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ABSTRACT. This article introduces a general framework for sampling and reconstruction pro-
cedures based on a consistency requirement, introduced by Unser and Aldroubi in [29]. The
procedures we develop allow for almost arbitrary sampling and reconstruction spaces, as well as
arbitrary input signals. We first derive a nonredundant sampling procedure. We then introduce
the new concept of oblique dual frame vectors, that lead to frame expansions in which the analysis
and synthesis frame vectors are not constrained to lie in the same space. Based on this notion, we
develop a redundant sampling procedure that can be used to reduce the quantization error when
guantizing the measurements prior to reconstruction.

1. Introduction

Many methods exist for representing a sigyidly a sequence of numbers, which can
be interpreted as measurementg ofl he classical approach is to choose the measurements
as samples of . Amore recent approach [29, 22, 3,27, 28, 12] is to consider measurements
that can be expressed as inner productg @fith a set of vectors that span a subsp&ce
which is referred to as the sampling space. The problem then is to reconsfroot these
measurements, using a set of vectors that span a subBpaedich we refer to as the
reconstruction space. ff does not lie inV, then it cannot be perfectly reconstructed using
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only reconstruction vectors that spa Therefore, if we allow for signals out o, then
we must relax the requirement for perfect reconstruction.

Given a reconstruction method, we can always choose a sampling method so that the
reconstructed signal is closestffan an/o-sense. However, this requires the sampling space
S to be equal to the reconstruction spate If the sampling scheme is such th&at: W,
then the minimal-error approximation cannot be obtained. Therefore, our problem is to
construct a good approximation ¢fgiven both a sampling method and a reconstruction
method.

In [29] the authors introduce the concept of consistent reconstruction, in which the
reconstructed signal is in general not equaf tdut nonetheless yields the same measure-
ments. Based on this requirement, they derive a sampling procedure for the special case
in which f lies in Ly, andS and)V are generated by integer translates of appropriately
chosen functions.

In this article we extend the results of [29] in several ways. First, we expand their
results to a broader framework that does not regdiend)V to be generated by integer
translates, and does not requjiéo lie in Ly, but rather can be applied to arbitrary subspaces
of an arbitrary Hilbert space. This framework leads to some new sampling theorems, as
well as further insight into the results of [29]. We also develop a geometric interpretation
of the sampling and reconstruction scheme that provides further insight into the problem.
Second, we develogdundantsampling procedures in which the measurements constitute
an overcomplete representation 6f These measurements correspond to inner products
of f with a frame forS, and reconstruction is obtained using a framelfir To obtain a
consistent reconstruction gfin this case, we develop a generalization of the well known
dual frame operator [6], which we refer to as@llique dual frame operatoiThe corre-
sponding frame vectors are referred to asahkéque dual frame vectorés we show, these
frame vectors have properties that are very similar to those of the conventional dual frame
vectors. However, in contrast with the dual frame vectors, they are not constrained to lie in
the same space as the original frame vectors. Thus, using oblique dual frame vectors we
can extend the notion of a frame expansion to include redundant expansions in which the
analysis and synthesis frame vectors lie in different spaces.

By allowing for arbitrary sampling and reconstruction spaces, the sampling algo-
rithms can be greatly simplified in many cases with only a minor increase in approximation
error [29, 27, 28, 30, 4, 5]. Using oblique dual frame vectors we can further simplify the
sampling and reconstruction processes while still retaining the flexibility of choosing the
spaces almost arbitrarily, due to the extra degrees of freedom offered by the use of frames
that allow us to construct frames with prescribed properties [15, 1]. Furthermore, if the
measurements are quantized prior to reconstruction, then as we show the average power of
the reconstruction error using this redundant procedure can be reduced by the redundancy
of the frame in comparison with the nonredundant procedure.

For simplicity of exposition the results in this article are derived for the finite-
dimensional case; however, most of the results can be extended to include the infinite-
dimensional case as well under certain mild constraints.

This article is organized as follows. In Section 2 we consider the consistency require-
ment in detail, and develop a geometric interpretation of the sampling and reconstruction
scheme. Section 3 considers explicit reconstruction methods. The aliasing and reconstruc-
tion error resulting from our general scheme are analyzed in Section 4. Section 5 considers
nonredundant sampling. An example illustrating the reconstruction is given in Section 6.
Section 7 considers redundant sampling procedures. In Section 8 we introduce the notion
of oblique dual frame vectors and discuss their key properties, and in Section 10 we develop
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a redundant sampling procedure that can be used to reduce the quantization error.

2. Consistent Reconstruction

We denote vectors in an arbitrary Hilbert spakeby lowercase letters, and the
elements of a vectar € CV by c[k]. The inner product between vectorsy € H is
denoted by(x, y). Ps denotes the orthogonal projection operator onto the sfadg
denotes theV x N identity matrix, and\V'(-) and’R(-) denote the null space and range
space of the corresponding operator, respectively.

2.1 Consistency Condition

Suppose we are given measuremefit$of a signalf that lies in an arbitrary Hilbert
spaceH. The measurementsk] = (sx, f) are obtained by taking the inner productsfof
with a set of ¥ sampling vectorgs;, 1 < k < N} that span arM/-dimensional subspace
S C H, which is referred to as the sampling space. We construct an approxinyation
of f using a given set olN reconstruction vectorfw, 1 < k < N} that span anV/-
dimensional subspad®’ < #, which we refer to as the reconstruction space. In the case
of nonredundant sampliny = M so that the sampling and reconstruction vectors form
a basis forS and W, respectively; in the case of redundant samplvg> M and the
sampling and reconstruction vectors form a frame§and )V, respectively. We do not
require the sampling spaceand the reconstruction spak® to be equal.

The reconstructiorf has the formf = Z,ﬁ’zl d[k]wy for some coefficientg/[k]
that are a linear transformation of the measuremelits so thatd = Hc for someH.
With W and $ denoting the set transformatidnsorresponding to the vectors, andsy,
respectively,

N
f=) dklwy=Wd=WHc=WHS*f . (2.1)
k=1

The sampling and reconstruction scheme is illustrated in Figure 1.

c[k] d[k]
f S* H 1% f

FIGURE 1 General sampling and reconstruction scheme.

Since f given by (2.1) always lies i, if f ¢ W, thenf # f. Because we are
allowing the space of signals to be larger thar}, we must replace the requirement for
perfect reconstruction of ¢ ¥V with a less stringent requirement. Therefore, our problem
is to chooséH in Figure 1 so thaf is a good approximation of. In particular, we require

1A set transformationy: CN — % corresponding tdx; € H,1 < k < N} is defined byXa =
SN | alklx; for anya e CN. From the definition of the adjoink*: # — CV it follows that if
a = X*y, thenalk] = (x, y).
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thatif f € W, thenf = f. To this end we must have tha¥ N S+ = {0}. For suppose
thatx is a nonzero signal iV N S*. Thenc[k] = (sx, x) = O for all k, and clearlyx
cannot be reconstructed from the measuremghis Consequently, throughout the article
we explicitly assume thaty N S+ = {0}. SinceWV andS are finite-dimensional spaces of
the same dimension, this implies tidt= W & S+.
The sampling procedures we develop are based on a consistency requirement, intro-
duced by Unser and Aldroubi in [29]. The idea is to construcb@sistent reconstruction
f of f that has the property that if we measure it using the measurement vegttren
the measurements will be equal to the measuremé¢htof f. Thus, our problem reduces
to finding H in Figure 1 such that

S*f=S*WHS*f=5Ff. (2.2)
Theorem 1 below asserts that (2.2) is satisfied forfaé H with W N S+ = {0}
if and only if G = WHS* is an obliqué projection [16, 2, 20] witHR(G) = W and
N(G) = §t, denoted byE,,, .. The oblique projectiory, 5. is defined as the unique
operator satisfying

Eysiw=w forany w e W;
Eyysiv =0 forany v e St . (2.3)

Theorem 1.

Let{c[k] = (sx, f)} denote measurements pfe H with sampling vectorgs;} that
spanan M-dimensional subspacg C #, and let the reconstruction vectofsy;} span
an M-dimensional subspace’ < H such that N S+ = {0}. Then/ is a consistent
reconstruction off if and only iff =Epwstf.

Proof. Suppose thaf = WHS* f is a consistent reconstruction ¢fso that (2.2) is
satisfied, and leG = WH S*. Thenforallf € H,

G’f=WHS*WHS*f =WHS*f =WHS*f =Gf, (2.4)

andG is a projection operator. Sin@g = WHS*, N'(G) 2 N (5*) = St andR(G) <
R(W) = W. Suppose thaf € N(G) but S*f # 0. ThenS*f = S*Gf = 0 con-
tradicting (2.2), so thatV(G) = S*. Now, let f € W. Then from (2.2) we have that
S*(Gf — f) = 0sothatGf — f € N(S*) = St. But we also have thaGf — f € W.
Sincew NSt ={0}, Gf — f =0forall f € W, andR(G) = W.

Next, suppose thaf = Gf whereG = WHS* = Eywsi. ThenGf = f for
any f € W, andS*f = S*Gf = S*f. For f € §*, S*f = Gf = 0 so that again
S*f = S*f. SinceH = W @ S+, we conclude thas* f = S* f forall f € H. O]

As a corollary of Theorem 1 we have that)i N S+ = {0}, then a consistent
reconstructionf of a signalf € W is always equal tg'.

Theorem 1 describes the form of the unique consistent reconstruction if it exists,
however it does not establish its existence. In Section 3 we show that a consistent recon-
struction can always be obtained, and we derive explicit reconstruction procedures. Before
we consider the detailed methods, in the next section we present a geometric interpretation
of the sampling and reconstruction that provide further insight into the problem.

2An oblique projection is a projection operatErsatisfyingE2 = E that is not necessarily Hermitian.
The notatiorE,,, 51 denotes an oblique projection with range spegend null spacst. If W =25,
thenE,,, 5.1 is an orthogonal projection ontd’ which we denote byPyy.
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2.2 Geometric Interpretation

Let us first consider the case of perfect reconstruction for signalg.inThus, we
would like to determine conditions under which afiye W can be reconstructed from the
measurementgk] = (s, f). We first note that sampling with measurement vectors in
S, is equivalent to sampling the orthogonal projectiorfaintoS, denoted byfs = Ps f.
This follows from the relation

(sk, f) = (Pssk, f) = (s, Ps f) - (2.5)

We may therefore decompose the sampling process into two stages, asillustrated in Figure 2.
In the first stage the signdl is (orthogonally) projected onto the sampling sp&cend

in the second stage the projected sigfialis measured. Sincés € S and the vectors;

spanS, fs is uniguely determined by the measuremeifitg. Therefore, knowing[k] is
equivalent to knowingfs.

_ fs
f S* ck] = f Ps S c[k]

FIGURE 2 Decomposition of the sampling process into two stages.

In view of the interpretation of Figure 2, our problem can be rephrased as follows.
Can we reconstruct a signallift, given the orthogonal projection of the signal otovith
WnS+ = {0}? Figure 3(a) depicts the orthogonal projection of an unknown sifiralV’
onto S, denotedfs. The problem then is to determingfrom this projection. Since the
direction ofWW is known, there is only one vector v whose orthogonal projection onto
S is fs; this vector is illustrated in Figure 3(b). Thus, from this geometrical interpretation
we conclude that fodV N S+ = {0}, perfect reconstruction of any € W from the
measurementgk] is always possible.

We now discuss consistent reconstruction for sigrfals 7. If f is a consistent
reconstruction off, then f and f have the same measurement] = (s, f) = (s, /).

From our previous discussion it then follows that = fs where fs = Ps f. Thus, geo-
metrically a consistent reconstructigfmf f is a signal inY whose orthogonal projection
ontoS is equal to the orthogonal projection ppbntoS, asillustrated in Figure 4. Evidently,

the consistent reconstruction is unique and always exists. We have seen in Theorem 1 that
this reconstruction has a nice geometrical interpretation: It is the oblique projection of
ontoW alongS+*. This interpretation is illustrated in Figure 5, from which it is apparent
thatEy st f and f have the same orthogonal projection oftand consequently yield the

same measurements.

In summary, by considering a geometric interpretation of the sampling process and
the consistency requirement we have demonstrated that perfect reconstruction of signals
in W is always possible as long & N S+ = {0}, and we illustrated the reconstruction
geometrically. We also showed that under the same condition consistent reconstruction is
always possible, and illustrated the reconstruction. Itis important to note that the geometric
interpretation (and Theorem 1) hold irrespective of whether the sampling process is nonre-
dundant or redundant. In the next section we provide mathematical proof of these results
and derive an explicit reconstruction scheme. Nonredundant procedures are considered in
Section 5, and redundant procedures are considered in Sections 7, 8, and 10.
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FIGURE 3 lllustration of perfect reconstruction pfe W from fs = Pg f, with Wwns&t = {0} (a) orthogonal
projection of unknown signal iV ontoS (b) unique signal inV with the given projection.

SJ_

fs

FIGURE 4 lllustration of consistent reconstruction of an arbitrafyom f5, with W N St =0}

3. Reconstruction Scheme
3.1 Reconstruction Algorithm

From Theorem 1 and the geometric interpretation of Section 2.2 it follows that to
obtain a consistent reconstructigfnof f we need to determingl in Figure 1 such that
G = WHS* = Eygs1, i. e, such thatG satisfies (2.3). We now show that wifth =
(S*w)T, where(-)T denotes thé/loore—Penrose pseudoinverdd],

+

N
F=Y diklwe=wd=w (s*W) c=w(s*w) 5*f, (3.1)

k=1
is a consistent reconstruction ¢ffor all f € 4. To this end we prove the following
proposition.
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SJ_
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Eywss f
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FIGURE 5 Decomposition of into its components iw andS+ given byE)y g1 f andEg.1y, f, respec-
tively.

Proposition 1.

Letthe vector$sy, 1 < k < N} corresponding t& spanan M-dimensional subspace
S C H, and let the vectorgwy, 1 < k < N} corresponding tdV spanan M-dimensional
subspacéV < H, with W NS+ = {0}. Then the oblique projection ont& alongS+ can
be expressed a&y, g1 = W (S*W)Ts*.

Proof. We denoteG = W (S*W)TSs* and show thaG satisfies (2.3).

First, since the vectors, spanVV, anyw € W can be expressed as = Wa for
somea € CV. ThenGw = W(S*W)TS*Wa = W Pa where from the properties of the
pseudoinverseP is an orthogonal projection ontd’(S*W)+. SinceWx e W for any
x € CN andWnS+ = {0}, S*Wx = Oifand only if Wx = 0, so that\V (S*W) = N (W).
Then foranyw € W, Gw = WPy wyra = Wa = w. Next, sinces;, € S, S*v = 0 for
anyv € S+, andGv = 0 so thatG satisfies (2.3) and consequen@ly= Ey,s. . L]

If f e Wthenf = Ewst f = f,andf can be perfectly reconstructed from the
measurementgk] using (3.1). By choosing different spacks)V andS and using (3.1),
we can arrive at a variety of new and interesting perfect reconstruction sampling theorems.
From (3.1),f is obtained by first transforming the measuremetitsinto “corrected”
measurementg[k] corresponding td = (S* w)Te = Tf,whereT = (S*W)Ts*. As we
now show,T has an interesting interpretation: It is tbblique pseudoinversef W on
Y = N(W)* alongS+.

3.2 Obligue Pseudoinverse

LetT: K — U be alinear transformation, and lt= G & N (T) andif = R(T)
@ Z. Theoblique pseudoinversef T ong along Z, denotedrgz, is the unigque transfor-
mation satisfying [23, 9]

TTé; = Eraz ; (3-2)
TEsT = Egnary (3.3)
R (ng) -G. (3.4)

As can be verified [9], (3.2)—(3.4) imply thag‘z invertsT betweeng andR(T), while
nulling out any vector inZ. This interpretation is illustrated in Figure 6, from which it
follows that the pseudoinverse' is a special case of the oblique pseudoinvdf‘gg for

whichG = NV(T)* andZ = R(T)* .
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FIGURE 6 The action of’ andTéZ on the subspaces, N(T), R(T) and Z.

Proposition 2.

Letthe vector$sy, 1 < k < N} corresponding t& spanan M-dimensional subspace
S C H, and let the vectoréwy, 1 < k < N} corresponding td¥ spanan M-dimensional
subspaceV c H, with W N S+ = {0}. Then the oblique pseudoinverseWfon) =
N (W)L alongS+ can be expressed as

whe = (s*w)"s*. (3.5)

Proof. We need to show the‘«t/fjsL given by (3.5) satisfies (3.2)—(3.4), i. e.,

WWe = Eypse (3.6)
Wi W =Py (3.7)
R(Wis )=V (3.8)

The fact thatW]ﬁ‘S | satisfies (3.6) follows immediately from Proposition 1. To prove that
Wi, satisfies (3.7) we note that from the properties of the pseudoinvéiSe, W =
(S*W)TS*W = Pprsewyr. ButsinceN(S*W) = N(W) = Vi, (S*W)TS*W = Py.
Finally, R(W},s1) = R((S*W)T5%) = R((S*W)T) since N ((S*W)N) L = R(S*W) =
R(S*) because for any € H, S*x = S*Eyyg1x andEyygix € W = R(W). Thus

R(Wig) = RUS*W)T) = N(S*W)E = N(W)L =V, and W), satisfies (3.8).
O

Comparing (3.5) with (3.1) we see thgt = Wd whered = W{ﬁslf. Thus
d[k] = (v, f) wherevy are the vectors corresponding(WﬁSL)*. SinceR((W{jSL)*) =
N(Wf )t = S, the vectoray lie in S. Furthermore, from (3.6 WY, = Eyy s, S0
thatanyf € S can be expressed as

N
f=Egpif=(Ewsi) f= <W§3l> W f =" blklu (3.9)
k=1

whereb = W* f, and the vectors; spans.

Therefore, in the case of nonredundant sampling We= M, the vectorsy, form a
basis forS, and in the case of redundant sampling, iNe> M, the vectors; form a frame
for S. These basis and frame vectors have special properties which we discuss in Sections 5
and 8, respectively. Specifically, in Section 5 we show that in the case of nonredundant
sampling, the vectors, form a basis fotS that is biorthogonal to the basis vectarg. In
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Section 8 we show that in the case of redundant sampling, the vegtoen a frame for
S which we define athe oblique dual frameyhich has properties analogous to the dual
frame vectors.

4. Aliasing and Error Bounds

Since in generaf ¢ W, the reconstruction (3.1) may result in aliasingfinwhich
occurs when components gfthat lie out ofy are aliased intgf. A very nice and intuitive
way to think about aliasing was proposed in [18] in the context of multiresolution spaces
in terms of the norm of the “out-of-space” component. Catenote the sampling operator
defined byf = I'f, which in our case is equal 10 = Eyys.. Then the aliasing norm is
defined as [18, 17]

E
LAl _ gy 1Ews: /]

4.1
ot 171 jor /1 -

Ar =

From (4.1),Ar = 0 only if £}, s. = 0 for all f € W= which implies thatS = W. To
avoid aliasing whe& # W, we can first orthogonally projegt onto)V, and then measure
the projection. The measurements are thea S*P)y f, so thatc[k] = (#, f) where
t = Pyys; and consequently. € W; as we expect the effective sampling space is equal
to the reconstruction space.

WhenS # W we can obtain a bound oftr using the fact that for any € H [30]

1
[Ews:f 1 = cosarmsy 11 (4.2)

where the anglé)ys betweenS andWV is defined as [29]

cos(f = inf P . 4.3
Gws) = _inf _ IPsfl (4.3)

Thus,

1

r= cos(Byys) (4.4)

As we expect intuitively, the bound decreases as the angle between the Spata)
decreases, in which caseis “close” toW.

The norm of the reconstruction errgr— E,,s1 f can be bounded based on results
derived in [29],

1
— P < —FE < ——|f — P , 4.5

If = Pwrll < | f = Ewsef| < COS(6,W$)|If w Sl (4.5)
where|| f — Py f || is the minimal norm of the reconstruction error corresponding to the
case in whichV = S. From (4.5) we see that there is a penalty for the flexibility offered
by choosingS (almost) arbitrarily: The norm of the reconstruction error for¢ W is
increased. However, in many practical applications this increase in error is very small [28,
30, 4, 5].
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5. Reconstruction From Nonredundant Measurements

Suppose that the sampling vectdsg, 1 < k < M} form a basis forS and the
reconstruction vectorauvg, 1 < k < M} form a basis folV. Then, as we now show; W
is invertible so that the general reconstruction formula (3.1) reduces to

M
= dlkluwg = Wd =W (s*W) " s f . (5.1)
k=1

Proposition 3.

Let the vectorgs;, 1 < k < M} corresponding taS denote a basis for am/-
dimensional subspace of #, and let the vector$w;, 1 < k < M} corresponding ta¥
denote a basis for amf-dimensional subspad# of 7. ThenS*W is invertible if and only
if wnsSt={0.

Proof. Suppose thas*W is invertible, and lett € W N S+. Sincex € S+, $*x = 0.
But sincex € W, x = Wa for somea € C*. Thus,S*x = $*Wa = 0. Because&s*W is
invertible, we must have = 0 so thatt = Wa = 0.

Conversely, suppose thef N S+ = {0}. Letx # 0 be a vector in\V'(S*W) so that
S*Wx = 0. Since the vectorsy, are linearly independeny, = Wx # 0 and therefore
y € N(§%) = R(S)* = St. In addition,y € R(W) = W. Thereforey = 0, which in
turn implies thatc = 0 contradicting our assumption. Thus,W is invertible. L]

The resulting measurement and reconstruction scheme is depicted in Figure 7. Note, that
sincef is unique and the vectors; are linearly independent, the coefficied{&] are also
unique.

clk] dfk] R
f S (s*w)- w f=Ewstf

FIGURE 7 Consistent reconstruction ¢fusing nonredundant sampling vectegsand nonredundant recon-
struction vectorsvy, with W N S+ = {0}.

We may interpret the reconstruction scheme of Figure 7 in terms of a basis expansion
for signals inWW. Since forf € W, f = f, any f € W can be represented &5 =
S oL, diklwe whered[k] = (v, f) and the vectors; € S correspond t&/ = (Wﬁgﬂ* =
S(w*$)~1. We have already seen in Section 3.2 that these vectors form a basis for
SinceV*W = (S*W)~18*W = I, these basis vectors have the property that they are
biorthogonal towy: (vg, w,) = Swm. Therefore Figure 7 provides an explicit method for
constructing basis vectors for an arbitrary spegth WnNS+ = {0}, that are biorthogonal
to the basis vectorsy,.

6. Bandlimited Sampling of Time-Limited Sequences

To illustrate the details of the sampling and reconstruction scheme of Figure 7, we
now consider an example in whiéi is the space of sequence®] such thatc[n] = O for
n < 0,n > N, W s the space of sequencep:] such thatc[n] = 0forn < O,n > M
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whereM = 2M’ + 1 < N, andS is the space of “bandlimited” sequencgg] such that
X[k]=0forM' <k < N — M’, whereX[k],0 < k < N — 1 denotes th&/ point DFT
of x[n]. The bases fo§ andWV are chosen as the sequengga],0 < k < M — 1 and
weln], 0 < k < M — 1, respectively, given by[n] = /27 *&=Mn/Nfor0 <p < N —1
and O otherwise, andy[n] = §[k — n].

Consider an arbitrary sequeng@:] in H. The measuremeni$k],0 <k <M —1
of f[n] are

N-1

clk] = (s, f) = Zsk[n fln) =" flnle 1 ZEMmIN = F((k—M')),]. (6.1)

n=0

whereF[k],0 < k < N — lis theN point DFT of f[n], and((p))y = p mod N. Thus,
the measurementgk] are theM lowpass DFT coefficients of th& point DFT of f[n].
To obtain a consistent reconstruction fif.] we need to determings*W)~1. Thekmth
element ofS*W is

N-1
(ko W) = Y sfnlwpln] = si[m] = 2" B™ (6.2)
n=0

whereZ = ¢=/27/N andB = ¢/2"M'/N  \We can therefore expres$W in the form

1 1 1 e 1
1z zz ... ZM

S*W = : D. (6.3)
1 zM-1 zam-1 . ZM-1?

Equation (6.3) is the product of a Vandermonde matrix and a diagonal niatvish nonzero
diagonal element8™, 0 < m < M —1. ThereforeS*W is always invertible which implies
by Proposition 3 thatV N st = {0}. We can compute the inverse 8t W using any of
the formulas for the inverse of a Vandermonde matrix (see e. g., [21, 25]). The corrected
measuremenig[k] are then given by the eIementsd)fz (S*W)~1c wherec is the vector
with elements:[k] given by (6.1), aan[n] Zk o wklnldlkl=d,forO<n <M -1
and 0 otherwise. The consistency requirement |mpI|esme(tk — MY)N] = F[((k —
M")n]for0 < k < M — 1, whereF[k] is the N point DFT of f[n]. Thus f[n] is a
“time-limited” sequence that has the same lowpass DFT coefficientgds

In [9, 7] we develop a systematic method for constructing signals with prescribed
properties. In particular, we consider constructing a sign&{ with specified properties
in two spacedV andS. Using these methods we can generalize our construction here to
produce a signal with specified lowpass coefficieantd specified values on a given time
interval.

Now, suppose that[n] is a lengthM sequence i}, and we are giveM lowpass
DFT coefficientsF[((k— M'))n], 0 < k < M — 1. We can then perfectly reconstrytii:]
from these coefficients using the method described above. This implies the intuitive result
that a time-limited discrete-time sequence can be reconstructed from a lowpass segment
of its DFT transform. This result is the analogue for the finite length discrete-time case
of Papoulis’ theorem [24], which implies that a time-limited function can be recovered
from a lowpass segment of its Fourier transform. The reconstruction based on Papoulis’
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theorem is typically obtained using iterative algorithms such as those discussed in [24, 26].
By choosing appropriate sampling and reconstruction vectors in the general scheme of
Figure 7, we obtained a finite length discrete-time version of this theorem together with a

simple non-iterative reconstruction method. This example illustrates the type of procedure
that might be followed in using our framework to generate new sampling theorems.

7. Reconstruction From Redundant Measurements

Suppose now that we are given a set of redundant measureffignts (x;, f) of a
signal f € H, where the vectorfr;, 1 < k < N} form a frame forS and reconstruction is
obtained using the reconstruction vectfygs, 1 < k£ < N} which form a frame foaV: A
set of vectordy, € W, 1 < k < N} forms a frame fodV if there exists constants > 0
andB < oo such that

N
Allxl? <> 1, yi) 2 < Blix|? (7.2)
k=1

for all x € W [6]. Although in principle N maybe infinite, we assume throughout that
N is finite. The lower bound in (7.1) ensures that the vectgrspanV; thus we must
haveN > M. If N < oo, then the right hand inequality of (7.1) is always satisfied with
B = Z,’le (vt yx). Thus, any finite set of vectors that spafisis a frame forW. If the
boundsA = B in (7.1), then the frame is called a tight frame. If in additién= B = 1,
then we call the frame a normalized tight frame. The redundancy of the frame is defined as
r=N/M.

From the general reconstruction formula (3.4)s obtained using the frame vectors
¢ by transforming the measuremeafs] into corrected measurements= (X*Y)'¢, as
depicted in Figure 8.

clk] d[k] .
f X~ (xX*Y)f 4 f=Ewstf

FIGURE 8 Consistent reconstruction gfusing redundant sampling vectorg and redundant reconstruction
vectorsyg, with W N S+ = {0}.

An alternative form of Figure 8, that will be used in Section 10, can be obtained by noting
that any framé&’ for WV can be expressed &#s= W Z whereW corresponds to an arbitrary
basis forw, andZ: C” — CV hasrankM, i. e., ZZ" = I);. Similarly, any framex

for S can be expressed & = ST whereS corresponds to an arbitrary basis #®rand

T: CM — CN satisfiest 7T = I);. Then

(x*v)" x* = (r*s*wz) 5% (7.2)
To simplify (7.2) we rely on the following lemma.

Lemma 1.
Let A be anm x n matrix and letB be ann x k matrix. If R(B) = N(A)L,
N(AB) = N(B) andR(AB) = R(A), then

(AB)T =BTAT. (7.3)



Sampling with Arbitrary Sampling and Reconstruction Spaces and Oblique Dual Frame Vector§9

In particular if A and B both haverankn, then(7.3)is satisfied.

Proof.  The lemma is proven in a straightforward manner by showing that under the
conditions of the lemmaBT AT satisfies the Moore—Penrose conditions [13]. []

SinceT* and Z both have rankV and from Proposition 35*W is invertible, it
follows from Lemma 1 that
(r7s*wz)" = 2" (s w) (1) (7.4)
Substituting into (7.2),
(xy) x7 = 2t (s'w) 7 (17) st = 2t (sw) s (7.5)

where we used the fact thar ")*T* = I,,. From (7.5) it follows that we can obtain
the redundant corrected measuremeifitg directly from the nonredundant corrected mea-
surements! = (S*W)~18* f = (S*W) 1c, viad = ZTd, wherec[k] = (s¢, f) are the
nonredundant measurements obtained using the vegtorsis interpretation is illustrated
in Figure 9.

clk] d[k] d[k]
F— s (s . 2w

FIGURE 9 Equivalent representation of Figure 8.

We have seen that the nonredundant sampling scheme of Figure 7 can be interpreted
as a basis expansion gfe W in terms of a biorthogonal basis f6t We now show that the
redundant sampling scheme of Figure 8 can be interpreted as a frame expansien/vf
in terms of theoblique dual frame vectoren S. Furthermore, although the redundant
coefficientsd[k] are not unique, based on the properties of the oblique dual frame vectors
we will show that the sampling scheme of Figure 8 results in coeffici#kisvith minimal
[>-norm.

In the next section we introduce the oblique dual frame vectors and discuss their key
properties.

8. Oblique Dual Frame Vectors

8.1 Definition of the Oblique Dual Frame Vectors

Definition 1. Let the vectordy, € W, 1 < k < N} corresponding t& denote a frame
for an M-dimensional subspad®’ of #H, and letS be anM-dimensional subspace &f
with W N S+ = {0}. Then the oblique dual frame vectorsygfon S are the frame vectors
{y;f € S,1 < k < N} corresponding to the oblique dual frame operauquf&)* where

V=N)"*
Note that from the discussion following Proposition 2, the vec}ﬁrfz)rm aframefoiS. As

we show in the next section, these frame vectors have properties analogous to the properties
of the conventional dual frame vectors [19, 6], which justifies our choice of terminology.
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From (3.1) and Proposition 2 it follows that the corrected measurgf\[llehn Figure8
are the inner products gf with the oblique dual frame vectors gf onS: d[k] = (;;f, f).
SinceYYﬁSL = EyysL, any f € W can be expressed as

N
f=Ewsif=Y G - (8.1)

k=1

Equation (8.1) is just a frame expansion of a sigfiat V. However, in contrast with
conventional frame expansions, here the synthesis frame vectoriWigimile the analysis
frame vector@N,‘(S lie in an arbitrary spac8, such thatV N S+ = {0}.

In the special case in which = W, Y#Sl = v T and the oblique dual frame operator
reduces to the conventional dual frame operator [6]. Thenfamy)V can be expressed
as f = Z,ivzl (Y, )y, wherey, € W are the dual frame vectors [6] of, in W,
corresponding toY T)*.

8.2 Properties of the Oblique Dual Frame Vectors

Given a framey, for W, there are many choices of coefficien{#] tha~t correspond
to measurements of using a frame foiS, and such thak,s. f = >, dlklyc. The
particular choicel[k] = <y;§, f) has some desirable properties which we now discuss.

Proposition 4.

Let{y,1 < k < N} denote a frame for aM-dimensional subspadd’ € H, and
let S € H denote anM-dimensional subspace such thatN S+ = {0}. Then from all
possible coefficient$[k] that satisfy

N
Eysif =) dlkly (8.2)
k=1

forall f € #, the coefficientd[k] corresponding tal = Y},¢, f with V = A’(Y)* have
minimallz-norm.

Proof. From (3.1) and Proposition 2 it follows that the coefficieds] satisfy (8.2).
Now, letd denote an arbitrary sequence satisfying (8.2). Thend[k] — d[k])yx = O,
which implies thatd —d € N(Y). Sinced = Yiig, f,d € R(Y},s,) = N(Y)*. Thus
d = d + y wherey € N'(Y) so that(d, y) = 0. Then,||d||? = [|d||? + [ly[I? = [|d||2, with
equality if and only ifd = d. L]

Since in Figure &/[k] = (i,f, £, itfollows from Proposition 4 that these coefficients
have minimal>-norm from all possible coefficients leading to consistent reconstruction.
We can consider the property stated in Proposition 4 from a slightly different point of
view. Since the vectorg, form a frame forV, any f € W can be expressed gs= Yd
for somed. However, since the vectong are linearly dependend, is not unique. The
minimal norm coefficients are the unique coefficients that ligViaV)~ = V. We may
express these coefficients@s= Y1 f; indeedyd = YYTf = Py f = f. Alternatively,
d = Yﬁst whereS+ is an arbitrary subspace &f such thaty N S+ = {0}; indeed
Yd = YYgst = Eys1 f = f. Thus, although the minimal norm coefficiewlk] are
unique, the resulting sampling vectagssuch thatd[k] = (, f) are not unique. If in
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addition we impose the constraint thate S, then the unique sampling vectors that result
in coefficients with minimal norm correspond (tﬁﬁgﬁ*- This interpretation is useful in
applications in which a signgl € W is corrupted by noise that is known to lie in some
subspaceS*. By using appropriate sampling vectorsShwe can totally eliminate this
noise and at the same time recover the minimal norm coefficients.

Proposition 5.

Let f = YN, blk]wy for some vectorgwy, 1 < k < N} that form a frame for
W, and are to be determined. Lé#,1 < k < N} denote a given set of sampling
vectors corresponding td. Then the vectors), corresponding to the set transformation
(Tﬁ[(T)Lwl)* result inf with measurements;, f) that are as close as possible#k] in
a least-squares sense.

Proof. Letz denote the measurementsfofvith sampling vectorsy, so that = T*Wb.
Thenz € R(T*) = N(T)*. To minimize ||z — b|| we need to choose W such that
z= PpryLb,i. e, suchthal*W = Py;ry.. In addition we must have th&(W) = W.
Let W = (T;@(T)lwg*. Then from (3.3),7*W = (Tf/(T)LwlT)* = Pp/ryL, and

R(W) = N(ijf(T)LwL)L =W. O

We conclude that the oblique dual frame vectors are very similar to the conventional
dual frame vectors: Given a franfg,} for W, the dual frame vectorg;} are the unique
vectors in)V such that anyf € W can be expressed g5 = ), (3, f)y. and the
coefficients(yx, f) have minimal norm. Similarly, the oblique dual frame vectorgpbn
S, with WN St = {0}, are the unique vectors & such that anyf € W can be expressed
asf =5, (y;f, )y, and the coefficient@;f, f) have minimal norm. Thus, using the
concept of oblique dual frame vectors we can extend the notion of a frame expansion to the
case in which the analysis frame vectors are not constrained tolig lout rather may lie
in an arbitrary subspac® C H, with W N S+ = (0.

It is interesting to note that the oblique dual frame vector§;§fon W are the
vectorsy,. Thus not only do we havg = Z,’{Vzl (;;f, )y forany f € W but also
f=01 0 F)FF forany f € S,

Proposition 6.
LetT = (YisL)* denote the set transformation corresponding to frame vectors
{&,‘f € 8,1 < k < N}, whereY is a set transformation corresponding to frame vectors

{yx e W, 1<k < N}andV = N (Y)". Then the oblique dual frame vectors)”xff onw
are the vectorgy.

Proof. By definition the oblique dual frame vectorsjz;f on W are the vectors corre-
sponding to(TL’wa)* wherel{ = N (T)1. Thus we need to show thét= (szWL)*’ or
equivalentlyy* = 7% which based on (3.2)—(3.4) reduces to proving that

uw-t:
Y¥T = Py ; (8.4)
R (Y*) =U. (8.5)

First, we note that/ = N(T)" = N((¥Y},s))" = R(Yig) = V. Now, R(Y*) =
N(¥)+ = V so that (8.5) is satisfied. NexfY* = (Yisl)*Y* = (ngsl)* =
(Eysi)* = Egyyi. FurthermoreR(T) = R((Y);5.)") = N(¥fs.)" = S so (8.3)
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is also satisfied. Finallyy*T = Y*(Y};s.)* = (Y];5.¥)* = Py completing the proof.

L

SL

9. Summary of Consistent Sampling and Reconstruction

We summarize our results regarding consistent reconstruction in the following theo-
rem:

Theorem 2 (Consistent sampling and reconstruction).

Let {c[k] = (xx, f),1 < k < N} denote measurements of a signale # with
sampling vectordx;, 1 < k < N} that form a frame for anM-dimensional subspace
S C H. Let{y,1 < k < N} denote a set of reconstruction vectors that form a frame
for an M-dimensional subspadd’ C #, with W N S+ = {0}. Then anyf € H can be
consistently reconstructed from the measuremefisusing the reconstruction vectoys
asf = Z,’{V:ld[k]yk with d = (X*Y)T¢, and the consistent reconstruction is unique. In
addition,

1. d =Y} fwherey . is the oblique pseudoinverse dh= A'(Y)* alongS+
so thatd[k] = (3¢, f) where the vector§j, 1 < k < N} are the oblique dual
frame vectors ofy onS and correspond to (Y*X).

2. If M =N, then

(a.) the coefficientd[k] are unique;

(b)) {y;f, 1 < k < M} are the unique vectors if biorthogonal tofy;, 1 < k <
M}.

3. If M < N, then
(a.) the coefficientd[k] are not unique;

(b.) the coefficientg/[k] have minimal>-norm among all possible coefficients
elk] such thatf = 3" e[k]yx.

10. Reducing Quantization Error

One ofthe reasons for using redundant measurements is to reduce the average power of
the quantization error, when quantizing the corrected measurements prior to reconstruction.
If S = W, then it is well known that using a redundant procedure the quantization error
can be reduced by the redundancy of the frame [6, 14]. We now extend this result to the
case in whichS # W. In particular, we show that we can choose a normalized tight frame
yx for W such that when using the redundant sampling procedure of Figures 8 and 9 the
average power of the reconstruction error can be reduced by the redundancy, in comparison
with the nonredundant scheme of Figure 7.

Let {wg, 1 < k < M} denote reconstruction vectors that form an orthonormal basis
for W, and let{s;, 1 < k < M} denote sampling vectors that form a basis§orFrom
Theorem Z,f = Y . dlklwy whered[k] = (v, f), and{v, 1 < k < M} are the vectors
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corresponding t&/ = S(W*S)~1. Thus,

M M
F=Y o Hlwe =Y qlklve, £, (10.1)
k=1

k=1

whereqg[k] = /alk]b[k], alk] = (wk, wk) = 1, blk] = (vk, vi), Wx = wi/+/alk], and
Uk = vk //blk]. _

Assume we quantize the normalized measureméfits = (vy, f) prior to recon-
struction, and model the quantization error as an additive zero-mean white noise source,
so that the quantized measurements are givef{by+ e[k] whereE (e[kle[j]) = ozskj.

The reconstruction error is then= Z,’le qlkle[k]w; and the average power of the recon-
struction error, denoted by D, is

M M
D=E(ee€)=0) q°kl=0>) blk]. (10.2)

k=1 k=1

Suppose now we use a redundant procedure so that we reconstruct the signal using a
normalized tight framéy;, 1 < k < N} for W, with redundancyV/M. ThenY = WZ
for somez: CM — CV such thatzZ* = Ij;. From Theorem 2, the sampling vectors
leading to consistent reconstruction correspond te- (Yﬁgﬂ* = S(W*S)~1Z, so that
in this case

N N
F=" 0 Hye =Y GlkI%e, £) (10.3)
= k=1

1

whereglk] = Valklblk], alk]l = (y, yk), blk]l = (xk, xx), i = yk/~/alk], andxy =
xk/\/l;[k]. If we quantize the normalized redundant measurem@antsf) and model the

error as before, then the average power of the reconstruction error using the redundant
procedure, denoted b9, is

N N
D =0%)"§°lkl = 0% alklblk]. (10.4)
k=1 k=1

We now show that we can choose a normalized tight fragrsuch thatD = (M /N)D.

LetY = WF, whereF is anM x N matrix whose rows are equal to the filgtrows
of the N x N Fourier matrixF with elementg1/+/N)e=/27m/N _Sincey Y* = Pyy, the
corresponding vectorg, form a normalized tight frame forV. The oblique dual frame
vectorsx; of y, onS are

) =v W) TE=VE. (10.5)

Let f; denote thekth column of . From the definition ofF, ( fi, fi) = M/N for all k so
that,

M
ap = (Y, yo) = Wfe, W) = (fi, fi) = N (10.6)
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sinceW*W = I,;, and (10.4) reduces to

M N
- oM
b=o?— > bl . (10.7)
k=1
Now,
N M
D blk] =Tr(X*X) =Tr(V*V) = > blk] . (10.8)
k=1 k=1

Substituting (10.8) into (10.7), and comparing with (10.2) we concludeihat(M/N)D.
Therefore, to reduce the quantization error in the sampling and reconstruction scheme
of Figure 7, we propose the following. Instead of directly quantizing the measurements
d[k] in Figure 7, we first take th& point DFT of the lengthM/ sequence of measurements
d[k], and then quantize the DFT coefficients. The reconstructed signal is then a linear
combination of the reconstruction vectars, where the coefficients are the firgt values
of the inverse DFT of the quantized DFT coefficients, as depicted in Figure 10. If we take
out the quantizer in Figure 10, theh= Eyy s f asin Figure 7. However, in the presence
of the quantizer, using the redundant sampling scheme of Figure 10 the average power of
the quantization error is reduced by a factoMofM in comparison with a nonredundant
scheme.

K] ) ) ,
F— 5 (S* W) DFT Quantizer — IDFT— W |— f

FIGURE 10 Reconstruction of from quantized measurements using a redundant sampling scheme.

There are many other choices of frame vectgifor VW and oblique dual frame vectors
xx on S, that lead to a noise reduction &f/M in comparison with a basis expansion. We
refer to any such frame expansion as a ‘good’ oblique frame expansion. We then have the
following theorem.

Theorem 3.

Let{wg, 1 < k < M} denote an orthonormal basis fo¥, and let{v;, 1 < k < M}
denote the biorthogonal basis fét, with W N S+ = {0}. Let{y, 1 < k < N} denote a
frame forW, and let{x;, 1 < k < N} denote the oblique dual frame vectorsypfon S.
Let F denote theV x N Fourier matrix, and letF denote the firs/ rows of Z. Then

1. The frame vectors corresponding Yo= WF, X = VF form a good oblique
frame expansion;

2. The frame vectors correspondingfo= WFT, X = VFT whereT is a unitary
circulant matrix® form a good oblique frame expansion.

Proof. We already proved the first part of the theorem; it remains to prove the second
part. We can immediately verify that = V FT is in fact the oblique dual frame operator

3A circulant matrix is a matrix where every row (or column) is obtained by a right circular shift (by one
position) of the previous row (or column).
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onS of Y = WFT. SinceT is circulant and unitary it is diagonalized b5 [8], so we
can expres§” asT = F*AF whereA is a diagonal matrix with diagonal elemernts
satisfying|A;| = 1 for all k. Then,

Y = WFT = WFF*AF = WIAF, (10.9)
wherel = [I,; 0], and
Y*Y = F*ANT*IAF = F*I*IF = F*F . (10.10)

Combining (10.10) and (10.6), we have, yx) = M/N for all k. From (10.4), the
average power of the reconstruction error using x} is D = 62M/N Z,’le (XK, Xk).
Now, X = VFT = VIAF so

N
(e, ) = T (X°X) = Tr (F A T VVIAF) = Tr (v*V) (10.11)
k=1

andD = (M/N)D whereD is the average power of the reconstruction error uging vy }.

Based on results derived in [8, 11, 10] we can show that Theorem 3 still holds when
we replaceF by a generalized Fourier matrix defined on a direct product of cyclic groups
(e. g., a Hadamard matrix), and repld€dy a real unitary permuted matrix whose rows
and columns are all permutations of each other. This is because a real permuted matrix
is diagonalized by a generalized Fourier matrix, and the magnitude of the elements of an
N x N generalized Fourier matrix are all equakAN .
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