
Sampling Trajectory Streams with Spatiotemporal Criteria

Michalis Potamias Kostas Patroumpas Timos Sellis
School of Electrical and Computer Engineering
National Technical University of Athens, Hellas
{mpotamias, kpatro, timos}@dbnet.ece.ntua.gr

Abstract

Monitoring movement of high-dimensional points is es-
sential for environmental databases, geospatial applica-
tions, and biodiversity informatics as it reveals crucial in-
formation about data evolution, provenance detection, pat-
tern matching etc. Despite recent research interest on pro-
cessing continuous queries in the context of spatiotemporal
data streams, the main focus is on managing the current lo-
cation of numerous moving objects. In this paper, we turn
our attention onto a historical perspective of movement and
examine trajectories generated by streaming positional up-
dates. The key challenge is how to maintain a concise, yet
quite reliable summary of each object’s movement, avoiding
any superfluous details and saving in processing complexity
and communication cost. We propose two single-pass ap-
proximation techniques based on sampling that take advan-
tage of the spatial locality and temporal timeliness inherent
in trajectory streams. As a means of reducing substantially
the scale of the datasets, we utilize heuristic prediction to
distinguish which locations to preserve in the compressed
trajectories. A comprehensive experimental study verifies
the stability and robustness of the proposed techniques and
demonstrates that intelligent compression schemes are able
to act as effective load shedding operators achieving re-
markable results.

1 Introduction

Research in data compression has grown rapidly over the
past few years producing a large number of lossless and
lossy compression methods. Data compression is possi-
ble because of redundancies found in information collected
from various sources and in several domains, such as mul-
timedia systems, astronomy, environmental and other sci-
entific databases, geospatial information systems, as well
as conventional databases hosting several terabytes of data.
In particular, positioning applications have recently become
extremely popular, e.g., for fleet management or location-

based services, thanks to recent advances in telecommu-
nications and geopositioning reporting devices (GPS, PDA
etc.). Spatiotemporal data from multiple sources is then be-
ing sent via a wireless network to a central processor as
an unbounded data stream of timestamped positions that
cannot be managed within a traditional DBMS. A typical
monitoring application must be able to provide real-time re-
sponses to multiple continuous queries that may refer to or
even take advantage of the spatiotemporal features pertinent
to streams of recorded locations.

Such a systematic observation of spatiotemporal phe-
nomena related to moving humans, animals, vehicles etc.
yields trajectory data that keep track of their movement. In-
formally, the trajectory of a moving object may be consid-
ered as a sequence of point locations at consecutive time
instants. If multiple objects are monitored and their current
locations are recorded very frequently, a large volume of
data is expected to arrive for processing at an unpredictable
and possibly high rate. Further, processing every single
recording does not necessarily convey significant movement
changes (e.g., if an object moves along a straight line), at the
expense of considerable processing overhead.

The aforementioned restrictions illustrate the demand-
ing algorithmic framework imposed by properties that char-
acterize streaming trajectories. As a rule in data stream
processing, single-pass algorithms are the most adequate
means to effectively summarize massive data items into
concise synopses. Essentially, there is always a trade-off be-
tween approximation quality and both time and space com-
plexity. In the special case of trajectory streams, an addi-
tional requirement is posed: not only exploit the timely spa-
tiotemporal information, but also take into account and pre-
serve the sequential nature of the data. Therefore, in order
to efficiently maintain trajectories online, there is no other
way but to apply compression techniques, thus not only re-
ducing drastically the overall data size, but also speeding
up query answering (e.g., identify pairs of trajectories that
have recently been moving close together).

This paper examines several variants of sampling applied
over streams of positional updates collected from moving

objects. By intelligently dropping some points with neg-
ligible influence on the general movement of an object, a
simplified yet quite reliable trajectory representation may
be obtained. Such a procedure may be used as a filter over
the incoming spatiotemporal updates, essentially control-
ling the stream arrival rate by discarding items before pass-
ing them to further processing. Besides, since each object is
considered in isolation, such item-at-a-time filtering can be
applied directly at the sources, with substantial savings both
in communication bandwidth and in computation overhead
at the central processor.

Of course, even by dropping incoming items blindly
(e.g., ”coin toss”) rough outlines of trajectories can be kept.
However, there are certain properties that a trajectory sam-
ple must preserve; primarily, the sample should be able to
catch any significant changes in speed and direction that in-
dicate alterations at the known pattern of movement. There-
fore, these points could be used to reconstruct the original
trajectory; discarded locations can be derived via linear in-
terpolation with small error. Clearly, there is a need for
techniques that can successfully maintain an online sample
of the most significant trajectory locations, with minimal
process cost per point. The situation is illustrated in Fig-
ure 1, where actual points have been recorded at constant
intervals (e.g., every 10 seconds). The result of a uniform
sampling technique is depicted, which retains 20% of the
dense original locations. Notice how one of our techniques
(STTrace) takes advantage of the spatiotemporal features
that characterize movement, successfully detecting changes
in speed and orientation. Threshold-guided sampling, also
proposed in this paper, achieves comparable results, by de-
ciding whether the current location can be safely predicted
from the recent past.

Our contributions can be summarized as follows:

• We propose two sampling techniques, namely Thresh-
olds and STTrace, in order to maintain a flexible and
condense representation of streaming trajectories.

• Both techniques exploit the notions of spatial locality
and temporal timeliness inherent in trajectory streams.

• Multiple trajectory compression is also feasible by dy-
namically redistributing memory resources.

• An extensive experimental study provides concrete ev-
idence that even after applying sampling schemes we
may still attain high-quality synopses useful in approx-
imate query evaluation.

The remainder of this paper proceeds as follows. In Sec-
tion 2, we review related work on sampling data streams and
efficient trajectory maintenance. In Section 3, after sketch-
ing out a streaming framework for trajectory preservation,
we utilize a well-known uniform sampling technique for

Figure 1. Sampling variations on a trajectory

managing massive trajectories. In Section 4, we present
threshold-guided sampling, while in section 5 algorithm
STTrace is introduced. Experimental results are discussed
in Section 6. Finally, Section 7 draws conclusions and indi-
cates directions for future research.

2 Related Work

Several summarization techniques have been proposed
for traditional databases, but recent work has focused par-
ticularly on data stream synopses [1], such as sampling [2],
histograms [6], wavelets [5], and sketches [4]. Of these,
random sampling is perhaps the most simple and intuitive
algorithm for data reduction, aiming to capture the most
significant features of the append-only stream. Reservoir
algorithms such as those in [12] provide a uniform sample
and make one pass over the data, taking online decisions on
whether to accept or reject an item. However, as we further
explain in Section 3, applying such a technique over stream-
ing trajectories does not take into consideration spatiotem-
poral peculiarities pertaining to the movement of distinct
objects.

The necessity of compression techniques for moving
objects has been set forth in [7]. Inspired by line gen-
eralization that has been widely accepted on spatial data,
several off-line and online spatiotemporal extensions were
suggested to approximate trajectories, also providing a de-
tailed analysis of compression quality. Their notion of syn-
chronous distance between original and approximated loca-
tions is similar to ours, but their online algorithms clearly
fail to comply with the low-complexity requirements of the
data stream model. In fact, although some of the tech-
niques carefully maintain good samples along trajectories,
their time complexity is O(N) per position update, where
N is the current size of a trajectory. A similar approach was

taken in [3], offering analytical results also based on line
simplification, but this time with respect to spatial query
answering (e.g., spatial join, nearest neighbor search) and
with bounded error guarantees. These techniques, although
quite satisfactory for moving objects databases, generally
entail high cost when applied on streaming locations.

The insightful idea of amnesic approximation for stream-
ing time series was introduced in [10], considering that
the importance of each measurement generally decays with
time. Their time complexity is independent of the total
stream size, but they only handle one-dimensional time se-
ries. In this work, apart from handling multi-dimensional
points, we argue that the case for trajectories is different
due to characteristics inherent in movement: not only spa-
tial locations, but speed and orientation must also not be
overlooked when approximating trajectories.

SCUBA [9] is a recently suggested technique that main-
tains clusters of closely located objects and queries moving
along a network. Although it is stated that trajectory queries
can be supported, this method is clearly geared towards
current status without retaining the positional footprints of
multiple distinct objects over long time periods. Other
query-oriented techniques [11, 8] hash incoming points to
efficient structures, discarding data irrelevant to the specific
query, while our techniques act at a lower level, maintaining
the original form of the data.

3 Problem Formulation

3.1 Trajectory Representation

Consider a set of numerous point objects continuously
moving over the Euclidean plane. Generally speaking, the
trajectory of each distinct object is represented as an evolv-
ing time series of point locations. Therefore, each trajec-
tory is approximated by point samples collected from the
respective data source at distinct time instants (e.g., a GPS
measurement is taken every few seconds). More formally:

Trajectory T of a point object moving over the Euclidean
plane is a possibly unbounded sequence of timestamped lo-
cations across time, i.e., tuples of values 〈id, ti, xi, yi〉, i ∈
1, . . . , N, . . ., where ti stands for the timestamp referring to
the time instant a spatial position (xi, yi) was recorded for
an object identified as id.

Of course, the frequency of positional updates may not
be identical for each object; in fact, it may be varying even
for a single object over time. In moving object databases,
interpolation techniques may be utilized to estimate ob-
jects’ positions in between recorded locations and thus re-
construct an acceptable trace of the entire movement. Usu-
ally, it is assumed that line segments connect each pair of
successive points in the sequence, although a curve-based

representation is also possible [13] through higher-order
polynomials or splines. This technique is used to provide
synchronized trajectory representations by reconstructing
original positional measurements at a fixed rate.

In practice, a trajectory is often represented as a polyline
vector, i.e., a sequence of line segments for each object con-
necting consecutive pairs of observed locations. We adhere
to a representation of trajectories as point sequences across
time, implying that locations are linearly connected.

A reasonable assumption is that no updates are allowed
to already recorded object positions in order to preserve co-
herence among streaming trajectory locations. Also, out-of-
order tuples are not allowed; trivially, point locations may
be temporarily buffered for establishing order according to
their timestamps, before given to further processing.

3.2 Uniform Sampling

Sampling over trajectory streams simply suggests retain-
ing a fair fraction of the original points in the sampled set,
as a means of load shedding when processing incoming tu-
ples. Since the original data is practically a sample of the
actual trajectory, it is an unavoidable approximation con-
trolled by system specifications (bandwidth, accuracy of the
reporting device etc.). Therefore, by applying a supplemen-
tary sampling stage we can get a more coarse summary of
the movement, but this one should engage intelligent tech-
niques so as to maintain in memory the most essential tra-
jectory features. The key intuition is that every timestamped
point does not carry the same amount of information. In that
sense, a predictable location can be discarded altogether so
as to reserve memory for other significant points that reveal
relative spatiotemporal changes in trajectory evolution.

The class of reservoir sampling algorithms introduced
by Vitter [12] is well suited for online data streams, so it
comes up as a natural candidate for trajectory compression.
The main idea behind reservoir sampling techniques is to
continuously maintain a sample of size ≥ M , from which a
random sample of size M can be easily produced.

Consider a single trajectory T consisting of a sequence
of streaming point locations p1, p2, . . . , pk, pk+1, . . . and
that k of these have been processed so far. In the most
simple variant of the method, the first M points of the tra-
jectory have been inserted into the ”reservoir”. Afterwards,
each successive location pk+1 is processed sequentially and
it has probability P [pk+1] = M

k+1 to be selected for inser-
tion into the reservoir, replacing a point chosen randomly
among its current M items. Evidently, each time the re-
sulting set of M points is a uniform sample of the origi-
nal trajectory, making one pass over the sequence without
knowledge of its total size. Overall, the time complexity is
O(M(1 + log N

M)), where N is the current trajectory size.
Even though uniform sampling may provide a simple

and cost-effective solution, it is clearly insensitive to the
spatiotemporal characteristics of the trajectory as well as to
its sequential nature. Since the algorithm treats all items ac-
cording to their succession disregarding their timestamps,
it does not take notice at all whether the interarrival time
fluctuates between positional updates. Reservoir sampling
could be adapted to select items for insertion according to
a time-based probability; nonetheless, a similar behavior
should be expected. Stratified or weighted variations can
also be applied, but these techniques are mostly used to
tackle group-by and join queries, respectively [1].

We can distinguish sampling algorithms over stream-
ing trajectories that require (i) constant, (ii) logarithmically
increasing, (iii) linearly increasing memory and (iv) ever-
increasing memory with non-specific rate. We move next
to describe novel algorithms for in-memory trajectory com-
pression with spatiotemporal heuristics of ever-increasing
and constant memory requirements per trajectory.

4 Threshold-guided Sampling

The challenge when attempting summarization of mov-
ing object trajectories is to exploit spatiotemporal proper-
ties in order to produce a representative synopsis as closer
as possible to the actual movement. Our key intuition is that
a point should be taken into the sample as long as it reveals
a relative change in the course of a trajectory.

If the location of an incoming point can be safely pre-
dicted (e.g., via interpolation) from the current movement
pattern, then this point contributes little information and
hence can be discarded without significant loss in accuracy.
It is important to note that trajectory locations are not pre-
dicted on the basis of spatial positions only, but rather on
velocity considerations (e.g., increase in speed, turns etc.).
Therefore, a decision to accept or reject a point is taken
according to user-defined rules specifying the allowed tol-
erance (”threshold”) in changes in speed and orientation.

We refer to this class of algorithms as threshold-guided
sampling, because a new point must be appended to the
sample when that threshold is exceeded for an incoming
location. Observe that under this scheme and in contrast
to uniform sampling, the total amount of items in the sam-
ple keeps increasing without eliminating any point already
stored. Next, we introduce three variants based on location
prediction that differ in the way the estimated locations are
computed. We exemplify the techniques over a single tra-
jectory, since processing is performed on a tuple basis and
in a similar fashion independently for each trajectory.

4.1 Sample-based Thresholds

Consider the trajectory of a moving object as illustrated
in Figure 2. Suppose that B,C are the last two points in-

Figure 2. Sample-based Thresholds

serted into the current sample. Let pair 〈vs, ϕs〉 denote the
speed and orientation (i.e., azimuth) of the velocity vector
−→vs calculated according to B,C. Also, let 〈dvs, dϕs〉, de-
note the thresholds specified for the velocity vector; the for-
mer refers to the tolerable change in speed (expressed as a
percentage), whereas the latter indicates the greatest allow-
able deviation in orientation (a small angle value). Under
normal conditions, it should be expected that the object will
continue to move according to this vector for some time.
Therefore, it is very easy to check whether the current loca-
tion can be approximately anticipated by applying velocity
vector −→vs at the last observed location, which incurs little
overhead.

In practice, predictions are carried out by constructing a
so-called safe area SAS for the last point in the sample, tak-
ing into account the time interval dts spanning between the
last observed trajectory location and the newly arrived one
(i.e., the point candidate for insertion). The actual shape of
the safe area is determined by constraints that affect changes
in speed and deviations in orientation. In particular:

• A circular area determines the locus of all possible po-
sitions where the object may be located as long as it
maintains its anticipated speed. Taking into account
the user-specified threshold dvs for acceptable speed
changes, we may delineate two circles with centers
that coincide with the last known point of the trajec-
tory. The radius of the outer circle (upper bound) is
r+
s = dts×v+

s and derives from the maximum allowed
speed v+

s = vs×(1+dvs). Similarly, the radius of the
inner circle (lower bound) is r−s = dts × v−s and the
minimum allowed speed is v−s = vs × (1− dvs). As a
result, the speed locus is actually the ring between the
two circumferences (Figure 2).

• In order to form the safe area with respect to orien-
tation, two half-lines are drawn from the last known
point of the trajectory. Their slopes are ϕs + dϕs and
ϕs − dϕs, obviously defined by the orientation of the
velocity vector and the respective deviation threshold.
These two straight half-lines divide the plane into two
half-planes. The half-plane which includes the veloc-
ity vector is the safe area regarding orientation and im-

Figure 3. Trajectory-based awkward case

plies the expected direction of movement.

Finally, the sample-based safe area is derived from the
intersection of the two aforementioned areas. Given that the
incoming point is found within the constructed safe area,
we may consider this location redundant and safely ignore
it, assuming that it can be anticipated without significant
implications. In the opposite case, a decision to insert the
point in the sample is taken, suggesting that a considerable
change in movement has occurred.

Unfortunately, this policy is vulnerable to error propaga-
tion, as a moving object could change its orientation in a
way that the algorithm would fail to capture. This awkward
case is illustrated in Figure 2. Note that point E is more sig-
nificant than D and F , since a change in object’s direction
occurs there; still, E is not inserted in the sample, because
it falls within the safe area projected with respect to D.

4.2 Trajectory-based Thresholds

In order to avoid the awkward situation in Figure 2, an-
other variation is possible. Now the safe area SAT con-
cerning velocity is constructed from the last two locations
of the actual trajectory, instead of the last two points stored
in the sample. The safe area locus is defined from the ve-
locity vector −→vt corresponding to the last two observed lo-
cations. As before, the speed locus is determined by two
concentric circles with radii r+

t = dtt× [vt× (1+dvt)] and
r−t = dtt × [vt × (1 − dvt)], while the orientation locus is
determined by lines of slope ϕt + dϕt and ϕt − dϕt.

This approach is also susceptible to error propagation,
when consecutive locations exhibit a smooth but significant
change in object’s orientation as illustrated in Figure 3.

4.3 A Combined Thresholds Approach

One can easily observe that the sample-based approach
evades the trajectory-based trap since the constant slight an-
gle augmentations (as illustrated in Figure 3) will be even-
tually detected. Conversely, trajectory-based approach is
able to detect small deviations in orientation not captured by
the sample-based approach (as that in Figure 2). Therefore,

Figure 4. Joint Safe Area

complications caused by error propagation can be overcome
by applying a combination of the two techniques, suggest-
ing that a safe area can be formed as the planar intersection
of the sample-based safe area and the trajectory-based one.

The situation is illustrated in Figure 4. Points B and C
are the last items stored in the sample. Points C and D are
the last observed locations of the actual trajectory, whereas
Ei, for i = 1, 2, 3 represent three possible locations cur-
rently examined for inclusion in the sample. Thus, we form
the velocity vectors, −−→vBC for the sample and −−→vCD for the
trajectory, respectively. The time interval dtDE is used with
the velocity vectors in order to delineate the two safe ar-
eas, the sample-based and the trajectory-based one. Finally,
their intersection is calculated in order to form the final joint
safe area (SAJ).

In case the candidate point is located within the safe area
(case E1), it is simply ignored. Otherwise, a relative change
has been observed (cases E2, E3) and this decision triggers
the insertion of a new point in the sample. This insertion
involves either the current or the previously observed loca-
tion of the trajectory. The current-point approach leads to a
sample that represents a smooth approximation of the origi-
nal trajectory, while the previous-point approach results in a
more coarse outline, suggesting that in the sample we store
the location immediately preceding the one that violated the
safe area. In Figure 2, a rule violation will be detected for
point F (due to the specified trajectory-based thresholds).
The current-point approach would store location F (hence
a smoother move), while the previous-point approach would
choose location E.

The pseudocode of the combined thresholds algorithm
is presented in Figure 5. After the safe area calculations
(Steps 2-4), a decision is taken on whether to insert the cur-
rent point in the sample (Step 6). In Steps 7-8 the insertion
occurs, increasing the total sample size for that trajectory.

As it turns out, this combined approach takes under con-
sideration both mean and instantaneous velocities in order
to make predictions. The mean velocity comes from the last
two points stored in the sample, while the instantaneous de-
rives from the last two observed trajectory locations. The
joint safe area (i.e., the intersection of the two loci) is more
likely to shrink as the number of points discarded increases
after the last insertion into the sample. As soon as no inter-

Algorithm Thresholds (Trajectory Stream S, Objects n)
Sampleid maintains the sampled points for object id
sCounter[1..n] keeps the sample size for each trajectory

1. for each point p = 〈id, t, x, y〉 in S;

2. calculate SAS(p); /*sample-based safe area*/

3. calculate SAT (p);

4. calculate SAJ (p) = SAS(p)
⋂

SAT (p); /*joint safe area*/

5. maintain p in a buffer for the next iteration;

6. if 〈x, y〉 in SAJ (p) then break;

7. else nextpos← + + sCounter[id];

8. Sampleid[nextpos];← p; /* append p to sample */

9. end for;

10. end Thresholds.

Figure 5. Algorithm Thresholds

section is found, an insertion will be prompted regardless of
the current spatial location of that object. From the previous
discussion, at any step of the algorithm (as well as the other
two variations), the following lemma holds :

Lemma 4.1 The time complexity of threshold-guided sam-
pling is O(1) per incoming tuple.

All three variations yield samples of unbounded memory
requirements; for given thresholds, the size of the sample is
a rough indication of complexity in movement pattern (i.e.,
irregularity in trajectory shape).

5 Sampling based on Synchronous Distances

Although threshold-guided techniques achieve substan-
tial gains with respect to the space required for maintain-
ing complete trajectories, they still have ever-increasing
memory requirements. This fact naturally raises a question
on whether it is possible to maintain a sample of known
and constant memory, and thus more tailored for streaming
environments (similarly to uniform sampling presented in
Section 3). In this section, we introduce algorithm STTrace,
which successfully fulfils these specifications. The intu-
ition behind STTrace is to use an insertion scheme based
on the recent movement features (as in threshold-guided al-
gorithms), but at the same time also allowing deletions from
the sample to make room for the newly inserted points with-
out exceeding allocated memory (as occurs in uniform sam-
pling). However, there is an important differentiation: the
sampled point chosen for deletion is not selected randomly
over the current sample contents, but according to its sig-
nificance in trajectory preservation. Admittedly, it is better
to discard a point that will produce the less distortion to the
current trajectory synopsis. But this comes at a cost: for

Figure 6. Synchronous Euclidean Distance

every new insertion, the most appropriate candidate point
must be searched for deletion over the entire sample with
O(M) worst-case cost, where M is the current sample size.
Nevertheless, as M should be expected very small and the
sampled points may be maintained in an appropriate data
structure (e.g., a binary balanced tree) with logarithmic cost
for operations (search, insert, delete), normally this is an
affordable trade-off.

5.1 Synchronous Euclidean Distance

Being enforced to make deletions from the sample, the
most intuitive idea is to choose the point that conveys the
less critical information for that trajectory. Preferably, a
scalar metric should be used to measure the influence of
a point in the sample, since threshold-guided techniques
cannot be easily adapted due to the 2-dimensional criteria
(speed, orientation) used to determine the sample.

Therefore, we follow a different perspective and define a
metric that is based on the notion of Synchronous Euclidean
Distance (sed). For any point in the sample, this is the dis-
tance between its actual location and its synchronous posi-
tion estimated via interpolation between its predecessor and
successor points in the sample (Figure 6). Formally:

Synchronous Euclidean Distance: Let A, B, C be three
successive (i.e., tA < tB < tC) spatiotemporal locations
recorded for a trajectory T . Then, the Synchronous Eu-
clidean Distance between the actual location B and its pre-
dicted location B′ according to A and C is defined as:

sed(A,B, C) =
√

(x′B − xB)2 + (y′B − yB)2

where coordinates x′B = xA + vx
AC × (tB − tA) and

y′B = yA + vy
AC × (tB − tA) are calculated with respect to

the velocity vector corresponding to points A and C, hence
vx

AC = xC−xA

tC−tA
, vy

AC = yC−yA

tC−tA
.

Since this is essentially the distance between the actual
point and its spatiotemporal trace along the line segment
that connects its immediate neighbors in the sequence, the
sampling algorithm based on this metric is called STTrace.

5.2 Single-Trajectory Sampling

Let nM be the available memory, where n is the number
of moving objects (i.e., trajectories). When handling single

trajectories, this algorithm will devote memory M to each
one separately. The stored points are represented by tuples
〈id, t, x, y, sed〉, where the new attribute sed stands for the
synchronous Euclidean distance of the location with respect
to its predecessor and successor in the sample. The sed
attribute of a stored tuple will be updated only if one of the
three points involved in its calculation gets removed.

Initially, every incoming point will be stored in the sam-
ple of that trajectory until the available memory is filled.
The sed for every newly inserted point is calculated after
its successor is stored in the sample. As soon as the allo-
cated memory gets exhausted and a new point is examined
for possible insertion, the sample is searched for the item
with the lowest sed. That item represents the least possible
loss of information in case it gets discarded, so its sed is
essentially the lowerest allowable distortion.

Next, the algorithm calculates a probing sed, using the
last two points of the sample and the currently processed
point. If the probing sed is larger than the minimum sed
found already in the sample, the currently processed point is
inserted into the sample at the expense of the point with the
lowest sed. This causes recalculation of the sed attributes
for the neighboring points of the removed one, whereas a
search is triggered in the sample for the new minimum sed.
If the probing sed is smaller than the minimum sed the
current point is completely ignored and the streaming pro-
cess continues. It is obvious that the minimum sed (lower
bound of the allowable distortion) generally increases with
time, hence the search operation over the sample is trig-
gered more and more sparsely as time goes by.

Lemma 5.1 The time complexity per positional update of
algorithm STTrace is O(1

N log N
M log M), where N denotes

the current trajectory size and M its allocated memory.

Proof A point insertion into the sample introduces a com-
putational overhead which costs O(M) due to deletion
and adjustment. Assuming that items candidate for inser-
tion will be uniformly distributed across the trajectory (i.e.,
STTrace will choose any point for the sample with equal
probability), we expect a total of 1

2 (M + M
2) deletions when

the size of the trajectory is 2M points, a total of 1
2 ((M +

M
2) + (M

2 + M
3)) deletions for 3M points, and eventually

M
2 +

∑L
i=2

M
i < (lnL + 1)M insertions for a trajectory

size N = LM . Thus, O((log L+1)M2) is the overall time
and it can be decreased to O(M(log L + 1) log M) using
appropriate index for sample contents (e.g., a binary search
tree). Therefore, expected processing time for a single point
is O(M

N (log L + 1) log M) = O(M
N log N

M log M).

The full algorithm is presented in Figure 7. Step 2 cal-
culates the probing sed of the current point. Step 3 is the
decision step. Steps 4-9 handle the sample in case of dele-
tion (i.e. when memory is full), recalculating affected sed

Algorithm STTrace (Trajectory Stream S, Objects n, Memory m)
sample[1..n][] is a list of points for the sample of each trajectory
sCounter[1..n] stores the number of points in the sample
min[id] (initially 0) index to current threshold-point of each trajectory

1. for each point p =< id, t, x, y > in S;

2. calculate sed(A, B, C); /*with B = sample[id][sCounter]
A = sample[id][sCounter − 2] and C = p*/

3. if (sed < min[id]) break; end if;

4. if ([sCounter[id]] >= m
n

) /* sample is full */

5. delete(sample[id][min[id]]);

6. calculate sed(sample[id][min[id]− 1]);

7. calculate sed(sample[id][min[id] + 1]);

8. shiftLeft(1, sample[id][min[id]]);

9. find(min[id]);

10. else sCounter[id] + +; /* sample is not full */

11. end if;

12. sample[id][sCounter] := p;

13. store sed(sample[id][sCounter[id]− 1])

14. end for;

15. end STTrace.

Figure 7. Algorithm STTrace

values and making room for the new point. Step 10 in-
creases the sample counter until it reaches the maximum al-
lowed sample size. In Steps 12-13, the insertion occurs and
the sed for the previously inserted point is calculated. At
any time of the streaming process, this technique provides a
time-ordered representative sample for each trajectory.

5.3 Multi-Trajectory Sampling

By now, each trajectory is assigned a specific amount
of space M for its sample. For multiple trajectories, the
available memory is initially filled with the incoming points
regardless of the trajectory they belong to, hence the avail-
able space is distributed unevenly amongst them. The lower
bound on the allowable sed is calculated globally for all ob-
jects and it represents the least significant point for all tra-
jectories, so this location will be the candidate for replace-
ment. Thus, instead of calculating a separate minimum sed
for each distinct trajectory, just one such distance is main-
tained for all n monitored objects. This algorithm is a gen-
eralization of the one in Subsection 5.2 in all other aspects.

5.4 Discussion

An issue involves which points to consider when check-
ing for probing synchronous distances. As shown in Figure
6, we need three points to take a decision: that is, A and B
can be any two previously observed locations, whereas C

is always the point at hand. Besides, in case of insertion,
either B or C may be chosen to be stored in the sample.

Further, threshold-guided sampling as well as algorithm
STTrace can perform compression over multiple trajecto-
ries, as the available space can be distributed unevenly
among them by allocating more memory to objects of
greater agility. The former produces a sample for each dis-
tinct trajectory and the sample size is an indication of its
shape complexity. Algorithm STTrace is more powerful;
for multiple trajectories, it favors some trajectories that will
obtain more space (i.e., more samples) due to many ”sharp”
changes in their movement, at the expense of other trajecto-
ries that will be roughly represented as they follow a more
regular (hence predictable) motion pattern.

6 Experimental Evaluation

We implemented the threshold-guided and STTrace sam-
pling algorithms and compared them to Uniform sampling.
We conducted three sets of experiments for performance
evaluation, in order to (i) validate the consistency of sam-
ples with respect to original trajectories, (ii) assess the com-
putation time required for each technique, and (iii) verify
whether the sampled trajectories could be useful in approx-
imate query answering.

In the following, note that we have chosen the previous-
point combined approach for threshold-guided sampling,
which is superior than current-point approach in terms of
errors (Section 4). This technique takes as parameters user-
defined thresholds concerning speed and orientation for
both the sampled and the original trajectory. Also, only
single-mode STTrace execution has been tested for a fair
comparison with the threshold-based technique, since both
apply to each trajectory separately. The only parameter
given to STTrace is the available memory allocated to every
trajectory; this also applies to uniform sampling.

6.1 Experimental Setting

All experiments have been performed on an Intel
Pentium-4 2.5GHz CPU running WindowsXP with 512 MB
of main memory. We generated synthetic datasets for tra-
jectories of moving objects traveling on the road network of
greater Athens that covers an area of 250 km2. No spatial or
any other indexing technique is utilized and all processing
takes place in main memory.

Objects move at various speeds during their course, each
time according to the average speed assigned to the road
segment they enter. This means that all objects move at the
same speed along a specific road segment. We run simu-
lations for several time intervals (up to 10,000 timestamps)
and number of objects (up to 100,000). The interarrival time
was constant for all trajectories in a dataset, assuming that

Figure 8. Error vs. compression rate

all objects reported their positional updates concurrently at
specific time periods, hence agility was always set to 100%.

6.2 Approximation Quality

As a means of quality assessment for our sampling tech-
niques we estimate the error committed, i.e., how much the
sampled trajectory deviates from the original. Although
several types of distance may be utilized [3], we opt for
a time-uniform (or synchronous) Euclidean distance that
takes into account the spatiotemporal features of trajecto-
ries; that is, the actual and the approximated location must
correspond to the same time instant. Therefore, the ap-
proximated trajectory must be used to reconstruct locations
(e.g., via linear interpolation) for all time instants recorded
in the original movement. Thus, an Average Spatiotemporal
Distance (APD) can be calculated between the synchronous
(i.e., original and reconstructed) timestamped positions per
trajectory. In fact, we calculate two error metrics:

(i) Mean Square Error (MSE) of the APD and

(ii) Maximum Absolute Error (MAE), i.e., the highest APD
for the entire trajectory.

In fact, MSE provides a quality metric based on aver-
age performance, while MAE is more essential as it is able
to capture sudden deviations due to extreme locations that
perhaps cannot be detected during approximation. Next, we
will provide simulation results for a synthetic dataset con-
sisting of 100 moving objects each traveling for 10, 000 sec-
onds. Compression rate denotes the ratio in the size of an
approximated trajectory with respect to the original.

In Figure 8 (left), MSE measurements for the three tech-
niques is illustrated. Clearly, in all three techniques devi-
ation from the original trajectories drops drastically when
more locations are stored, which means that error is sen-
sitive to the size of the sample. However, Thresholds
technique outperforms Uniform sampling even by factors
greater than 10 for compression rates in the range 10−50%.
Besides, STTrace is better than Thresholds for compression
rates below 15%, while Thresholds performs up to twice as
better for any compression rate above 15%. STTrace is 2 to

Figure 9. Error vs. frequency of recordings

5 times better than Uniform for every compression rate.
In terms of MAE, again lower errors are observed for

higher compression rates (Figure 8). Thresholds still out-
performs Uniform by a factor greater than 10 for compres-
sion rates equal to 30%, while STTrace is at least 5 times
better than Uniform. STTrace yields a MAE of 100 me-
ters for compression rate 5%, while Uniform gives a com-
parable MAE for compression rates around 45%. In other
words, STTrace maintains a much smaller set of locations
extremely critical to trajectory evolution and thus can pro-
vide a more reliable outline than the other two techniques.

Note that Thresholds has the additional advantage of dis-
tributing available memory unevenly to trajectories accord-
ing to their complexity, while single-mode STTrace and
Uniform devote the same amount of memory to every tra-
jectory. That’s why Thresholds overwhelmingly outper-
forms the other two techniques for higher compression rates
(roughly, more than 15%) as shown with its asymptotic be-
havior towards larger rates, while STTrace is preferable for
a more sparse approximation with smaller rates.

To achieve smaller rates, parameters for thresholds must
be set to large values which leads to important information
loss. For compression rate at 10%, we set thresholds as fol-
lows: for trajectory-based, 35o deviation in orientation and
0.8 for relative speed change, whereas for sample-based 18o

and 0.4 respectively. For compression rate at 20%, the cor-
responding values were 12o, 0.2, 12o, 0.2. Of course, suit-
able threshold values have much to do with the motion pat-
terns recognized in the streaming data, and this is rather
hard to fine-tune. This is shown in both MAE and MSE di-
agrams, where STTrace has a more predictable performance
for various compression rates than Thresholds.

Figure 9 illustrates the impact (in terms of MAE) of
the interarrival time of positional updates on approximation
quality. Obviously, the smaller this time period is, the more
frequent a position sample arrives for processing. We ap-
plied STTrace algorithm four times on a dataset of 100 mov-
ing objects, whose location is recorded every 2, 4, 10 and
20 seconds, respectively. The amount of available memory
is constant in all four experiments (250 samples per trajec-
tory). As expected, the error increases as the recording fre-

Figure 10. Processing time

quency becomes more sparse, even though we provide equal
amount of memory for the sample. As the input stream rate
in STTrace is decreased, the original information becomes
less accurate, which results in substantial increase in error.

6.3 Processing Time

In this subsection, we briefly discuss per tuple computa-
tion time required for each technique, not surprisingly con-
firming propositions stated in previous sections. In particu-
lar, regarding computation time we should note that Thresh-
olds is an O(1) algorithm, while both STTrace and Uniform
have an overhead due to memory manipulation during dele-
tions. Thus, algorithm Thresholds has exactly the same cost
regardless of compression rate, while run times for STTrace
and Uniform depend on the amount of available memory.
This is clearly illustrated in Figure 10 (left).

We also conducted experiments increasing the number
of moving objects in order to test the scalability of our tech-
niques. Figure 10 (right) illustrates the results. As expected,
the update cost is linear to the number of moving objects,
with STTrace and Thresholds doing better than Uniform.
The slightly increased cost in the case of 100,000 moving
objects is attributed to resource limitations.

6.4 Evaluation of Spatiotemporal Joins

We also demonstrate the robustness of our techniques us-
ing their results in spatiotemporal queries and comparing
approximate to actual answers. In particular, we concen-
trated on trajectory self-joins, i.e., on identifying pairs of
trajectories that move very closely (within a user-defined
distance) to each other during a time interval. We set three
parameters: the spatial tolerance for the search distance (20
meters), the recent time interval examined (20 seconds) and
the distinct time instants at which we evaluated the query
(every 100 seconds). We measured the rates FalseNeg-
atives/Positives and FalsePositives/Positives as illustrated
in Figure 11. In both diagrams, STTrace and Thresholds
clearly outperform the Uniform approach in approximation
quality. They yield an error of 2% of false negatives for

Figure 11. Evaluation of trajectory self-joins

a compression rate of 10%, while Uniform yields the same
error for a compression rate at 40%. STTrace is slightly bet-
ter than Thresholds for compression rates below 15%; the
converse holds for higher compression rates. Interestingly
enough, the response accuracy for query approximation fol-
lows the pattern of the MSE error presented in Figure 8.

6.5 Discussion of Results

Threshold-guided sampling emerges as a robust mech-
anism for semantic load shedding, filtering out negligible
locations with minor computational overhead. The actual
size of the sample it provides is a rough indication for the
complexity of each trajectory, and the parameters can be
fine-tuned according to trajectory characteristics and mem-
ory availability. Besides, it can be applied close to the data
sources instead of a central processor, sparing both trans-
mission cost and processing power.

STTrace always maintains a small representative sam-
ple of a trajectory of unknown size. It outperforms Thresh-
olds for small compression rates, since it is not easy to de-
fine suitable threshold values in this case. STTrace incurs
some overhead in maintaining the minimum synchronous
distance and in-memory adjustment of the sampled points.
However, this cost can be reduced if STTrace is applied in
a batch mode, i.e., executed at consecutive time intervals;
for instance, if we keep the 20 most significant points every
1000 timestamps and then merge the results.

7 Conclusions

In this paper we studied techniques for effective data re-
duction in streaming trajectories generated from moving ob-
jects, stemming not only from storage considerations but
also intended for approximate query answering. We in-
troduced two novel sampling algorithms that exploit spa-
tiotemporal features inherent in trajectories; the former is
based on spatiotemporal thresholds regarding speed and ori-
entation of objects, whereas the latter (STTrace) attempts
to preserve the shape of trajectories to the extent possible.

Both techniques have shown quite remarkable and promis-
ing results for online compression, with affordable compu-
tational overhead and reliable approximation quality.

In the future, we plan to develop variations based on suit-
able threshold selection in order to achieve constant or pre-
dictable memory consumption. Also, dynamic adjustment
of thresholds according to current movement characteristics
seems a very challenging topic. Finally, applying successive
compression filters or even a hierarchy of sampling stages
is also an interesting idea for further investigation.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and Issues in Data Stream Systems. In ACM PODS,
pp.1-16, May 2002.

[2] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. In ICDE, pp. 350-
361, March 2004.

[3] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal Data
Reduction with Deterministic Error Bounds. In DIALM-
POMC, pp. 33-42, September 2003.

[4] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Sketch-
Based Multi-Query Processing over Data Streams. In EDBT,
pp. 551-568, March 2004.

[5] A. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss. One-
pass Wavelet Decompositions of Data Streams. IEEE TKDE,
15(3): 541-554, May 2003.

[6] S. Guha and N. Koudas. Approximating a data stream for
querying and estimation: Algorithms and performance eval-
uation. In ICDE, pp. 567-576, February 2002.

[7] N. Meratnia and R. de By. Spatiotemporal Compression
Techniques for Moving Point Objects. In EDBT, pp. 765-
782, March 2004.

[8] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Con-
ceptual Partitioning: An Efficient Method for Continuous
Nearest Neighbor Monitoring. In ACM SIGMOD, pp. 634-
645, June 2005.

[9] R. Nehme and E. Rundensteiner. SCUBA: Scalable Cluster-
Based algorithm for Evaluating Continuous Spatio-Temporal
Queries on Moving Objects. In EDBT, pp. 1001-1019, March
2006.

[10] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W.
Truppel. Online Amnesic Approximation of Streaming Time
Series. In ICDE, pp. 338-349, March 2004.

[11] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias.
Spatio-Temporal Aggregation Using Sketches. In ICDE, pp.
214-226, March 2004.

[12] J. S. Vitter. Random sampling with a reservoir. ACM TOMS,
11(1):37-57, 1985.

[13] B. Yu, S.H. Kim, T. Bailey, and R. Gamboa. Curve-based
Representation of Moving Objects Trajectories. In IDEAS,
pp. 419-425, July 2004.

