep-web text collections (e.g., selecting the collections on which
to focus the extraction effort, based on their contents; or learning which docu-
ments within these collections—and in which order—to process, based on their
words and phrases) require having a representative document sample from each
collection. These document samples have to be collected by querying the deep-
web text collections, an expensive process that renders impractical the existing
sampling approaches developed for other data scenarios. In this paper, we sys-
tematically study the space of query-based document sampling techniques for
information extraction over the deep web. Specifically, we consider (i) alterna-
tive query execution schedules, which vary on how they account for the query
effectiveness, and (ii) alternative document retrieval and processing schedules,
which vary on how they distribute the extraction effort over documents. We
report the results of the first large-scale experimental evaluation of sampling
techniques for information extraction over the deep web. Our results show the
merits and limitations of the alternative query execution and document retrieval
and processing strategies, and provide a roadmap for addressing this critically
important building block for efficient, scalable information extraction.
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1. Introduction

Information extraction systems are complex software tools that discover
structured information in natural language text. For example, an information
extraction system trained to extract Occurs-in(Natural Disaster, Location)
tuples would extract the tuple 〈tornado, Adairsville〉 from the text “the tor-
nado caused significant damage in Adairsville.” Having information in struc-
tured form enables much richer querying and data mining than possible over
the natural language text. Unfortunately, information extraction is a time-
consuming task. Since text collections routinely contain millions of documents
or more, improving the efficiency and scalability of the information extraction
process over these large text collections is critical. In this paper, we focus on an
especially valuable family of text collections, namely, the so-called deep-web text
collections, whose contents are not crawlable and are only available via query-
ing (Bergman, 2001; Gupta and Bhatia, 2014; Raghavan and Garcia-Molina,
2001; Sherman and Price, 2003). Deep-web text collections many times exhibit
a full-text search interface. (We rely on this interface to access the contents of
the collection, as we discuss in Section 4.) Moreover, deep-web text collections
cover a wide range of topics and are hence relevant to a broad spectrum of infor-
mation extraction tasks. Efficiently processing the contents of these collections
is thus of significant interest.

Important steps for efficient information extraction over deep-web text col-
lections require having, for each collection, a representative document sample
of documents that lead to the extraction of tuples for a relation of interest.
We refer to the documents that lead to the extraction of tuples for a relation
of interest as the useful documents for the information extraction task.1 The
document samples can be valuable, for instance, to decide on which collections
to focus the extraction effort, based on their contents (Barrio et al., 2015a).
For example, such document samples can reveal that the Federal Emergency
Management Agency (FEMA) collection2, an up-to-date resource for natural
disasters and other hazards in the United States, is a better collection for the
extraction of the Occurs-in relation than the PubMed collection3, a database
for life sciences and biomedical research. Similarly, a document sample from
a collection can be valuable to help select and rank the collection documents
for the extraction task: for efficiency, we should attempt to process only use-
ful documents, so techniques such as QXtract (Agichtein and Gravano, 2003),
FactCrawl (Boden et al., 2012), PRDualRank (Fang and Chang, 2011), and
BAgg-IE and RSVM-IE (Barrio et al., 2015b) use these samples to learn words
and phrases that separate useful documents for the information extraction task
from the rest. The samples on which these techniques rely must be collected
in a collection-specific way, because the focus and language of each collection
generally differs from those of other collections.

Given an information extraction task, producing high-quality, representative
document samples from a deep-web text collection is a challenging process, for
two main reasons. (1) Sampling efficiency: the document sampling process has
to be efficient and lightweight because, as discussed above, it is often used to
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make the overall information extraction execution over deep-web text collections
efficient and scalable. This efficiency requirement is complicated by the fact
that document samples can only be collected, by definition, by querying the
(remote) deep-web text collections, which is expensive. Furthermore, as we will
see, analyzing the documents as we retrieve them, to decide the composition of
the samples, is also an expensive proposition because it often involves running
the extraction system at hand on the documents. (2) Sampling quality: the
document sampling process has to return documents that represent the relevant
extraction-related document characteristics in each deep-web text collection.
This quality requirement is complicated by the fact that the useful documents
for the information extraction task are often a small minority of the collection
documents. For example, under 2% of the 1.03 million documents in TREC
1-5 collections4 are useful for Occurs-in when processed with a state-of-the-
art information extraction system. Furthermore, even within a relatively small
number of documents, the sampling process should capture the large variations
in language and general content in the documents.

Earlier efforts to address the efficiency and scalability of the extraction pro-
cess have incorporated sampling in a relatively ad-hoc manner. Notably, QX-
tract (Agichtein and Gravano, 2003), FactCrawl (Boden et al., 2012), PRDu-
alRank (Fang and Chang, 2011), and BAgg-IE and RSVM-IE (Barrio et al.,
2015b) rely on document sampling to develop document retrieval or ranking
strategies for an information extraction task at hand. Despite the important
role of sampling in these techniques, the sampling approaches that they use are
far from ideal, as we will see. Specifically, these techniques adopt flavors of sam-
pling that rely on high-precision queries to target certain documents efficiently,
but fail to capture the large variety of extraction-relevant document character-
istics discussed above. Consequently, they miss important groups of documents
during sampling, which other sampling strategies can effectively obtain, as we
will show experimentally.

Query-based document sampling has also been studied beyond information
extraction, for other text-centric tasks. As notable examples, (Bar-Yossef and
Gurevich, 2008), (Zhang et al., 2011), (Wang et al., 2014a), and (Wang et al.,
2014b) developed document sampling techniques for the generation of unbiased
descriptors of the collections. Unfortunately, these approaches are ineffective
for our information extraction scenario, because they focus on obtaining ran-
dom document samples. As we discussed above, our scenario requires that the
document samples represent the often small minority of documents that lead to
extraction output for a given information extraction task. To sufficiently char-
acterize the documents in such small portions of the collections through random
sampling, the above techniques would require issuing an exorbitant number of
queries to the deep-web text collections.

In this paper, we systematically study the space of query-based document
sampling techniques for information extraction over the deep web. Specifically,
we consider (i) alternative query execution schedules, which vary on how they
account for the query effectiveness; and (ii) alternative document retrieval and
processing schedules, which vary on how they distribute the extraction effort
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over documents. We conduct a large-scale and fine-grained experimental evalu-
ation over real deep-web text collections, and for a large variety of information
extraction tasks, to assess the merits of the alternative query execution and doc-
ument retrieval and processing strategies. We also explore several different query
generation techniques, for robustness. Our conclusions are twofold. Regard-
ing query execution, schedules that focus on queries with a high fraction—and
number—of useful documents, namely, the effective queries, improve sampling
efficiency. In contrast, schedules that prioritize less-effective queries improve
sampling quality, because in this case many (potentially diverse) queries need
to be issued to retrieve a desired number of useful documents, hence leading
to high-quality document samples. Regarding document retrieval and process-
ing, schedules that process the documents for each query exhaustively at once
improve sampling efficiency when the sampling technique focuses on effective
queries. In contrast, schedules that process documents incrementally and in
rounds improve sampling quality, because a larger variety of documents—from
a larger number of queries—is processed. As we will see, fundamentally different
sampling techniques (i.e., with distinct implications in sampling efficiency and
quality) are possible.

In short, the main contributions of this paper are:

• A thorough discussion of the sample generation problem for information
extraction over deep-web text collections (Section 2).

• A systematic study of query-based document sampling techniques for in-
formation extraction over deep-web text collections that considers (i) al-
ternative query execution schedules and (ii) alternative document retrieval
and processing schedules (Section 3).

• The first large-scale and fine-grained evaluation of query-based document
sampling techniques for information extraction over the deep web. We
perform our experiments over real deep-web text collections and for a
large variety of extraction tasks. We show the implications in sampling
efficiency and quality of different query execution schedules, as well as of
different document retrieval and processing schedules (Sections 4 and 5).

We now review necessary background and define our problem of focus in this
paper (Section 2).

2. Background and Problem Definition

Information extraction systems extract structured information from natural
language text. Because of all the operations that are typically involved (e.g.,
dependency parsing or named entity tagging), information extraction is a com-
putationally expensive process. Therefore, processing all documents of a large,
or rapidly evolving, text collection can become prohibitively time consuming.

In this paper, we focus on an especially valuable family of text collections,
namely, the so-called deep-web text collections, whose contents are not crawlable
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and are only available via querying (Bergman, 2001; Gupta and Bhatia, 2014;
Raghavan and Garcia-Molina, 2001; Sherman and Price, 2003). Examples of
deep-web text collections include the FEMA and PubMed collections discussed
in the Introduction. In addition to FEMA and PubMed, the deep web hosts a
large number of high-quality collections across many domains (Zillman, 2008).
Consequently, a wide range of information extraction tasks can benefit from
gathering and exploiting the valuable information buried in such deep-web text
collections.

To run an information extraction system over a deep-web text collection, we
could attempt first to download all the collection documents, for which we could
use proposed approaches for such “crawling” (e.g., (Barbosa and Freire, 2010;
Ntoulas et al., 2005; Raghavan and Garcia-Molina, 2001; Vieira et al., 2008;
Wang et al., 2015)). We could then run the information extraction system
over the local copy of the collection documents. Unfortunately, such crawling
approaches are expensive—they require large numbers of queries—and have far-
from-perfect recall—they fail to retrieve many documents, given the query-only
nature of the deep-web text collections (Tirado et al., 2016). Furthermore, such
expensive crawling approaches are unnecessary: the documents that lead to the
extraction of tuples for a given information extraction task, namely, the useful
documents for the extraction task, are often a small fraction of the collection,
because relations are generally topic-specific, in that they are associated mainly
with documents about certain topics. For these reasons, in this paper we move
away from generic crawling approaches, and focus instead on more efficient and
effective targeted query-based approaches.

Important steps for efficient information extraction over deep-web text col-
lections require having a representative document sample from each collection.
For example, these samples help identify the collections and documents within
them on which to focus the extraction effort. To see how, consider the Occurs-
in(Natural Disaster, Location) relation discussed in the Introduction. We
could start by analyzing the content and number of Occurs-in tuples that sam-
ples from the FEMA and PubMed collections above include, to conclude that
FEMA is more valuable than PubMed for this relation. In turn, we could
run techniques like QXtract (Agichtein and Gravano, 2003), FactCrawl (Boden
et al., 2012), PRDualRank (Fang and Chang, 2011), or BAgg-IE and RSVM-
IE (Barrio et al., 2015b) over the document sample collected from FEMA to
learn words and phrases, such as “Richter” or “hypocenter”, that are discrim-
inative of the useful documents for the Occurs-in relation. We could then use
these words and phrases as text queries to retrieve and prioritize the documents
from the collection that the extraction system will ultimately process (Agichtein
and Gravano, 2003).

To perform the above steps in the extraction process effectively, the docu-
ment samples on which these steps rely must accurately reflect the extraction-
related characteristics of the useful documents in the collections. Unfortunately,
generic query-based sampling techniques (e.g., (Callan and Connell, 2001)) be-
come impractical for this task, because useful documents are often a small mi-
nority in the collection, as discussed. Therefore, the problem of focus in this

5



paper is that of efficiently collecting high-quality document samples for infor-
mation extraction from deep-web text collections, as follows:

Problem Definition. Consider a deep-web text collection C and an information
extraction system E trained to extract tuples for a relation from text. To enable
efficient and effective information extraction over collection C, we need a sam-
ple of documents from C that represents the population of useful documents in
C with respect to E. Specifically, the goal is to obtain a sample of useful docu-
ments that satisfies certain quality metrics (e.g., diversity in the tuples extracted
with E from the sampled documents) while satisfying certain efficiency-related
requirements (e.g., minimize the number of documents processed with E and the
number of queries issued to C as part of the sampling process).

Existing Techniques: Existing query-based techniques for retrieving useful
documents from a collection fall into two families. Techniques in the first family
adopt a bootstrapping approach: Starting with a small number of “seed” tu-
ples for the relation of interest, these techniques iteratively retrieve (potentially
useful) documents by issuing as queries the seed tuples and, later, the new tu-
ples that the extraction system discovers from documents as they are retrieved
(Figure 1a). Earlier efforts to address the efficiency and scalability of the extrac-
tion process (e.g., QXtract (Agichtein and Gravano, 2003), FactCrawl (Boden
et al., 2012), and PRDualRank (Fang and Chang, 2011)) have adopted this
family of techniques in their sample generation step, because queries tend to
be high-precision. Unfortunately, as we will show experimentally, these tech-
niques compromise recall and often miss important relevant groups of useful
documents, which is undesirable during the sampling step.

Techniques in the second family adopt a statistical learning approach that
aims to alleviate the recall limitation above: these techniques use a training
sample of useful and useless documents labeled “for free,” without human in-
tervention, meaning that the documents are processed with the information
extraction system at hand and labeled as useful if they produce tuples for the
extraction task or useless otherwise. These techniques then learn keywords and
phrases that are discriminative of the useful documents (Figure 1b). Impor-
tantly, the learned keywords and phrases often include a score that roughly cor-
responds with their expected precision and recall for useful documents. These
scores can be systematically exploited when issuing these learned keywords and
phrases as text queries to retrieve potentially useful documents. For instance,
QXtract (Agichtein and Gravano, 2003) issues the queries in descending score
order, to first process queries that are likely to retrieve useful documents with
high recall and precision. QXtract processes the documents retrieved by each
query exhaustively at once before processing those retrieved by the following
query. Unfortunately, these techniques mainly tackle the efficiency of the ex-
traction process, one of the crucial aspects in our sampling problem. As we will
see, to also address the sampling quality we need to choose carefully both the
query execution as well as the document retrieval and processing strategies.

In the next section, we discuss different query execution and document re-
trieval and processing strategies, along with their implications in sampling effi-
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(a) Bootstrapping-based useful documents retrieval.

(b) Learning-based useful documents retrieval.

Figure 1: Two main families of existing query generation techniques for useful document
retrieval.

ciency and quality. We in turn introduce several different sampling techniques,
which we evaluate experimentally in later sections.

3. Document Sampling Strategies

We now systematically study query-based document sampling techniques for
information extraction over a deep-web text collection. We focus on learning-
based methods, which rely on a learned set of text queries to retrieve potentially
useful documents for an information extraction task of interest, as discussed
in Section 2. (Section 4 describes the learning-based methods with which we
experiment; these methods are orthogonal to the document sampling strategies
that we study.) Unlike in the existing literature, though, we consider tackling
both sampling quality and efficiency. We start by outlining—and analyzing the
efficiency and quality of—different alternatives for processing the (learned) set
of queries and their retrieved documents, namely, the query–document space of
the queries (see Figure 2). We then discuss how we can exploit the information
that we gather from each query along the sampling process (e.g., the number
of useful and useless documents that the query returns) to improve different
aspects of the process. In turn, we introduce the sampling techniques that we
study in this paper, which we evaluate experimentally in Sections 4 and 5.
Exploring the Query–Document Space: We now consider different alterna-
tives to exploring the query–document space of a set of queries for our sampling
problem. We first consider alternative query execution schedules, which vary
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Figure 2: Query–document space.

on how they account for the query effectiveness. Specifically, for a pool of doc-
uments retrieved by a query, we define the effectiveness of the query as the
fraction of useful documents within this document pool. More formally, the
effectiveness of a query is based on the so-called precision@K in information re-
trieval, where relevance is defined in our case as usefulness and K is the number
of documents to process. Then, and in an orthogonal dimension, we consider al-
ternative document retrieval and processing schedules, which differ on how they
distribute the extraction effort over documents. We discuss these alternatives
in detail next.
Query Execution: The order in which we process queries during sampling,
namely, the query execution order, is crucial to the efficiency and quality of
the sampling process. For efficiency, on one hand, we need to prioritize effective
queries (i.e., the queries that retrieve useful documents with high precision and
recall), so that we mainly process—hence sample—useful documents. This is
motivated by the fact that the sampling cost is a function of the number of is-
sued queries—necessary to retrieve documents for the sample—and the number
of documents retrieved and processed—necessary to decide the composition of
the sample. The approach in (Agichtein and Gravano, 2003), for example, ap-
proximates this query order based on the learned query scores: This approach
uses the learned score of a query as a surrogate of its effectiveness and arranges
the queries in descending score order. Figure 3 shows an example of such query
order for Occurs-in: the (top) query [earthquake] is more effective than query
[richter], because it retrieves more useful documents for the same number of
processed documents.

Processing queries in decreasing effectiveness order leads to efficient execu-
tions that identify a sample of useful documents quickly. Unfortunately, if the
query execution process is only guided by efficiency, the overall sampling quality
might suffer. To see why, consider once again the example in Figure 3. Specifi-
cally, if the query execution process were to focus, say, on queries [earthquake]
and [richter], which are highly effective for Occurs-in, we would likely produce a
document sample whose useful documents are predominantly about earthquakes
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Figure 3: Query–document space of a set queries for the Occurs-in relation. Useful and useless
documents are illustrated in green and red, respectively.

and not about other natural disasters that should be included in the sample as
well.

We thus argue that for quality we should sometimes prioritize less-effective
queries, so that a larger—hence potentially more diverse—set of queries needs
to be processed to obtain a desired number of useful documents. In our example
in Figure 3, for instance, such a query execution order would process query [af-
termath] before processing other more effective queries (e.g., queries [vortex] or
[earthquake]) and, more importantly, it would be more likely to cover documents
about earthquakes, tornadoes, as well as other natural disasters, because a larger
number of queries would be processed. This quality-driven approach, however,
is problematic for two reasons. First, arranging the queries in such query or-
der, or an approximation thereof, is nontrivial, unlike with the efficiency-driven
query execution order above. Second, following this query execution order might
compromise sampling efficiency dramatically, because many useless documents
would need to be processed to retrieve a desired number of useful documents.
Next, we discuss how different document retrieval and processing strategies can
help address these limitations.
Document Retrieval and Processing: In addition to query execution, the strat-
egy we adopt to retrieve and process the documents during sampling, namely,
the document retrieval and processing strategy, is also crucial to the efficiency
and quality of the sampling process. A possible choice is, of course, to pro-
cess the documents returned by each query exhaustively at once, as suggested
in (Agichtein and Gravano, 2003). Importantly, such an exhaustive strategy
would promote the efficiency and quality considerations of the adopted query
execution approach: If, for instance, the query execution is guided by efficiency
(i.e., effective queries are prioritized), as in (Agichtein and Gravano, 2003), ex-
haustively processing the documents returned by each query will yield efficient
sampling executions, because the number of queries to issue and documents
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to process to collect a desired number of useful documents will be relatively
small. Analogously, if the query execution is guided by quality (i.e., it prior-
itizes less-effective queries), processing all documents returned by each query
would produce high-quality sampling executions, because a larger, potentially
more diverse set of queries will be processed. Unfortunately, by promoting
the considerations of the adopted query execution, this exhaustive document
processing strategy would also preserve their discussed quality and efficiency
limitations.

An alternative document retrieval and processing strategy, and one that
would alleviate the limitations of the exhaustive strategies above, would be
to process the documents returned by each query iteratively and in rounds.
Specifically, for a given query execution order, this strategy would iterate over
the queries in order, processing only a certain number of documents per round.
In Figure 3, we identify the documents in the first round of an iterative strategy
that processes k documents from each query per round (see lightly shaded area
in Figure 3). As a result of this iterative process, documents will potentially
be sampled from larger sets of queries—hence addressing sampling quality—
and the extraction effort will be evenly distributed among queries during each
round—hence addressing sampling efficiency. To better illustrate this, consider
again the lightly shaded documents from our Occurs-in example in Figure 3:
These documents form a rather diverse sample—with documents about earth-
quakes, tornadoes, and other disasters—and only a fraction of the (many) useless
documents retrieved by less-effective queries (e.g., query [aftermath]) need to
be processed during the first round.

Despite the advantages of the iterative strategy above, specifying a number
of documents per round that suitably balances efficiency and quality is a difficult
proposition: Large values for such number would exhibit similar limitations to
those of the exhaustive approach discussed above, while small values would
affect sampling efficiency drastically due to the high querying cost that would
be incurred. We experimentally evaluate the efficiency and quality implications
of the choice of the number of documents to process per round in Sections 4
and 5. An additional problem of using small values is that we would be unable
to precisely measure the real effectiveness of queries, a crucial measurement, as
we discuss next.
Exploiting Observed Information: So far, we have discussed the query–
document space exploration as a static, once-and-for-all process. However, there
is valuable information (e.g., the number of useful and useless documents that a
query returns) that we can gather gradually, as the sampling process progresses,
and that we can use to improve this process. We now discuss how we can exploit
this information (i) to revise the query execution order, for sampling efficiency
and quality; and (ii) to filter underperforming queries, for sampling efficiency:
Revising Query Execution Order: The learned score of a query is often used
as a surrogate of its effectiveness, as argued earlier in this section, so we can
expect the query order given by these scores to be correlated with that of the
real effectiveness of the queries. However, for a given collection, these two query
orders may differ considerably (e.g., due to the contents of the collection or the
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indexing and retrieval techniques thereof), and hence the query execution order
may have to be revised. For instance, in our Occurs-in example in Figure 3,
prioritizing query [vortex] would yield more efficient sampling executions than
processing the documents in descending score order.

Fortunately, exhaustively processing the documents returned by a query to
effectively measure its effectiveness is unnecessary: We can in fact gauge the
real effectiveness of a query by only processing a relatively small subset of its
returned documents, because the fraction of useful documents is expected to
remain largely stable across its retrieved documents (Ipeirotis et al., 2007). This
idea of “probing” queries to estimate their effectiveness is used in a preprocessing
step in (Boden et al., 2012) for the related problem of ranking documents to
improve the efficiency of the extraction process. For instance, in our example
in Figure 3, we could process the first k documents returned by each query,
to conclude that queries [vortex] and [aftermath] are, respectively, the most
and least effective queries, and revise the query execution order in light of the
observed information.
Filtering Underperforming Queries: By definition, there are two operations
during sampling that hurt sampling efficiency, namely, issuing queries to the
collection at hand that retrieve none—or a low fraction of—useful documents
and retrieving and running the information extraction system of choice over a
useless document. We argue that, for efficiency—and at the expense of a mod-
est lost in quality—, we can exploit the gauged effectiveness of queries to avoid
such (undesirable) cases and, in effect, focus only on cost-effective queries. For
instance, in our example for Occurs-in in Figure 3, if we filtered query [after-
math], we would avoid a considerable extraction effort—over multiple useless
documents—at the expense of losing one useful document.

Based on the discussion above, we consider applying two filtering options.
Our first alternative avoids issuing a query altogether if the observed effective-
ness of previously issued queries is below a certain threshold. This filtering
scheme is possible when we initially issue queries in descending score order, be-
cause the performance of the queries is expected to drop as a function of their
order. In Figure 3, for our Occurs-in example, we may filter query [aftermath]
if previous queries exhibited poor effectiveness. Our second alternative filters
already issued queries whose real, observed effectiveness drops below a certain
threshold, to avoid processing useless documents. For instance, if we decide to
filter queries that do not retrieve useful documents within the first k documents,
the documents beyond k returned by query [aftermath] in Figure 3 for Occurs-
in would not be processed. Of course, deciding the settings for these filtering
conditions is challenging, and we consider several options in Sections 4 and 5
together with their impact on sampling efficiency and quality.
Sampling Techniques: So far, we have discussed the components involved in
query–document space exploration as well as explained how we can exploit ob-
served information to adaptively revise the query execution order and to focus
the sampling effort. We now define the (arguably) most interesting query-based
document sampling techniques for information extraction over the deep web,
which we summarize in Table 1. As we will see in our experimental evalua-
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tion, we focus on techniques that collect high-quality document samples while
keeping the sampling cost at reasonable levels. For the completeness of our eval-
uation, however, we include other sampling techniques, which we describe in the
next sections, as needed. Importantly, some of the techniques in Table 1 (e.g.,
QXtract (Agichtein and Gravano, 2003)) have been introduced in the literature
whereas others have not. We list them all here, to later assess their merits and
limitations in Sections 4 and 5.

Name
Query

Execution

Document
Retrieval and
Processing

Query
Order

Revision

Query
Filtering

QXtract > → - -
Cyclic > � - -

Opportunistic > � + -
Balanced < � + -

F–QXtract > → - +
F–Cyclic > � - +

F–Opportunistic > � + +
F–Balanced < � + +

Table 1. Sampling techniques and the alternatives they consider for each relevant aspect.
For query execution, we consider prioritizing effective queries (>) or less-effective queries (<).
For document retrieval and processing, we consider processing documents exhaustively at once
(→) or iteratively and in rounds (�). We finally consider techniques that perform query order
revision or query filtering (+) and techniques that do not (-).

QXtract: QXtract (Agichtein and Gravano, 2003) explores the query–document
space by issuing queries in descending learned score order and processing the
documents retrieved by each query exhaustively at once (Figure 4a). QXtract
produces relatively efficient sampling executions; however, it may compromise
sampling quality, as discussed earlier in this section.
Cyclic: Cyclic explores the query–document space by issuing queries in descend-
ing learned score order and processing the documents retrieved by each query
iteratively and in rounds (Figure 4b). Cyclic addresses the sampling quality
deficiencies of QXtract above, because it requires issuing a larger—hence po-
tentially more diverse—set of queries to retrieve a desired number of useful
documents. For instance, to collect three useful documents in Figure 4b, Cyclic
processes the documents returned by two queries, namely, q1 and q2, whereas
QXtract processes the documents returned by one query, namely, q1.
Opportunistic: Opportunistic explores the query–document space by prioritiz-
ing—and issuing—effective queries and processing the documents retrieved by
each query iteratively and in rounds (Figure 4c). Opportunistic initially pri-
oritizes queries according to the learned score; then, between rounds, and as
it gathers relevant information for each query, Opportunistic revises the query
execution order using the real, observed effectiveness of queries. The sampling
quality of Opportunistic may suffer, though, because some groups of documents
may still be underrepresented. To see why, consider Figure 4c: If the sampling
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(a) QXtract (b) Cyclic

(c) Opportunistic (d) Balanced

Figure 4: Examples of query–document space exploration strategies. Useful and useless doc-
uments are illustrated in green and red, respectively.

process stops after collecting five useful documents (i.e., during the second round
of documents retrieved by q1), q1 will contribute three useful documents to the
sample whereas q2, q3, and qq will contribute at most one useful document each.
Balanced: Balanced explores the query–document space by prioritizing—and
issuing—less-effective queries and processing the documents retrieved by each
query iteratively and in rounds (Figure 4d). Because finding an initial query or-
der for the queries is problematic, as discussed, Balanced initially issues queries
in descending score order; then, between rounds, and as it gathers relevant in-
formation for each query, Balanced revises the query execution order using the
real, observed effectiveness of queries. By prioritizing less-effective queries, Bal-
anced alleviates the quality limitation of Opportunistic above. Specifically, if in
Figure 4d we stop after collecting five useful documents (i.e., during the second
round of documents retrieved by q3, which will be now prioritized), each query
will contribute a similar number of useful documents to the sample.

The techniques described thus far do not include the filtering step described
earlier in this section. We define variants of these techniques that incorporate
query filtering, which we refer to as F–QXtract, F–Cyclic, F–Opportunistic, and
F–Balanced, respectively (see Table 1). These filtered techniques run as their
unfiltered counterparts, and decide the queries to filter based on the filtering
options described earlier in this section. Next, we describe the settings for
our in-depth experimental evaluation of sampling techniques for information
extraction.
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4. Experimental Settings

We describe the details of our experimental evaluation of the query-based
document sample generation techniques for information extraction.
Deep-web Text Collections: We collected a representative set of 335 real
Web text collections with a text search interface across different topics by fol-
lowing an approach similar in spirit to that of (Gravano et al., 2003) over the
Open Directory Project directory5: We first selected the 8 categories with the
highest number of entries, namely, Business, Society, Arts, Science, Computers,
Recreation, Shopping, and Sports. From each category, we then selected the
5 most popular subcategories along with their corresponding 5 most popular
subsubcategories, for a total of 200 subsubcategories. We then randomly chose
7 unique Web collections with a text search interface from each subsubcategory.
(For each subsubcategory with fewer than 7 entries, we selected all its collec-
tions.) Finally, we randomly selected 335 collections from this set of collections,
which we split into a tuning set (48 collections, or 15% of the collection set) and
a test set (287 collections, or 85 % of the collection set). We report our results
over the test set.
Training Collection: To learn the queries for our sampling strategies, and
following Section 2, we need a text collection that includes useful documents for
the extraction tasks of interest (see next). As discussed in Section 2, we label
each document as useful if it produces tuples for the extraction task at hand
and as useless otherwise. For this purpose, we combined all documents in the
TREC 1-5 collections6 to form a collection of 1,038,957 unique documents.
Entity and Relation Extraction Systems: To include a variety of extrac-
tion approaches, we considered different relation extraction systems for each
relation (see next), as well as different entity extraction systems for their cor-
responding entities. For relation extraction systems, we selected the two best
performing combinations via 5-fold cross validation over a set of manually anno-
tated documents. Likewise, for entity extraction systems, we selected the best
performing combination for each entity type, and used it across all extraction
tasks. However, for diversity, whenever we had ties in performance, we selected
the (arguably) less common contender. We provide details next:

• Relation Extraction: To extract our relations, we trained relation extrac-
tion systems using REEL7 (Barrio et al., 2014). The two best performing
systems, and the ones that we use in our experiments, are Subsequence
Kernel (Bunescu and Mooney, 2005) (SSK) and Bag of n-grams (Giuliano
et al., 2006) (BONG).

• Entity Extraction: To extract person and location entities, we used the
StanfordNLP named entity tagger8; for other entities, we trained our own
entity extractors using etxt2db9. Our final models are Maximum Entropy
Markov Models (McCallum et al., 2000) for natural disasters and Condi-
tional Random Fields (McCallum and Li, 2003) for the remaining entities.

Relations: Table 2 shows the broad range of relations from different domains
that we extract for our experiments. We also include the fraction of useful
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documents for each relation in our training collection for the different extraction
systems above. Our relations include sparse relations, for which a relatively
small fraction of documents (i.e., less than 2% of the documents) are useful, as
well as dense relations.

Relation
Useful Documents (%)
SSK BONG

Person–Career 56.20% 55.95%
Natural Disaster–Location 2.03% 2.74%
Man Made Disaster–Location 0.80% 0.87%
Person–Travel Destination 1.08% 4.67%
Person–Charge 1.55% 1.84%
Election–Winner 0.24% 0.84%

Table 2. Relations for our experiments along with fraction of useful documents in TREC 1-5
collections. In this table, Travel Destination and Winner are of type Location and Person,
respectively.

Bootstrapping-based Sampling Techniques: In addition to the techniques
discussed in Section 3, we evaluate the bootstrapping-based approach proposed
in (Agichtein and Gravano, 2003)—and described in Section 2—that derives
queries from all attributes in extracted tuples. We also experiment with queries
derived from each attribute individually, as done in (Fang and Chang, 2011), to
assess their individual impact in sampling quality and efficiency. The techniques
that we explore are defined as follows:

• Tuples (Agichtein and Gravano, 2003) uses all tuple attributes in the
query. For example, for the Occurs-in relation, Tuples produces the
Boolean conjunctive query [adairsville AND tornado] from the tuple 〈ad-
airsville, tornado〉.

• P-Tuples (Fang and Chang, 2011) uses the most “specific” (see below)
tuple attribute of the relation in the query with the goal of producing
high-precision queries. To determine the most specific attribute in a re-
lation, we analyze the schema of all relations supported by OpenCalais10,
an online service for information extraction, and use the least common
relation attribute. In our Occurs-in relation, for instance, P-Tuples uses
the natural disaster attribute, because this is the attribute that appears in
the fewest OpenCalais relations, specifically in just one relation out of 83.
P-Tuples thus produces the query [tornado] from the tuple 〈adairsville,
tornado〉.

• R-Tuples (Fang and Chang, 2011) uses the most “general” (see below)
tuple attribute of the relation in the query with the goal of producing
high-recall queries. To determine the most general attribute in a relation,
we analyze the schema of all relations supported by OpenCalais and use
the most common relation attribute. In our Occurs-in relation, for in-
stance, R-Tuples uses the location attribute, because this is the attribute
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that appears in the most OpenCalais relations, specifically in 16 relations
out of 83. R-Tuples thus produces the query [adairsville] from the tuple
〈adairsville, tornado〉.

As discussed in Section 2, given a collection, bootstrapping-based techniques
start with a small seed of tuples for the relation of interest likely to be men-
tioned in the collection. We rely on a fully automatic approach to obtain such
tuples: We collected 20,000 unique documents from each collection using the
crawling technique by Barbosa et al. (Barbosa and Freire, 2010). The tech-
nique in (Barbosa and Freire, 2010) generates initial queries using words in the
main page of the text collection, and subsequently generates more queries using
frequent keywords from the documents retrieved using the initial queries. We
then run our information extraction systems over the crawled documents, to
obtain tuples for each collection–information extraction system pair. We do not
consider the cost of obtaining these tuples in the overall sampling cost reported
in Section 5, because such initial cost is relatively low and by ignoring it we can
focus more precisely on quantifying the (much more substantial) actual cost of
sampling. For collections that did not produce tuples following this strategy,
we generated seed tuples from the training collection.
Learning-Based Query Generation Techniques: We now describe differ-
ent query generation techniques that learn queries from a training document
sample, as discussed in Section 2. Query generation techniques rely on two
building blocks, namely, the candidate set of keywords and the query gener-
ation algorithm. The candidate set of keywords specifies the words (e.g., all
words except for stopwords) in the training documents that the query gener-
ation algorithm can use to construct queries. The query generation algorithm
automatically learns as text queries discriminative words and phrases that sep-
arate useful from useless documents. As described in Section 2, these query
generation techniques assign a score to each word or phrase, which is gener-
ally a function of its precision and recall for useful documents. In detail, our
candidate set of keywords and query generation techniques are as follows:
Candidate Set of Keywords: We study two candidate set of keywords. For our
first set, we removed: (i) English stopwords from MyISAM search indexes in
MySQL11, as they are not effective as queries and (ii) rare words (i.e., words
that appeared in less than 0.003% of the training documents) and frequent
words (i.e., words that appeared in more than 90% of the training documents).
For our second set, we also removed words in tuple attributes (e.g., “tornado”),
as originally suggested in (Agichtein and Gravano, 2003). We refer to the first
candidate set of keywords as explicit, since attribute values can be used to
construct queries; accordingly, we refer to the second candidate set of keywords
as implicit.
Query Generation Algorithm: We explored several techniques from two fun-
damentally different approaches: (i) keyword selection, which produce single-
keyword queries from words that effectively separate useful from useless docu-
ments; and (ii) keyword combination, which produce phrase queries (e.g., [“tor-
nado swept”]) or Boolean queries (e.g., [tornado AND vortex]) from word com-
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binations that are discriminative of the useful documents. Specifically, we eval-
uated three keyword selection techniques (SVM, IG, and χ2) and two keyword
combination techniques (Ripper and SP), which effectively cover existing query
generation algorithms in the literature. We provide a brief description of these
techniques, and explain how they score words and phrases:

• SVM (Mladenic et al., 2004) trains a linear support vector machine clas-
sifier (Joachims, 1998) using the candidate set of keywords as Boolean
features, and scores them with their corresponding learned weights.

• IG (Mladenic et al., 2004) scores each keyword in the candidate set with
its information gain value (Kullback and Leibler, 1951). The informa-
tion gain of a keyword W is defined as IG(C) = H(C)−H(C|W ), where
C = {useful, useless}, and H(C) and H(C|W ) are the entropy and the
conditional entropy, respectively. We ignore keywords that are more fre-
quent in the useless documents than in the useful documents.

• Chi-Squared (χ2) performs the Pearson’s χ2 test (Pearson, 1900) over
the candidate set of keywords and scores them with their corresponding
χ2 value. Because the test runs over a 2 × 2 contingency table for each
keyword—with usefulness of documents (i.e., useful or not) and occur-
rence of a keyword (i.e., it occurs in the document or not)—and because
the observations in the table are rather small, we correct the test by ap-
plying Yates’s correction (Yates, 1934) to the observations. The corrected

χ2 value is obtained from χ2(K) =
∑

i∈{0,1}

∑
C∈{+,−}

((OK
i,C−E

K
i,C)−0.5)2

E
K
i,C

,

where k is the keyword, OK
i,C and E

K
i,C are the observed and the expected

value for K of the contingency table, respectively, and i and C index the
occurrence of the term and the usefulness of a document, respectively.
Yates’s correction alleviates the upward bias of Pearson’s χ2 test in 2× 2
contingency tables with low observations.

• Ripper (Agichtein and Gravano, 2003) uses the Ripper algorithm (Cohen,
1995) to generate classification rules consisting of combinations of words
that define useful documents. The algorithm in (Agichtein and Gravano,
2003) then transforms the rules into Boolean conjunctive queries. For
example, the rule <“vortex” AND “wind” ⇒ useful> is transformed into
the Boolean conjunctive query [vortex AND wind]. A query is scored with
its expected precision, defined as the ratio of useful documents to the total
of documents in the training set that match its original rule.

• Significant Phrases (SP) (Boden et al., 2011, 2012) learns the most fre-
quently collocated pairs of words (Dunning, 1993) from the useful docu-
ments and reports them as phrase queries. For example, for the Occurs-in
relation, SP produces queries like [“richter scale”] and [“snow storm”]. SP
scores each phrase with the Pearson’s χ2 value computed over its keywords,
which indicates how independent its keywords are from one another. To
guarantee that the queries (i.e., collocated pairs of words) are real phrases
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in the document sample, we generate all phrases and remove those that
do not comply with the candidate set of keywords at hand: (i) for explicit,
we remove phrases with only stopwords, rare, or frequent words; (ii) for
implicit, we also remove phrases that include words in the attribute values.

We used Weka 3.612 with default settings to implement SVM (Sequen-
tialMinimalOptimization), IG (InfoGainAttributeEval), χ2 (ChiSquaredAttribu-
teEval) with Yates correction, and Ripper (JRip). To implement SP, we used
the significant phrases implementation of LingPipe13 with default settings, as
suggested in (Boden et al., 2011).
Sampling Techniques: We evaluate the techniques described in Section 3 and
the bootstrapping-based techniques described above. For QXtract, we retrieve
and process 1000 documents per query, while we consider different numbers
of retrieved documents for Cyclic, Balanced, and Opportunistic. Also, for ref-
erence, we compare a sampling technique that prioritizes less-effective queries
from the ground up (i.e., without previously assessing the real effectiveness of
queries). Specifically, this technique, which we refer to as Reverse, proceeds as
QXtract (see Section 3), although processing top-Q queries in ascending score
order. We use different values of Q in our experiments.
Filtering Conditions: We rely on two filtering conditions, which correspond to
the filtering alternatives described in Section 3. The first filtering condition stops
processing queries based on the performance of the latest N queries that were
issued. Specifically, we stop processing queries when, out of these N queries,
the fraction of queries that retrieve at least one useful document is below a
certain threshold τr (see (1) in Table 3). The main impact of this filtering
condition occurs during the first query round because, as discussed, queries are
initially issued according to their effectiveness. The second filtering condition
stops processing queries based on their actual performance, as follows: We stop
processing a query q if its effectiveness computed over the last M retrieved
documents (i.e., the precision@M of the query) is below a certain threshold
τq (see (2) in Table 3). We evaluated different values for the parameters in
these conditions: We varied N ∈ [10, 100], τr ∈ [0.02, 0.25], M ∈ [5, 50], τq ∈
[0.05, 0.25]. Finally, we kept for each strategy the settings that collected on
average the largest and highest-quality samples for the same sampling cost. We
summarize these settings in Table 3.
Sampling Execution and Termination: Given an information extraction
system and a collection, the output document sample includes all useful docu-
ments for the extraction task that are found during the execution of the sampling
process. We let each sampling execution issue up to 500 unique queries and pro-
cess up to 10,000 unique documents with the information extraction system at
hand, to keep the sampling cost to reasonable levels. We also terminate the
sampling process after collecting 400 useful documents. According to the re-
sults over our tuning collections, conclusions are analogous for larger sample
sizes.
Performance Metrics: We use the following metrics:

• SampleSize@Q and SampleSize@D measure the size of the document sam-
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Technique
Filtering Condition
(1) (2)

N τr M τq
F-QXtract 75 0.15 150 0.05
F-Cyclic 75 0.15 150 0.05

F-Opportunistic 75 0.15 150 0.05
F-Balanced 75 0.15 50 0.05

Table 3. Parameter setting for filtering conditions. The parameters correspond to: number of
queries (N), round precision threshold (τr), number of documents (M), and query precision
threshold (τq).

ple (i.e., number of useful documents in the sample) as a function of the
number of issued queries Q and of the number of processed documents D,
respectively. We do not report S or D as a percentage of the total number
of documents in the deep-web text collection being sampled (e.g., 50% of
the documents), since we are unaware of the real size of the collection.

• UniqueTuples@S, UniqueTuples@Q, and UniqueTuples@D measure the
quality of the sampling process in terms of the number of unique tuples
and attributes as a function of sample size S, issued queries Q, and pro-
cessed documents D, respectively. Specifically, we compute the number of
unique tuples using case-insensitive string matching over each attribute.

• IssuedQueries@S and ProcessedDocuments@S measure the number of quer-
ies issued and documents processed, respectively, to collect a sample of size
S. Given a technique and a sample size S, we only report IssuedQueries@S

and ProcessedDocuments@S if the technique collects at least one sample
of size S. Because not all sampling executions manage to collect document
samples of all sizes, we complement these measures with the fraction of
collections that the technique collects samples of size S from, which we
define next. Some sampling techniques may not reach all sample sizes S

for three main reasons: (i) collections may include (very) few useful doc-
uments for some relations; (ii) techniques that rely on filtering conditions
may terminate the sampling process early; and (iii) only a limited number
of issued queries and processed documents may be allowed, for efficiency.

• Coverage@S measures the fraction of deep-web text collections from which
the sampling process manages to collect samples of size S. We do not re-
port Coverage@S as a fraction of the ideal coverage, since we are unaware
of the real contents of the collections. We evaluate Coverage@S as a com-
plementary measure to those defined above.

We run all sampling processes five times, to account for randomness, as fol-
lows: For bootstrapping-based techniques, each run uses a different initial set
of seed of 20 tuples. For learning-based techniques, we built 5 disjoint train-
ing document samples from our training collection, each with 5,000 randomly
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picked useful documents—or the maximum number of useful documents avail-
able for each training sample—and the same number of useless documents, so
that the training samples are balanced. For example, for the Election–Winner
relation and using the SSK extraction system, each training document sample
included 499 useful documents, because there were 2494 useful documents in the
training collection. (Other seed tuples and training sample sizes yielded similar
results during tuning.) Given a collection, we finally report the average over all
executions using the same sampling configuration.

5. Experimental Results

We now report our experimental results: We start by evaluating different
families of useful document retrieval techniques (Section 5.1). We then evaluate
different query execution schedules (Section 5.2) and document retrieval and
processing strategies (Section 5.3). Finally, we evaluate the impact of revising
the query execution order (Section 5.4) and of filtering underperforming queries
(Section 5.5).

5.1. Impact of Useful Document Retrieval

We evaluate the two document retrieval strategies in Section 4, from the
bootstrapping- and learning-based families discussed in Section 2.
Efficiency Analysis: We first evaluate efficiency by considering sample size:
Figure 5 shows SampleSize@D (Figure 5a) and SampleSize@Q (Figure 5b) for
different document retrieval strategies and processing the top-50 documents per
query, for the Person–Career relation. (Other relations as well as number of
documents per query yielded analogous conclusions.) As shown, learning-based
techniques that employ keyword selection, namely, SVM, IG, and χ2, consis-
tently outperform other techniques after processing 1000 documents and issu-
ing 100 queries. The differences were statistically significant (t-test, p < 0.001)
for all comparisons between SVM, IG, and χ2 and the rest. These techniques
sample on average 100% more documents than other techniques for the same
document processing and querying costs: These methods select popular—yet
discriminative—keywords that are evenly distributed across useful and useless
documents (Forman, 2003), thus improving the recall of the sampling process.
For small numbers of processed documents and issued queries, bootstrapping-
based techniques are comparable to keyword selection-based techniques, be-
cause the top queries from learning-based methods tend to overlap with those
from bootstrapping-based techniques. This finding corroborates that of previ-
ous studies for the related problem of efficiently running an extraction process
over a large text collection (e.g., (Agichtein and Gravano, 2003)), which state
that bootstrapping-based techniques are rather high-precision. The results in
Figure 5b for issued queries, in particular, also provide empirical evidence of
the analysis in (Lu and Li, 2010) and (Ipeirotis et al., 2007): the number of
retrieved—and sampled—useful documents decreases as queries are issued, due
to overlap in the successive query results and decreasing effectiveness of the
queries.
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Figure 5: Sample size for different useful document retrieval strategies, processing 50 doc-
uments per query and for the Person–Career relation. (P-Tuples and R-Tuples refer to the
Career and Person attributes, respectively.)

The choice of candidate set of keywords also affects sampling efficiency, as
shown in Figure 5: The explicit candidate set of keywords, which includes val-
ues of tuple attributes in the learned queries (see Section 4), targets useful
documents more effectively than its implicit counterpart. The differences were
statistically significant for all comparisons (t-test, p < 0.2) and more promi-
nently for SVM (t-test, p < 0.001). (We observed analogous conclusions for all
relations, with the exception of Natural Disaster–Location, which we study in
detail later.) This result differs from that in (Agichtein and Gravano, 2003),
where the implicit set of keywords (almost) always performed the best. We
observe the largest performance gap for SVM, which gave considerably high
weights to rare—yet discriminative—keywords in the training documents using
the implicit candidate set of keywords. These keywords were in turn also rare in
our test text collections. This finding corresponds with that of previous studies
(e.g., see (Chen et al., 2010)) that conclude that SVMs are many times unable
to generalize to other datasets.
Quality Analysis: To evaluate the quality of the samples produced with dif-
ferent document retrieval strategies, we measured the number of unique tuples.
Figure 7 shows UniqueTuples@D (Figure 6) and UniqueTuples@Q (Figure 7),
processing top-50 documents per query for the Person–Career relation. (We do
not include Ripper since the number of processed documents and issued queries
is small, as shown in Figure 5. Other relations and values for the number of
documents per query yielded similar conclusions.) Our first observation is that
the most efficient techniques also exhibit the highest quality: For the same doc-
ument processing and querying cost, these (efficient) techniques collect a larger
number of tuples, which in effect include a higher number of unique tuples. The
differences were statistically significant (t-test, p < 0.001) for all comparisons
between SVM, IG, and χ2 and the rest after processing 1500 documents and
issuing 50 queries. For bootstrapping-based techniques, in particular, the qual-
ity positively correlates with the domain of attributes (e.g., names of people,
careers) used as queries. In the Person–Career relation, for instance, there are

21



more people names than careers; as a result, we observe the highest quality
for R–Tuples, which derives queries from the Person attribute. Unfortunately,
the quality of bootstrapping-based techniques is low compared with that of χ2

and other learning-based techniques. As shown, these techniques reach their
highest quality values early in the sampling process, which exhibits their qual-
ity limitations. This corroborates the finding in (Agichtein et al., 2003), which
states that bootstrapping-based approaches often only reach limited groups of
documents—hence limited sampling quality—in the collections.
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Figure 6: UniqueTuples@D for different useful document retrieval strategies, processing 50
documents per query and for the Person–Career relation. (P-Tuples and R-Tuples refer to the
Career and Person attributes, respectively.)
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Figure 7: UniqueTuples@Q for different useful document retrieval strategies, processing 50
documents per query and for the Person–Career relation. (P-Tuples and R-Tuples refer to the
Career and Person attributes, respectively.)

Coverage Analysis: We finally evaluate Coverage@S of the document re-
trieval strategies: Figure 8 shows Coverage@S for the learning- and bootstrap-
ping-based variants of interest. As shown, learning-based techniques using the
explicit set of keywords exhibit the highest coverage across different sample sizes.
Specifically, learning-based techniques manage to collect useful documents from
30%more collections than other techniques on average. For bootstrapping-based
techniques, P-Tuples collects small samples (75 documents or fewer for Person–
Career relation) from 10% and 20% more collections than R-Tuples and Tuples,
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respectively. For larger samples (100 documents or more, for the Person–Career
relation), in contrast, R-Tuples manages to effectively collect samples from 25%
and 40% more collections than P-Tuples and Tuples, respectively.
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Figure 8: Coverage@S for different useful document retrieval strategies for different sample
sizes, processing 50 documents per query and for the Person–Career relation. (P-Tuples and
R-Tuples refer to the Career and Person attributes, respectively.).

Conclusion: Based on the evaluation above, we conclude that learning-based
techniques with keyword selection strategies perform the best for document
sampling: They (i) collect useful documents efficiently (e.g., in terms of pro-
cessed documents and issued queries); (ii) sample representative, high-quality
documents for all attributes in the extraction task at hand; and (iii) manage
to collect useful documents from more deep-web text collections than those of
other techniques.

5.2. Impact of Query Execution Order

In Section 3, we argued that different query execution orders have distinct
implications in sampling efficiency and quality. We now evaluate the discussed
query execution orders: We compare (i) QXtract (see Section 3), to assess the
performance of prioritizing effective queries; and (ii) Reverse (see Section 4),
to assess the performance of prioritizing less-effective queries. We report our
evaluation using χ2 as query generation method and over the explicit candidate
set of keywords, as it performed substantially better than other techniques and
comparably to IG and SVM . We vary the number of (top) learned queries
between 100 and 500.
Efficiency Analysis: To assess the efficiency of different query execution or-
ders, we evaluated QXtract and Reverse over all relations, and for different num-
bers of queries: Figure 9 shows SampleSize@D (Figure 9a) and SampleSize@Q

(Figure 9b) for different query execution orders and number of learned queries,
for the Man Made Disaster–Location relation. (Other relations yielded anal-
ogous conclusions.) As shown, all versions of QXtract perform comparably
to or better than the Reverse counterparts: For small values of the number
of highly-effective queries (see QXtract-100 and Reverse-100 in Figure 9), the
query execution order has almost no impact on sampling efficiency, although
the difference between QXtract-100 and Reverse-100 is statistically significant
(t-test, p < 0.001) for the first 1500 processed documents and 75 issued queries.

24



For large numbers of queries (see QXtract-500 and Reverse-500 in Figure 9), the
impact of the query execution order is considerable, with QXtract-500 collecting
100% more useful documents than Reverse-500. In this case, the difference be-
tween QXtract-500 and Reverse-500 is statistically significant (t-test, p < 0.001)
for the first 2500 documents and 200 issued queries.
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Figure 9: Sample size for different query execution orders and number of learned queries,
processing 100 documents per query and for the Man Made Disaster–Location relation.

Quality Analysis: Beyond efficiency, we also expect the query execution order
to impact sampling quality. Figure 10 shows UniqueTuples@D (Figure 10a)
and UniqueTuples@Q (Figure 10b), for different query execution orders and
number of learned queries, and using the explicit candidate set of keywords over
the Man Made Disaster–Location relation. (Other relations yielded analogous
conclusions.) As shown, for the number of processed documents and issued
queries, QXtract variants, which prioritize effective queries, collect a higher
number of unique tuples and attributes. Similarly to our efficiency analysis
above, differences were statistically significant (t-test, p < 0.001) for the same
techniques and intervals. This happens because, as discussed above, effective
queries lead to extracting more tuples—hence more unique tuples. However, we
are also interested in the sampling quality of different query execution orders as
a function of the sample size. This cannot be evaluated with UniqueTuples@Q

and UniqueTuples@D, since we have different sample sizes across collections for
the same values of Q and D.

To evaluate the intrinsic quality of different query execution orders, and to
complement the quality analysis above, we evaluate sample quality across sam-
ple sizes. Figure 11 shows UniqueTuples@S for different query execution orders,
using the explicit candidate set of keywords, and over the Man Made Disaster–
Location relation. As shown, for small sample sizes (100 sampled documents or
fewer), Reverse variants exhibit sample quality at least as good as that of their
QXtract counterparts. This also holds for sample sizes for which QXtract has
collected more samples (see Sample Size=75 in Figure 12).
Coverage Analysis: We finally evaluate the coverage that different query
execution orders exhibit. Figure 12 shows Coverage@S for different query exe-
cution orders, using the Man Made Disaster–Location relation. (Other relations
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Figure 10: Number of unique tuples for different query execution orders and number of learned
queries, processing 100 documents per query and using the explicit candidate set of keywords
and for the Man Made Disaster–Location relation.
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Figure 11: UniqueTuples@S for different query execution orders and number of learned
queries, processing 100 documents per query and using the explicit candidate set of keywords
and for the Man Made Disaster–Location relation.

yielded analogous results.) Conclusions are manifold: Focusing on a small set
of highly-effective queries drastically reduces the coverage of the techniques for
all sample sizes (see QXtract-100 and Reverse-100 in Figure 12). More im-
portantly, the query execution order does not affect the (poor) coverage in this
case. Unlike what we expected, increasing the number of learned queries showed
limited impact in coverage, while its querying overhead was considerable (see
Figure 9b).
Conclusion: We have empirically corroborated the efficiency and quality impli-
cations of different query execution orders: Prioritizing effective queries leads to
more efficient sampling executions that, in turn, collect document samples from
a larger number of collections than prioritizing less-effective queries. Prioritiz-
ing less-effective queries, in contrast, leads to high-quality document samples,
but at a considerably high document processing and querying cost. Moreover,
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Figure 12: Coverage@S for different query execution orders and number of learned queries for
different sample sizes, processing 100 documents per query and for the Man Made Disaster–
Location relation.

increasing the number of learned queries has limited impact.

5.3. Impact of Document Retrieval and Processing

In addition to the query execution orders analyzed above, we also argued in
Section 3 that different document retrieval and processing strategies also impact
sampling efficiency and quality. We now compare: (i) QXtract, which retrieves
and process documents exhaustively for each query; and (ii) Cyclic, which does
so incrementally and in rounds. We report our evaluation using χ2 as our query
generation method and over the explicit candidate set of keywords, as done in
Section 5.2.
Efficiency Analysis: We evaluate the efficiency of QXtract and Cyclic with
different numbers of documents per round. Figure 13 shows SampleSize@D

(Figure 13a) and SampleSize@Q (Figure 13b) for different document retrieval
and processing strategies, and using the Person–Charge relation. (Other re-
lations yielded similar conclusions.) As shown, there is a positive correlation
between the number of documents per round and the number of sampled useful
documents: QXtract and Cyclic start with highly-effective queries, which are
likely to retrieve useful documents with high precision and recall. This is better
illustrated in Figure 13b, where QXtract consistently outperforms all variants of
Cyclic. In terms of processed documents, though, the sampling process benefits
from moving earlier to other queries (see Figure 13a), because top queries may
not be equally effective across collections. As a result, variants of Cyclic with
rounds of 100 documents or more collect larger samples than QXtract, for the
same number of processed documents. The differences were statistically signif-
icant (t-test, p < 0.001) along the sampling process between Cyclic-10 and all
other techniques.
Quality Analysis: Beyond efficiency, we also compared the quality of different
document retrieval and processing strategies. Figure 14 shows UniqueTuples@D

(Figure 14a) and UniqueTuples@Q (Figure 14b) for different document retrieval
and processing strategies, using the explicit candidate set of keywords and for
the Person–Charge relation. (Other relations yielded analogous conclusions.)
Surprisingly, low values of k (e.g., k = 10) did not enhance sample quality:
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Figure 13: Sample size for different document retrieval and processing strategies for the
Person–Charge relation.

Even after processing 8000 documents with Cyclic-10, sampling quality was
lower than that of other variants for only 4000 retrieved and processed doc-
uments. Similarly to what we observed above in our efficiency analysis, the
differences were statistically significant (t-test, p < 0.001) along the sampling
process between Cyclic-10 and all other techniques. Conversely, and similarly
to what we observed for document retrieval strategies (Section 5.1), the number
of sampled documents correlates with quality.
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Figure 14: Number of unique tuples for different document retrieval and processing strategies,
using the explicit candidate set of keywords and for the Person–Charge relation.

Coverage Analysis: Figure 15 shows Coverage@S for different document re-
trieval and processing strategies, for the Person–Charge relation. (Other re-
lations yielded similar conclusions.) As shown, the most efficient techniques,
namely, QXtract and variants of Cyclic with 100 or more documents per round,
also exhibit the best coverage. Processing fewer documents per round tended
to deploy querying and document processing effort on less–effective queries and
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useless documents, thus compromising the overall sampling performance (see
Cyclic-10 in Figure 15).
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Figure 15: Coverage@S for different document retrieval and processing strategies for the
Person–Charge relation.

Conclusion: Based on the evaluation above, techniques that focus on effective
queries, namely, QXtract and variants of Cyclic with 100 or more documents
per round, outperformed other configurations. In particular, although these
techniques perform comparably, QXtract is a better choice when querying cost
dominates the sampling cost, while Cyclic prevails when document processing
cost dominates sampling cost.

5.4. Impact of Revising Query Order

So far, our experimental evaluation is on the intrinsic performance of differ-
ent query execution and document processing and retrieval strategies. However,
as argued in Section 3, there is valuable information (e.g., the real, observed ef-
fectiveness of queries) that we can exploit along the sampling process. We now
study the impact of using this information to revise the query execution or-
der. We compare (i) Balanced and Opportunistic, which revise the order of the
queries; and (ii) Cyclic, which maintains their original (learned) order along the
sampling process. We report our evaluation using χ2 as our query generation
method and over the implicit candidate set of keywords. Unlike in previous
experiments, though, we only report the number of processed documents, as
these techniques issue the same queries.
Efficiency Analysis: We first evaluate the impact on sampling efficiency of
revising the query order. Figure 16 shows SampleSize@D for Cyclic, Oppor-
tunistic, and Balanced, processing 50 documents per round (i.e., k = 50) for the
Natural Disaster–Location relation. (Other relations and values of k yielded
analogous conclusions.) From the techniques we evaluated, Opportunistic re-
vises the query order to prioritize queries based on their real, observed effec-
tiveness. As expected, Opportunistic exhibits the best sampling efficiency on
average. However, none of the differences between techniques were statisti-
cally significant. Importantly, the improvement of Opportunistic over other
techniques was more noticeable over collections with a large number of useful
documents.
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Figure 16: SampleSize@D for different query execution schedules and processing 50 documents
per round for the Natural Disaster–Location relation.

Quality Analysis: We also evaluated the impact in sampling quality. Fig-
ure 17 shows UniqueTuples@D for Cyclic, Opportunistic, and Balanced, pro-
cessing 50 documents per round (i.e., k = 50), using the implicit candidate set
of keywords, and for the Natural Disaster–Location relation. (Other relations
and values of k yielded similar conclusions.) As expected, Balanced exhibits
the best sampling quality for all attributes, even when Opportunistic collected
more useful documents (see efficiency analysis above). However, none of the
differences between techniques were statistically significant. More importantly,
and similarly to what we pointed out above, the impact on quality of Balanced
is generally more noticeable over collections that include large numbers of use-
ful documents. These collections tend to return many useful documents also
for less-effective queries; therefore, these queries effectively enhance sampling
quality when prioritized.
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Figure 17: UniqueTuples@D for different query execution schedules, processing 50 documents
per round, using the implicit candidate set of keywords and for the Natural Disaster–Location
relation.

Coverage Analysis: Finally, we evaluate the impact on coverage of revising
query execution order. Figure 18 shows Coverage@S for different sample sizes
for Cyclic, Opportunistic, and Balanced, processing 50 documents per round
(e.g., k = 50) and for the Natural Disaster–Location relation. These techniques
exhibit similar coverage: Prioritizing less-effective queries based on their real,
observed performance (e.g., in Balanced) does not impact the fraction of collec-
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tions from which we can collect samples of different sizes.
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Figure 18: Coverage@S for different query execution schedules, processing 50 documents per
round and for the Natural Disaster–Location relation.

Conclusion: Based on the evaluation above, we corroborated that we can fur-
ther improve sampling efficiency and quality by accounting for the real, observed
effectiveness of the queries. Although all techniques performed similarly, on av-
erage, Opportunistic and Balanced exhibited, respectively, the best sampling
efficiency and quality, with noticeable effects on collections with large numbers
of useful documents.

5.5. Impact of Filtering Underperforming Queries

Our last experiment involves assessing the impact of filtering underperform-
ing queries, which, as discussed in Section 3, can improve sampling efficiency.
We compare (i) Cyclic and QXtract, which issue and process all queries; and
(ii) F–Cyclic and F–QXtract, their filtered counterparts, which filter underper-
forming queries using the settings in Section 4. Conclusions were analogous for
different techniques. We report our evaluation using χ2 as our query generation
method and over the explicit candidate set of keywords.
Efficiency Analysis: We first evaluate ProcessedDocuments@S and Issued-
Queries@S for different sample sizes, which we show in Tables 4 and 5, respec-
tively. (We later analyze the coverage of these techniques, which explains why,
for instance, samples of 100 documents for Cyclic are on average less expensive
than those of 50 documents.) As shown, filtered versions collect samples more
efficiently than their unfiltered counterparts. For example, F–Cyclic processes
35% fewer documents and issues 55% fewer queries than Cyclic to collect samples
of 50 useful documents. The differences between filtered and unfiltered versions
of QXtract and Cyclic were statistically significant (t-test, p < 0.001) after
processing 2500 documents and issuing 150 queries. The main benefit of the
filtered versions is that they stop processing collections that include none—or
insufficiently many—useful documents, which are a large portion of the collec-
tions. Overall, F–QXtract exhibits the best sampling efficiency across different
sampling sizes; however, as we will see next, filtering underperforming queries
has undesirable effects on all other relevant aspects of the sampling process.

In addition to the evaluation above, we study the impact of filtering under-
performing queries on the sample size that we collect at different sampling costs.
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Technique
Sample Size

25 50 100 200 400

F–Cyclic 1067.4 ± 261 1853.2 ± 53.4 3385.9 ± 517.6 5146.8 ± 1006.1 -
Cyclic 2374 ± 336.2 2804.5 ± 328.6 3517.9 ± 463.1 5457 ± 567.3 7126 ± 0

F–QXtract 975.1 ± 245.4 1761.5 ± 62.8 3266.4 ± 81.9 5193.5 ± 983.2 -
QXtract 1977.3 ± 134.4 2617.4 ± 466.4 3281.4 ± 838.7 5617.9 ± 776.3 7169.5 ± 0

Table 4. ProcessedDocuments@S for filtered and unfiltered versions of QXtract and Cyclic
(using k = 50), using the explicit candidate set of keywords and for the Election–Winner
relation.

Technique
Sample Size

25 50 100 200 400

F–Cyclic 83.1 ± 12.9 128.9 ± 11.4 224.8 ± 24.8 306.5 ± 74.8 -
Cyclic 245.8 ± 19.2 316.4 ± 19.8 292.5 ± 48 374.7 ± 21.6 500 ± 0

F–QXtract 89.9 ± 23.9 125.7 ± 15.4 214.9 ± 11.3 305.6 ± 70.1 -
QXtract 119.9 ± 10.4 177 ± 22.3 201.1 ± 56.5 298.5 ± 28.2 485 ± 0

Table 5. IssuedQueries@S for filtered and unfiltered versions of QXtract and Cyclic (using
k = 50), using the explicit candidate set of keywords and for the Election–Winner relation.

Figure 19 shows SampleSize@D (Figure 19a) and SampleSize@Q (Figure 19b)
for both the filtered and unfiltered versions of Cyclic, processing 50 document
per round (i.e., k = 50), and QXtract, for the Election–Winner relation. (Other
relations yielded similar conclusions.) As shown, filtered versions collect on
average smaller sample sizes for the same cost, because they (mistakenly) stop
processing queries that would retrieve useful documents otherwise: QXtract and
Cyclic collect samples on average 100% larger than those of F–Cyclic and F–
QXtract, respectively, for the same number of processed documents and issued
queries.
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Figure 19: Sample size for filtered and unfiltered versions of Cyclic (using k = 50) and QXtract
for the Election–Winner relation.

Quality Analysis: In Section 3, we argued that filtering certain queries has
implications for sampling quality, because the sampling process only focuses on
highly-effective queries. To evaluate their real impact, we compared Cyclic, pro-
cessing 50 documents per query, and QXtract to their filtered counterparts: Fig-
ure 20 shows UniqueTuples@D (Figure 20a) and UniqueTuples@Q (Figure 20b),
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for Cyclic, QXtract, F–Cyclic, and F–QXtract, using the explicit candidate set
of keywords and for the Election–Winner relation. (Other relations yielded
analogous conclusions.) As expected, filtering underperforming queries impacts
sampling quality, because less-effective queries that potentially retrieve different
groups of documents may not be processed. Also, and similarly to what we ob-
served above, the techniques that collected more useful documents for the same
document processing and query issuing cost also exhibit the best sample quality,
for all tuple attributes. Finally, the differences between filtered and unfiltered
versions of QXtract and Cyclic were statistically significant (t-test, p < 0.001)
after processing 5000 documents and issuing 250 queries.
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Figure 20: Number of unique tuples for filtered and unfiltered versions of Cyclic (using k =
50) and QXtract, using the explicit candidate set of keywords and for the Election–Winner
relation.

Coverage Analysis: We finally evaluate how filtering underperforming queries
impacts the coverage of the sampling techniques. Figure 21 shows Coverage@S

for different sample sizes for Cyclic, QXtract, F–Cyclic, and F–Qxtract, and
for the Election–Winner relation. (Other relations yielded similar conclusions.)
We identify two regions in this figure worth analyzing. For small samples (e.g.,
200 useful documents or fewer), QXtract and Cyclic consistently cover more
collections than their filtered counterparts: Filtered technique rarely reach less-
effective queries. For large samples (e.g., 200 documents or more), filtered and
unfiltered techniques perform similarly: Filtering conditions do not affect the
(typically) few collections that include large numbers of useful documents; in-
stead, they effectively stop processing underperforming queries and focus on the
rest.
Conclusion: Based on the evaluation above, we corroborate that filtering con-
ditions help improve the efficiency of the sampling process, but affect other
relevant aspects of the sampling process. We observed that the impact of the
filtering step depends on the number of useful documents in the collections: Fil-
tered techniques are as effective as their unfiltered counterparts over collections
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Figure 21: Coverage@S for filtered and unfiltered versions of Cyclic (using k = 50) and
QXtract for the Election–Winner relation.

with large numbers of useful documents, while they tend to affect collections
with only a small number of useful documents considerably.

6. Related Work

We described relevant related work on document sampling over text collec-
tions for information extraction in Section 2, and we experimentally evaluated
these techniques in Sections 4 and 5. Beyond these topics, another relevant area
of related work is focused crawling (Chakrabarti et al., 1999). In contrast to
traditional exhaustive Web crawling (Olston and Najork, 2010), focused crawl-
ing aims to selectively discover Web pages on a specific set of topics. Focused
crawling efforts (e.g., (Diligenti et al., 2000; Menczer et al., 2004; Pant and
Srinivasan, 2006; Shchekotykhin et al., 2010)) have often been devised for the
crawlable Web, exploiting properties such as link structure that are nonexistent
on the deep web. More recently, however, several focused crawling approaches
(e.g., (He et al., 2013; Liakos et al., 2016)) have been proposed for the deep
web. Similarly to our problem of interest, these strategies issue queries that
are related to the topic at hand. The sampling strategies that we propose in
this paper are complementary to those proposed for focused crawling over the
deep web in two main ways. First, the document samples that our strategies
produce can serve as input for the generation of topic-specific queries. Second,
the different query execution and document retrieval and processing schedules
that we discuss in Section 3, and that we evaluate in Section 5, can lead to fun-
damentally different (e.g., in terms of quality and efficiency) focused crawling
executions. Importantly, our sampling strategies are crucial for other impor-
tant building blocks of deep-web crawling, in general, namely, automatic filling
of search forms (Kantorski et al., 2015) and content monitoring (Mohammad
Khelghati, 2016), since they require high-quality and efficient document sam-
ples from the collection to select which queries to issue and to decide when to
update the content summary of the collection, respectively.

Other more general approaches to document sampling over text collections
(e.g., (Bar-Yossef and Gurevich, 2008; Callan and Connell, 2001; Zhang et al.,
2011, 2013)) aim at collecting random samples from a text collection. Notably,
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the approaches in (Callan and Connell, 2001; Bar-Yossef and Gurevich, 2008;
Zhang et al., 2011) derive a large pool of queries from an external text collection
(e.g., all n-grams in the external collection) that potentially reach all documents
of interest in the collections. The approach in (Zhang et al., 2013), on the other
hand, generates these queries “on the fly,” as it retrieves documents from the
collection in a random-walk fashion. To sample documents, these approaches
pick queries (e.g., from the pool or from the document it retrieves), issue them
to the collection at hand, and pick documents from the retrieved documents.
Unfortunately, to effectively represent the (rather rare) useful documents in
a collection, these approaches would require issuing an exorbitant number of
queries. For a given (sub)population of interest (e.g., documents about sports),
the approach in (Zhang et al., 2011) proposes identifying queries that are pos-
itively correlated with this population (e.g., query “golf”) to, in turn, stratify
the sampling process over correlated and uncorrelated queries. Unfortunately,
this approach still requires issuing a large number of queries.

Stratified sampling (Särndal et al., 1992) is often used to collect samples
from subpopulations in the data. Specifically, stratified sampling separates
these subpopulations into non-overlapping strata from which we can in turn
sample independently. Existing approaches for efficiently running an informa-
tion extraction system over a large text collection (e.g., QXtract (Agichtein
and Gravano, 2003), FactCrawl (Boden et al., 2012), PRDualRank (Fang and
Chang, 2011), and BAgg-IE and RSVM-IE (Barrio et al., 2015b)) often require
such stratification, to learn discriminative queries that retrieve useful docu-
ments: One stratum consists of useful documents, which we can collect using
the techniques studied in this paper, while the other stratum consists of (rather
frequent) useless documents, which we can obtain from a random sample (e.g.,
by using (Callan and Connell, 2001), as suggested in (Agichtein and Gravano,
2003)).

7. Conclusions

In this paper, we systematically studied the problem of sample generation
for information extraction over the deep web. We considered (i) alternative
query execution schedules, which vary on how they account for the query effec-
tiveness, and (ii) alternative document retrieval and processing schedules, which
vary on how they deploy the extraction effort over documents. Our large-scale
evaluation, the first to the best of our knowledge, yielded several important
conclusions: (i) schedules that focus on effective queries improve sampling effi-
ciency, while schedules that prioritize less-effective queries favor quality; and (ii)
processing the documents of highly-effective queries exhaustively consistently
exhibits high sampling efficiency, but processing documents incrementally and
in rounds can many times (e.g., with round sizes of 100 documents or more)
exhibit better sampling efficiency and quality. We also evaluated several dif-
ferent useful document retrieval methods: Learned keyword queries performed
substantially better than queries derived from tuples, which have been widely
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used in the existing literature. We also evaluated the implications of revis-
ing the order of the queries and of filtering underperforming queries. Revising
query order during sampling helps improve sampling efficiency—when effective
queries are prioritized in each round—and quality—when less-effective queries
are prioritized instead. Also, filtering underperforming queries improves sam-
pling efficiency considerably, although it compromises all other relevant aspects
of the sampling process. Putting it all together, our study showed sampling con-
figurations that can produce better-quality document samples for information
extraction, and with executions that are several times more efficient than those
possible with the sampling techniques adopted in the literature. In conclusion,
our results provide a roadmap for addressing this critically important building
block for efficient, scalable information extraction.
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Notes

1We do not consider the correctness of extracted tuples in our work. Instead, we trust the
output of the information extraction system and focus on efficiently and effectively identifying
useful documents for our extraction task of interest. For correctness, we could use the confi-
dence score that the information extraction system often assigns to each extracted tuple. This
approach has been adopted in (Agichtein and Cucerzan, 2005; Jain and Srivastava, 2009) for
the (related) task of identifying text collections with high-quality, or correct, tuples. Alterna-
tively, to deem tuples as correct, we could adopt the statistical approach proposed in (Jain
et al., 2008; Jain and Ipeirotis, 2009; Jain et al., 2009; Simões et al., 2013) for the (related)
task of building efficiency- and quality-aware execution plans to extract tuples from large text
collections.

2http://www.fema.gov/
3http://www.ncbi.nlm.nih.gov/pubmed
4http://trec.nist.gov/data.html
5http://www.dmoz.org/
6http://trec.nist.gov/data.html
7http://reel.cs.columbia.edu/
8http://nlp.stanford.edu/software/CRF-NER.shtml
9http://web.ist.utl.pt/rui.lageira/

10http://www.opencalais.com/
11http://dev.mysql.com/doc/refman/5.7/en/fulltext-stopwords.html
12http://www.cs.waikato.ac.nz/ml/weka/
13http://alias-i.com/lingpipe/
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