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Abstract

The method of L-moments is the recommended method for fitting the three parameters (location, scale and shape) of a Generalised Logistic
(GLO) distribution when conducting flood frequency analyses in the UK. This paper examines the sampling uncertainty of quantile estimates
obtained using the GLO distribution for single site analysis using the median to estimate the location parameter. Analytical expressions for
the variance of the quantile estimates were derived, based on asymptotic theory. This has involved deriving expressions for the covariance
between the sampling median (location parameter) and the quantiles of the estimated unit-median GLO distribution (growth curve). The
accuracy of the asymptotic approximations for many of these intermediate results and for the quantile estimates was investigated by comparing
the approximations to the outcome of a series of Monte Carlo experiments. The approximations were found to be adequate for GLO shape
parameter values between —0.35 and 0.25, which is an interval that includes the shape parameter estimates for most British catchments. An
investigation into the contribution of different components to the total uncertainty showed that for large returns periods, the variance of the
growth curve is larger than the contribution of the median. Therefore, statistical methods using regional information to estimate the growth
curve should be considered when estimating design events at large return periods.
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Introduction

Following the publication of the Flood Estimation Handbook
(FEH), the generalised logistic (GLO) distribution is
recommended as the standard for flood frequency analysis
in the UK (IH, 1999) with a variant of the Method of L-
moments (Hosking and Wallis, 1997) for estimating model
parameters. The GLO distribution has not been applied in
hydrology to the same extent as the Generalised Extreme
Value (GEV) distribution, but Ahmad et a/. (1988) found
the three parameter Log-logistic distribution to perform
better than other, more commonly encountered, distributions
for modelling floods in Scotland. The GLO distribution
adopted by IH (1999) is a re-parameterised version of the
Log-logistic distribution used by Ahmad et al. (1988).
The sampling variance of the T-year events can be
estimated through a number of different methods, such as
the computer oriented methods Jack-knife and Bootstrap
(Efron and Tibshirani 1993) or, alternatively, analytically
through Taylor approximations. Analytical expressions of

sampling variance have been derived for a number of
distributions with different parameter estimation techniques
used in hydrology, for example, the generalised extreme
value distribution (Hosking, 1985) and the Log-normal
distribution (Hoshi et al. 1984). This paper presents an
analytical approach for the GLO distribution for the
particular parameter estimation method adopted in the FEH.
The method considers only uncertainty arising as a result
of limited sample records and not other sources of
uncertainty encountered in practical flood frequency
analysis, such as mis-specification of statistical distributions
and errors in the measured data.

Definitions of L-moments

Similar to ordinary product moments, L-moments and
probability weighted moments (PWM) can be used to
summarise probability distributions and observed samples.
L-moments, as defined by Hosking (1990), are linear
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combinations of PWMs. Greenwood et al. (1979)
summarises the theory of PWM and define them as

p, = EX[F (] | ()
where £ is the r’th order PWM and F (x) is the cumulative
distribution function (cdf) of X. Unbiased estimators () of
the first three PWMs are given by Hosking and Wallis (1997)
as

b = n?t . (J —1)(j —2)(j —r)

Zh-1n-2)...(n-r) Xjn

)

where 7 is the sample size and x, represents an ordered
sample X, < X, <...< X, . The sample L-moments
(/) are linear combinations of sample PWM calculated as
|1 = bo
l,=2b —b, 3)
|, =6b, —6b, +b,
The sample L-moment ratios,  , are based on the sample L-
moments and defined as
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t, =

N
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where ¢, is the L-CV and ¢, the L-SKEW (Hosking and
Wallis, 1997).

The GLO distribution

The probability density function (pdf) of the three parameter
GLO distribution is defined by Hosking and Wallis (1997)
as

o o ep(-(-x)y)
0 (1+exp(-y)f

=&t InQ-x(x-¢&)/a) k=0
S T R ©

where (§ Q& zc) are the location, scale and shape parameters,
respectively. The range of x is defined as:
—0o<X<E+alk ifk>0; —ow<X<oo if k= 0;
E+afk < X< ifk<0. The T-year event x, is defined as

X. :§+%(1—(T —1)K):§[1+£(1—(T —1)K)} ~¢7, (6)

where B =alé, Tis the return period and z, is the growth
curve at 7, defined by the square brackets in Eqn. (6). In the
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special case where the shape parameter x = 0, the GLO
distribution reduces to a 2 parameter Logistic distribution.

The parameter estimation method adopted in this study is
the method adopted by IH (1999) and is a variant of the
method of L-moments described by Hosking and Wallis
(1997). The location parameter (&) is estimated by first
equating the distribution median to the sample median (),
i.e.

E=m (7

Next, the shape parameter («) and the scale parameter (/)
are estimated as

A>

= —t3
t,&sin(zc) ®)
krsin(k +t,)-t,sin(zx)

=
I

By using the estimation method outlined above, the
median of the GLO distribution is fitted to the sample median
rather than the distribution mean value being fitted to the
sample mean, as is most commonly the case (see, e.g.
Hosking and Wallis, 1997). The median was adopted in FEH
to minimise the potential impact of outliers in the observed
series (IH, 1999).

Variance of T-year event

The method for approximating variances used in this paper
is based on Taylor series expansions. Consider an estimator
% of X, which is derived from a vector of estimated
parameters ¢ , whose true value is « . Suppose that
X =g(&), and that the covariance matrix, V , of the
estimated parameters is small. Then X ~ g(e)+d" (@ — ).
where the elements d, in the vector d are given as
d; =89/0c; . 1t then follows thatvar{X}~d'Vd . In this
paper, the quantity being estimated, , is the T-year flood
event. This estimate is derived from estimates of the GLO
distribution’s parameters, which themselves are based on
estimated L-moment ratios, which again, are based on L-
moments for which statistical properties are known, based
on the properties of the PWMs.

To get an expression of the variance of the T-year estimate,
a first order Taylor expression of Eqn. (6) at the population
values of the median and the growth curve (£ and z,) is
applied as described by Hosking and Wallis (1997)

var{% } = (z; )’ var{m}+ &% var{2, } + 2z,& cov{m, 2, }(9)

The contribution from each of the three terms in the equation
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above will be discussed later. However, the components of
the equation can be derived as follows. The approximate
variance of the sampling median, var{m}, is given by
Kendall and Stuart (1963) as

1 40’
varfmj=——5 < =——
4anf?(£) n
where f'is the pdf of the GLO distribution defined in Eqn.
(5). The variance of the growth curve, var{2, }, is derived
using a Taylor expansion

var{z} ~ (aaz;j var{ﬁ}+[ j

. an
var{k,} + Z( (L cov{ Bk}
where the index p indicates hat derlvﬁtlves are evaluated

at their population values. The derivatives are not displayed
but are easily obtained. Similarly, an analytical expression
of the covariance between the index flood and the growth
curve is given as

A 0z | ~ (0Z. ) 4
cov{m, 2, } ~ cov{m,(aﬂj B+ [aK j K}
(12)

= GZ J@ncov m, ﬂ cov m, K
In the following @Giions, the nec é%’g expressions of

variance-covariance of the parameters will be deduced as
functions of the variance-covariance of PWMs and the
median using asymptotic results from Hosking (1986) and
a set of new general expressions derived for this study.

(10)

VARIANCE OF PARAMETERS

The variance-covariance of the parameters is needed to
evaluate the variance of the growth curve in Eqn. (11) and
is derived approximately by a Taylor expansion around the
population values of the L-moment ratios and the median.
First, the scale parameter, £, is considered

- t,£ sin(zk)
- Rr(k+t,) —t, Sin(7k)

= g(tzats) (13)
var{ [3’} ~ (gtgj var{t,} + [Stgj var{t,} +

ag ag
{m]p[atslm“t”‘s} (14)

where p indicates that the Taylor expansion is made at the
population values of the L-moment ratios. Again, the
derivatives are easily obtained but not displayed. Next, the

shape parameter, x, is considered, where

Kk=-t, var{c}=var{t,} (15)
The covariance between scale and shape parameters is
derived as

~a ag ag
cov R COVS| — [t, +| — [ty,—t3p =
{ K} {(atZJ ’ (atsj ’ 3}

_(SEJCOV{tZ,tB}_[S?]Var{tB} (16)

2 3

The sampling variance-covariance of the L-moment ratios,
used in Eqns. (14), (15) and (16), is estimated using Taylor
approximations of Eqn. (4) around the population values of
the L-moments, thus the variance-covariance is derived
straightforwardly as:

cov{t,,tk}zZEZ:fj {Z:"J cov{,,l,} i,j=123 (17)
i/p i/p

where the functions ¢ and ¢, are the relevant L-moment ratio
in Eqn. (4). The variance-covariance of the L-moments,
cov{li,lj}, is derived straight forwardly by using the
covariance operator in combination with Eqn. (3) pending
the variance-covariance of the PWMs derived in the
following section.

Next, the covariances between the median and the scale
and shape parameters are derived, as they are needed to
calculate the covariance between the location parameter and
the growth curve specified in Eqn. (12). The results have
been obtained by approximating the parameter estimators
B and £ in Eqns. (13) and (15) by linear functions of the
L-moment ratios, which themselves are approximated by
linear functions of the L-moments. Thus, the covariance
between the median and the parameters will be reduced to
expressions of covariances between the median and the L-

moments.
and the L-moments as
ts}
P
2

First, the covariance between location and scale parameter
cov{m,,é}zcov ) t,+ 9
o, ), ot,
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)l (31
(R)(5) i (] i

(3)][5) (3] s

where Taylor expansions of both the scale parameter (f)
and the L-CV (¢,) and L-SKEW (¢,) have been applied. Next,
the covariance between location and shape parameter is
derived

covim, &)= - covimt,} = _cov{m,[ats)z {ﬂg} _

al, )2 al,

(18)

_(Ztsjcov{m,|2}_(Z‘3jcov{m,|3} (19)

I2 |3
The covariance between the median and the L-moments
will be derived in the following section.

COVARIANCE OF PWM AND THE SAMPLE MEDIAN

The asymptotic variance-covariance of the sample
probability weighted moments (PWM) are given by Hosking
(1986) as

(20)
ncovib, b} =B, =J, +J
where n is the sample size and J_ is calculated as
o T@+26)0(r +s+1-2x)
1tk I(r+s+2)
1s+11+2 1 @D
.F x| <=
r+s+22+« 2
where _F', is a generalised hypergeometric function of unit

argument.

As the L-moments are linear combinations of the PWMs,
as expressed in Eqn. (3), the estimation of the variance-
covariance of the L-moments is straightforward.

The sampling covariance between the median and the
PWM is derived in Appendix A, and the final expression
stated here

ncovimb, } = %5) %{(r +1)B —1B )+
1 }é 1 }é r
> ojt x(t)dt b —(r +1 Ojt x(t)dt
(22)

where f{¢) is the pdf of the GLO distribution evaluated at
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the median and x(?) is the inverse of the cdf of the considered
distribution. In the case of the GLO distribution, the integral
in the expression above can be solved as

?tfx(t)dﬁ(&aj : (ljm_ze(r”() &)

x)r+1{ 2

where G is the incomplete beta function defined by
Gradshteyn and Ryzhik (1980) as

% K r+1
1 1 1 1
G(r,x)= t’(—l] dtz(j — F[r+],—;c,r+2,}
5[ t r+1 %! 2

2
(24)

where ,F, is the hypergeometric function. For the case where
x =0, i.e. the 2 parameter logistic distribution (IH, 1999),
the relevant covariances reduce to

ncov{mby} = a?4In(2)
ncovim, b } = @?2In(2)
The accuracy of these expressions will be evaluated
through Monte Carlo simulations. No similar expressions
were identified in the literature and therefore this is believed
to be the first derivation of this covariance. Finally, the
covariance between the median and the L-moments are
easily derived by combining Eqn. (22) and Eqn. (3). The
results from this section are fed back into the expressions
for variance-covariance of the parameters, which, again, are
needed for evaluation of the variance of the quantile
estimator in Eqn. (9).

(25)

Monte Carlo simulations

To assess the performance of the derived estimator of
sampling variance of the T-year event in Eqn. (9) and the
covariance between the median and the PWM, a series of
Monte Carlo simulations was carried out. In each
experiment, the Monte Carlo simulations are carried out by
generating 10 000 random GLO samples of varying sample
size (n=10, 100, 5000). Through a Monte Carlo study it is
possible to investigate each of the analytical expressions
derived as part of this study. However, for practical reasons,
only two properties will be investigated. Firstly, the newly
derived expression for covariance between the median and
the PWM is the fundamental building block of many of the
preceding expressions, hence, verification of this result is
necessary. Secondly, the variance of the T-year event will
be investigated as it is of direct interest for practical flood
risk assessment.

The GLO distribution has an upper bound of & +«/x
for x> 0 but no lower bound, i.e. negative values of annual
maximum peak flow can occur in the simulation study. To
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Fig. 1. Comparison of analytical solution (APP) and results from Monte Carlo simulations for (a) cov{f,b}( b) cov{i,b,} and (c) cov{mb,}.
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Fig. 2. Comparison of analytical solution (APP) and results from Monte Carlo simulations for (a) var{f(m} (b) var{>“<25} and (c) var{>‘<1w}

minimise the problem, a set of parameter values was
estimated from an observed annual maximum series.
Subsequent comparison of the Monte Carlo results with the
results from a censored simulation showed that the effect of
the negative values was insignificant.

Figure 1a—c shows comparisons of the analytical expression
of covariance between the median and the PWM, as outlined
in Eqn. (22), and the results obtained from a Monte Carlo

simulation for different sample sizes. Generally, the analytical
approach corresponds well to the Monte Carlo results, even
for small samples. However, some deviation is observed for
x <—0.25, where the analytical solution slightly underestimates
the covariance, especially for small samples.

Comparisons of the analytical variance of the T-year event
with the outcome of the Monte Carlo simulations are shown
in Fig. 2a—d for different sample sizes. The goodness of fit
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Fig. 3. Histogram of estimated shape parameter x for 955 UK gauges.

of the analytical approximations depends on the shape
parameter, the sample size and the considered return period.
The approximations can only be evaluated for —0.5 < x <
0.5 as determined by the covariance of the PWMs as
expressed in Eqn. (21). For values of « close to the edges of
the interval, the analytical expressions deteriorate regardless
of sample size. However, for —0.35 <=k=<=0.35 the
approximations perform relatively well, even for small
samples. Comparing this interval with the distribution of
estimates of shape parameters obtained from 955 UK
gauges, as shown in Fig. 3, it is noted that a large fraction
of the gauges falls within this interval. Finally, the considered
return period has little effect on the performance of the
analytical expressions.

Application example

The derived method was applied to two relatively long
annual maximum series of peak flow from the UK. A GLO
distribution was fitted to each of the two series using the
method of L-moments described earlier. The resulting flood
frequency curves are plotted in Fig.4, together with the 95%
confidence intervals (Stedinger ef al., 1993) given as

(26)
(e - 2 Ve (] % + 2,0 Var(% )
where Z_,/, is the upper 100(a/2)% percentile of the
normal distribution.

While such approximate confidence intervals do not
account for the skewness of the actual sampling distribution
of the estimate, they are useful here in allowing a simple
graphical assessment of the relative size of uncertainty at
different return periods and of the importance of different
sources of uncertainty. As the population values of the L-
moment ratios and parameters are unknown the expression
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Fig. 4. Flood frequency curves with 95% confidence intervals for
gauging stations 32004 and 54002.

of Val’{f(T } in Eqn. (26) is evaluated using the sample values
of these from the annual maximum series rather than
population values. For both series the derived confidence
intervals appear plausible from a visual inspection. Note
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Fig. 5. Comparison of 95% confidence intervals calculated through
Eqn. (26) for (1) total sample variance (2) known median (3) known
growth curve.

that for very low return periods, the lower limit of the 95%
confidence interval can fall below zero.

Uncertainty contributions

The total prediction uncertainty of the T-year event, as shown
in Eqn. (9), can be divided into three contributing sources:
(1) variability of sample median, (2) variability of growth
curve and (3) covariance between sample median and
growth curve. Consider a situation where the population
values of either the median or the growth curves are known.
In both cases, the variance of the known entity and the
covariance between the sample median and the growth curve
would equal zero. To assess the importance of each of these
three sources of uncertainty, each of the three terms in Eqn.
(9) was evaluated using the Taylor approximations for the
two test catchments. The 95% confidence intervals for each
of the two cases were calculated and compared to the

confidence interval derived using the total variance, as
shown in Fig. 5. At high return periods the sample
uncertainty of the growth curve provides a good
approximation to the total sample uncertainty and at return
periods around 7" = 2, the sampling uncertainty of the median
dominates, as the sample uncertainty of the growth curve
equals zero at 7=2. For both catchments, the sample
uncertainty of the median becomes of secondary importance
at return periods around 7' = 25.

Conclusions

Asymptotic expressions of the sampling variance of
quantiles from a GLO distribution, with parameters
estimated using a parameter estimation scheme used in the
Flood Estimation Handbook (IH, 1999), were derived. These
expressions included the covariance between the sample
median and the PWMs which, to the best of the authors’
knowledge, has not been derived previously. The asymptotic
expressions were evaluated through a Monte Carlo
simulation study. In general, the expressions were found to
provide an accurate estimate of the sampling variance when
the shape parameter takes values of —0.35 < ¥ <0.35, which
is where the sample estimates from a large proportion of
annual maximum series from UK generally fall. However,
outside this range the model performs rather poorly for the
moderate sample sizes most often encountered in practical
flood frequency analysis. Furthermore, the practical use of
the method is limited by the fact that sampling variance can
only be evaluated for shape parameters in the interval 0.5 <
x<0.5. However, sample estimates of the shape parameter
obtained from real data can fall outside this range. Another
possible limitation of the practical use is the complexity of
the equation involved, often requiring numerical method
for evaluation.

An investigation into the contribution of different
components to the total uncertainty showed that, for large
return periods, the variance of the growth curve is larger
than the contribution of the median. Therefore, statistical
methods using regional information to estimate the growth
curve should be considered when estimating design events
at large return periods.
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Appendix A: Covariance of PWMs and
median

This appendix outlines the derivation of asymptotic formulae
for the covariances of the PWMs and the median. For
notational convenience, the derivation is slightly more
general than this and the formulae actually relate to the
simple sample estimator of any population quantile. Let p
be the selected probability point and define the sample
quantile estimator (of m, = x(p)) to be

m, = Xk:n
where k is the integer nearest to pn, and where x,, represents
the ordered sample .. £ X, - The median
corresponds to p = Y.

The formulae can be derived by a minor modification to
the theory provided by Ferguson (1998) in an unpublished
paper. Firstly, define the ordered uniforms u, _ equivalent to
X, SO that X;,, = X(U;,,) and define also p]n =jln+1).
The first step in the derivation is to note that, for the purposes
of asymptotic arguments, the sample (unbiased) PWMs can
be approximated by the ‘plotting-position’ estimators

Xj:n = n7121 (pj:n)r X(uj:n)
j=

ln—X2n -

~ n

br = nilz (pj:n)r
j=1

For formal purposes, one can define

Er = rrl > (pj:n)r X( pj:n)

j=1
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and note that Er — f,an—ow.
The arguments required to apply the approach of Ferguson
(1998) are based on the simple expansion
5r =n* (pj:ny {X( pj:n) +X( pj:n)(uj:n - pj:n) +}
j=1
and this then leads to the following joint asymptotic
description for the samplﬁ quantile and the PWM estimators

Jn(b, - ) — [t X O WO -tw@)dt
Vn(rh, —m,) —=> X (p)W(p) -W(D)
where W(t) is Brownian motion and where the symbol
“__L y” denotes convergence in law (convergence in
distribution). For the second of the above equations, the

finite summation and the integral can be related by noting
the following correspondences:

(pj:n)r ~ tr’ Xl( pj:n) ~ X,(t)v uj:n

Note that W(t) —tW(1) is a Brownian Bridge, i.e. Brownian
motion conditioned on starting and ending at zero on the
interval (0,1).

. It then follows that ncov(m, mp,b ,B )~

zmmﬁmeMM4wmmwmAMMM

- pj:n ~ W(t) - tW(l)

=ﬂm}wmmmwn—mwt

=x’(p){].t X(t){@- p)t}dt + jt X (t){p@- t)}dt}
—x(p){(l p)jt”lx(t)dt+ pj t”lx(t)dt}
:x'(p){ jt”l ‘(t)dt+p jt'x'(t)dt p jt”l ’(t)dt}

The term in braces here can be evaluated by integrating by
parts, giving

a- p)jt”lx (t)dt+ pj t e (t) dit

=(1- p){p'“x(p) jr+1)t x(t)dt}+p{ (P -p'™
x(p)— [(rt - (r+1)t’)x(t)dt}

-(1- p){— Fj r+1g x(t)dt}+ p{lj (r+Dt" - rt’l)x(t)dt}

e p>{— o +1>vx<t>dt}+ p{(r 0B, -1p, -
. j'((r +Dt ~—rt’ 1)x(t) dt}

= p{(r+18, —rp, |+ +r it 1x(t)dt (r+1)jt X(t) dt



