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D A T A  
M I N I N G

Several important scientific and engineer-
ing applications require analysis of spa-
tially distributed data from expensive ex-
periments or complex simulations, which

can demand days, weeks, or even years on petaflops-
class computing systems. Consider the concep-
tual design of a high-speed civil transport, which
involves the disciplines of aerodynamics, struc-
tures, mission-related controls, and propulsion
(see Figure 1).1 Frequently, the engineer will
change some aspect of a nominal design point
and run a simulation to see how the change af-
fects the objective function (for example, take-
off gross weight, or TOGW). Or the design
process is made configurable, so the engineer
can concentrate on accurately modeling one
aspect while replacing the remainder of the de-
sign with fixed boundary conditions surround-
ing the focal area. However, both these ap-
proaches are inadequate for exploring large
high-dimensional design spaces, even at low fi-
delity. Ideally, the design engineer would like

a high-level mining system to identify the
pockets that contain good designs and merit
further consideration. The engineer can then
apply traditional tools from optimization and
approximation theory to fine-tune preliminary
analyses. 

Data mining is a key solution approach for such
applications, supporting analysis, visualization,
and design tasks.2 It serves a primary role in many
domains and a complementary role in others by
augmenting traditional techniques from numeri-
cal analysis, statistics, and machine learning. 

Three important characteristics distinguish
the applications studied in this article. First, they
are characterized not by an abundance of data,
but rather a scarcity of it (owing to the cost and
time involved in conducting simulations). Sec-
ond, the computational scientist has complete
control over data acquisition (for example, re-
gions of the design space where he or she can
collect data), especially via computer simula-
tions. Finally, significant domain knowledge ex-
ists in the form of physical properties such as
continuity, correspondence, and locality. Using
such information to focus data collection for
data mining is thus natural. 

This combination of data scarcity plus con-
trol over data collection plus the ability to ex-
ploit domain knowledge characterizes many im-
portant computational science applications. In
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this article, we are interested in the question,
“Given a simulation code, knowledge of physical
properties, and a data mining goal, at what
points should we collect data?” By suitably for-
mulating an objective function and constraints
around this question, we can pose it as a prob-
lem of minimizing the number of samples
needed for data mining. 

This article describes focused sampling strate-
gies for mining scientific data. Our approach is
based on the Spatial Aggregation Language,3

which supports construction of data interpreta-
tion and control design applications for spatially
distributed physical systems in a bottom-up
manner. Used as a basis for describing data min-
ing algorithms, SAL programs also help exploit
knowledge of physical properties such as conti-
nuity and locality in data fields. In conjunction
with this process, we introduce a top-down sam-
pling strategy that focuses data collection in
only those regions that are deemed most im-
portant to support a data mining objective. To-
gether, these processes define a methodology
for mining in data-scarce domains. We describe
this methodology at a high level and devote the
major part of the article to two applications
that use it.

Mining in data-scarce domains 

Much research focuses on the problem of
sampling for targeted data mining activities, such
as clustering, finding association rules, and de-
cision tree construction.4,5 Here, however, we
are interested in a general framework or lan-
guage that expresses data mining operations on
data sets and that can help us study the design of
data collection and sampling strategies. SAL is
such a framework.3,6

SAL
As a data mining framework, SAL is based on

successive manipulations of data fields by a uni-
form vocabulary of aggregation, classification,
and abstraction operators. Programming in SAL
follows a philosophy of building a multilayer hi-
erarchy of aggregations of data. These increas-
ingly abstract data descriptions are built using
explicit representations of physical knowledge,
expressed as metrics, adjacency relations, and
equivalence predicates. This lets a SAL program
uncover and exploit structures in physical data.

SAL programs use an imagistic reasoning
style.7 They employ vision-like routines to ma-
nipulate multilayer geometric and topological
structures in spatially distributed data. SAL
adopts a field ontology in which the input is a
field mapping from one continuum to another.
Multilayer structures arise from continuities in
fields at multiple scales. Owing to continuity,
fields exhibit regions of uniformity, which can
be abstracted as higher-level structures, which
in turn exhibit their own continuities. Task-spe-
cific domain knowledge describes how to un-
cover such regions of uniformity, defining met-
rics for closeness of both field objects and their
features. For example, isothermal contours are
connected curves of nearby points with equal (or
similar enough) temperature.

The identification of structures in a field is a
form of data reduction: a relatively information-
rich field representation is abstracted into a more
concise structural representation (for example,
pressure data points into isobar curves or pres-
sure cells, isobar curve segments into troughs).
Navigating the mapping from field to abstract
description through multiple layers rather than
in one giant step allows the construction of more
modular programs with more manageable pieces
that can use similar processing techniques at dif-
ferent levels of abstraction. The multilevel map-
ping also lets higher-level layers use the global
properties of lower-level objects as local prop-
erties. For example, the average temperature in a
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Figure 1. A pocket in an aircraft design space viewed as a slice
through three design points. This problem domain involves 29 
design variables with 68 constraints. Figure courtesy of Layne T.
Watson.
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region is a global property with respect to the
temperature data points but a local property with
respect to a more abstract region description. As
this article demonstrates, analysis of higher-level
structures in such a hierarchy can guide inter-
pretation of lower-level data.

SAL supports structure discovery through a
small set of generic operators (parameterized
with domain-specific knowledge) on uniform
data types. These operators and data types me-
diate increasingly abstract descriptions of the in-
put data (see Figure 2) to form higher-level ab-
stractions and mine patterns. The primitives in
SAL are contiguous regions of space called spa-
tial objects, the compounds are collections of spa-
tial objects, and the abstraction mechanisms con-
nect collections at one level of abstraction with
single objects at a higher level.

SAL is available as a C++ library, providing ac-
cess to a large set of data type implementations
and operations (download the SAL implemen-
tation from www.parc.com/zhao/sal-code.html).
In addition, an interpreted interaction environ-
ment layered over the library supports rapid pro-
totyping of data mining applications. It lets users
inspect data and structures, test the effects of dif-
ferent predicates, and graphically interact with
representations of the structures.

To illustrate SAL programming style, consider
the task of bundling vectors in a given vector
field (for example, wind velocity or temperature
gradient) into a set of streamlines (paths through
the field following the vector directions). Figure
3 depicts this process; Figure 4 shows the corre-
sponding SAL data mining program. This pro-
gram has the following steps: 

• (a) Establish a field that maps points (loca-
tions) to points (vector directions, assumed
here to be normalized). 

• (b) Localize computation with a neighborhood
graph, so that only spatially proximate points
are compared. 

• (c-f) Use a series of local computations on this
representation to find equivalence classes of
neighboring vectors with respect to vector di-
rection. 

• (g) Redescribe equivalence classes of vectors
into more abstract streamline curves. 

• (h) Aggregate and classify these curves into
groups with similar flow behavior, using the
exact same operators but with different met-
rics (code not shown). 

As this example illustrates, SAL provides a vo-

cabulary for expressing the knowledge required
(distance and similarity metrics) for uncovering
multilevel structures in spatial data sets. Re-
searchers have applied it to applications ranging
from decentralized control design8 to analysis of
diffusion-reaction morphogenesis.9

Data collection and sampling
The exploitation of physical properties is a

central tenet of SAL because it drives the com-
putation of multilevel spatial aggregates. We can
express many important physical properties as
SAL computations by suitably defining adja-
cency relations and aggregation metrics. To ex-
tend SAL to data-scarce settings, we present the
sampling methodology that Figure 5 outlines.

Once again, understanding the methodology in
the context of the vector field bundling applica-
tion is easy (see Figure 3). Assume that we apply
Figure 4’s SAL data mining program with a small
data set and have navigated up to the highest level
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Figure 2. The Spatial Aggregation Language’s multilayer spatial 
aggregates, uncovered by a uniform vocabulary of operators using
domain knowledge. We can express several scientific data mining
tasks—such as vector field bundling, contour aggregation,
correspondence abstraction, clustering, and uncovering regions of
uniformity—as multilevel computations with SAL aggregates.
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of the hierarchy (streamlines bundled with con-
vergent flows). The SAL program computes dif-
ferent streamline aggregations from a neighbor-
hood graph and chooses one on the basis of how
well its curvature matches the direction of the
vectors it aggregates. If data is scarce, some of
these classification decisions could be ambigu-
ous—multiple streamline aggregations might ex-
ist. In such a case, we would want to choose a new
data sample that reduces the ambiguity and clar-
ifies what the correct classification should be.

This is the essence of our sampling method-
ology: using SAL aggregates, we identify an in-
formation-theoretic measure (here, ambiguity)
that can drive stages of future data collection.
For instance, we can summarize the ambiguous
streamline classifications as a 2D ambiguity dis-
tribution that has a spike for every location
where we detected an ambiguity. Ambiguity re-
duction is a problem of minimizing (or maxi-
mizing, as the case may be) a functional involv-
ing the computed ambiguity. The functional
could be the underlying data field’s entropy, as
the ambiguity distribution reveals. Such a mini-
mization will lead us to select a data point that
clarifies the distribution of streamlines, and
hence that more effectively uses data for data

mining purposes. This methodology’s net effect
is that we can capture a particular design’s desir-
ability in terms of computations involving SAL
aggregates. Thus, sampling is conducted for the
express purpose of improving the quality and ef-
ficacy of data mining. The data set is updated
with the newly collected value, and the process
repeats until it meets a desired stopping criteria.
We could terminate if the functional is within
accepted bounds or when confidence of data
mining results does not improve between suc-
cessive rounds of data collection—in our case,
when there is no further ambiguity.

Researchers have studied this idea of sampling
to satisfy particular design criteria in various con-
texts, especially spatial statistics.10–12 Many of these
approaches (including ours) rely on capturing a
desirable design’s properties in terms of a novel
objective function. Our work’s distinguishing fea-
ture is that it uses spatial information gleaned from
a higher level of abstraction to focus data collec-
tion at the field or simulation code layer.

Before we proceed, we must note an optional
step in our methodology. We could use the
newly collected data value to improve a surro-
gate model, which then generates a dense data
field for mining. We would use a surrogate func-

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 3. Example steps in a SAL implementation of a vector field analysis application. (a) Input vector field; (b) 8-
adjacency neighborhood graph; (c) forward neighbors; (d) best forward neighbors; (e) N-graph transposed from best
forward neighbors; (f) best backward neighbors; (g) resulting adjacencies redescribed as curves; and (h) higher-level 
aggregation and classification of curves whose flows converge.
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tion in lieu of the real data source to generate
sufficient data for mining purposes, which is of-
ten more advantageous than working directly
with sparse data. Surrogate models are widely
used in engineering design, optimization, and
response-surface approximations.13,14

Example applications

Together, SAL and our focused sampling
methodology address the main issues raised in the

beginning of this article: SAL’s uniform use of fields
and abstraction operators lets us exploit prior
knowledge in a bottom-up manner. The sampling
methodology uses discrepancies as suggested by
our knowledge of physical properties in a top-
down manner. Continuing these two stages alter-
natively leads to a closed-loop data mining solu-
tion for data-scarce domains (see Figure 5). Let’s
look at two examples—mining pockets in spatial
data and qualitative determination of Jordan forms
of matrices—that demonstrate this approach.

// (a) Read vector field.
vect_field = read_point_point_field(infile);
points = domain_space(vect_field);

// (b) Aggregate with 8-adjacency (i.e. within 1.5 units).
point_ngraph = aggregate(points, make_ngraph_near(1.5));

// (c) Compare vector directions with node-neighbor direction.
angle = function (p1, p2) {

dot(normalize(mean(feature(vect_field, p1), feature(vect_field, p2))),
normalize(subtract(p2, p1)))

}
forward_ngraph = filter_ngraph(adj in point_ngraph, {

angle(from(adj), to(adj)) > angle_similarity
})
// (d) Find best forward neighbor, comparing vector direction
// with ngraph edge direction and penalizing for distance.
forward_metric = function (adj) {

angle(from(adj), to(adj)) - distance_penalty * distance(from(adj),to(adj))
}
best_forward_ngraph = best_neighbors_ngraph(forward_ngraph, forward_metric);

// (e) Find backward neighbors by transposing best forward neighbors.
backward_ngraph = transpose_ngraph(best_forward_ngraph);

// (f) At junctions, keep best backward neighbor using metric
// similar to that for best forward neighbors.
backward_metric = function (adj) {

angle(to(adj), from(adj)) - distance_penalty*distance(from(adj),to(adj))
}
best_backward_ngraph = best_neighbors_ngraph(backward_ngraph, backward_metric);

// (g) Move to a higher abstraction level by forming equivalence classes
// from remaining groups and redescribing them as curves.
final_ngraph = symmetric_ngraph(best_backward_ngraph, extend=true);
point_classes = classify(points, make_classifier_transitive(final_ngraph));

points_to_curves = redescribe(classes(point_classes),
make_redescribe_op_path_nline(final_ngraph));

trajs = high_level_objects(points_to_curves);

Figure 4. A SAL data mining program for Figure 3’s vector field analysis application.
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Mining pockets in spatial data
Our first application is motivated by the air-

craft design problem described in the introduc-
tion and illustrates the basic idea of our method-
ology. Here, we are given a spatial vector field,
and we wish to identify pockets underlying the
gradient. In a weather map, this might mean
identifying pressure troughs. The question is,
“Where should data be collected so that we can
mine the pockets with high confidence?” We
start with a mathematical function that gives rise
to pockets in spatial fields. This function will
help validate and test our data mining and sam-
pling methodology.

de Boor’s function. Carl de Boor invented a pocket
function that exploits containment properties of
the n-sphere of radius 1 centered at the origin
(Σxi

2 ≤ 1) with respect to the n-dimensional hy-
percube defined by xi ∈ [–1, 1], i = 1 ... n. Al-
though the sphere is embedded in the cube, the
ratio of the volume of the cube (2n) to that of the
sphere (πn/2 / (n/2)!) grows unboundedly with n.
This means that a high-dimensional cube’s vol-
ume is concentrated in its corners (a counterin-
tuitive notion at first). de Boor exploited this
property to design a difficult-to-optimize func-

tion that assumes a pocket in each corner of the
cube (see Figure 6), just outside the sphere. For-
mally, we can define it as

(1)

(2)

, (3)

where X is the n-dimensional point (x1, x2, …, xn)
at which the pocket function p is evaluated, I is
the identity n-vector, and || · || is the L2 norm.

Obviously, p has 2n pockets (local minima). If n
is large (say, 30, which means representing the
corners of the n-cube will take more than
500,000 points), naive global optimization algo-
rithms will need an unreasonable number of
function evaluations to find the pockets. Our
goal for data mining here is to obtain a qualita-
tive indication of the existence, number, and lo-
cations of pockets, using low-fidelity models or
as few data points as possible. Then, we can use
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the results to seed higher-fidelity calculations.
This fundamentally differs from DACE (Design
and Analysis of Computer Experiments),12 poly-
nomial response surface approximations,13 and
other approaches in geostatistics where the goal
is accuracy of functional prediction at untested
data points. Here, we trade accuracy of estima-
tion for the ability to mine pockets.

Surrogate function. In this study, we use the SAL
vector field bundling code presented earlier along
with a surrogate model as the basis for generating
a dense data field. Surrogate theory is an estab-
lished area in engineering optimization, and we
can build a surrogate in several ways. However,
the local nature of SAL computations means that
we can be selective about our choice of surrogate
representation. For example, global, least-squares
type approximations are inappropriate because
measurements at all locations are equally consid-
ered to uncover trends and patterns in a particu-
lar region. We advocate the use of kriging-type in-
terpolators,12 which are local modeling methods
with roots in Bayesian statistics. Kriging can han-
dle situations with multiple local extrema and can
easily exploit anisotropies and trends. Given k
observations, the interpolated model gives exact
responses at these k sites and estimates values at
other sites by minimizing the mean-squared er-
ror (MSE), assuming a random data process with
zero mean and a known covariance function.

Formally (for two dimensions), we assume the
true function p to be the realization of a random
process such as

p(x, y) = β + Z(x, y), (4)

where β is typically a uniform random variate,
estimated based on the known k values of p, and
Z is a correlation function. Kriging then esti-
mates a model p′ of the same form, on the basis
of the k observations,

p′(xi, yi) = E( p(xi, yi) | p(x1, y1), ..., p(xk, yk)), (5)

and minimizing MSE between p′ and p,

MSE = E( p′(x, y) – p(x, y))2. (6)

A typical choice for Z in p′ is σ2 R, where scalar
σ2 is the estimated variance, and correlation ma-
trix R encodes domain-specific constraints and
reflects the data’s current fidelity. We use an ex-
ponential function for entries in R, with two pa-
rameters C1 and C2:

. (7)

Intuitively, values at closer points should be
more highly correlated.

We get the MSE-minimizing estimator by
multidimensional optimization (the derivation
from Equations 6 and 7 is beyond this article’s
scope):

. (8)

This expression satisfies the conditions that
there is no error between the model and the true
values at the chosen k sites and that all variability
in the model arises from the design of Z. Gradi-
ent descent or pattern search methods often per-
form the multidimensional optimization.12

Data mining and sampling methodology. The bot-
tom-up computation of SAL aggregates from
the surrogate model’s outputs will possibly lead
to some ambiguous streamline classifications, as
we discussed earlier. Ambiguity can reflect the
desirability of acquiring data at or near a speci-
fied point—to clarify the correct classification
and to serve as a mathematical criterion of in-
formation content. We can use information
about ambiguity to drive data collection in sev-
eral ways. In this study, we express the ambigui-
ties as a distribution describing the number of
possible good neighbors. This ambiguity distri-
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bution provides a novel mechanism to include
qualitative information; streamlines that agree
will generally contribute less to data mining, for
information purposes. We thus define the infor-
mation-theoretic measure M (see Figure 5) to be
the ambiguity distribution ℘.

We define the functional as the posterior en-
tropy E(–log d), where d is the conditional density
of ℘ over the design space not covered by the
current data values. By a reduction argument,
minimizing this posterior entropy can be shown
to maximize the prior entropy over the sampled
design space.12 In turn, this maximizes the
amount of information obtained from an experi-
ment (additional data collection). Moreover, we
also incorporate ℘ as an indicator covariance
term in our surrogate model, which is a conven-
tional method for including qualitative informa-
tion in an interpolatory model.11

Experimental results. Our initial experimental
configuration used a face-centered design (four
points, in the 2D case). A surrogate model by
kriging interpolation then generated data on a
41n-point grid. We used de Boor’s function as
the source for data values; we also employed
pseudorandom perturbations of it that shift the
pockets from the corners somewhat unpre-
dictably.15 In total, we experimented with 200
perturbed variations of the 2D and 3D pocket
functions. For each of these cases, we organized
data collection in rounds of one extra sample
each (to minimize the functional). We recorded
the number of samples SAL needed to mine all
the pockets and compared our results with those
obtained from a pure DACE–kriging approach.
In other words, we used the DACE methodol-
ogy to suggest new locations for data collection
and determined how those choices fared with re-
spect to mining the pockets.

Figure 7 shows the distributions of the total
number of data samples required to mine the four
pockets for the 2D case. We mined the 2D pock-
ets with three to 11 additional samples, whereas
the conventional kriging approach required 13 to
19 additional samples. The results were more
striking in the 3D case: at most 42 additional sam-
ples for focused sampling and up to 151 points for
conventional kriging. This shows that our focused
sampling methodology performs 40 to 75 percent
better than sampling by conventional kriging.

Figure 8a describes a 2D design involving only
seven total data points that can mine the four
pockets. Counterintuitively, no additional sam-
ple is required in the lower-left quadrant. Al-

though this will lead to a highly suboptimal de-
sign (from the traditional viewpoint of minimiz-
ing variance in predicted values), it is nevertheless
an appropriate design for data mining purposes.
In particular, this means that neighborhood cal-
culations involving the other three quadrants are
enough to uncover the pocket in the fourth quad-
rant. Because the kriging interpolator uses local
modeling and because pockets in 2D effectively
occupy the quadrants, obtaining measurements
at ambiguous locations captures each dip’s rela-
tively narrow regime, which in turn helps distin-
guish the pocket in the neighboring quadrant.
Achieving this effect is hard without exploiting
knowledge of physical properties—in this case,
locality of the dips.

Qualitative Jordan form determination
In our second application, we use our method-

ology to identify a given matrix’s most probable
Jordan form. This is a good application for data
mining because the Jordan form’s direct compu-
tation leads to a numerically unstable algorithm.

Jordan forms. A matrix A (real or complex) that
has r independent eigenvectors has a Jordan
form consisting of r blocks. Each of these blocks
is an upper triangular matrix that is associated
with one of the eigenvectors of A and whose size
describes the corresponding eigenvalue’s multi-
plicity. For the given matrix A, the diagonaliza-
tion thus posits a nonsingular matrix B such that

, (9)

where

(10)

and λi is the eigenvalue revealed by the ith Jor-
dan block (Ji). The Jordan form is most easily
explained by looking at how eigenvectors are dis-
tributed for a given eigenvalue. Consider, for ex-
ample, the matrix

, (11)

 

1 1 1
0 0 2
0 1 3

−

−

















   

Ji

i

i

=
⋅

⋅



















λ

λ

1
1

1

   

B AB
J

J

J

− = ⋅



















1

1

2

r



JULY/AUGUST 2002 39

which has eigenvalues at 1, 1, and 2. This matrix
has only two eigenvectors, as revealed by the
two-block structure of its Jordan form:

. (12)

The Jordan form shows that there is one eigen-
value (1) of multiplicity 2 and one eigenvalue (2)
of multiplicity 1. We say that the matrix has the
Jordan structure given by (1)2 (2)1. In contrast,
the matrix

(13)

has the same eigenvalues but a three-block Jor-
dan structure:

. (14)

This is because there are three independent
eigenvectors (the unit vectors, actually). The di-
agonalizing matrix is thus the identity matrix,
and the Jordan form has three permutations.

The Jordan structure is therefore given by (1)1

(1)1 (2)1. These two examples show that a given
eigenvalue’s multiplicity could be distributed
across one, many, or all Jordan blocks. Correlat-
ing the eigenvalue with the block structure is an
important problem in numerical analysis.

The typical approach to computing the Jor-
dan form is to follow the structure’s staircase pat-
tern and perform rank determinations in con-
junction with ascertaining the eigenvalues. One

 

1 0 0
0 1 0
0 0 2

















 

1 0 0
0 2 0
0 0 1

















 

1 1 0
0 1 0
0 0 2

















10 15
Number of samples

20 25
0

5

10

15

20

25

5

30

35

F
re

qu
en

cy
 (

%
)

Krig 
Ambig

Figure 7. Pocket-finding results for the 2D example
show that focused sampling using a measure of
ambiguity always requires fewer total samples (7
to 15) than conventional kriging (17 to 23).

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

(a) (b)
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surrogate model data, confirming the existence of four pockets.
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of the more serious caveats with such an ap-
proach involves mistaking an eigenvalue of mul-
tiplicity greater than 1 for multiple eigenval-
ues.16 In Equation 11, this might lead to
inferring that the Jordan form has three blocks.
The extra care needed to safeguard staircase al-
gorithms usually involves more complexity than
the original computation to be performed. The
ill-conditioned nature of this computation has
thus traditionally prompted numerical analysts
to favor other, more stable, decompositions.

Qualitative assessment of Jordan forms. A recent
development has been the acceptance of a quali-
tative approach to Jordan structure determina-
tion, proposed by Françoise Chaitin-Chatelin
and Valerie Frayssé.17 This approach does not use
the staircase idea. Instead, it exploits a semantics
of eigenvalue perturbations to infer multiplicity,
which leads to a geometrically intuitive algorithm
that we can implement using SAL.

Consider a matrix that has eigenvalues λ1, λ2,
…, λn with multiplicities ρ1, ρ2, …, ρn. Any at-
tempt at finding the eigenvalues (for example,
determining the roots of the characteristic poly-
nomial) is intrinsically subject to the numerical
analysis dogma: the problem being solved will
actually be a perturbed version of the original
problem. This allows the expression of the com-
puted eigenvalues in terms of perturbations on
the actual eigenvalues. The computed eigen-
value corresponding to any λk will be distributed
on the complex plane as

, (15)

where the phase φ of the perturbation ∆ ranges
over {2π, 4π, …, 2ρk π} if ∆ is positive and over
{3π, 5π, …, 2(ρk + 1)π} if ∆ is negative. Chaitin-
Chatelin and Frayssé superimposed numerous
such perturbed calculations graphically so that
the aggregate picture reveals the ρk of the eigen-
value λk.17 The phase variations imply that the
computed eigenvalues will lie on a regular poly-
gon’s vertices—centered on the actual eigen-
value—where the number of sides is two times
the multiplicity of the considered eigenvalue.
This takes into account both positive and nega-
tive ∆. Because ∆ influences the polygon’s diam-
eter, iterating this process over many ∆ will lead
to a “sticks” depiction of the Jordan form.

To illustrate, we choose a matrix whose com-
putations will be more prone to finite precision

errors. Perturbations on the 8 × 8 Brunet matrix
with Jordan structure (–1)1 (–2)1 (7)3 (7)3 induce
the superimposed structures in Figure 9.17 Fig-
ure 9a depicts normwise relative perturbations
in the scale of [2–50, 2–40]. The six sticks around
the eigenvalue at 7 clearly reveal that its Jordan
block is of size 3. The other Jordan block, also
centered at 7, is revealed if we conduct our ex-
ploration at a finer perturbation level. Figure 9b
reveals the second Jordan block using perturba-
tions in the range [2–53, 2–50]. The noise in both
pictures is a consequence of having two Jordan
blocks with the same size and a “ring” phenom-
enon studied elsewhere.18 We do not attempt to
capture these effects in this article.

Data mining and sampling methodology. For this
study, we collect data by random normwise per-
turbations in a given region, and a SAL program
determines multiplicity by detecting symmetry
correspondence in the samples. The first aggre-
gation level collects a given perturbation’s sam-
ples into triangles. The second aggregation level
finds congruent triangles via geometric hash-
ing19 and uses congruence to establish a corre-
spondence relation among triangle vertices. This
relation is then abstracted into a rotation about a
point (the eigenvalue) and evaluated for whether
each point rotates onto another and whether
matches define regular polygons. A third level
then compares rotations across different pertur-
bations, revisiting perturbations or choosing new
ones to disambiguate (see Figure 10). 

The end result of this analysis is a confidence
measure on models of possible Jordan forms.
Each model is defined by its estimate of λ and ρ
(we work in one region at a time). The measure
M is the joint probability distribution over the
space of λ and ρ.

Experimental results. Because our Jordan form
computation treats multiple perturbations irre-
spective of level as independent estimates of
eigenstructure, the idea of sampling here is not
where to collect, but how much to collect. The
goal of data mining is hence to improve our con-
fidence in model evaluation. 

We organized data collection into rounds of
six to eight samples each, varied a tolerance pa-
rameter for triangle congruence from 0.1 to 0.5
(effectively increasing the number of models
posited), and determined the number of rounds
needed to determine the Jordan form. As test
cases, we used the set of matrices Chaitin-
Chatelin and Frayssé studied.17 On average, our

  λ ρ

φ
ρ

k

i

k ke+ ∆
1
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focused sampling approach required one round
of data collection at a tolerance of 0.1 and up to
2.7 rounds at 0.5. Even with a large number of
models posited, additional data quickly weeded
out bad models. Figure 10 demonstrates this
mechanism on the Brunet matrix discussed ear-
lier for two sets of sample points. To the best of
our knowledge, this is the only known focused
sampling methodology for this domain; we are
unable to present any comparisons. However, by
harnessing domain knowledge about correspon-
dences, we have arrived at an intelligent sam-
pling methodology that resembles what a human
would get from visual inspection.

Our methodology for mining in data-
scarce domains has several intrinsic
benefits. First, it is based on a uni-
form vocabulary of operators that a

rich diversity of applications can exploit. Second,
it demonstrates a novel factorization to the prob-
lem of mining when data is scarce—namely, for-
mulating an experiment design methodology to
clarify, disambiguate, and improve confidences
in higher-level aggregates of data. This lets us
bridge qualitative and quantitative information

in a unified framework. Third, our methodology
can coexist with more traditional approaches to
problem solving (numerical analysis and opti-
mization); it is not meant to be a replacement or
a contrasting approach.

The methodology makes several intrinsic as-
sumptions that we only briefly mention here.
Both our applications have been such that the
cause, formation, and effect of the relevant phys-
ical properties are well understood. This is pre-
cisely what lets us act decisively on the basis of
higher-level information from SAL aggregates,
through the measure M. It also assumes that the
problems the mining algorithm will encounter
are the same as the problems for which it was de-
signed. This is an inheritance from Bayesian in-
ductive inference and leads to fundamental lim-
itations on what we can do in such a setting. For
instance, if new data does not help clarify an am-
biguity, does the fault lie with the model or the
data? We can summarize this problem by saying
that the approach requires strong a priori infor-
mation about what is possible and what is not.

Nevertheless, by advocating targeted use of
domain-specific knowledge and aiding qualita-
tive model selection, our methodology is more
efficient at determining high-level models from
empirical data. Together, SAL and our informa-
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Figure 9. Superimposed spectra for assessing the Jordan form of the Brunet matrix. We see two Jordan blocks of
multiplicity 3 for eigenvalue 7, at (a) coarse and (b) fine perturbation levels.
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tion-theoretic measure M encapsulate knowl-
edge about physical properties, which is what
makes our methodology viable for data mining.
In the future, we aim to characterize more for-
mally the particular forms of domain knowledge
that help overcome sparsity and noise in scien-
tific data sets.

We could also extend our framework to take
into account the expense of data samples. If the
cost of data collection is nonuniform across the
domain, then including this in the design of our
functional will let us trade the cost of gathering
information with the expected improvement in
problem-solving performance. This area of data
mining is called active learning.

Data mining can sometimes be a controversial
term in a discipline that is used to mathematical
rigor; this is because it is often used synony-
mously with “lack of a hypothesis or theory.”
This need not be the case. Data mining can in-
deed be sensitive to knowledge about the do-
main, especially physical properties of the kind
we have harnessed here. As data mining applica-
tions become more prevalent in science, the
need to incorporate a priori domain knowledge
will become even more important.
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