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Abstract

Genome-scale metabolic models are available for an increasing number of organisms and can be used to define the region
of feasible metabolic flux distributions. In this work we use as constraints a small set of experimental metabolic fluxes, which
reduces the region of feasible metabolic states. Once the region of feasible flux distributions has been defined, a set of
possible flux distributions is obtained by random sampling and the averages and standard deviations for each of the
metabolic fluxes in the genome-scale model are calculated. These values allow estimation of the significance of change for
each reaction rate between different conditions and comparison of it with the significance of change in gene transcription
for the corresponding enzymes. The comparison of flux change and gene expression allows identification of enzymes
showing a significant correlation between flux change and expression change (transcriptional regulation) as well as
reactions whose flux change is likely to be driven only by changes in the metabolite concentrations (metabolic regulation).
The changes due to growth on four different carbon sources and as a consequence of five gene deletions were analyzed for
Saccharomyces cerevisiae. The enzymes with transcriptional regulation showed enrichment in certain transcription factors.
This has not been previously reported. The information provided by the presented method could guide the discovery of
new metabolic engineering strategies or the identification of drug targets for treatment of metabolic diseases.
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Introduction

Systems Biology aims to use mathematical models to integrate

different kinds of data in order to achieve a global understanding

of cellular functions. The data to be integrated differ both in their

nature and measurability. The availability of DNA microarrays

allows for the comparative analysis or mRNA levels between

different strains and conditions. These data provide genome-wide

information, and changes in expression at different conditions are

expressed in statistical terms such as p-values or Z-scores that

quantify the level of significance in transcriptional changes. The

availability of annotated genome-scale metabolic networks

allowed mapping of the transcriptional changes in metabolic

genes on to their corresponding metabolic pathways and defining

significantly up or down regulated sub-networks [1]. Even though

this allows for identification of transcriptional hot-spots in

metabolism, this does still not provide information about whether

there are any changes in metabolic fluxes in these pathways, as it

has been shown that in general there is no clear correlation

between gene expression and protein concentration [2] or

metabolic flux [3,4].

Metabolic fluxes are the result of a complex interplay between

enzyme kinetics, metabolite concentrations, gene expression and

translational regulation. Metabolic fluxes can be directly measured

using 13C labeling experiments [5]. However, flux data obtained

using this approach differ from gene expression data in two main

features: 1) their determination is only possible for a relatively

small subset of all the reactions in a genome-scale metabolic

network and 2) they are indirect data in the sense that the fluxes

are quantified obtained by fitting measured labeling patterns using

a simple metabolic model. The complexity of the mRNA-flux

dependence and the disparity in the nature of both kinds of data

make their integration an important challenge.

In this paper we propose a method to integrate gene expression

data with flux data by transforming a limited amount of

quantitative flux data into a genome-scale set of statistical scores

similar to the one obtained from DNA microarrays. In order to do

that, a set of experimental exchange fluxes are fixed for each of the

studied conditions or for each of the strains investigated, and a

sampling algorithm is then used to obtain a set of flux distributions

satisfying the experimental values. This approach allows for

obtaining means and standard deviations for each flux in the

genome-scale network. From the mean and standard deviation it is

possible to derive statistical scores for the significance of flux

change between conditions [6,7]. Random sampling in the region

of feasible flux distributions has been previously used to study the

statistical distribution of flux values and determine a flux backbone

of reactions carrying high fluxes [8] as well as to define modules of

reactions whose fluxes are positively correlated [9,10]. Also

mitochondria related diseases have been analyzed using random

sampling [11]. All the works published so far used the Hit and Run

algorithm to perform the sampling [7].
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By dividing the average difference among two conditions (e.g.

carbon sources or mutant strains) by its standard deviation, it is

possible to obtain Z scores for each metabolic flux. These scores

can be transformed into p-values that measure the significance of

change of each flux (see methods). By comparing these p-values

with the p-values derived from gene-expression arrays, the

enzymes in the network can be classified as: 1) enzymes that have

a significantly correlated change both in flux and expression level

(reactions showing transcriptional regulation), 2) enzymes that

show a significant change in expression but not in flux (we will

refer to them as showing post-transcriptional regulation) and 3)

enzymes that show significant changes in flux but not a change in

expression (metabolic regulation). Hereby we provide a framework

that allows for global classification of reaction fluxes into those that

are transcriptionally regulated, post-transcriptionally regulated

and metabolically regulated (see Fig. 1). This will have substantial

impact on the field of metabolic engineering where changes in

gene-expression are often used as the key means to alter metabolic

fluxes. In the paper we show the use of the presented framework

for the analysis of the yeast Saccharomyces cerevisiae grown at different

growth conditions and for the analysis of different deletion

mutants.

The combined use of random sampling of genome-scale

metabolic networks and expression data allows for global mapping

of reactions that are either transcriptionally or metabolically

regulated. This information can be used to guide the engineering

of microbial strains or as a diagnosis tool for studying metabolic

diseases in humans. In particular we should highlight that

reactions in which there is no relation between gene transcription

level and metabolic flux are not suitable targets for flux increase

via gene over-expression. Through analysis of different data sets

the method revealed that many changes in gene expression are not

correlated with a corresponding change in metabolic fluxes. The

use of gene-expression data alone can therefore be misleading.

However, our method allowed for identification of many specific

reactions that are indeed transcriptionally regulated, and we

further identified that the expression of these enzymes is regulated

a few key transcription factors. This fact suggests that the

Author Summary

The sequencing of full genomes and the development of
high-throughput analysis technologies have made avail-
able both genome-scale metabolic networks and simulta-
neous transcription data for all the genes of an organism.
Genome-scale metabolic models, with the assumption of
steady state for the internal metabolites, allow the
definition of a region of feasible metabolic flux distribu-
tions. This space of solutions can be further constrained
using experimental flux measurements (normally produc-
tion or uptake rates of external compounds). Here a
random sampling method was used to obtain average
values and standard deviations for all the reaction rates in
a genome-scale model. These values were used to quantify
the significance of changes in metabolic fluxes between
different conditions. The significance in flux changes can
be compared to the changes in gene transcription of the
corresponding enzymes. Our method allowed for identi-
fication of specific reactions that are transcriptionally
regulated, and we further identified that these reactions
can be ascribed to a few key transcription factors. This
suggests that the regulation of metabolism has evolved to
contain a few flux-regulating transcription factors that
could be the target for genetic manipulations in order to
redirect fluxes.

Figure 1. Illustration of the regulatory mechanisms of cellular metabolism. The fluxes can be regulated at the level of mRNA transcription,
by the concentrations of the metabolites or by intermediate steps such as translation or activation of the enzymes.
doi:10.1371/journal.pcbi.1000859.g001
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regulation of metabolism has evolved to contain a few flux-

regulating transcription factors that could be the target for genetic

manipulations in order to redirect fluxes.

Results/Discussion

Comparisons between different sampling methods
Here we propose a sampling method that finds extreme

solutions among the feasible flux distributions of the metabolic

network. These solutions correspond to the corners in the region of

allowed flux distributions, and in mathematical terms they are

elements of the convex basis of the region of feasible solutions

(which is a convex set). The COBRA Toolbox [12] includes a

random sampling option that uses the Hit and Run algorithm [13]

to obtain points uniformly distributed in the region of allowed

solutions. The difference between the two sampling methods is

illustrated in Fig. 2.

In order to assess the accuracy of our sampling method to

estimate the average fluxes and their standard deviations, we

compared a set of internal fluxes measured with 13C labeling [14]

with predictions using 500 sampling points obtained using the

sampling method in the convex basis and 500 sampling points

obtained using the sampling algorithm implemented in the

COBRA Toolbox. The results are summarized in Table 1 where

our method is labeled Convex Basis (CB), because it samples

elements of the convex basis of the region of allowed solutions (see

above), and the method from the COBRA Toolbox is labeled Hit

and Run (HR). The Z values in the table are the number of

standard deviations that the real value is deviating from the

calculated mean.

The means obtained by the two sampling methods are very

similar for most of the reactions; however the standard deviations

found using the HR algorithm are significantly smaller. With the

HR method the real values for the fluxes in many cases deviate

several standard deviations from the mean, A high value of Z

indicates that the real value has a very low chance of being

obtained using the considered sampling method (or in other words:

the real value does not belong to the family of solutions that is

generated by the sampling method). The number of samples with

the HR algorithm was increased up to 5000 to check possible

effects of the sample size on the standard deviation. Only small

increases were observed for the standard deviations of the studied

fluxes.

Using the CB algorithm we obtain higher standard deviations

and the real flux is for most reactions less than one standard

deviation away from the mean flux. We can therefore conclude

that the CB sampling method gives more realistic standard

deviations for the fluxes. This is important if we want to compare

the significance of flux changes between conditions. An under-

estimated standard deviation would make some flux changes

appear as being significant even though they may not be in reality,

and our method therefore gives a more conservative list of

significantly changed reaction fluxes than the HR algorithm.

Comparisons between different carbon sources and
mutant strains
To evaluate our method we used data for the yeast S. cerevisiae.

Data from growth on four different carbon sources (glucose,

maltose, ethanol and acetate) in chemostat cultures and five

deletion mutants (grr1D, hxk2D, mig1D, mig1Dmig2D and gdh1D)

grown in batch cultures were used. The exchange fluxes and gene

expression data for the mentioned conditions have been published

earlier [15–17].

Our method obtains probability scores for each enzyme in the

metabolic network (see methods) and this allowed us to classify the

enzymes as transcriptionally regulated (correlation between flux

and gene expression), post-transcriptionally regulated (changes in

gene expression don’t cause changes in flux) and metabolically

regulated (changes in flux are not caused by changes in gene-

expression). The cut-off chosen for this classification was a

probability score above 0.95. Tables 2 and 3 show the 10 top

scoring enzymes in each group (or fewer when less than 10

enzymes had a score exceeding 0.95). The method is illustrated in

Fig. 3.

The method to identify the significance of flux changes relies on

a set of measured external fluxes, and in some cases strains that

don’t show significant changes in external fluxes have changes in

internal fluxes [18]. These changes cannot be identified with our

method, and our estimations of the significance of flux changes can

therefore be seen as conservative estimates. The lists of

transcriptionally and metabolically regulated reactions are there-

fore more reliable than the list of post-transcriptionally regulated

reactions (in which some fluxes may be changed in reality but their

change pass undetected).

The reactions showing transcriptional regulation form a set of

putative targets where enzyme over-expression or down regulation

will influence the flux through these reactions. The reactions

showing metabolic regulation points to parts of the metabolism

where the pools of metabolites are possibly increasing or

decreasing in connection with transcriptional changes and hereby

counteracting possible changes in enzyme concentration as a result

of transcriptional changes. This knowledge can be used to identify

whether one should target changes in enzyme concentration (vmax

changes), e.g. through over-expression, or changes in enzyme

affinity (Km changes), e.g. through expression of heterologous

enzymes, in order to alter the fluxes.
Effects of different carbon sources. In the glucose to

maltose transition, only two enzymes showed transcriptional

change correlated with their flux. The a-glucosidase MAL32,

Figure 2. The red points illustrate the sampling in the corners
of the region of allowed solutions. The blue points illustrate the
uniform random sampling inside the space of allowed solutions.
doi:10.1371/journal.pcbi.1000859.g002
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responsible for the breakdown of maltose into glucose was up-

regulated and the glucose transporter HXT4 was down-regulated.

The metabolic adjustment in terms of fluxes was minimal and only

enzymes directly related with substrate uptake and utilization were

detected. The changes in gene expression were also low and only

11 metabolic enzymes were significantly perturbed (without

significant flux changes).

The glucose to ethanol and the glucose to acetate transitions

showed widespread flux and expression changes, and they are

therefore more interesting study cases. In the glucose-ethanol

transition 19 enzymes showed transcriptional regulation and 22

other enzymes changed in expression but not in flux. For the

glucose-acetate transition the same numbers were 33 and 23

respectively. We can see that about one half of the genes that

changed in transcription level also showed significant flux changes,

this proportion is higher than in the case of deletion mutants (as it

will be discussed later). Among the enzymes showing transcrip-

tional regulation, 14 were shared between the glucose-ethanol and

glucose-acetate transitions. Interestingly, no overlap was found

between the sets of enzymes that don’t change in flux. Metabolic

regulation was observed in 21 reactions for each case, among

which 8 overlap.

The enzymes showing transcriptional regulation clearly show a

down regulation of enzymes involved in glucose uptake and

utilization (e.g. Glucose transporter HXT4 or Hexokinase 2) and

the up-regulation of enzymes involved in the gluconeogenesis (e.g.

Fructose-1,6-biphosphatase) and the TCA cycle (e.g. Succinate

dehydrogenase or Citrate synthase). The AcCoA synthetase 2,

responsible for supplying AcCoA to the TCA cycle is also

transcriptionally up-regulated as well as the ATP synthetase

(involved in the respiratory chain) and the external NADH-

ubiquinone oxidoreductase 2, which supplies the necessary NAD+

to oxidize ethanol or acetate in the cytoplasm and maintain the

redox balance in the cell. Isocitrate lyase, a key component of the

glyoxylate cycle, is also transcriptionally up regulated and this

allows for net formation of malic acid that can further be

converted to phopshoenolpyruvate (via oxaloacetate) that fuels the

gluconeogenesis. All these changes in fluxes are consistent with

general knowledge about the changes in metabolism from glucose

to C2 carbon sources like ethanol and acetate, but what is

interesting to see is that not all the reactions associated with these

flux changes are transcriptionally regulated, but the cell have

selected a few key reactions to regulate at the transcriptional level

and these are identified using our method.

In order to make a deeper analysis, we performed an

enrichment test to compare the transcription factors involved in

the expression of the enzymes showing transcriptional regulation

and the enzymes showing changes in expression but not in flux.

We found three transcription factors that were strongly over-

represented in the metabolic genes showing transcriptional

regulation. In the glucose-ethanol transition, the transcription

factors Gcr1 and Gcr2 both appeared in 11 transcriptionally

regulated genes and in none of the other genes, whereas the

transcription factor Hap4 appeared in 11 transcriptionally

regulated genes and 5 of the other regulated genes. For the

glucose-acetate transition these numbers were 15-0, 11-0 and 15-0

for the same transcription factors. This means that certain

transcription factors are especially involved in the transcriptional

regulation of metabolic fluxes (the same kind of enrichment was

observed in the deletion mutants, as will be discussed later), and to

our knowledge this has not been previously reported. It basically

implies that there is global regulation of major flux alterations,

which is similar to what has experimentally been shown to be the

case for galactose metabolism [19].

The top scoring metabolically regulated reactions, both for

glucose-ethanol and glucose-acetate, are the Fructose biphosphate

aldolase and the Triosephosphate isomerase. These reactions are

known to operate close to the equilibrium and are therefore very

sensitive to changes in the metabolic pools, which is consistent with

metabolic regulation of the fluxes. In the considered cases the

direction of these reactions is inverted. This can only be explained

by a decrease in the fructose-1,6-diphosphate pool and an increase

in the glyceraldehyde-3-phosphate and dihydroxyacetone pools.

This hypothesis is supported by the fact that in chemostat cultures,

there was not found any correlation between the glycolytic flux

and the expression of the genes encoding these two enzymes [20].

Table 1. Real and estimated fluxes in S. cerevisiae at aerobic and anaerobic growth conditions.

Aerobic conditions Flux Mean (HR) Variance (HR) Mean (CB) Variance (CB) Z (HR) Z (CB)

Fructose-bisphosphate aldolase 0.70 0.76 0.0001 0.73 0.0098 3.38 0.19

Pyruvate kinase 1.50 1.49 0.0351 1.43 0.344 0.024 0.12

Pyruvate dehydrogenase 0.47 1.03 0.0004 0.98 0.015 28 4.14

Citrate synthase 0.71 0.99 0.0178 0.94 0.1868 2.08 0.53

Pyruvate carboxylase 0.32 0.23 0.0014 0.22 0.0124 2.44 0.96

Glucose-6-phosphate 1-dehydrogenase 0.52 0.37 0.0012 0.41 0.0881 4.25 0.37

Pyruvate decarboxylase 0.53 0.07 0.0004 0.08 0.0092 23 4.7

Anaerobic conditions

Fructose-bisphosphate aldolase 5.82 5.62 0.0053 5.67 0.30 2.78 0.28

Pyruvate kinase 10.37 10.39 1.93 10.49 25.62 0.019 0.025

Pyruvate dehydrogenase 0.26 0.59 0.0114 0.87 0.45 3.16 0.91

Citrate synthase 0.19 0.96 0.0271 1.03 1.03 4.7 0.83

Pyruvate carboxylase 0.32 0.32 0.0261 0.88 2.82 0.028 0.33

Glucose-6-phosphate 1-dehydrogenase 0.32 1.35 0.0441 1.20 2.40 4.9 0.56

Pyruvate decarboxylase 9.54 9.82 1.71 9.21 2.20 0.22 0.22

HR refers to the Hit and Run algorithm and CB to the Convex Basis algorithm.
doi:10.1371/journal.pcbi.1000859.t001
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The results for the glucose-ethanol change are summarized in

Fig. 4.

Effects of gene deletions. As mentioned above several

different deletion strains were evaluated and the number of

enzymatic reactions showing transcriptional regulation was 26 for

the grr1D strain, 25 for the hxk2D strain, 11 for the mig1D strain,

8 for the mig1Dmig2D strain and 0 for the gdh1D strain. The

reactions showing post-transcriptional regulation were 73, 70, 46,

36 and 89 for the same strains, respectively. These numbers clearly

show, that in contrast to growth on different carbon sources, most

of the transcriptional changes do not result in correlated changes

in metabolic fluxes. This indicates that many transcriptional

changes are indeed happening in order to minimize the metabolic

adjustment resulting from a gene deletion, and the most extreme

case is the gdh1D strain, where no transcriptional changes seem to

be correlated to flux changes. This behaviour is consistent with the

MOMA (Minimization of Metabolic Adjustment) hypothesis

[21].

There is a substantial overlap between the strains grr1D and

hxk2D, 15 transcriptionally regulated reactions were shared

between both strains and 28 post-transcriptionally regulated

reactions were also shared. An enrichment test was performed in

order to find transcription factors regulating the enzymes showing

transcriptional regulation. For the grr1D, the most significantly

enriched transcription factors were Pho2 (which regulates the

expression of 10 of the 26 enzymes with transcriptional regulation

and only 6 of the 73 enzymes showing post-transcriptional

regulation) and Bas1 (which regulates 10 out of 26 and 7 out of

Table 2. Top scoring enzymes for transcriptional, post-transcriptional and metabolic regulation for changes in carbon source.

Carbon source shift

Enzymes showing transcriptional

regulation

Enzymes showing post-transcriptional

regulation Enzymes showing metabolic regulation

Glucose-Maltose N a-glucosidase MAL32 N Mevalonate kinase N Acetate transport via proton symport

N Low-affinity glucose transporter HXT4 N Inosine-59-monophosphate dehydrogenase
IMD2

N Asparagine synthetase 1

N (DL)-glycerol-3-phosphatase 1

N Uncharacterized deaminase

N Nicotinate-nucleotide pyrophosphorylase

N Mevalonate kinase

N Mevalonate kinase

N Glycerol-3-phosphate dehydrogenase [NAD+] 1

Glucose-Ethanol N Phosphoenolpyruvate carboxykinase N Formate dehydrogenase 2 N Fructose-bisphosphate aldolase

N Fructose-1,6-bisphosphatase N ATP-NADH kinase N Triosephosphate isomerase

N Isocitrate lyase N Sulfate permease 1 N Pyruvate dehydrogenase E1 component
subunit alpha [m]

N Malate dehydrogenase [c] N Formate dehydrogenase 1 N Alpha-ketoglutarate dehydrogenase

N Citrate synthase [p] N Dicarboxylate transporter [m] N Succinyl-CoA ligase [ADP-forming]
subunit beta [m]

N Ribose-5-phosphate isomerise N NADP-specific glutamate dehydrogenase 2 N Malate synthase 2, glyoxysomal

N Low-affinity glucose transporter HXT4 N Uncharacterized deaminase N Glucose-6-phosphate 1-dehydrogenase

N External NADH-ubiquinone
oxidoreductase 2 [m]

N Probable 6-phosphogluconolactonase 3 N Cytochrome b-c1 complex subunit
Rieske [m]

N Glucose-6-phosphate isomerase N 6-phosphofructo-2-kinase 2 N Adenylate kinase [c]

N Nucleoside diphosphate kinase

Glucose-Acetate N Fumarate hydratase [m] N Ribonucleoside-diphosphate reductase large
chain 1

N Fructose-bisphosphate aldolase

N Phosphoenolpyruvate carboxykinase
[ATP]

N Phospho-2-keto-3-deoxyheptonate aldolase N Triosephosphate isomerase

N Fructose-1,6-bisphosphatase N 6-phosphofructo-2-kinase 1 N Ribose-5-phosphate isomerase

N Isocitrate dehydrogenase [NADP] [c] N Glutamine-dependent NAD(+) synthetase N Inorganic pyrophosphatase

N Succinate-semialdehyde
dehydrogenase [NADP+]

N Ribose-phosphate pyrophosphokinase 4 N Adenylate kinase [c]

N Citrate synthase [p] N ATP-dependent permease AUS1 N Glutamate decarboxylase

N Isocitrate dehydrogenase [NAD]
subunit 1 [m]

N Fructose-2,6-bisphosphatase N 4-aminobutyrate aminotransferase

N Pyruvate kinase 2 N Nicotinate-nucleotide pyrophosphorylase
[carboxylating]

N Tricarboxylate transport protein

N Low-affinity glucose transporter HXT49 N Squalene monooxygenase N Prephenate dehydrogenase [NADP+]

N Tricarboxylate transport protein

doi:10.1371/journal.pcbi.1000859.t002
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Table 3. Top scoring enzymes for transcriptional, post-transcriptional and metabolic regulation upon deletion of specific genes.

Mutants

Enzymes showing transcriptional

regulation

Enzymes showing post-transcriptional

regulation

Enzymes showing metabolic

regulation

Wild type-grr1D N GMP synthase [glutamine-hydrolyzing] N ADP, ATP carrier protein 2 N Acetyl-CoA carboxylase
malonyltransferase

N Phosphoribosylformylglycinamidine synthase N Glycogen [starch] synthase isoform 1 N [Acyl-carrier-protein]

N Dihydroorotase N AMP deaminase’ N [Acyl-carrier-protein] acetyltransferase

N Imidazole glycerol phosphate synthase hisHF N Sugar transporter STL1 N Grouped fatty acid synthesis [c]

N Adenylosuccinate lyase N Phosphofructokinase 2

N Pantoate–beta-alanine ligase N D-3-phosphoglycerate dehydrogenase 2

N Inorganic phosphate transporter N Probable 6-phosphogluconolactonase 4

N Threonine dehydratase [m] N Glycerol-3-phosphate dehydrogenase [NAD+] 1

N ATP phosphoribosyltransferase N Alcohol dehydrogenase 4

N Histidinol-phosphate aminotransferase N Xanthine phosphoribosyltransferase 1

Wild type-hxk2D N Phosphoribosylformylglycinamidine synthase N Nucleoside diphosphate kinase N Mannose-6-phosphate isomerase

N Pyruvate decarboxylase isozyme 3 N Cytochrome b-c1 complex subunit Rieske [m] N Acetyl-CoA carboxylase

N Phosphoglycerate mutase 2 N Homocysteine S-methyltransferase 1 N [Acyl-carrier-protein] malonyltransferase

N Alcohol dehydrogenase 5 N ATP-NADH kinase N [Acyl-carrier-protein] acetyltransferase

N Imidazole glycerol phosphate synthase hisHF N 1,4-alpha-glucan-branching enzyme N Grouped fatty acid synthesis [c]

N Dihydroorotase’ N NAD-dependent malic enzyme [m]

N Hexokinase-2 N Pyrroline-5-carboxylate reductase

N Phosphoglycerate mutase 3 N Galactose-1-phosphate uridylyltransferase

N Phosphofructokinase 1

N Adenylosuccinate lyase

Wild Type-mig1D N Probable 6-phosphogluconolactonase 1 N ADP-sulfurylase N Mannose-6-phosphate isomerase

N Orotidine 59-phosphate decarboxylase N Purine nucleoside phosphorylase N Mannose-1-phosphate
guanyltransferase

N Transketolase 2 N 39,59-cyclic-nucleotide phosphodiesterase 2 N Acetyl-CoA carboxylase

N Chorismate mutase N Phosphoserine phosphatase N Grouped fatty acid synthesis [c]

N Prephenate dehydratase’ N Cytidine deaminase

N Amidophosphoribosyltransferase N 1,3-beta-D-glucan-UDP glucosyltransferase

N Phosphatidate cytidylyltransferase N Vacuolar acid trehalase

N Diacylglycerol pyrophosphate phosphatase 1 N Low-affinity glucose transporter HXT1

N Inositol-3-phosphate synthase N Trehalose-phosphatase

Wild Type-

mig1Dmig2D

N Branched-chain-amino-acid aminotransferase
[c]

N Cystathionine beta-synthase N Phosphomannomutase

N Phosphoribosylformylglycinamidine synthase N Isocitrate lyase N Mannose-1-phosphate
guanyltransferase

N Pantothenate kinase N Mitochondrial dicarboxylate transporter N Acetyl-CoA carboxylase

N GMP synthase [glutamine-hydrolyzing] N High-affinity glucose transporter HXT2 N Grouped fatty acid synthesis [c]

N Imidazole glycerol phosphate synthase hisHF N Uridylate kinase

N 2-isopropylmalate synthase N Nucleoside diphosphate kinase

N Cytidine deaminase

N Potassium-activated aldehyde dehydrogenase
[m]

N Acetyl-coenzyme A synthetase 2

N Pyrroline-5-carboxylate reductase

Wild Type-gdh1D N Malate synthase 2 [g] N Glycerol uptake/efflux facilitator protein

N Sugar transporter STL1

N 1,3-beta-glucan synthase component FKS3

N High-affinity glucose transporter HXT2

N S-(hydroxymethyl)glutathione dehydrogenase
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73 enzymes in the mentioned groups). For the hxk2D strain the

most significant transcription factor enrichment was found for the

factors Pho2 (with 7 and 5 enzymes in each of the groups) and

Bas1 (with 7 and 6 enzymes in each of the groups).

Pho2 and Bas1 are partner proteins that regulate the

transcription of genes involved in purine and histidine biosynthesis

[22]. It is possible that the slower growth rate observed in grr1D

and hxk2D with respect to the wild type is due to a down-

Mutants

Enzymes showing transcriptional

regulation

Enzymes showing post-transcriptional

regulation

Enzymes showing metabolic

regulation

N Methylenetetrahydrofolate dehydrogenase
[NAD+]

N Acetate transport via proton symport

N Homoaconitase [m]

N Homoisocitrate dehydrogenase [m]

N Glutamate 5-kinase

doi:10.1371/journal.pcbi.1000859.t003

Table 3. Cont.

Figure 3. This figure illustrates the different steps of our method. Two kinds of data are extracted from fermentations, gene expression data
and production and consumption rates of different metabolites. The gene expression data are transformed into significance scores and p-values for
the expression change of the metabolic genes. The measured fluxes are used to constrain the solution spaces corresponding to different conditions.
A sampling among the allowed solutions gives averages and standard deviations for each reaction rate in the metabolic network. These values can be
obtained to obtain significance scores and p-values for the changes in reaction rates. The p-values for changes in expression and in reaction rates can
be combined to obtain the probabilities for a correlated change between both values (transcriptional regulation), changes in rate not correlated to
transcriptional changes (metabolic regulation) and changes in transcription that are not correlated to changes in rate (which we refer to as
posttranscriptional regulation).
doi:10.1371/journal.pcbi.1000859.g003
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Figure 4. Main reactions showing transcriptional up (red) or down (green) regulation associated with the glucose-ethanol shift. The
underlined metabolite pools are those that are expected to increase (red) or decrease (green) according to the observed metabolic regulation.
doi:10.1371/journal.pcbi.1000859.g004
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regulation of purine and histidine biosynthesis resulting from lower

activities of Pho2 or Bas1.

Strains grr1D and hxk2D show specific growth rates of 0.23 and

0.22 h21 respectively [16], however the biomass yields were 0.09 g-

DW g21 and 0.2 g-DW g21. The specific glucose uptake rate for the

hxk2D strain is significantly lower than for the grr1D strain as well as

for the reference strain. This is associated with the observation that

the glycolytic flux in the hxk2D strain shows transcriptional down-

regulation of five enzymes. In the upper glycolysis, the Hexokinase 2

has been deleted and the Phosphofructokinase 1 is down-regulated.

The Phosphofructokinase 1 was also strongly down-regulated in the

grr1D strain but the decrease in flux was not as large as in the hxk2D

strain. In the lower glycolysis of the hxk2D, all the three iso-enzymes

of Phosphoglycerate mutase were down-regulated as well as the

phosphoglycerate kinase. No down-regulation for these enzymes

was seen in the grr1D strain. The glycerol-3-phosphate dehydro-

genase has two iso-enzymes. The first of those isoenzymes was up-

regulated in the grr1D and the hxk2D strains; however its expected

flux decreased in both cases (more significantly in hxk2D). The

second iso-enzyme did not show important changes in grr1D but

was down-regulated in hxk2D. This is not the only case in which

different iso-enzymes show different regulatory patterns, and in

these cases our method for having flux estimations independent

from transcriptome analysis is particularly useful.

The strain hxk2D showed a strong decrease in ethanol

production compared to grr1D. All the alcohol dehydrogenase

iso-enzymes were down-regulated in a similar way in both strains.

The explanation of the differences in flux towards ethanol should

be found in the pyruvate decarboxylase. Pyruvate decarboxylase 3

was strongly down-regulated in both strains, however, pyruvate

decarboxylase 2 was up-regulated. This up-regulation was much

more significant in grr1D, which could explain a higher flux from

pyruvate to AcCoA in this strain. The results for the hxk2D

mutant are summarized in Fig. 5.

The mig1D mutant shows a higher specific growth rate than the

wild type. In general it is transcriptionally very similar to the wild

type [16]. An enrichment test in transcription factors between

transcriptional regulated and post-transcriptional regulated reac-

tions was performed and the factor Sfp1 was found. This factor is

known to regulate ribosome production and is nutrient sensitive

[23]. This could mean that the deletion of MIG1 activates a

response against starvation that results in an increased specific

growth rate. Among the transcriptionally regulated reactions, a

slight down-regulation of the PP pathway is observed together with

an up-regulation of several amino-acid production pathways.

In the mig1Dmig2Dmutant there is a slight decrease in the specific

growth rate. All the 8 transcriptionally regulated reactions were

down-regulated and belonged to amino-acid biosynthesis pathways.

The enrichment test found the factors Cbf1 and Gcn4 (represented in

4 and 1 out of 8 reactions and 5 and 6 out of 36 reactions). Gcn4 is

known to regulate amino-acid biosynthetic genes [24] and it seems

that the up-regulation of amino-acid biosynthesis due to the deletion

of MIG1 is cancelled by an opposite effect due to MIG2.

In all the mutants discussed above, the AcCoA carboxylase and

the fatty acid synthesis showed metabolic regulation. This could

indicate that in the studied cases the AcCoA pool was the main

parameter responsible for adjusting the rate of lipid biosynthesis to

match the changes in specific growth rates.

The experiments for the gdh1D mutant were performed in

chemostat cultures [17] with the same dilution rate. The only

observed change in exchange fluxes was a small decrease in glycerol

production and only a few significant changes were identified in the

metabolic fluxes. However, there were significant transcriptional

changes in many metabolic pathways. This again points to the

hypothesis that changes in transcription mainly results in altered

metabolite levels such that metabolic homeostasis can be main-

tained. This is supported by metabolome analysis of this mutant,

which showed that there were many changes in the metabolite levels

[25] and in fact many of these changes were associated with changes

also in the transcription of associated enzymes [26]. It is possible

that the chemostat conditions, by imposing the same specific growth

rate, forced the mutant strain to important transcriptional changes

in order to keep the fluxes unchanged.

In Fig. 6 we aim to provide a global visualization of the changes

for all the studied metabolic conditions.

Methods

Sampling in the region of feasible solutions
The steady state condition and the irreversibility of some

reactions impose limitations on the flux distributions attainable by

the cell [18]. The set of feasible solutions can be further

constrained by fixing some fluxes to their experimental values.

In general, the fluxes most accessible to experimental determina-

tion are those corresponding to uptake or secretion rates. After

fixing a subset of fluxes, genome scale models still have a large

number of degrees of freedom. In this study we used the genome

scale model iFF708 for S. cerevisiae [27]. Random sampling has

previously been performed [7] by enclosing the region of allowed

solutions in a parallelepiped with the same dimensions as solution

space (the null space of the stoichiometric matrix) and generating

random points inside this parallelepiped. The points that lie inside

the region of possible solutions are then selected. The COBRA

Toolbox [12] uses a Hit and Run algorithm to generate random

points in this way. In this work instead of sampling inside the

region of allowed solutions we sampled at its corners.

In order to obtain corners in the space of allowed solutions we

used the simplex method with a random set of objective functions

to be maximized. The maximization of each of these objective

functions will give a corner in the space of solutions. The

constraints imposed upon each optimization are:

S~vv~~00 ð1Þ

vi§0Vi[ irreversiblef g ð2Þ

vj~v
exp
j Vj[ measuredf g ð3Þ

The values of the measured fluxes (vexp) are different between

conditions. This fact changes the shape of the region of feasible

solutions between different conditions. S is the stoichiometric

matrix of the network.

In order to reduce the effects of internal loops we first identified

all the reactions that can get involved in loops using the FVA (Flux

Variability Analysis) option in the COBRA Toolbox. The

reactions that can be involved in loops are unbounded and show

the default maximal or minimal value set in the COBRA Toolbox

(1000 or 21000). If these bounds were kept, the means and

standard deviations for these reactions would be unrealistic [6] and

cannot be used for further analysis. In order to reduce the effect of

loops, the default maximal and minimal fluxes for the reactions

involved in loops, were set to a smaller value in order to reduce the

loop effect. In order to select an appropriate value the bounds

were increased from 0 in steps of 0.1 until the minimal value that

allows obtaining flux distributions consistent with the experimental

Sampling the Solution Space in Metabolic Networks

PLoS Computational Biology | www.ploscompbiol.org 9 July 2010 | Volume 6 | Issue 7 | e1000859



Sampling the Solution Space in Metabolic Networks

PLoS Computational Biology | www.ploscompbiol.org 10 July 2010 | Volume 6 | Issue 7 | e1000859



fluxes is found. These values went from 1 to 15 mmol h21g-DW21

depending on each condition. Also no weights (eq. 4) were

assigned to the reactions involved in loops in order to avoid

objective functions that maximize the activity of loops.

Random objective functions were generated by selecting

random pairs of reactions and assigning them random weights

(the reactions involved in loops were excluded from these choices).

The weights (wi) assigned to each reaction were generated by

dividing a random number between 0 and 1 by the maximal flux

for this reaction obtained using FVA. This normalization was

made to account for the different size orders of the different

reactions. The objective functions take the form:

F~wivizwjvj ð4Þ

One solution is obtained for each of the objective functions

generated.

Our objective is to obtain means and standard deviations for

each flux in each of the compared conditions and use them to get a

Z-score quantifying the significance of change in each flux

between the considered conditions. This score is equal to the

difference between the means in each of the conditions divided by

the standard deviation of this difference (note that the variance of

the difference is the sum of the two variances and the standard

deviation its square root).

Z
flux
i ~

E2 við Þ{E1 við Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var2 við ÞzVar1(vi)
p ð5Þ

The difference between averages in the numerator follows a

normal distribution (according to the central limit theorem) with a

standard deviation equal to the standard deviation of the flux (the

denominator in eq. (5)) divided by the square root of the number

of samples. Therefore, Z itself follows a normal distribution with a

standard deviation equal to the inverse of the square root of the

number of samples.

The Z score measures the significance of change in terms of

standard deviations. If the error in the Z score is lower than 0.15,

no information would be lost in terms of classifying a reaction as

significantly changed or not. The order of size of a genome-scale

model is about 1000 reactions. A reasonable accuracy for the Z-

scores would be to expect errors higher than 0.15 on the Z score

only for 1 reaction in the whole model. This means a p-value of

0.001. If we want to keep the error on the Z score under 0.15 with

a probability of 0.999 we need 500 samples, and this was therefore

selected as the sampling number.

Classification of enzymes according to their changes in
flux and expression level
The Z-scores can be transformed into probabilities of change by

using the cumulative Gaussian distribution. Once we have Z-

Figure 6. This figure illustrates the extent of transcriptional, post-transcriptional and metabolic regulation observed in different
metabolic processes for each of the studied cases. The metabolic processes are defined in the same way as in the iFF708 model. The
brightness of the color is proportional to the probability of a reaction in the corresponding process to show transcriptional, post-transcriptional and
metabolic regulation respectively. The black correspond to 0 and the white to 1.
doi:10.1371/journal.pcbi.1000859.g006

Figure 5. Main reactions showing transcriptional up (red) or down (green) regulation associated with the deletion of HXK2. The
underlined metabolite pools are expected to increase (red) or decrease (green) according to the observed metabolic regulation. The transcription
factors controlling the down-regulated pathways are also underlined in green.
doi:10.1371/journal.pcbi.1000859.g005
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scores for the significance of flux changes and Z-scores for the

significance of gene-expression changes we can obtain probabil-

ities of having correlated expression and flux changes for each

enzyme.

An increase in enzyme expression can result in an increase of

flux (transcriptional regulation). In order to evaluate the

probability for a reaction of being transcriptionally regulated we

multiply the probability of its enzyme level changing by the

probability of its flux changing in the same direction (obtained

using the cumulative normal distribution).

Ptri~W Z
flux
i

� �

W Z
exp
i

� �

ð6Þ

W Zð Þ~
ð

Z

{?

1
ffiffiffiffiffiffi

2p
p e{z2=2dz ð7Þ

If there is a decrease in expression and a decrease in flux, both Z-

scores are negative and we will use the absolute values of the Zs in

eq. (6). If there is an increase in expression and a negative flux

becomes more negative, we will use the absolute value of the Z-

score for the flux change. If the direction of the flux changes

between conditions, this change must be driven by the metabolic

concentrations and no by transcriptional regulation, therefore a

Ptri of zero is assigned by default.

In the same way as in eq. (6) we can define probabilities for the

expression level changing and for the flux not changing (post

transcriptional regulation).

Ppri~erf Z
exp
i

� �

1{erf Z
flux
i

� �� �

ð8Þ

erf Zð Þ~
ð

Z

{Z

1
ffiffiffiffiffiffi

2p
p e{z2=2dz ð9Þ

Now we use the error function because we want to evaluate the

probability of change in any direction. The absolute value of Z is

used in all the cases.

The probability of a change in flux but not in transcription

(metabolic regulation) can be obtained for each reaction as follows:

Pmri~erf Z
flux
i

� �

1{erf Z
exp
i

� �� �

ð10Þ

Each of these three probabilities can be associated to each enzyme

in the metabolic network.

Table 4 summarizes the criteria to assign each type of

regulation.
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