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ABSTRACT. Consider a second order stochastic process {X(f), 7 € R}, and
let H(X) be the Hilbert space generated by the random variables of the
process. The process is said to be linearly determined by its samples
{X (nh), n € Z} if the random variables X (nh) generate H (X). In this paper
we give a sufficient condition for a wide class of nonstationary processes to
be determined by their samples, and present sampling theorems for such
processes. We also consider similar problems for harmonizable processes
indexed by LCA groups having suitable subgroups.

1. Introduction. It is well known that a second order, zero mean, weakly
stationary random process { X (f), ¢ € R} satisfies the sampling expansion

® Sin #h =1 (¢t — nh)

X0 = 2 X0 — = W
if the spectral measure p of X (f) is supported by the interval
(—h~'/2, k=1 /2). This so called “sampling theorem” dates back to Cauchy
and is of considerable importance in communication theory; such processes
with bounded spectra are called “band-limited”.

This concept of “band-limitedness” can easily be generalized to non-
stationary processes; see e.g. Zakai [1], Piranashvili [2], Lee [3], [4]). A second
order random process, not necessarily stationary, is said to be “band-limited
to w” if its covariance function R (¢, s) = E (X (£)X (s)) has a Fourier trans-
form R (possibly a distribution) supported by the square [—w, w] X [—w, w]
in R,. If A7!/2 > w, then a band-limited process satisfies a modified sam-
pling theorem similar to (1). These sampling theorems, which converge in
mean square and also almost surely, enable a band-limited process to be
exactly reconstructed from its samples {X (nk), n € Z}. Of course, a process
need not be band-limited to admit an error-free reconstruction from its
samples. Lloyd [S] gave a necessary and sufficient condition on the spectral
measure for a stationary process to admit such a reconstruction. More
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226 A.J. LEE

precisely, let L,(2) be a Hilbert space of square integrable random variables
on some probability space (2, @, P), and let H (X) be the closed subspace of
L)(§2) generated by the random variables {X(¢): ¢ € R} of the random
process X (7). The process can in principle be exactly reconstructed from its
samples X (nh) if H(X) = 9 where 9N is the closed subspace of L,(f2)
generated by {X(nh): n € Z}. Lloyd uses the terminology “x is linearly
determined by ‘its samples” in this case. He proved that this will be the case if
and only if the spectral measure g of X (¢) has a support A such that the
translates of A by nh~! are disjoint for every integer n. Rao [6] extended
Lloyd’s result to the case of harmonizable processes, but Rao’s condition is
not necessary, as is shown in §4.

If a process X (¢) is linearly determined by its samples, then it is possible to
develop sampling expansions for X (¢). Lloyd gives such an expansion which
converges in mean square and also almost surely in the case when X () is
stationary.

In this paper we consider a wide class of non-band-limited processes and
give sufficient conditions similar to Lloyd’s for a process to be “determined
by its samples”. We also give explicit sampling expansions which permit
error-free interpolation, in the spirit of those given by Lloyd in the stationary
case. These sampling expansions are shown to converge in mean square and
also almost surely.

First, processes whose covariance functions are square integrable with
respect to Lebesgue measure on the plane are considered, and then the results
obtained are extended to processes whose covariance functions satisfy a more
general integrability condition, namely covariances square integrable with
respect to the measure (1 + £ + s*)~* dt ds for some integer k. We then
briefly sketch a counterexample to a theorem of Rao [6] concerning the
sampling of harmonizable random processes. Finally, sampling results are
presented for harmonizable processes indexed not by R but by arbitrary
locally compact abelian topological groups containing certain types of
subgroups. )

In the sequel we will make use of certain results from the theory of
distributions. As usual, the space of C*® functions with compact support is
denoted by ) (the space of test functions) and the Schwartz space of rapidly
decreasing functions by S. We also make use of the Sobolev spaces H**(R,),
where for k > 0, H**(R,) consists of all distributions 4 on R, such that all
the derivatives of order < k of u belong to L,(R,). For k <0, H*R))
consists of all distributions on R, that are the finite sum of derivatives of
order < k of functions in L,(R,). Every distribution in H**(R,) is the
Fourier transform of a function on R, square integrable with respect to the
measure (1 + |¢[}* dt, and for k > 0, every element u of H>~*(R,) has the
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NONSTATIONARY RANDOM PROCESSES 227

canonical representation

u—zvm%%)

li|<k
wherei = (i, ..., 0) |i|=i+ - + i,
( d )21 32" ... 821',,

2 Y
0x axl 1o o axnn

for nonnegative integers i, - - - i, and f is a function in H**(R,) that is the
limit of a sequence of testfunctions in H**(R,,).

We also make use of the following series representation of a measurable,
mean square continuous zero mean second order stochastic process {X (?), ¢
€ R} due to Cambanis and Masry [7]. Suppose that the covariance R (¢, 5)
satisfies fR(z, H)p(df) < oo for some measure p equivalent to Lebesgue
measure. Then we may define an operator R on L,(R, p), the space of
functions square integrable with respect to p, by Rf(¢) = [R(t, 5)f(s) pn(ds).
R is a bounded trace class operator, with nonzero eigenvalues A, A, ...
corresponding to eigenfunctions f;, f,, . . . . Then there exists an orthogonal
basis e, ey ... for H(X) such that X(¢) = 2%, f()e and
R(t, 5) = ZNf(0) f; (5)-

Finally, we record the notation employed in §4. We denote a LCA group
by G, and the character group of G (the group of continuous homomorphisms
from G to the unit circle) by G.If a € G, we write the value of a at g € G as
{a, g). The collection of complex, regular Borel measures of finite variation
on G is written M (G); the support of such a measure p € M (G) is the set of
all points g € G such that for every open neighborhood U of g, there exists a
Borel set E with p(E)# 0and E C U.

2. Sampling theorems for processes with square integable covariances. In the
sequel, we assume the process {X(f),f € R} to be a measurable second
order, zero mean process with continuous covariance function R(7,s) =
E (X ()X (s)). In this section we assume in addition that (R (¢, f) dt < 0. (In
what follows all integrals are to be taken over the whole real line unless
otherwise specified.) Under these conditions X (f) has a series expansion
(converging in mean square)

x(0="3 1e @

Jj=1

where the “time functions” f; are the eigenfunctions of the operator R on
L,(R) with kernel R(t, s) corresponding to nonzero eigenvalues A;, and the
1.v.’s ¢; form an orthogonal basis for H (X) with E(e;¢}) = A;8;. Moreover, the
covariance function R has the representation
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w [P
R(15) = S AT ®)
J=1
the convergence being absolute. (Cambanis and Masry [7, Theorem 6].) Let »
be a measure which assigns mass A; to the point j. Since R is trace-class as an
operator L,(R) » L,(R), v is a finite positive measure and R(z, s) can be
written

R(t,5) = [ £(t, N T (s, N »(d)

where f(¢, A) = £,(?) for A = j. It follows that the space of all functions of the
form

g() = gm(-)?j

where {g;} is a sequence of complex numbers satisfying J_IA]gj] < o0, is
the reproducing kernel Hilbert space (RKHS) H(R) with inner product
(g, h) = Z@gjﬁj which represents the process X (¢) in the sense of Parzen [8].
The spaces H (X) and H (R) are isomorphic, with X (¢) corresponding to the
function R(:, §) = Z2 Af()f(?) in H(R). It follows that H(X) = I if
and only if the closed subspace 9N, generated by the set of functions of the
form 232 NS () f; f,(nh), n € Z, equals H (R). This will be the case if and only
if for any g € H(R) withg L My, g =0.

TueoreM 1. Let R be the L,(R X R) Fourier transform of R(t, s). Let A be
the support of R considered as a distribution in the plane. If the translates
A+ (nh~Y nh™Y) of A are disjoint for every n, then H(R) = DMy and
H(x)=

Proor. The series (3) converges in L,(R X R) so we may take Fourier
transforms of both sides to obtain

L ~
R(x,y) = 217\}5- (x) 5 ().
J=
Now let ¢ € 6D(Rl), the space of C* functions on the line with compact

support, and write R, f to denote the dlstrlbuuons on R, and R correspond-
ing to the locally mtegrable functions R f Then if ¢ ® ¢(x, y) = $(x)o(»),

R(3®¢)=/[ glx,-g-(x)g(ym(xw(y) dx dy
= S5 T0I#030) de &

=2MﬂmgMﬂmzmmL
b=
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NONSTATIONARY RANDOM PROCESSES 229

Now let A; be the support of f;, and let Ay = {x: (x, x) € A}. We will show
that A; C A, for each j and that the translates of A, by nk~! are all disjoint.
Let x € A;, and let U be a neighbourhood of (x, x) in R,. Let V' be a
neighbourhood of x in R; with ¥ X ¥ C U. Then there exists a ¢ €
supported by V' with fi(¢) # 0, 0¢® qb is in 9D (R,), is supported by U and
Ro®¢) > >\|f(¢)|27&0 s0 R(¢ ® ¢)# 0 and hence (x, x) € A. Thus
x € A,. Suppose that nh~'+ Ay, mh~'+ A, are translates of A, with
nonempty intersection containing a point x say. Then x — nh~! € Ay, so
(x, x) € (nh~, nh~Y) + A. Similarly (x, x) € (mh~!, mh~") + A contradict-
ing the hypothesis that the translates of A are disjoint. Now let g € H(R),
g L Mpg. Set g(*) = =2 Af(-)g, then g € Ly(R,) and g(nh) =0 for all
n € Z. Taking Fourier transforms, g(x) = j,,Ajfj(x) g» SO supp g C A,
Now let g,(x) = g§(x — nh™"); then the functions g, are orthogonal in L,(R,)
since their supports are disjoint. Let ¢ be a function in the Schwartz space &
of functions rapidly decreasing at infinity, then there exists a constant C such
that |¢(x)] < C/(1 + x?) for all x. Then

S |o(x — nh~")|< € § (1+(x— nh"‘)z)~l
o 1 2
< 8C 2 u_?_ < 0.

n==c 14 (nh~!)>?

Thus =%, _ lo(x — nh~")] converges absolutely to a function ®(x) which is
periodic, continuous and hence bounded. Thus

3 flacoelac= S f1a000 - )]
=[ S _18C)ax = nh=)]dx = [ 205 o) ax.

Now & is bounded and a support of § is A, which has finite measure (Lloyd
[S]) so g is actually an L,(R) function and the above integral is finite. Thus
2. w0 8,(¢) is finite and

S 4= S [e@e(x—nm)dx

n=-—c0 n=-c0

—fg(x) S o(x — nh-1) dx

n= —oo
and so X7._ &, converges to a temperate distribution G say, which is
periodic, with period 4 ~!. Expanding G in its Fourier series, G = Zc,e ™ 2"™*,
where the Fourier coefficient ¢, is given by ¢, = AG ({(x)e ~2""*) where ¢ is a
unitary function, i.e. a test function satisfying 3%, _ é(t — nh) =1 for all
t € R (see e.g. Zemanian [9, §11.6]). Now,
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JCOLEe DI IRSCOLL)
- miw [ 80x = mh=1)g(x)erm dx
= 3 [+ mh et gy
=f§(x)miw£(x + mh=t)e .

=fg‘(x)e2"i"”" dx = g(nh) =0

so G =0. Suppose that § 0. Then there is an open set P C A with
Splg(x)* dx > 0. Let ¢ be a testfunction supported by P, then g(¢(x —
nh™Y) =0 for x € P and n # 0, since the translates of P are disjoint. Thus
£(¢) = G(¢) = 0. But D(P) is dense in L,(P) (Tréves [10, p. 159]), con-
tradicting the hypothesis that § = 0. Thus § and hence g is zero, and so
H(R) = 9Ny. Because of the isomorphism between H (X) and H (R), it also
follows that H (X) = 9 and so X (¢) is determined by its samples.

We now turn to the development of interpolation formulae that will exactly
reconstruct the process from its samples, when H(X) = 9. We first con-
sider a lemma which will prove useful.

LEMMA 1. Let f € Ly(R) and suppose that there exists an open set Q such
that the translates of Qy by nh™" are all disjoint and Q, D supp f. Let W be an
open set such that supp f C W C W C Qo and let  be a C*™ function that is 1
on W and 0 on CQ,. Let K(t) be the function K(f) = hfe*™*3y(x) dx. Then,
the sequence S%_ _ v K (t — nh)f(nh) converges uniformly to f(%).

PROOF. Since the translates of Q, are disjoint, the Lebesgue measure of Q,
is finite (Lloyd [5, Corollary to Theorem 1]). Thus f € L, n L, by the Holder
inequality. Thus f is continuous and is given by f(¢) = f Wez”“"f (x) dx. Define
the function F,(x) = 22, _ ¥(x + nh~ )™ +7Y% F(x)is C* and peri-
odic, so it is the limit of its Fourier series 3,K (¢t — nh)e*™™>* which con-
verges uniformly.

Thus if we set ey (f) = sup,|F,(x) — S¥__yK(t — nh)e*™™*| then
lim,, ey (#) = O for each ¢ and

) N i th
JF@] @ ac= 3 [ K~ nh)etn i (x) d

n=-N

4
<fWeN(t)|f (%) dx< s,,,(t)[]j]l,_zm(W)l/2
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NONSTATIONARY RANDOM PROCESSES 231

by the Plancherel Theorem and the Cauchy-Schwartz inequality and where m
denotes Lebesgue measure.

But F,(x)=e* on W, so (4) implies f(f) = lim,_ SV _ ~K(@ -
nh) f(nh), which proves the lemma. We can now generalise Theorem 3 of
Lloyd [5]:

THEOREM 2. Suppose {X (f), t € R} is a random process of the type_ consid-
ered at the beginning of §2. Suppose that Q is an open support of R whose
translates by (nh™', nh™") are all disjoint. Then

X(t)—llm 2 X (nh)K (t — nh), —o0 < t < 00, %)
n=—N

where K is the function defined in Lemma 1.

PROOF. In view of the isomorphism between H (X) and H (R), it is enough
to prove that the function R(-,#) in H(R) is the limit in H(R) of the
sequence S¥_ _ R(-, nh)K(t — nh). Now
2

“R(-,t)— ﬁv‘, R(-, nk)K (¢ — nh)

n=—N

HR) , ©®
N
=2}\jj;(t) - E_ij(nh)K(t — nh)| .

Now let W be an open set such that for all j, supp f, C W C WCoQ,= {x:
(x, x) c Q). Such a set exists because for each j, supp f = {x (x, x) €
Supp R} C Qo and Q, is open. Q, has disjoint translates by h~!, so by using
the notation and method of Lemma 1, (6) is less than
PP RAl LzeN(t)m(W)'/ 2, The Jf; are orthonormal in L,, ZA; < o since R is
trace class and m(W) < co. Thus (6) converges to zero for every t ER,
proving the theorem.

The final theorem in this section shows that the sampling series (5)
converges almost surely as well as in mean square.

THEOREM 3. Under the hypotheses of Theorem 2, the sampling series (5)
converges almost surely.

Proor. By Theorem 7 of Cambanis and Masry [7] the representation (2) of
the process x(t) converges in L, almost surely, so if xy (7, w) is defined by
Xy(t, w) = _, S (De;(w) then xy (¢, w) converges in L, to x(t, w) for almost
all w. Zy (@, w) has support in @, = {A: (A, A) € Q} for each N since each of
the functions f (A) is supported by Q,, so X(A, w) is supported by Q,. Thus for
almost all w, x(¢, w) satisfies the hypotheses of Lemma 1 and so (5) converges
almost surely.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



232 A.J. LEE

3. Extension of the sampling theorem. In this section we extend the results
of §2 to include processes { X (f), ¢ € R} which satisfy

f R(t, 6) p(dt) < 0 ©)

for some positive integer k, where p,(df) = (1 + 2~ dt. 1f (7) is satisfied,
then R (¢, s) = E(X (£)X (s)) satisfies

I

since (1 + 2+ s3)% > (1 + 3(1 + s?). It follows that the Fourier transform
of R(1, s) exists as a distribution in the Sobolev space H>~2*(R,) (see, e.g.,
Tréves [10, Chapter 31]). The following theorem is an extension of Theorem
1.

IR, 5)|°

—_—— dtds <
(1+ 2+ s2)*

THEOREM 4. Let {X (), t € R} be a second order measurable mean square
continuous random process whose covariance R satisfies (7). Let Q be an open
set such that supp R C Q and suppose that the sets (nh™',nh™") + Q are
disjoint for all integers n. Then the process is determined by its samples
{X(nh),n € Z}.

Proor. Consider the operator R: Ly( 1) — Lo( ) with kernel R. Letting A;
be the nonzero eigenvalues of R with corresponding eigenvectors ¢;, we see
that the RKHS corresponding to X () is exactly the same as in §2, except that
the A, now are eigenvalues of an operator on Ly(p)-instead of L,(R)
(= Ly(pp))- To prove the theorem it is enough to show that if {g} is a
sequence with S Af(nh) g = 0 and 3 A| g|* < oo then g; = 0 for all j. Here
the functions f; are the “time functions” for X (¢) and are functions in Ly( ).
The process X (#) still has the representation (2), with the f; and A; as above.
Let g(r) = ZAf(1)g. Then g € Ly(py), and § is a distribution in H 2-k([R)
given by £(¢) = Z A f(¢) g Now

1EGF <M O SAlgl <Nigl R (s ®3)
J J J

and an argument similar to that employed in Theorem 1 shows that supp § C
Q, and the sets nh + Q, are disjoint for each n, where Q, = (x: (x, x) € Q)
as before. Now since § € H>~*(R), we may write § = 3% _(—1)"D*"d
where D is a differentiation operator d™/dx™ and # € H**(R). Moreover,
we can suppose that supp # C Q, (Tréves [10, Chapters 24, 31]). Now con-
sider the sum SV__, 9, $, where J,, is the translation operator on )’ defined
by (9,8)(¢) = g(F,¢), and also the translation operator on % defined by
G &(t) = ¢(t — nh). Now §,D™u = D™F u so
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N N N
S g4= 5 9,3 (-)D¥i- 2( nmp* 3 G,
n=-N n=—N m=0 n=—-N

Since # € H%**(R), by the proof of Theorem 1 2,,-_ ~J,i converges to a
periodic distribution. Thus 39,8 converges to a periodic distribution G,
whose Fourier expansion is G = 32 _  g(nh)e~2""* But g(nh) =0 so
G = 0. Now supp § is a closed set contained in Qo, so supp § and CQ, are
disjoint closed sets, and there exists an open set W with suppg C W C W C
O,. Let  be a C* function that is 1 on W and 0 on GQ,. Then for any
§€D, £=(1 - ¢)§ + Y& £ is supported by Qp so G(¥$) = §(¥$), and
g((1 — ¢)§) = 0 since the support of (1 — )¢ is disjoint from supp g. Thus
g =GW&H+ (1 — )9 =0 so0 g =0 and thus g =0. It follows that
H(R) = My and so H(X) =

Next we present a sampling theorem for processes whose covariances
satisfy the hypotheses of the last theorem.

THEOREM 5. Let {X (f), t € R} be a second order random process satisfying
the hypotheses of Theorem 4. Then the sequence

N
> X (nh)K(t — nh) (8)
n=-—N
converges to X (t) in mean square for every t € R, where K is the function
defined in Lemma 1.

PROOF. As in the proof of Theorem 2, it is enough to show that

N
lilrln > S(n)K (1 —nh) =f(1), j=12,..., ©)
n=-—N
uniformly in j for each ¢. The FouriAer transform of each f; is a distribution in
H>"k(R), so for each j, f; = 2k _o(—1)"D?; and f(1) =
Sk (=" (2mt)2"'u (?) for some function u; in L, whose Fourier transform
4 is in H**(R) supported by Q, Thus 1t is enough to prove that for

J
0<m<k,

N
lim 2 K(t = nh)Q2mit)"u)(nh) = (2mit)*"u (s
n=-—-N
uniformly in j. Each 4 is in L, N L, since Q, has finite Lebesgue measure, so
(1) = [r,e¥"h(x) dx where T; = supp u; C Q. Let  be the C* function
that is1on W and 0 on CQ, where now I C W C W C Q, for all j, and
define F,(x) as in the proof of Lemma 1. F, is C* with period A}, its Fourier

series 2. _ K (t — nh)e*™™* converges uniformly on R to F,(x), and the
differentiated series =% _  K(t — nh)(2minh)*"e*™"* converge uniformly to

d*"F,(x)/dx*". On W, d>"F,(x)/dx*™ = Q2mif)*"e*™** so, on W,
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limySN_ _ K (t — nh)(2minhy*"e*™"* converges uniformly to (2if)*"e?".
Moreover

S k(- nk)(2minh)*"u (nh) — (2mit)*"u,(f)

nw=-—~N
< f 2 K(¢ — nk)(2mink)me2mink — (2mif)me2nis| | (x)| dx
rj n=-—N
< sup 2 K(t — nh)Qmink)*me?minix — (2qif)?me?mitx| m( 0 )/ 2l La®)
XEW i in=s—-N

< KN,m (t)m(QO)l/zll"{l"b;(R) say,

where limy Ky () =0 for m=0, 1,...,k, and m denotes Lebesgue
measure. Now let ¢ > 0, then for N sufficiently large

5@ - 2 K (¢ = nh)f;(nh)

——N < 2 KNm (t)m(QO)l/zu "L;(R)

< em(Qo) ”uj”Lz(R)‘
Also f(1) = (B, —omt)™)u,(1) so

[15OFQ + 2~ ar
= f ( é (27rt)2'")2(1 + t2)"‘|uj(t)|2 dt > C2|[uj||iz(x)
m=0

for some constant C > 0. The time functions f; are orthonormal in L,( ) so
finally we obtain |ull, 4 < C™' for all j and |f(s) — ZN._yK(t -
nh) f,(nh)| < em(Qy)'/ 2CTor allj Jj. Thus (9) is verified.

The next theorem shows that the sequence (8) converges almost surely:

THEOREM 6. Let { X (f), t € R} be a random process satisfying the hypotheses
of Theorem 5. Then for almost every w,

lig/n 2 X (nh, 0)K(t — nh) = X (1, w)

n=—o0

for each t € R.

PrOOF. By Cambanis and Masry [7, Theorem 2], X (¢, w) is a function in
L,( ) for almost all w, so its Fourier transform is in H>~*(R). It is enough
to prove that the support of X (x, w) is in the set Q,, then the argument of the
last theorem will prove the theorem. By Theorem 7, Cambanis and Masry, the
r.v’s Xy(t, w) = 2., fi(D)e;(w) converge almost surely in Ly(p) to X (¢, w),
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NONSTATIONARY RANDOM PROCESSES 235

so for any ¢ € S, Xy (¢, w) converges to X (¢, w) for almost all w since

2
o 8 0) = X &, ) <| [ (i (1 @) = X (1, 0)0)

< [ (6, @) = X (1, ) pelar) [ (1 + 230" e

by the Cauchy-Schwartz inequality.

Now suppose that x & Q,, so that (x, x) & Q, the open support of R
whose translates are disjoint. It follows that there is an open neighbourhood
U of (x, x) such that all testfunctions in % (R,) supported by U are mapped
by R onto 0. Let ¥ be an open nelghbourhood of x with V' X V' C U, then
for any ¢ in D(R) supported by ¥, 2 Alf, f(@®)fP=R@o® ¢)=0. Thus
f (¢) = 0 for all j and so X, @ w)=0 for all N, and hence X, 0) =
Consequently for any ¢ € 9D (R,) supported by ¥, X (¢, w) = 0; this 1mphes
that supp X (-, @) C Qy, proving the theorem.

4. Harmonizable processes. First, we present a counterexample to show that
a process need not have a covariance whose Fourier transform has disjoint
translates in order to be determined by its samples. Consider the very simple
example of a process of the form x(f) = f(r)e where f(¢) is a real valued
function and e a random variable with E(e) =0, E lef* = 1. Then the
covariance function R of x(¢) is R (¢, s) = f(¢) f(s). Suppose, in addition, that
the function f is given by

f(t) =:/;°:°e21ritx§(x) dx

for some L, function ¢ % 0. Then R has the representation

R(ts)= [~ [7 @25 T0) ax

so R (and hence X (1)) is harmonizable.

Now the samples { X (nh), n € Z} generate H(X) if and only if f(nh) 7 0
for some n, since H(X) = {\e: A € C}. Choose £(x) = e~ then supp R =
supp e~ ™*I"D = R, and f(¢) = (1 + ¢~ Thus f(nh) # 0 for all n and so
X () is determined by its samples. But the translates of R, are certainly not
disjoint, so no condition on the translates of R can be necessary.

Similar processes having corresponding spaces H (X) of any finite dimen-
sion can be constructed to provide similar counterexamples. This example
shows that the necessary half of Proposition 2 of Rao [6] is incorrect. It
should be noted that these counterexamples are all finite dimensional. It
would be interesting to see if a counterexample exists in the infinite dimen-
sional case. However, any harmonizable process satisfies the conditions of
Theorem 4 with k = 1, so Theorem 4 is a generalisation of Rao’s theorem. In
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fact, Theorem 4 holds for any harmonizable process indexed by more general
types of topological groups. Suppose that G is a locally compact abelian
group, with character group G. A random process {X(g),g € G} is
harmonizable if it has a covariance of the form

R(g k) = E(X (X)) = [, [ Lo £)B By p(de dB)

where (a, g)> denotes the character a evaluated at g and p is a measure in
M (é X é) satisfying the condition 37_,37_, ,cjp.(A X A) > 0 for all com-
plex numbers ¢, . . . , ¢, and Borel subsets A,, ..., A, of G Assume also that
G contains a closed subgroup H, which plays the role of the subgroup {nh:
n €Z} in R in the sampling theorems of previous sections. Let A be the
annihilator of H in G, 4 = {« € G: {a, k) = 1 Vh € H}. We seek a condi-
tion sufficient for the process X (g) to be determined by its samples {X (g), g
€ H} as in Theorems 1 and 4. We must first prove a lemma.

LeEMMA 2. Let v be a regular Borel measure of finite variation on G, and 5 its
Fourier transform, (g) = [g{a, g>v(da). Then if the support A of v is disjoint
Jrom all translates of A by members of A not equal to the identity of A, and
p(h)y=0forall h € H, thenv = 0.

ProoOF. Let T denote the natural homomorphism GG /A4, T(a) = a +
A. By Rudin [11, p. 53], the restriction of 5 to H is the Fourier transform ofa
measure o on G/ A4 such that for all bounded Borel functions ¢ on G/ A4

fé¢(T(a))v(da) = fé/Aqb do.

Since the restriction of # to H is the zero function, it follows that ¢ = 0 and

fc.qs(r(a))»(da) =0 (10)

for all bounded Borel ¢ on G /A. Let ®(a) = Z, c 4xs(a + y) where x, is the
indicator of A. Since for a; € a + 4, ®(a,) = ¢(a), we can regard P as a
Borel function on G/A which is bounded since the translates of A are
disjoint. Thus @ satisfies (10). Moreover ® o T = 1 on A, so that

v(A) =fAlv(da) =L(I)(T(a))v(da) =fé<I>(T(a))V(da) =

It follows that » = 0.

Now consider the linear space £ consisting of all functions f on G such that
the integral fsfaf(a)f(B) u(da, dB) exists, where p is the measure in the
representation of R (g, k). If we identify functions f; and f, for which

L@ = £(@) (1(B) = 1:(B)) w(da, dB) =0,
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we may define an inner product (f;, fy)con £ by

(i fr)e= fG [ £1(2)T:(B) p(da, dB);

the resulting inner product space can be completed to give a Hilbert space
A,(p) with inner product (f;, f,), and norm || f]| 5. For functions f,, f, in £, of
course (fi, f2)e = (f1» f)4. The Hilbert spaces A,(p) and H(X) are isomor-
phic under the correspondence X (g) <> g, where g is the function in £ given
by g(a) ={a, g), g € §. (See e.g. Cambanis and Liu [12]). The samples
{X (h), h € H} generate H(X) if and only if the space A,(u) is generated by
the functions h, h € H. The analog of Theorems 1 and 4 is

THEOREM 7. If the support S of p has its translates by (v, y) disjoint for all
Y € A, then the samples {X (h), h € H} generate H (X).

Proor. It is enough to prove that the functions k, & € H, generate A,(p).
Let f € A,( ) and suppose that (f, #), = O for all » € H. We will show that
f = 0. Define a measure » on the Borel sets of G by »(A) = (xa, /)4 Where x4
is the indicator function of the Borel set A. Then

()] =0ca s <lxallal Al

= (e x)¢ "I a= 1A X 8)"2) 1],

so » is a finite measure. Now S, the support of p, is givenby S = C U {U: U
open, p(U) = 0} so if (@, ) € S then there is an open set U containing
(a, @) with u(U) = 0. Since U is open, there is an open subset ¥ of G with
a€EV, VXV CU, and w(V X V) =0, thus v(E) = (g Hr < p(V X
V)2 flla =0 and a & supp ». Thus {B: (B, 8) € S} D supp », and the
translates of supp » by elements y in 4 are disjoint. Moreover #(h) =
J{a, Kyv(da) = (h, f), = 0 for all h € H, so by Lemma 2 # = 0, and hence
(Xa» N)a = 0 for all Borel sets A. But the functions x, are dense in A,(p) so
f =0, and thus the functions h, # € H, generate A,( ).

If we assume a little more about the subgroup H, we can develop a
sampling theorem for X (g). Suppose that H is now an infinite closed discrete
finitely generated subgroup with generator A, such will exist in G, for
example, if G contains an element A, such that the smallest closed subgroup
containing h, is not compact (Hewitt and Ross [13, p. 84]). Since H is
discrete, its character group H will be compact and hence G /A which is
isomorphic to A will also be compact. Under these conditions the following
theorem is true:

THEOREM 8. There exists a sequence S,, of functions on H such that
() S, has finite support for each n,
(ii) sup,e | S,(B)| < 1 for each n,
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(iii) lim,, w0 Si(R) = 1if h = e and zero otherwise.
Iff € L(G/A) then

Jim EHS" (W) f (B){a, k) = f(T(a)) (11)

Jor every a EAGA such that f is continuous at T (a). The series (11) converges
uniformly on G/ A if f is continuous.

Proor. The proof is a specialization to the present context of Theorem 7.1
of Mayer [14], and is omitted. Note that the Fourier transform of f is a
function on H since (é /A)" is isomorphic to H.

Note. If G = R and H = Z the above theorem is just the de la Vallée-Pois-
son method of summation of a Fourier series.

We can now give the sampling expansion of harmonizable process:

THEOREM 9. Suppose H is an infinite closed discrete cyclic subgroup of an
LCA group G. Suppose {X (g), g € G} is a harmonizable process with spectral
measure p with an open support Q whose translates by members of A (the
annihilator of H in é) are_all disjoint. Let W be an open set such that {a:
(a, @) € Supp p} C wC wC {a: (a, @) € @}, and let  be a continuous
bounded function on G that is equal to unity on W and zero on C{a:
(a, @) € Q}. Then there exist coefficients a,(h) such that

X(g) = lim > S, (ha, (W)X (k) forallg € G, (12)
KEH

with (12) converging in mean square.
If A is discrete, then the coefficients a,(h) are given by

a,(h) = f6.¢(a)<a, g — hyM (da)

where Mg is the Haar measure on G. In general, there is a finite measure v on
the Borel subsets of W such that a,(h) = [y (a){a, g — hyv(da).

PrOOF. Define F;(a) = Z) ¢ $(a + A a + A, g). Clearly we can regard F,
as a function on G/A we claim it is continuous on G/A. Let T(a) be a
point in G /A. Either T(a) N W=@or T(a) N W is a singleton. In the first
case, there is a neighbourhood of T'(a) in G /A on whlch F(a)=0s0 F, is
continuous at T'(a). In the second case, suppose T(a) N W = {ag}. Let U be
a neighbourhood of a, in Gwith U C {a: (a, a) € Q} such that |p( B B, &)
— ¢(ag)ag, g)] < & for all B € U. T(U) is a neighbourhood of T(a) in
G/ A, and for all points T(B) in T(U), | Fp (T (a)) — F(T(B))] = |&(B)-
(B, 8> — d(ap)ag, g)| < e since without loss of generality we can assume
B € U, and the translates of {a: (a, a) € Q} are disjoint. Thus F, is
continuous at T'(a) and so continuous on G/ A4. F, is bounded, and the Haar
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measure on G/A is finite since G/ A is compact, so F, € L(G/A). Thus by
Theorem 8, 2, 4SS, (h)F (h)Xa, h) converges umformly to F (T ().

It follows that since F(T(a)) =<a, gy for all a € W, the series
e S (h)F (h)Xa, k) converges uniformly on W to {a, g>. Now we claim
that Supp p C Sy X S;, where Sy = {a: (a, @) € Supp p}. To prove this, let
(a), a;) € Supp p. We must show that (a;, a;) € Supp p for i = 1, 2. Let U
be an arbitrary open set containing (a;, o), then there exist open neighbour-
hoods ¥, in R, with ;€ ¥V, and V;X V;C U,. V|, X V¥, is an open
neighbourhood of (a;, a,) so there exists a neighbourhood ¥{ X ¥; of (a,, a,)
with p(V{ X V3) # 0, ¥/ C V. Then V] X V}, i = 1, 2, are neighbourhoods
of (a1, o) with { p(V{ X V) (V3 X VD}'2 > | (Vi X V9| # 0 s0 p(¥} X
V)#0, and V;/ X ¥V} C U, Thus (a;, a;) € supp p, and supp p C Sy X Sp,
proving the claim. Thus on supp p,

DRIOIADOERc g>)( S S, (0B B = <))

heH

converges uniformly to 0 and hence ||2S,,(h)F;(h)<a, B> — <a, 8[| a,yy cON-
verges to 0. Thus by the isomorphism, the sampling theorem (12) is verified
with a,(h) = F 2 (h).

The character group of G /A is isomorphic to H, under the correspondence
<h, T(a)) = {a, hp, so the Fourier transform of F, is F 2 (h) =
fG/A<a, h)F, (T ()M, (T (o) where M, 4 is the Haar measure on G/A
Now the Haar measures on G, 4 and G / A are related by the equation

M (W) = [, [ X0 (o )M ()M (4T (@)

where x;, is the indicator of W. The inner integral is a function of T'(a) since
Ixa(a + Y)M (dy) is unchanged if a is replaced by a + y for y € 4. Now

wa(a + V)M, (dy) = {MA ({vo}) if a + :yo € W for some y, € 4,
A 0 otherwise,

since the translates of W are disjoint. Thus [, xu(a + Y)M,(da) = M,({e})
for T(a) € T(W) and zero otherwise and so Mg(W) = M, ({e}) -
Mg, (T (W)) and thus is finite.

If A is discrete, then [|y(a + yY)}a + v, 8 — DM, (dy) = 2, |Y(a + 7)| <
0 50 Y(a+ yXa+ 7,8~ h) € L(4) and Fy(T(a)) = [ (a + yXa +
Y, 8) M 4(dy). Then F,(h) equals
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[ F(T(a))Th, T(@)5 Mg, 4 (4T ()
G/A
= f . f Y(a + y)a + v, gy M, (da) {a, By M, , (d (Ta))
G/Aa’4
= fG./A L Y(a + y)a + v, 8 ~ BYM, (da)Mg,, (dT (o))

= fé<a, g — Dy (a)Mg (da)

and so a,(h) = (g — h).
If A is not discrete then

Fy W = [, F(T(2)) T Moy (4T ()

= f F,(T(a)) T, By Mg, (T ()
T(w)

since F, is zero off T(W). For the general case, consider the o-field of Borel
subsets of W. If U is an open subset of W, then T (U) is an open subset of
G /A. Since T is a 1-1 correspondence between W and T (W), the set function
v defined by »(U) = M;,,(T(U)) is a countably additive finite set function
on the open sets of W which may be extended to a finite measure on the
Borel sets of W. Note also that for any Borel subset A of T (W), vT ~'(4) =
Mg, 4(8). Thus by the change of variable formula

Fw = [ F(T@)ThT(@05 My (4T (@)

= f F, (o) T, Ay v(da) = f Y(a)Xa, g — Kdv(de).
w w

If A is discrete then Mg (U) is proportional to »(U) for all Borel subsets of
W.

Note. The restriction on H (that it be an infinite finitely generated discrete
group) is not necessary for Theorem 9 to hold. Any discrete subgroup H
whose character group H possesses a faithful finite dimensional representa-
tion will serve, provided slight modifications in the statement of Theorem 9
are made.
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