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SAMPLING THEOREMS
FOR NONSTATIONARY RANDOM PROCESSES
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Abstract. Consider a second order stochastic process {X(t), t e R), and
let H(X) be the Hubert space generated by the random variables of the
process. The process is said to be linearly determined by its samples
{X(nh), n e Z} if the random variables X(nh) generate H(X). In this paper
we give a sufficient condition for a wide class of nonstationary processes to
be determined by their samples, and present sampling theorems for such
processes. We also consider similar problems for harmonizable processes
indexed by LCA groups having suitable subgroups.

1. Introduction. It is well known that a second order, zero mean, weakly
stationary random process [X{t), t E R} satisfies the sampling expansion

Sin <nh-x{t- nh)
trh~x{t - nh)

if the spectral measure p of X{t) is supported by the interval
{-h~x/2, h~x/2). This so called "sampling theorem" dates back to Cauchy
and is of considerable importance in communication theory; such processes
with bounded spectra are called "band-limited".

This concept of "band-limitedness" can easily be generalized to non-
stationary processes; see e.g. Zakai [1], Piranashvili [2], Lee [3], [4]. A second
order random process, not necessarily stationary, is said to be "band-limited
to w" if its covariance function R{t, s) = E{X{t)X{s)) has a Fourier trans-
form R (possibly a distribution) supported by the square [ — w, w] X [ — w, w]
in R2. If h~x/2 > w, then a band-limited process satisfies a modified sam-
pling theorem similar to (1). These sampling theorems, which converge in
mean square and also almost surely, enable a band-limited process to be
exactly reconstructed from its samples {X{nh), n £ Z}. Of course, a process
need not be band-limited to admit an error-free reconstruction from its
samples. Lloyd [5] gave a necessary and sufficient condition on the spectral
measure for a stationary process to admit such a reconstruction. More

X{t)=    S   X{nh)      ,_    ;    _J (1)
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226 A. J. LEE

precisely, let Lffi) be a Hilbert space of square integrable random variables
on some probability space (ß, &, P), and let H{X) be the closed subspace of
L2(fi) generated by the random variables [X{t): t E R} of the random
process X{t). The process can in principle be exactly reconstructed from its
samples X{nh) if H{X) = 911 where 911 is the closed subspace of L2(fl)
generated by {X{nh): n E Z}. Lloyd uses the terminology "x is linearly
determined by its samples" in this case. He proved that this will be the case if
and only if the spectral measure p of X{t) has a support A such that the
translates of A by «A-1 are disjoint for every integer n. Rao [6] extended
Lloyd's result to the case of harmonizable processes, but Rao's condition is
not necessary, as is shown in §4.

If a process X{t) is linearly determined by its samples, then it is possible to
develop sampling expansions for X{t). Lloyd gives such an expansion which
converges in mean square and also almost surely in the case when X{t) is
stationary.

In this paper we consider a wide class of non-band-limited processes and
give sufficient conditions similar to Lloyd's for a process to be "determined
by its samples". We also give explicit sampling expansions which permit
error-free interpolation, in the spirit of those given by Lloyd in the stationary
case. These sampling expansions are shown to converge in mean square and
also almost surely.

First, processes whose covariance functions are square integrable with
respect to Lebesgue measure on the plane are considered, and then the results
obtained are extended to processes whose covariance functions satisfy a more
general integrability condition, namely covariances square integrable with
respect to the measure (1 + t2 + s2)~k dt ds for some integer k. We then
briefly sketch a counterexample to a theorem of Rao [6] concerning the
sampling of harmonizable random processes. Finally, sampling results are
presented for harmonizable processes indexed not by R but by arbitrary
locally compact abelian topological groups containing certain types of
subgroups.

In the sequel we will make use of certain results from the theory of
distributions. As usual, the space of C°° functions with compact support is
denoted by ^D (the space of test functions) and the Schwartz space of rapidly
decreasing functions by §. We also make use of the Sobolev spaces H2,k{R„),
where for k > 0, H2'k{Rn) consists of all distributions u on R„ such that all
the derivatives of order < k of u belong to L2(R„). For k < 0, H2,k{R„)
consists of all distributions on R„ that are the finite sum of derivatives of
order < k of functions in I^KRJ. Every distribution in i/2,*(Rn) is the
Fourier transform of a function on R„ square integrable with respect to the
measure (1 + \t\2)k dt, and for k > 0, every element u of H2'~k(Rn) has the
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NONSTATIONARY RANDOM PROCESSES 227

canonical representation

— 2 (-D"(¿f/|/| < k \ ox /

where i = (/„ ...,/„), |/| = /',+ •• • + /„,
/ J_ \2,=   o2'' • • • 32/-
V 3x j  '" foj/i. . . g^2i

for nonnegative integers i, • • • in and/is a function in H2'k{Rn) that is the
limit of a sequence of testfunctions in H2,k{R„).

We also make use of the following series representation of a measurable,
mean square continuous zero mean second order stochastic process {X{t), t
E R} due to Cambanis and Masry [7]. Suppose that the covariance R {t, s)
satisfies JR {t, t) p{dt) < oo for some measure p equivalent to Lebesgue
measure. Then we may define an operator R on L2(R, p), the space of
functions square integrable with respect to p, by Rf{t) = JR{t, s)f{s)p{ds).
R is a bounded trace class operator, with nonzero eigenvalues Xj, X2,...
corresponding to eigenfunctions fx,f2,.... Then there exists an orthogonal
basis <?„ e2, . . . for H{X) such that X {t) = 2JL x fj{t)ej and
R{t,s) = 2XJj{t)fj{s).

Finally, we record the notation employed in §4. We denote a LCA group
by G, and the character group of G (the group of continuous homomorphisms
from G to the unit circle) by G. If a £ G, we write the value of a at g £ G as
<a, g). The collection of complex, regular Borel measures of finite variation
on G is written M{G); the support of such a measure p £ M{G) is the set of
all points g E G such that for every open neighborhood U of g, there exists a
Borel set E with p{E) ^ 0 and E Ç U.

2. Sampling theorems for processes with square integable covariances. In the
sequel, we assume the process {X{t), t £ R} to be a measurable second
order, zero mean process with continuous covariance function R{t, s) =
E{X{t)X{s)). In this section we assume in addition that fR{t, t) dt < oo. (In
what follows all integrals are to be taken over the whole real line unless
otherwise specified.) Under these conditions X{t) has a series expansion
(converging in mean square)

*C)=fU('H (2)
where the "time functions" f¡ are the eigenfunctions of the operator R on
L2(R) with kernel R {t, s) corresponding to nonzero eigenvalues X,, and the
r.v.'s ej form an orthogonal basis for H{X) with E{e¡ej) = XjSy. Moreover, the
covariance function R has the representation
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228 A. J. LEE

*(M)-2 WU(') (3)
y-l

the convergence being absolute. (Cambanis and Masry [7, Theorem 6].) Let p
be a measure which assigns mass X, to the pointy. Since R is trace-class as an
operator L2(R) -» L2(R), p is a finite positive measure and R {t, s) can be
written

R{t,s)=jf{t,X)J{s7X)p{dX)
where/(r, X) = fj{t) for X = /. It follows that the space of all functions of the
form

g(-)=Ï¥A)Tj
7=1

where [gj] is a sequence of complex numbers satisfying ~2°°=xXj\gj\2 < oo, is
the reproducing kernel Hilbert space (RKHS) H{R) with inner product
(g, h) = 'S.Xjgjhj which represents the process A"(0 in the sense of Parzen [8].
The spaces H{X) and H{R) are isomorphic, with X{t) corresponding to the
function R{-, t) = 2JLxX/j{-)fj{t) in H{R). It follows that //(*) = 911 if
and only if the closed subspace 91tÄ generated by the set of functions of the
form 'ZjLiXjfj{-)fj{nh), « £ Z, equals H{R). This will be the case if and only
if for any g £ H{R) with g J. 9HÄ, g = 0.

Theorem I. Let R be the L2(R X R) Fourier transform of R{t, s). Let A èe
the support of R considered as a distribution in the plane. If the translates
A + {nh ~x, nh~x) of A are disjoint for every n, then H{R) = 91LÄ and
H{x) = 9H.

Proof. The series (3) converges in L2(R X R) so we may take Fourier
transforms of both sides to obtain

R(x,y)=ïxJJ{x)J(yi.

Now let <J> £ ^(R,), the space of C00 functions on the line with compact
support, and write R, fj to denote the distributions on R2 and R correspond-
ing to the locally integrable functions R,f¡. Then if <b <2> ^(x, v) = <í>(x)<í>( v),

R («Í» ® 4>) = // 2 Vj W7ÖÖ<i»W^ÖÖ dx dy

= 2 h!Sfj (*)T(yJ<i>(x)W) dx dy

= ÏMfj(<t>)\2>\\fj(4>)\2   for all/.
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NONSTATIONARY RANDOM PROCESSES 229

Now let A, be the support of fp and let Aq = {x: (x, x) £ A}. We will show
that Aj C A0 for each/ and that the translates of A0 by nh~x are all disjoint.
Let x £ Ay, and let U be a neighbourhood of (x, x) in R2. Let F be a
neighbourhood of x in R, with V X V Q U. Then there exists a <f> £ ^
supported by V with fj{§) =fc 0, so <j> ® § is in ^(Rj), is supported by U and
R{<t> ® 4>) > Xj\fj{^)\2 ̂ 0, so R{<¡> ® 4>) ?= 0 and hence (x, x) £ A. Thus
x £ Aq. Suppose that nh~x + A0, mh~x + A0 are translates of A0 with
nonempty intersection containing a point x say. Then x — nh ~ ' £ Aq, so
(x, x) £ {nh~x, nh~x) + A. Similarly (x, x) £ {mh~x, mh~x) + A contradict-
ing the hypothesis that the translates of A are disjoint. Now let g £ H{R),
g 1 9HÄ. Set g(0 = 2y°l,X^(-)^, then g £ L2(R,) and *(nA) = 0 for all
n £ Z. Taking Fourier transforms, g(x) = Sjl iX^x) gy, so suppg Q A0.
Now let g„{x) = g(x - nh~x); then the functions gn are orthogonal in L2(R0
since their supports are disjoint. Let $ be a function in the Schwartz space S
of functions rapidly decreasing at infinity, then there exists a constant C such
that |<f>(x)| < C/(l + x2) for all x. Then

2    |*(* - «A"1)! < C   S   (! + (*- «A"1)2)
-i

S       0 + *2)< 8C   2    —-— < oo-
»--» 1 + {nh~x)2

Thus S^L-ool^x — nh~x)\ converges absolutely to a function <&(x) which is
periodic, continuous and hence bounded. Thus

2  f\gn{x)<p{x)\dx=  f   flgixMx-^-ol^x
/i= — oo J n= — oo J

-/   2    |g(x)<i.(x-/JA-0Kx = /*|g(x)||3>(x)|£/x.
^  n- -oo •'

Now $ is bounded and a support of g is Aq which has finite measure (Lloyd
[5]) so g is actually an L,(R) function and the above integral is finite. Thus
2?~«,ê,(*) is finite and

2    &(*)=    2    fg{x)<t>{x-nh-x)dx
n= —oo n= — oo J

= fg(x)    2   ${x-nh~x)dx
J n= —oo

and so 2 "-_«,&, converges to a temperate distribution G say, which is
periodic, with period h~x. Expanding G in its Fourier series, G = "2cne~2mnhx,
where the Fourier coefficient c„ is given by c„ = hG{£{x)e~2™nhx) where £ is a
unitary function, i.e. a test function satisfying 2£L_«,£(* - nh) = 1 for all
r £ R (see e.g. Zemanian [9, §11.6]). Now,
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230 A. J. LEE

G(£{x)e2™hx)=    2    ¿.({(x)^)
m= — oo

=    2     fg{x-mh-x)£,{x)e2*inhx dx
m= — oo J

-    2     fg{x)£{x + mh-x)e2™h<-x+mh~,)dx
m= — oo ■'

= fg(x)   2   ¿(x + /«/i-,)e2m'"Aj:i/x
^ m= —oo

= / g{x)e2"inhx dx = g{nh) = 0

so (7 = 0. Suppose that g =£0. Then there is an open set P Q A with
//>l g(*)|2 dx > 0. Let $ be a testfunction supported by P, then g(<K* —
«A ~ ')) = 0 for x £ P and n =£ 0, since the translates of P are disjoint. Thus
g(<i>) = G(<i>) = 0. But ty{P) is dense in L2{P) (Trêves [10, p. 159]), con-
tradicting the hypothesis that g ¥=0. Thus g and hence g is zero, and so
H{R) = 9ltjj. Because of the isomorphism between //(AO and H{R), it also
follows that H{X) = 91L and so X{t) is determined by its samples.

We now turn to the development of interpolation formulae that will exactly
reconstruct the process from its samples, when H{X) = 91L. We first con-
sider a lemma which will prove useful.

Lemma 1. Let f E L^R) and suppose that there exists an open set Q0 such
that the translates of Q0 by nh~x areall disjoint and Q0 D supp /. Let W be an
openset such that supp/ C W C W C Q0 and let $ be a C00 function that is 1
on W and 0 on 6Q0. Let K{t) be the function K{t) = hfe2"itx4<{x) dx. Then,
the sequence "2^.,_NK{t — nh)f{nh) converges uniformly tof{t).

Proof. Since the translates of Q0 are disjoint, the Lebesgue measure of Q0
is finite (Lloyd [5, Corollary to Theorem 1]). Thus/ E Lxn L2 by the Holder
inequality. Thus/is continuous and is given by/(/) = fwe2,,i'xf{x) dx. Define
the function F,{x) = 2?--«M* + nh~x)e2,ri(x+nh~,)'. F,{x) is C00 and peri-
odic, so it is the limit of its Fourier series "2„K{t — nh)e2vinhx which con-
verges uniformly.

Thus if we set ^(0 = supx\Ft{x) - 2^._NK{t - nh)e2ninhx\ then
linijv £^(0 = 0 for each / and

r N     r]JrÂx)f{x)dx-   2    LK{t - nh)e2"inhxf (x) dx
JW n=-NJW (4)

</ «*(0|/(*)| dx< eN{t)\\A\LM^y/2
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NONSTATIONARY RANDOM PROCESSES 231

by the Plancherel Theorem and the Cauchy-Schwartz inequality and where m
denotes Lebesgue measure.

But F,{x) = e2""x on W, so (4) implies /(/) = lim^» 2?. _**"(* -
nh)f{nh), which proves the lemma. We can now generalise Theorem 3 of
Lloyd [5]:

Theorem 2. Suppose {X{t), t ER} is a random process of the type consid-
ered at the beginning of §2. Suppose that Q is an open support of R whose
translates by {nh~x,nh~') are all disjoint. Then

N
X{t) m l.i.m.    2   X{nh)K{t - nh),       -oo < t < oo, (5)

where K is the function defined in Lemma 1.

Proof. In view of the isomorphism between H{X) and H{R), it is enough
to prove that the function R{-,t) in H{R) is the limit in H{R) of the
sequence 2*_ _#•/?(-, nh)K{t - nh). Now

II " II2*(•>')-   2   R{-,nh)K{t-nh)\\
» «*(*) (6)

N

= 2\ SAO-   2   fAnh)K{t - nh)
n"-N

Now let W be an open set such that for all/, suppjÇ Ç W Q W C Q0 = (x:
(x, x) C Q). Such a set exists because for each /, supply = {x: (x, x) £
Supp R) C Q0 and Q0 is open. Q0 has disjoint translates by A-1, so by using
the notation and method of Lemma 1, (6) is less than
^jXj\\fj\\LeN{t)m{Wyi2. Thefj are orthonormal in L2, 2Xy- < oo since R is
trace class and m{W) < oo. Thus (6) converges to zero for every / £ R,
proving the theorem.

The final theorem in this section shows that the sampling series (5)
converges almost surely as well as in mean square.

Theorem 3. Under the hypotheses of Theorem 2, the sampling series (5)
converges almost surely.

Proof. By Theorem 7 of Cambanis and Masry [7] the representation (2) of
the process x{t) converges in L2 almost surely, so if xN{t, u) is defined by
xN{t, w) = "2j-xfj{t)ej{u>) then xN{t, cS) converges in L2 to x{t, w) for almost
all w. xN(X, u>) has support in Q0 = [X: (X, X) £ Q) for each N since each of
the functions fj{X) is supported by QQ, so x(X, w) is supported by Q0. Thus for
almost all w, x{t, u>) satisfies the hypotheses of Lemma 1 and so (5) converges
almost surely.
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232 A. J. LEE

3. Extension of the sampling theorem. In this section we extend the results
of §2 to include processes {^(0, t G R} which satisfy

fR{t,t)pk{dt)<n (7)
for some positive integer k, where pk{dt) = (1 + t2)~k dt. If (7) is satisfied,
then R{t, s) = E{X{t)X{s)) satisfies

\R{t,s)fI I - dt ds < oo
JJ   (1 + t2 + s2)2k

since (1 + t2 + s2)2 > (1 + f2)(l + i2). It follows that the Fourier transform
of R{t, s) exists as a distribution in the Sobolev space H2'~2k{R2) (see, e.g.,
Trêves [10, Chapter 31]). The following theorem is an extension of Theorem
1.

Theorem 4. Let {X{t), t £ R} be a second order measurable mean square
continuous random process whose covariance R satisfies (7). Let Q be an open
set such that supp R Q Q and suppose that the sets {nh~x, nh~x) + Q are
disjoint for all integers n. Then the process is determined by its samples
{X{nh), n E Z}.

Proof. Consider the operator R: L^/i*) -» L2{pk) with kernel R. Letting Xy
be the nonzero eigenvalues of R with corresponding eigenvectors ty, we see
that the RKHS corresponding to X{t) is exactly the same as in §2, except that
the Xy now are eigenvalues of an operator on L2{ pk) ■ instead of Z^(R)
(= L2{po)). To prove the theorem it is enough to show that if {gy} is a
sequence with "2fXjfj{nh)gj = 0 and 2yXy|g|2 < oo then gy = 0 for all/. Here
the functions jy are the "time functions" for X{t) and are functions in L2{pk).
The process X{t) still has the representation (2), with thejy and Xy as above.
Let g{t) = LjXjfj{tjgj. Then g £ L2{pk), and g is a distribution in H2~k{R)
given by g{<¡>) = 2yXy¿(<í>)gy. Now

\g(*)f < 2 h\fj (^rSAyl gy|2 < 2Mg/R (* ® *)j j j
and an argument similar to that employed in Theorem 1 shows that supp g C
Q0 and the sets nh + Q0 are disjoint for each n, where Q0 = (x: (x, x) £ Q)
as before. Now since g £ H2'~k(R), we may write g - 2^_0(~ \)mD2mû
where D is a differentiation operator dm/dxm and û E H2*(R). Moreover,
we can suppose that supp û Q Q0 (Trêves [10, Chapters 24, 31]). Now con-
sider the sum 2^„_^?Tng, where % is the translation operator on <3D' defined
by C^nDO» = g{%4>% and also me translation operator on <$ defined by
%<K0 = <S>h ~ nh). Now <ö„Dmu = Dm(5nu so
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NONSTATIONARY RANDOM PROCESSES 233

2 sj- 2 3; 2 {-\)mD2mû= 2 {-\)mD2m 2 M-
n<*-N n=-N      m = 0 m = 0 n=-N

Since « £ H2,k(R), by the proof of Theorem 1 2^__^?F„m converges to a
periodic distribution. Thus 2?T,,g converges to a periodic distribution G,
whose Fourier expansion is G = 2"__00g(«A)e~2'"nAj:. But g(«A) = 0 so
G = 0. Now supp g is a closed set contained in Q0, so supp g and 6<2o_are
disjoint closed sets, and there exists an open set W with supp g QW QW Q
Q0. Let tp be a C00 function that is 1 on W and 0 on GQ0. Then for any
£ £ 6D, | = (1 - «//)£ + «/£ # is supported by ß0 so G(^0 = £(*©, and
g((l - >|/)£) = 0 since the support of (1 — >//)£ is disjoint from suppg. Thus
g(0 = G{\P£) + g((l - ^)8 = 0 so g = 0 and thus g = 0. It follows that
H{R) = 911* and so H{X) = 91L.

Next we present a sampling theorem for processes whose covariances
satisfy the hypotheses of the last theorem.

Theorem 5. Let {X{t), t ER) be a second order random process satisfying
the hypotheses of Theorem 4. Then the sequence

N
2   X{nh)K{t-nh) (8)

n=-N

converges to X{t) in mean square for every t E R, where K is the function
defined in Lemma 1.

Proof. As in the proof of Theorem 2, it is enough to show that

lim   2   fAnh)K{t - nh) = fAt),      / = 1, 2,..., (9)
N   n=-N

uniformly in/ for each t. The Fourier transform of eachjÇ is a distribution in
H2-~k{R),   so   for   each  j,   fj = 2Î,_0(- l)mD2mû,   and   fj{t) =
2m_o(~~ l)m{2mt)2mUj{t) for some function w, in L2 whose Fourier transform
új is in H2,k{R) supported by Q0. Thus it is enough to prove that for
0 < m < k,

lim   2   K{t - nh){2mt)2muAnh) = {2mt)2muj{t)
N   n=-N

uniformly in/. Each a, is in Lx n L2 since Q0 has finite Lebesgue measure, so
UA() = /r.e^Wyix) dx where Ty = supp w, Ç Q0. Let i^Jbe the C00 function
that is 1 on W and 0 on GQ0 where now Tj C W C W C Q0 for all/, and
define F,{x) as in the proof of Lemma 1. F, is C°° with period A-1, its Fourier
series 2£L_00A'(f — nh)e2™"hx converges uniformly on R to F,{x), and the
differentiated series 2^L_00XT(i - nh){2mnh)2me2"inhx converge uniformly to
d2mF,{x)/dx2m.   On    JF,   d2mFt{x)/dx2m  = (2OT7)2me2,r"A:   so,   on   IF,
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234 A. J. LEE

ImJlmtlimA,2„^_NK{t - nh){2mnh)2me2*inhx converges uniformly to {2mt)2me
Moreover

N
2   K{t - nh){2mnh)2mUj{nh) - {2mtfmuj{t)

n=-N

■kN
2   K{t - nh){2mnh)2me2"inhx - {2mtfme2«i,x

n~-N

< sup
xe w

N
2   K{t - nh){2mnh)2meMnhx - {2wit)2me2""x

n=-N

ùj{x)\ dx

™(ßo),/2|Nk(R)

< W'Mßo),/2|Nk(R)   say,
where lim^ KNm{t) = 0 for m = 0,  \,...,k, and m denotes Lebesgue
measure. Now let e > 0, then for N sufficiently large

N
IAO-   2   K{t-nh)fAnh)

n=-N
<2^,m(0"l(ßo)I/2||"ylL2(R)

m=0

<em(ß0),/2||«y||L2(R).

Alsoyy(0 = (2fcm=0(27r02'")My(0 so

/|///)|2(l + r2)-*^

=/( Jo(2*/)2m)2(i + t2yk\Uj{t)\2 dt > c2n«y||i2W

for some constant C > 0. The time functions^ are orthonormal in L2{pk) so
finally we obtain  M\lm} < C~x  for ally  and  \fj{t) - 2^__Ar/sT(i -
nh)fj{nh)\ < em{Q0)x/2CJx for ally. Thus (9) is verified.

The next theorem shows that the sequence (8) converges almost surely:

Theorem 6. Let {X{t), t ER) be a random process satisfying the hypotheses
of Theorem 5. Then for almost every a,

lim    2   x(nh> «W - nh) = X{t, w)
N     n= — oo

for each t E R.

Proof. By Cambanis and Masry [7, Theorem 2], X{t, u>) is a function in
L2{pk) for almost all w, so its Fourier transform is in H2'~k(R). It is enough
to prove that the support of X{x, w) is in the set Q0, then the argument of the
last theorem will prove the theorem. By Theorem 7, Cambanis and Masry, the
r.v.'s XN{t, ío) = '2j=xfj{t)eJ{o)) converge almost surely in L2{pk) to X{t, «),
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NONSTATIONARY RANDOM PROCESSES 235
r+ A

so for any <£ £ S, XN{<b, w) converges to X{<$>, w) for almost all w since

l i2
\XN {<b, u)-X {$, u>)\2 <\f {XN {t, a) - X{t, «))*(,) dt\

<f\xN{t, ") - x{t, »)\2pk{dt)j{\ + t2)k\Ut)\2 dt

by the Cauchy-Schwartz inequality.
Now suppose that x £ Q0, so that (x, x) £ Q, the open support of R

whose translates are disjoint. It follows that there is an open neighbourhood
U of (x, x) such that all testfunctions in ^(R^ supported by U are mapped
by R onto 0. Let V be an open neighbourhood of x with V x V Q U, then
for any <> in <$>(R,) supported by V, 2," iXy|^(^»)|2 = R{4> ® <i>) = 0. Thus
fj{<b) = 0 for all j and so XN{4>, «) = 0 for all N, and hence X(<i>, co) => 0.
Consequently for any 4> £ ^(RO supported by V, X{<b, w) = 0; this implies
that supp X{-, w) Q Qq, proving the theorem.

4. Harmonizable processes. First, we present a counterexample to show that
a process need not have a covariance whose Fourier transform has disjoint
translates in order to be determined by its samples. Consider the very simple
example of a process of the form x(r) = f{t)e where f{t) is a real valued
function and e a random variable with E{e) = 0, E\e^ = 1. Then the
covariance function R of x(r) is R {t, s) = f{t)f{s). Suppose, in addition, that
the function/is given by

f{t)=r e2"i,xí{x)dx
•'-oo

for some Lx function £ i= 0. Then R has the representation

R{t, s) = H ÇX eWx-^£{x)l{y) dx dy
■'— OO*'— 00

so R (and hence X{t)) is harmonizable.
Now the samples {X{nh), n E Z} generate H{X) if and only if f{nh) ¥ 0

for some n, since H{X) = {Xe: X E C}. Choose £(x) = e~^ then supp R =
supp e-<W+W) = R2 and /(i) = (1 + i2)-1. Thus /(/iA) ^ 0 for all « and so
X{t) is determined by its samples. But the translates of R2 are certainly not
disjoint, so no condition on the translates of R can be necessary.

Similar processes having corresponding spaces H{X) of any finite dimen-
sion can be constructed to provide similar counterexamples. This example
shows that the necessary half of Proposition 2 of Rao [6] is incorrect. It
should be noted that these counterexamples are all finite dimensional. It
would be interesting to see if a counterexample exists in the infinite dimen-
sional case. However, any harmonizable process satisfies the conditions of
Theorem 4 with k = 1, so Theorem 4 is a generalisation of Rao's theorem. In
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fact, Theorem 4 holds for any harmonizable process indexed by more general
types of topological groups. Suppose that G is a locally compact abelian
group, with character group G. A random process {X{g), g E G) is
harmonizable if it has a covariance of the form

R{g, A) = E{X{g)'xJh)) = f f <o, g>ÖM> p{da, dß)
JGJG

where <a, g) denotes the character a evaluated at g and p is a measure in
M {G X G) satisfying the condition 27=,2y_1c,c¡Ju(A/ x Ap > 0 for all com-
plex numbers cx,... ,c„ and Borel subsets A„ ..., A„ of G. Assume also that
G contains a closed subgroup H, which plays the role of the subgroup [nh:
n E Z} in R in the sampling theorems of previous sections. Let A be the
annihilator of H in G, A = (a £ G: <a, A> = 1 VA £ H}. We seek a condi-
tion sufficient for the process X{g) to be determined by its samples {X{g),g
E H) as in Theorems 1 and 4. We must first prove a lemma.

A

Lemma 2. Lei p be a regular Borel measure of finite variation on G, and P its
Fourier transform, P{g) = JG(a, g)p{da). Then if the support A of v is disjoint
from all translates of A by members of A not equal to the identity of A, and
P{h) = Ofor all h EH, then p = 0.

A A

Proof. Let T denote the natural homomorphism G-> G/A, T{a) = a +
A. By Rudin [11, p. 53], the restriction of P to H is the Fourier transform of a

A A

measure a on G/A such that for all bounded Borel functions <p on G/A

(<b{T{a))p{da) = f    <b do.
JG JG/A

Since the restriction of P to H is the zero function, it follows that a = 0 and

fMT{a))p{da) = 0 (10)JG

for all bounded Borel <b on G/A. Let 4>(a) = 2Y(E/iXA(a + Y) where Xa is the
indicator of A. Since for ax E a + A, ${ax) = i>(a), we can regard 0 as a
Borel function on G/A which is bounded since the translates of A are
disjoint. Thus $ satisfies (10). Moreover $ ° T = 1 on A, so that

»(A) = f\p{da) m f ${T{a))p{da) = {${T{a))v{da) = 0.-'A JA JG

It follows that p = 0.
A

Now consider the linear space £ consisting of all functions/on G such that
the integral iGfGf{a)f{ß) p{da, dß) exists, where p is the measure in the
representation of R (g, A). If we identify functions/! and/2 for which

(JXfA«) -f2{a)){fx{ß)-f2{ß))p{da,dß)=0,
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we may define an inner product {fx,f2)z on £ by

C/i./a)e-f. f./i («) ¿TO /*(<&, #);•'G-'G

the resulting inner product space can be completed to give a Hubert space
A2{p) with inner product {fx,f2)A and norm ||/||A. For functions/„/2 in £, of
course {fx,f2)e, = {f\,f2)\- The Hubert spaces A2{p) and H{X) are isomor-
phic under the correspondence X{g)<->g, where g is the function in £ given
by g{a) = (a, g), g £ §. (See e.g. Cambanis and Liu [12]). The samples
{X(A), A £ //} generate //(AO if and only if the space A2{p) is generated by
the functions h, h E H. The analog of Theorems 1 and 4 is

Theorem 7. If the support S of p has its translates by {y, y) disjoint for all
y E A, then the samples {X{h), h E H) generate H{X).

Proof. It is enough to prove that the functions A, A £ H, generate A2( p).
Let/ £ A2(ju) and suppose that (/, A)A = 0 for all A £ H. We will show that
/ = 0. Define a measure v on the Borel sets of G by p{A) = (xa>/)a where Xa
is the indicator function of the Borel set A. Then

Ka)H(xa./)|a<||xa||aMIa
= (xA>XA)è/2MlA=M(AxA)'/2||yi|A

so p is a finite measure. Now S, the support of p, is given by S — S U { U: U
open, p{U) = 0} so if (a, a) £ S then there is an open set U containing
(a, a) with p{U) = 0. Since U is open, there is an open subset V of G with
a £ F, F X V Q U, and ju(F X F) = 0, thus K¿0 = OCe./Oa < plY x
H1/2H/IIa = 0 and a Í supp p. Thus [ß: {ß, ß) E S) D supp p, and the
translates of supp p by elements y in A are disjoint. Moreover P{h) =
J(a, h)v{da) = (A,/)A = 0 for ail h E H, so by Lemma 2 í = 0, and hence
(Xa»/)a = 0 for all Borel sets A. But the functions xa are dense in A2{p) so
/ = 0, and thus the functions A, A £ H, generate A2( p).

If we assume a little more about the subgroup H, we can develop a
sampling theorem for X{g). Suppose that H is now an infinite closed discrete
finitely generated subgroup with generator A0; such will exist in G, for
example, if G contains an element A0 such that the smallest closed subgroup
containing A0 is not compact (Hewitt and Ross [13, p. 84]). Since H is
discrete, its character group H will be compact and hence G/A which is
isomorphic to H will also be compact. Under these conditions the following
theorem is true:

Theorem 8. There exists a sequence S„ of functions on H such that
(i) S„ has finite support for each n,
{ii) suph£H\S„{h)\ < 1 for each n,
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(iii) lim,,^«, S„{h) = I if h = e and zero otherwise.
Iff E LX{G/A) then

lim    2 SAh)f{h)(a,h)=f{T{a)) (11)
hfEH

A

for every a E G such that f is continuous at T{a). The series (11) converges
uniformly on G/A iff is continuous.

Proof. The proof is a specialization to the present context of Theorem 7.1
of Mayer [14], and is omitted. Note that the Fourier transform of / is a
function on H since {G/A)" is isomorphic to H.

Note. If G = R and H = Z the above theorem is just the de la Vallée-Pois-
son method of summation of a Fourier series.

We can now give the sampling expansion of harmonizable process:

Theorem 9. Suppose H is an infinite closed discrete cyclic subgroup of an
LCA group G. Suppose {X{g), g E G) is a harmonizable process with spectral
measure p with an open support Q whose translates by members of A {the
annihilator of H in G) are_all disjoint. Let W be an open set such that {a:
{a, à) E Supp p] Q W Q W Q {a: {a,a)EQ}, and Jet \p be a continuous
bounded function on G that is equal to unity on W and zero on G {a:
{a, a) E Q). Then there exist coefficients ag{h) such that

*(g)=lim   2 SAh)ag{h)X{h)   for all g E G, (12)

with (12) converging in mean square.
If A is discrete, then the coefficients ag{h) are given by

ag{h)=U{<*K<*,g-h}MG{da)
JG

where MG is the Haar measure on G. In general, there is a finite measure p on
the Borel subsets of W such that ag{h) = f^faKa, g — h)p{da).

Proof. Define F&(a) = 2\eA4>{ot + X)<a + X, g>. Clearly we can regard Fg
as a function on G/A; we claim it is continuous_on G/A. Let T{a) be a
point in G/A. Either T{a) n W = 0 or T{a) n Wis a singleton. In the first
case, there is a neighbourhood of T{a) in G/A on which_Fg(a) = 0 so Fg is
continuous at T{a). In the second case, suppose T{a) n W = {a0}. Let t/be
a neighbourhood of a0 in G with U Q {a: {a, a) E Q) such that |0(/?)</?, g>
- <K<*oKao> g)\ < e for all ß E U. T{U) is a neighbourhood of T{a) in
G/A, and for all points T{ß) in T{U), \Fg{T{a)) - Fg{T{ß))\ = \<b{ß)-
(ß>g) — <t>{<XoKao> g}\ < e since without loss of generality we can assume
ß EU, and the translates of {a: {a,a)EQ} are disjoint. Thus Fg is
continuous at T{a) and so continuous on G/A. Fg is bounded, and the Haar
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measure on G/A is finite since G/A is compact, so Fg E LX{G/A). Thus by
Theorem 8, 2Ae//S'n(A)Fg(A)<a, A> converges uniformly to Fg{T{a)).

It follows that since Fg{T{a)) = <a, g> for all a E W, the series
1,hsHS„{h)Fg{h){a, A> converges uniformly on W to (a,g}. Now we claim
that Supp p Q S0 X S0, where S0 = {a: (a, a) £ Supp /i}. To prove this, let
(a,, a2) £ Supp p. We must show that (a„ a,) £ Supp p for i = 1, 2. Let i^-
be an arbitrary open set containing (a„ a,), then there exist open neighbour-
hoods V, in R, with a, £ ?;• and V¡ X V¡ Q U¡. Vx X V2 is an open
neighbourhood of (a„ a2) so there exists a neighbourhood V[ X V2 of {ax, a^
with /x(F,' X V¡) =£0,V;c V¡. Then K/ X V¡, i = 1, 2, are neighbourhoods
of (a,., a,) with {/x(Fi X KÍ)m(^2 X *z>}'/2 > |/*(?ï X VÇ)\ * 0 so /i(F/ X
Vf) ¥= 0, and V¡ X V{ Q U¡. Thus (a„ a,) £ supp /x, and supp pQ S0X S0,
proving the claim. Thus on supp p,

I 2 SAh)Fg{h)(a, A> - (a, g>) ( 2 SAh)Fg{hXß, A> - </?, g>)

A

converges uniformly to 0 and hence ||25'n(A)Fg(A)<a, A) — <a, g>||A2(il) con-
verges to 0. Thus by the isomorphism, the sampling theorem (12) is verified
with ag{h) = Fg{h).

The character group of G/A is isomorphic to H, under the correspondence
<A, T{a)} = {a, A>,   so   the   Fourier   transform   of   Fg   is   Fg{h) =
jG/A(a, K)Fg{T{a))MG/A{iT{a)) where MG/A is the Haar measure on G/A.
Now the Haar measures on G, A and G/A are related by the equation

MG {W) - f      f X„,(« + y)MA {dy)Mô/A {dT{a))
JG/AJA

where Xw is the indicator of W. The inner integral is a function of r(a) since
/Xa(« + y)MA{dy) is unchanged if a is replaced by a + y for 7 £ A. Now

(x„,(a + y)MA {dy) = f M-< «*>})if « + ïo £ ^for some 7o £ A,
ja [ 0 otherwise,

since the translates of Ware disjoint. Thus ¡AXw(.a + y)MA{da) = MA{{e))
for T(a) £ T{W) and zero otherwise and so MG{W) = MA{{e}) •
mô/a(t(W)) and thus is finite.

If A is discrete, then /|«//(a + y)(a + y, g - h)\MA{dy) = 2r|^(a + y)\ <
00 so xl>{a + y)<a + y, g - A> £ LX{A) and /¿(ría)) = /„^(a + y)<a +
y, g}MA{dy). Then iv(A) equals
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f    Fg{T{a)) <A, 7»> MG/A {dT{ct))
JG/A '

>G

and so ag{h) = ip(g - A).
If A is not discrete then

= f     />(a + Y)<« + y, g>MA {da) <a, A> Mé//< (¿(7a))
JG/AJA '

- f     />(a + y)<a + y, g - A>M< (¿a)Mé/M (¿7»)
JG/AJA '

= L{a,g-K}^{a)MG{da)
Jr.

F,W -/.    f,(n«)) <«> A>^g/^ W«))
•'G//1

-x Fg(r(a))<a,A>Md//i(./r(a))
r(W)

since Fg is zero off r(W). For the general case, consider the a-field of Borel
subsets of W. If U is an open subset of W, then T{U) is an open subset of
G/A. Since ris a 1-1 correspondence between Wand T{W), the set function
p defined by p{U) = M¿/A{T{U)) is a countably additive finite set function
on the open sets of W which may be extended to a finite measure on the
Borel sets of W. Note also that for any Borel subset A of T{W), pT~x{A) =
MGjA (A). Thus by the change of variable formula

K (A) = /      Fg {T{a))(h,T{a)}Mâ/A {dT{cc))

= f Fg{a)~(a7h)p{da) = f >K«)<«, g ~ h}p{da).

If A is discrete then MG{U) is proportional to p{U) for all Borel subsets of
W.

Note. The restriction on H (that it be an infinite finitely generated discrete
group) is not necessary for Theorem 9 to hold. Any discrete subgroup H
whose character group H possesses a faithful finite dimensional representa-
tion will serve, provided slight modifications in the statement of Theorem 9
are made.
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