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ABSTRACT. This article introduces a general framework for sampling and reconstruction pro-
cedures based on a consistency requirement, introduced by Unser and Aldroubi in [29]. The
procedures we develop allow for almost arbitrary sampling and reconstruction spaces, as well as
arbitrary input signals. We first derive a nonredundant sampling procedure. We then introduce
the new concept of oblique dual frame vectors, that lead to frame expansions in which the analysis
and synthesis frame vectors are not constrained to lie in the same space. Based on this notion, we
develop a redundant sampling procedure that can be used to reduce the quantization error when
quantizing the measurements prior to reconstruction.

1. Introduction

Many methods exist for representing a signalf by a sequence of numbers, which can
be interpreted as measurements off . The classical approach is to choose the measurements
as samples off . A more recent approach [29, 22, 3, 27, 28, 12] is to consider measurements
that can be expressed as inner products off with a set of vectors that span a subspaceS,
which is referred to as the sampling space. The problem then is to reconstructf from these
measurements, using a set of vectors that span a subspaceW, which we refer to as the
reconstruction space. Iff does not lie inW, then it cannot be perfectly reconstructed using
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only reconstruction vectors that spanW. Therefore, if we allow for signals out ofW, then
we must relax the requirement for perfect reconstruction.

Given a reconstruction method, we can always choose a sampling method so that the
reconstructed signal is closest tof in anl2-sense. However, this requires the sampling space
S to be equal to the reconstruction spaceW. If the sampling scheme is such thatS 6= W,
then the minimal-error approximation cannot be obtained. Therefore, our problem is to
construct a good approximation off given both a sampling method and a reconstruction
method.

In [29] the authors introduce the concept of consistent reconstruction, in which the
reconstructed signal is in general not equal tof , but nonetheless yields the same measure-
ments. Based on this requirement, they derive a sampling procedure for the special case
in which f lies in L2, andS andW are generated by integer translates of appropriately
chosen functions.

In this article we extend the results of [29] in several ways. First, we expand their
results to a broader framework that does not requireS andW to be generated by integer
translates, and does not requiref to lie inL2, but rather can be applied to arbitrary subspaces
of an arbitrary Hilbert space. This framework leads to some new sampling theorems, as
well as further insight into the results of [29]. We also develop a geometric interpretation
of the sampling and reconstruction scheme that provides further insight into the problem.
Second, we developredundantsampling procedures in which the measurements constitute
an overcomplete representation off . These measurements correspond to inner products
of f with a frame forS, and reconstruction is obtained using a frame forW. To obtain a
consistent reconstruction off in this case, we develop a generalization of the well known
dual frame operator [6], which we refer to as anoblique dual frame operator.The corre-
sponding frame vectors are referred to as theoblique dual frame vectors.As we show, these
frame vectors have properties that are very similar to those of the conventional dual frame
vectors. However, in contrast with the dual frame vectors, they are not constrained to lie in
the same space as the original frame vectors. Thus, using oblique dual frame vectors we
can extend the notion of a frame expansion to include redundant expansions in which the
analysis and synthesis frame vectors lie in different spaces.

By allowing for arbitrary sampling and reconstruction spaces, the sampling algo-
rithms can be greatly simplified in many cases with only a minor increase in approximation
error [29, 27, 28, 30, 4, 5]. Using oblique dual frame vectors we can further simplify the
sampling and reconstruction processes while still retaining the flexibility of choosing the
spaces almost arbitrarily, due to the extra degrees of freedom offered by the use of frames
that allow us to construct frames with prescribed properties [15, 1]. Furthermore, if the
measurements are quantized prior to reconstruction, then as we show the average power of
the reconstruction error using this redundant procedure can be reduced by the redundancy
of the frame in comparison with the nonredundant procedure.

For simplicity of exposition the results in this article are derived for the finite-
dimensional case; however, most of the results can be extended to include the infinite-
dimensional case as well under certain mild constraints.

This article is organized as follows. In Section 2 we consider the consistency require-
ment in detail, and develop a geometric interpretation of the sampling and reconstruction
scheme. Section 3 considers explicit reconstruction methods. The aliasing and reconstruc-
tion error resulting from our general scheme are analyzed in Section 4. Section 5 considers
nonredundant sampling. An example illustrating the reconstruction is given in Section 6.
Section 7 considers redundant sampling procedures. In Section 8 we introduce the notion
of oblique dual frame vectors and discuss their key properties, and in Section 10 we develop
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a redundant sampling procedure that can be used to reduce the quantization error.

2. Consistent Reconstruction

We denote vectors in an arbitrary Hilbert spaceH by lowercase letters, and the
elements of a vectorc ∈ C

N by c[k]. The inner product between vectorsx, y ∈ H is
denoted by〈x, y〉. PS denotes the orthogonal projection operator onto the spaceS, IN

denotes theN × N identity matrix, andN (·) andR(·) denote the null space and range
space of the corresponding operator, respectively.

2.1 Consistency Condition

Suppose we are given measurementsc[k] of a signalf that lies in an arbitrary Hilbert
spaceH. The measurementsc[k] = 〈sk, f 〉 are obtained by taking the inner products off

with a set ofN sampling vectors{sk, 1 ≤ k ≤ N} that span anM-dimensional subspace
S ⊆ H, which is referred to as the sampling space. We construct an approximationf̂

of f using a given set ofN reconstruction vectors{wk, 1 ≤ k ≤ N} that span anM-
dimensional subspaceW ⊆ H, which we refer to as the reconstruction space. In the case
of nonredundant samplingN = M so that the sampling and reconstruction vectors form
a basis forS andW, respectively; in the case of redundant samplingN > M and the
sampling and reconstruction vectors form a frame forS andW, respectively. We do not
require the sampling spaceS and the reconstruction spaceW to be equal.

The reconstructionf̂ has the formf̂ = ∑N
k=1 d[k]wk for some coefficientsd[k]

that are a linear transformation of the measurementsc[k], so thatd = Hc for someH .
With W andS denoting the set transformations1 corresponding to the vectorswk andsk,
respectively,

f̂ =
N∑

k=1

d[k]wk = Wd = WHc = WHS∗f . (2.1)

The sampling and reconstruction scheme is illustrated in Figure 1.

FIGURE 1 General sampling and reconstruction scheme.

Sincef̂ given by (2.1) always lies inW, if f /∈ W, thenf̂ 6= f . Because we are
allowing the space of signalsH to be larger thanW, we must replace the requirement for
perfect reconstruction off /∈ W with a less stringent requirement. Therefore, our problem
is to chooseH in Figure 1 so thatf̂ is a good approximation off . In particular, we require

1A set transformationX : C
N → H corresponding to{xk ∈ H, 1 ≤ k ≤ N} is defined byXa =∑N

k=1 a[k]xk for any a ∈ C
N . From the definition of the adjointX∗ : H → C

N it follows that if
a = X∗y, thena[k] = 〈xk, y〉.
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that if f ∈ W, thenf̂ = f . To this end we must have thatW ∩ S⊥ = {0}. For suppose
thatx is a nonzero signal inW ∩ S⊥. Thenc[k] = 〈sk, x〉 = 0 for all k, and clearlyx
cannot be reconstructed from the measurementsc[k]. Consequently, throughout the article
we explicitly assume thatW ∩ S⊥ = {0}. SinceW andS are finite-dimensional spaces of
the same dimension, this implies thatH = W ⊕ S⊥.

The sampling procedures we develop are based on a consistency requirement, intro-
duced by Unser and Aldroubi in [29]. The idea is to construct aconsistent reconstruction
f̂ of f that has the property that if we measure it using the measurement vectorssk, then
the measurements will be equal to the measurementsc[k] of f . Thus, our problem reduces
to findingH in Figure 1 such that

S∗f̂ = S∗WHS∗f = S∗f . (2.2)

Theorem 1 below asserts that (2.2) is satisfied for allf ∈ H with W ∩ S⊥ = {0}
if and only if G = WHS∗ is an oblique2 projection [16, 2, 20] withR(G) = W and
N (G) = S⊥, denoted byEWS⊥ . The oblique projectionEWS⊥ is defined as the unique
operator satisfying

EWS⊥w = w for any w ∈ W ;
EWS⊥v = 0 for any v ∈ S⊥ . (2.3)

Theorem 1.
Let {c[k] = 〈sk, f 〉} denote measurements off ∈ H with sampling vectors{sk} that

spanan M-dimensional subspaceS ⊆ H, and let the reconstruction vectors{wk} span
an M-dimensional subspaceW ⊆ H such thatW ∩ S⊥ = {0}. Thenf̂ is a consistent
reconstruction off if and only if f̂ = EWS⊥f .

Proof. Suppose that̂f = WHS∗f is a consistent reconstruction off so that (2.2) is
satisfied, and letG = WHS∗. Then for allf ∈ H,

G2f = WHS∗WHS∗f = WHS∗f̂ = WHS∗f = Gf , (2.4)

andG is a projection operator. SinceG = WHS∗, N (G) ⊇ N (S∗) = S⊥ andR(G) ⊆
R(W) = W. Suppose thatf ∈ N (G) but S∗f 6= 0. ThenS∗f̂ = S∗Gf = 0 con-
tradicting (2.2), so thatN (G) = S⊥. Now, let f ∈ W. Then from (2.2) we have that
S∗(Gf − f ) = 0 so thatGf − f ∈ N (S∗) = S⊥. But we also have thatGf − f ∈ W.
SinceW ∩ S⊥ = {0}, Gf − f = 0 for all f ∈ W, andR(G) = W.

Next, suppose that̂f = Gf whereG = WHS∗ = EWS⊥ . ThenGf = f for
any f ∈ W, andS∗f̂ = S∗Gf = S∗f . For f ∈ S⊥, S∗f = Gf = 0 so that again
S∗f̂ = S∗f . SinceH = W ⊕ S⊥, we conclude thatS∗f̂ = S∗f for all f ∈ H.

As a corollary of Theorem 1 we have that ifW ∩ S⊥ = {0}, then a consistent
reconstructionf̂ of a signalf ∈ W is always equal tof .

Theorem 1 describes the form of the unique consistent reconstruction if it exists,
however it does not establish its existence. In Section 3 we show that a consistent recon-
struction can always be obtained, and we derive explicit reconstruction procedures. Before
we consider the detailed methods, in the next section we present a geometric interpretation
of the sampling and reconstruction that provide further insight into the problem.

2An oblique projection is a projection operatorE satisfyingE2 = E that is not necessarily Hermitian.
The notationEWS⊥ denotes an oblique projection with range spaceW and null spaceS⊥. If W = S,
thenEWS⊥ is an orthogonal projection ontoW which we denote byPW .
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2.2 Geometric Interpretation

Let us first consider the case of perfect reconstruction for signals inW. Thus, we
would like to determine conditions under which anyf ∈ W can be reconstructed from the
measurementsc[k] = 〈sk, f 〉. We first note that samplingf with measurement vectors in
S, is equivalent to sampling the orthogonal projection off ontoS, denoted byfS = PSf .
This follows from the relation

〈sk, f 〉 = 〈PSsk, f 〉 = 〈sk, PSf 〉 . (2.5)

We may therefore decompose the sampling process into two stages, as illustrated in Figure 2.
In the first stage the signalf is (orthogonally) projected onto the sampling spaceS, and
in the second stage the projected signalfS is measured. SincefS ∈ S and the vectorssk
spanS, fS is uniquely determined by the measurementsc[k]. Therefore, knowingc[k] is
equivalent to knowingfS .

FIGURE 2 Decomposition of the sampling process into two stages.

In view of the interpretation of Figure 2, our problem can be rephrased as follows.
Can we reconstruct a signal inW, given the orthogonal projection of the signal ontoS, with
W ∩S⊥ = {0}? Figure 3(a) depicts the orthogonal projection of an unknown signalf ∈ W
ontoS, denotedfS . The problem then is to determinef from this projection. Since the
direction ofW is known, there is only one vector inW whose orthogonal projection onto
S is fS ; this vector is illustrated in Figure 3(b). Thus, from this geometrical interpretation
we conclude that forW ∩ S⊥ = {0}, perfect reconstruction of anyf ∈ W from the
measurementsc[k] is always possible.

We now discuss consistent reconstruction for signalsf ∈ H. If f̂ is a consistent
reconstruction off , thenf andf̂ have the same measurements:c[k] = 〈sk, f 〉 = 〈sk, f̂ 〉.
From our previous discussion it then follows thatfS = f̂S wheref̂S = PS f̂ . Thus, geo-
metrically a consistent reconstruction̂f of f is a signal inW whose orthogonal projection
ontoS is equal to the orthogonal projection off ontoS, as illustrated in Figure 4. Evidently,
the consistent reconstruction is unique and always exists. We have seen in Theorem 1 that
this reconstruction has a nice geometrical interpretation: It is the oblique projection off

ontoW alongS⊥. This interpretation is illustrated in Figure 5, from which it is apparent
thatEWS⊥f andf have the same orthogonal projection ontoS and consequently yield the
same measurements.

In summary, by considering a geometric interpretation of the sampling process and
the consistency requirement we have demonstrated that perfect reconstruction of signals
in W is always possible as long asW ∩ S⊥ = {0}, and we illustrated the reconstruction
geometrically. We also showed that under the same condition consistent reconstruction is
always possible, and illustrated the reconstruction. It is important to note that the geometric
interpretation (and Theorem 1) hold irrespective of whether the sampling process is nonre-
dundant or redundant. In the next section we provide mathematical proof of these results
and derive an explicit reconstruction scheme. Nonredundant procedures are considered in
Section 5, and redundant procedures are considered in Sections 7, 8, and 10.
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FIGURE 3 Illustration of perfect reconstruction off ∈ W fromfS = PSf , withW∩S⊥ = {0} (a) orthogonal
projection of unknown signal inW ontoS (b) unique signal inW with the given projection.

FIGURE 4 Illustration of consistent reconstruction of an arbitraryf from fS , with W ∩ S⊥ = {0}.

3. Reconstruction Scheme

3.1 Reconstruction Algorithm

From Theorem 1 and the geometric interpretation of Section 2.2 it follows that to
obtain a consistent reconstruction̂f of f we need to determineH in Figure 1 such that
G = WHS∗ = EWS⊥ , i. e., such thatG satisfies (2.3). We now show that withH =
(S∗W)†, where(·)† denotes theMoore–Penrose pseudoinverse[13],

f̂ =
N∑

k=1

d[k]wk = Wd = W
(
S∗W

)†
c = W

(
S∗W

)†
S∗f , (3.1)

is a consistent reconstruction off for all f ∈ H. To this end we prove the following
proposition.
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FIGURE 5 Decomposition off into its components inW andS⊥ given byEWS⊥f andES⊥Wf , respec-
tively.

Proposition 1.
Let the vectors{sk, 1 ≤ k ≤ N} corresponding toS spananM-dimensional subspace

S ⊆ H, and let the vectors{wk, 1 ≤ k ≤ N} corresponding toW spananM-dimensional
subspaceW ⊆ H, withW ∩S⊥ = {0}. Then the oblique projection ontoW alongS⊥ can
be expressed asEWS⊥ = W(S∗W)†S∗.

Proof. We denoteG = W(S∗W)†S∗ and show thatG satisfies (2.3).
First, since the vectorswk spanW, anyw ∈ W can be expressed asw = Wa for

somea ∈ C
N . ThenGw = W(S∗W)†S∗Wa = WPa where from the properties of the

pseudoinverse,P is an orthogonal projection ontoN (S∗W)⊥. SinceWx ∈ W for any
x ∈ C

N andW ∩S⊥ = {0}, S∗Wx = 0 if and only ifWx = 0, so thatN (S∗W) = N (W).
Then for anyw ∈ W, Gw = WPN (W)⊥a = Wa = w. Next, sincesk ∈ S, S∗v = 0 for
anyv ∈ S⊥, andGv = 0 so thatG satisfies (2.3) and consequentlyG = EWS⊥ .

If f ∈ W thenf̂ = EWS⊥f = f , andf can be perfectly reconstructed from the
measurementsc[k] using (3.1). By choosing different spacesH, W andS and using (3.1),
we can arrive at a variety of new and interesting perfect reconstruction sampling theorems.

From (3.1),f̂ is obtained by first transforming the measurementsc[k] into “corrected”
measurementsd[k] corresponding tod = (S∗W)†c = Tf , whereT = (S∗W)†S∗. As we
now show,T has an interesting interpretation: It is theoblique pseudoinverseof W on
V = N (W)⊥ alongS⊥.

3.2 Oblique Pseudoinverse

Let T : K → U be a linear transformation, and letK = G ⊕ N (T ) andU = R(T )

⊕Z. Theoblique pseudoinverseof T on G alongZ, denotedT #
GZ , is the unique transfor-

mation satisfying [23, 9]

T T #
GZ = ER(T )Z ; (3.2)

T #
GZT = EGN (T ) ; (3.3)

R
(
T #

GZ
)

= G . (3.4)

As can be verified [9], (3.2)–(3.4) imply thatT #
GZ invertsT betweenG andR(T ), while

nulling out any vector inZ. This interpretation is illustrated in Figure 6, from which it
follows that the pseudoinverseT † is a special case of the oblique pseudoinverseT #

GZ for

whichG = N (T )⊥ andZ = R(T )⊥.
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FIGURE 6 The action ofT andT #
GZ on the subspacesG, N (T ), R(T ) andZ.

Proposition 2.
Let the vectors{sk, 1 ≤ k ≤ N} corresponding toS spananM-dimensional subspace

S ⊆ H, and let the vectors{wk, 1 ≤ k ≤ N} corresponding toW spananM-dimensional
subspaceW ⊆ H, with W ∩ S⊥ = {0}. Then the oblique pseudoinverse ofW on V =
N (W)⊥ alongS⊥ can be expressed as

W#
VS⊥ = (

S∗W
)†

S∗ . (3.5)

Proof. We need to show thatW#
VS⊥ given by (3.5) satisfies (3.2)–(3.4), i. e.,

WW#
VS⊥ = EWS⊥ ; (3.6)

W#
VS⊥W = PV ; (3.7)

R
(
W#

VS⊥
)

= V . (3.8)

The fact thatW#
VS⊥ satisfies (3.6) follows immediately from Proposition 1. To prove that

W#
VS⊥ satisfies (3.7) we note that from the properties of the pseudoinverse,W#

VS⊥W =
(S∗W)†S∗W = PN (S∗W)⊥ . But sinceN (S∗W) = N (W) = V⊥, (S∗W)†S∗W = PV .
Finally, R(W#

VS⊥) = R((S∗W)†S∗) = R((S∗W)†) sinceN ((S∗W)†)⊥ = R(S∗W) =
R(S∗) because for anyx ∈ H, S∗x = S∗EWS⊥x andEWS⊥x ∈ W = R(W). Thus
R(W#

VS⊥) = R((S∗W)†) = N (S∗W)⊥ = N (W)⊥ = V, andW#
VS⊥ satisfies (3.8).

Comparing (3.5) with (3.1) we see that̂f = Wd whered = W#
VS⊥f . Thus

d[k] = 〈vk, f 〉 wherevk are the vectors corresponding to(W#
VS⊥)∗. SinceR((W#

VS⊥)∗) =
N (W#

VS⊥)⊥ = S, the vectorsvk lie in S. Furthermore, from (3.6)WW#
VS⊥ = EWS⊥ , so

that anyf ∈ S can be expressed as

f = ESW⊥f = (
EWS⊥

)∗
f =

(
W#

VS⊥
)∗

W ∗f =
N∑

k=1

b[k]vk , (3.9)

whereb = W ∗f , and the vectorsvk spanS.
Therefore, in the case of nonredundant sampling i. e.,N = M, the vectorsvk form a

basis forS, and in the case of redundant sampling, i. e.,N > M, the vectorsvk form a frame
for S. These basis and frame vectors have special properties which we discuss in Sections 5
and 8, respectively. Specifically, in Section 5 we show that in the case of nonredundant
sampling, the vectorsvk form a basis forS that is biorthogonal to the basis vectorswk. In
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Section 8 we show that in the case of redundant sampling, the vectorsvk form a frame for
S which we define asthe oblique dual frame,which has properties analogous to the dual
frame vectors.

4. Aliasing and Error Bounds

Since in generalf /∈ W, the reconstruction (3.1) may result in aliasing inf̂ , which
occurs when components off that lie out ofW are aliased intôf . A very nice and intuitive
way to think about aliasing was proposed in [18] in the context of multiresolution spaces
in terms of the norm of the “out-of-space” component. Let0 denote the sampling operator
defined byf̂ = 0f , which in our case is equal to0 = EWS⊥ . Then the aliasing norm is
defined as [18, 17]

A0 = sup
f ∈W⊥

‖0f ‖
‖f ‖ = sup

f ∈W⊥

∥∥EWS⊥f
∥∥

‖f ‖ . (4.1)

From (4.1),A0 = 0 only if EWS⊥ = 0 for all f ∈ W⊥ which implies thatS = W. To
avoid aliasing whenS 6= W, we can first orthogonally projectf ontoW, and then measure
the projection. The measurements are thenc = S∗PWf , so thatc[k] = 〈tk, f 〉 where
tk = PWsk and consequentlytk ∈ W; as we expect the effective sampling space is equal
to the reconstruction space.

WhenS 6= W we can obtain a bound onA0 using the fact that for anyf ∈ H [30]

∥∥EWS⊥f
∥∥ ≤ 1

cos(θWS)
‖f ‖ , (4.2)

where the angleθWS betweenS andW is defined as [29]

cos(θWS) = inf
f ∈W,‖f ‖=1

‖PSf ‖ . (4.3)

Thus,

A0 ≤ 1

cos(θWS)
. (4.4)

As we expect intuitively, the bound decreases as the angle between the spacesS andW
decreases, in which caseS is “close” toW.

The norm of the reconstruction errorf − EWS⊥f can be bounded based on results
derived in [29],

‖f − PWf ‖ ≤ ∥∥f − EWS⊥f
∥∥ ≤ 1

cos(θWS)
‖f − PWf ‖ , (4.5)

where‖f − PWf ‖ is the minimal norm of the reconstruction error corresponding to the
case in whichW = S. From (4.5) we see that there is a penalty for the flexibility offered
by choosingS (almost) arbitrarily: The norm of the reconstruction error forf /∈ W is
increased. However, in many practical applications this increase in error is very small [28,
30, 4, 5].
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5. Reconstruction From Nonredundant Measurements

Suppose that the sampling vectors{sk, 1 ≤ k ≤ M} form a basis forS and the
reconstruction vectors{wk, 1 ≤ k ≤ M} form a basis forW. Then, as we now show,S∗W
is invertible so that the general reconstruction formula (3.1) reduces to

f̂ =
M∑

k=1

d[k]wk = Wd = W
(
S∗W

)−1
S∗f . (5.1)

Proposition 3.
Let the vectors{sk, 1 ≤ k ≤ M} corresponding toS denote a basis for anM-

dimensional subspaceS of H, and let the vectors{wk, 1 ≤ k ≤ M} corresponding toW
denote a basis for anM-dimensional subspaceW of H. ThenS∗W is invertible if and only
if W ∩ S⊥ = {0}.
Proof. Suppose thatS∗W is invertible, and letx ∈ W ∩ S⊥. Sincex ∈ S⊥, S∗x = 0.
But sincex ∈ W, x = Wa for somea ∈ C

M . Thus,S∗x = S∗Wa = 0. BecauseS∗W is
invertible, we must havea = 0 so thatx = Wa = 0.

Conversely, suppose thatW ∩ S⊥ = {0}. Let x 6= 0 be a vector inN (S∗W) so that
S∗Wx = 0. Since the vectorswk are linearly independent,y = Wx 6= 0 and therefore
y ∈ N (S∗) = R(S)⊥ = S⊥. In addition,y ∈ R(W) = W. Thereforey = 0, which in
turn implies thatx = 0 contradicting our assumption. Thus,S∗W is invertible.

The resulting measurement and reconstruction scheme is depicted in Figure 7. Note, that
sincef̂ is unique and the vectorswk are linearly independent, the coefficientsd[k] are also
unique.

FIGURE 7 Consistent reconstruction off using nonredundant sampling vectorssk and nonredundant recon-
struction vectorswk , with W ∩ S⊥ = {0}.

We may interpret the reconstruction scheme of Figure 7 in terms of a basis expansion
for signals inW. Since forf ∈ W, f̂ = f , anyf ∈ W can be represented asf =∑M

k=1 d[k]wk whered[k] = 〈vk, f 〉 and the vectorsvk ∈ S correspond toV = (W#
VS⊥)∗ =

S(W ∗S)−1. We have already seen in Section 3.2 that these vectors form a basis forS.
SinceV ∗W = (S∗W)−1S∗W = IM , these basis vectors have the property that they are
biorthogonal towk: 〈vk, wm〉 = δkm. Therefore Figure 7 provides an explicit method for
constructing basis vectors for an arbitrary spaceS with W∩S⊥ = {0}, that are biorthogonal
to the basis vectorswk.

6. Bandlimited Sampling of Time-Limited Sequences

To illustrate the details of the sampling and reconstruction scheme of Figure 7, we
now consider an example in whichH is the space of sequencesx[n] such thatx[n] = 0 for
n < 0, n ≥ N , W is the space of sequencesx[n] such thatx[n] = 0 for n < 0, n ≥ M
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whereM = 2M ′ + 1 < N , andS is the space of “bandlimited” sequencesx[n] such that
X[k] = 0 for M ′ < k < N − M ′, whereX[k], 0 ≤ k ≤ N − 1 denotes theN point DFT
of x[n]. The bases forS andW are chosen as the sequencessk[n], 0 ≤ k ≤ M − 1 and
wk[n], 0 ≤ k ≤ M − 1, respectively, given bysk[n] = ej2π(k−M ′)n/N for 0 ≤ n ≤ N − 1
and 0 otherwise, andwk[n] = δ[k − n].

Consider an arbitrary sequencef [n] in H. The measurementsc[k], 0 ≤ k ≤ M − 1
of f [n] are

c[k] =〈sk, f 〉 =
N−1∑
n=0

s∗
k [n]f [n] =

N−1∑
n=0

f [n]e−j2π(k−M ′)n/N = F
[((

k − M ′))
N

]
, (6.1)

whereF [k], 0 ≤ k ≤ N − 1 is theN point DFT off [n], and((p))N = p modN . Thus,
the measurementsc[k] are theM lowpass DFT coefficients of theN point DFT off [n].
To obtain a consistent reconstruction off [n] we need to determine(S∗W)−1. Thekmth
element ofS∗W is

〈sk, wm〉 =
N−1∑
n=0

s∗
k [n]wm[n] = s∗

k [m] = ZkmBm , (6.2)

whereZ = e−j2π/N andB = ej2πM ′/N . We can therefore expressS∗W in the form

S∗W =




1 1 1 · · · 1

1 Z Z2 · · · ZM−1

...

1 ZM−1 Z2(M−1) · · · Z(M−1)2




D . (6.3)

Equation (6.3) is the product of a Vandermonde matrix and a diagonal matrixD with nonzero
diagonal elementsBm, 0 ≤ m ≤ M−1. Therefore,S∗W is always invertible which implies
by Proposition 3 thatW ∩ S⊥ = {0}. We can compute the inverse ofS∗W using any of
the formulas for the inverse of a Vandermonde matrix (see e. g., [21, 25]). The corrected
measurementsd[k] are then given by the elements ofd = (S∗W)−1c wherec is the vector
with elementsc[k] given by (6.1), andf̂ [n] = ∑N−1

k=0 wk[n]d[k] = dn for 0 ≤ n ≤ M − 1
and 0 otherwise. The consistency requirement implies thatF̂ [((k − M ′))N ] = F [((k −
M ′))N ] for 0 ≤ k ≤ M − 1, whereF̂ [k] is theN point DFT of f̂ [n]. Thus f̂ [n] is a
“time-limited” sequence that has the same lowpass DFT coefficients asf [n].

In [9, 7] we develop a systematic method for constructing signals with prescribed
properties. In particular, we consider constructing a signal inH with specified properties
in two spacesW andS. Using these methods we can generalize our construction here to
produce a signal with specified lowpass coefficientsand specified values on a given time
interval.

Now, suppose thatf [n] is a lengthM sequence inW, and we are givenM lowpass
DFT coefficientsF [((k −M ′))N ], 0 ≤ k ≤ M −1. We can then perfectly reconstructf [n]
from these coefficients using the method described above. This implies the intuitive result
that a time-limited discrete-time sequence can be reconstructed from a lowpass segment
of its DFT transform. This result is the analogue for the finite length discrete-time case
of Papoulis’ theorem [24], which implies that a time-limited function can be recovered
from a lowpass segment of its Fourier transform. The reconstruction based on Papoulis’
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theorem is typically obtained using iterative algorithms such as those discussed in [24, 26].
By choosing appropriate sampling and reconstruction vectors in the general scheme of
Figure 7, we obtained a finite length discrete-time version of this theorem together with a
simple non-iterative reconstruction method. This example illustrates the type of procedure
that might be followed in using our framework to generate new sampling theorems.

7. Reconstruction From Redundant Measurements

Suppose now that we are given a set of redundant measurementsc̃[k] = 〈xk, f 〉 of a
signalf ∈ H, where the vectors{xk, 1 ≤ k ≤ N} form a frame forS and reconstruction is
obtained using the reconstruction vectors{yk, 1 ≤ k ≤ N} which form a frame forW: A
set of vectors{yk ∈ W, 1 ≤ k ≤ N} forms a frame forW if there exists constantsA > 0
andB < ∞ such that

A‖x‖2 ≤
N∑

k=1

|〈x, yk〉|2 ≤ B‖x‖2 , (7.1)

for all x ∈ W [6]. Although in principleN maybe infinite, we assume throughout that
N is finite. The lower bound in (7.1) ensures that the vectorsyk spanW; thus we must
haveN ≥ M. If N < ∞, then the right hand inequality of (7.1) is always satisfied with
B = ∑N

k=1 〈yk, yk〉. Thus, any finite set of vectors that spansW is a frame forW. If the
boundsA = B in (7.1), then the frame is called a tight frame. If in additionA = B = 1,
then we call the frame a normalized tight frame. The redundancy of the frame is defined as
r = N/M.

From the general reconstruction formula (3.1),f̂ is obtained using the frame vectors
yk by transforming the measurementsc̃[k] into corrected measurementsd̃ = (X∗Y )†c̃, as
depicted in Figure 8.

FIGURE 8 Consistent reconstruction off using redundant sampling vectorsxk and redundant reconstruction
vectorsyk , with W ∩ S⊥ = {0}.

An alternative form of Figure 8, that will be used in Section 10, can be obtained by noting
that any frameY for W can be expressed asY = WZ whereW corresponds to an arbitrary
basis forW, andZ : C

M → C
N has rankM, i. e.,ZZ† = IM . Similarly, any frameX

for S can be expressed asX = ST whereS corresponds to an arbitrary basis forS, and
T : C

M → C
N satisfiesT T † = IM . Then

(
X∗Y

)†
X∗ = (

T ∗S∗WZ
)†

T ∗S∗ . (7.2)

To simplify (7.2) we rely on the following lemma.

Lemma 1.
Let A be anm × n matrix and letB be ann × k matrix. If R(B) = N (A)⊥,

N (AB) = N (B) andR(AB) = R(A), then

(AB)† = B†A† . (7.3)
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In particular if A andB both haverankn, then(7.3) is satisfied.

Proof. The lemma is proven in a straightforward manner by showing that under the
conditions of the lemma,B†A† satisfies the Moore–Penrose conditions [13].

SinceT ∗ andZ both have rankM and from Proposition 3,S∗W is invertible, it
follows from Lemma 1 that

(
T ∗S∗WZ

)† = Z† (
S∗W

)−1
(
T †

)∗
. (7.4)

Substituting into (7.2),
(
X∗Y

)†
X∗ = Z† (

S∗W
)−1

(
T †

)∗
T ∗S∗ = Z† (

S∗W
)−1

S∗ , (7.5)

where we used the fact that(T †)∗T ∗ = IM . From (7.5) it follows that we can obtain
the redundant corrected measurementsd̃[k] directly from the nonredundant corrected mea-
surementsd = (S∗W)−1S∗f = (S∗W)−1c, via d̃ = Z†d, wherec[k] = 〈sk, f 〉 are the
nonredundant measurements obtained using the vectorssk. This interpretation is illustrated
in Figure 9.

FIGURE 9 Equivalent representation of Figure 8.

We have seen that the nonredundant sampling scheme of Figure 7 can be interpreted
as a basis expansion off ∈ W in terms of a biorthogonal basis forS. We now show that the
redundant sampling scheme of Figure 8 can be interpreted as a frame expansion off ∈ W
in terms of theoblique dual frame vectorson S. Furthermore, although the redundant
coefficientsd̃[k] are not unique, based on the properties of the oblique dual frame vectors
we will show that the sampling scheme of Figure 8 results in coefficientsd̃[k] with minimal
l2-norm.

In the next section we introduce the oblique dual frame vectors and discuss their key
properties.

8. Oblique Dual Frame Vectors

8.1 Definition of the Oblique Dual Frame Vectors

Definition 1. Let the vectors{yk ∈ W, 1 ≤ k ≤ N} corresponding toY denote a frame
for anM-dimensional subspaceW of H, and letS be anM-dimensional subspace ofH
with W ∩ S⊥ = {0}. Then the oblique dual frame vectors ofyk onS are the frame vectors
{ỹS

k ∈ S, 1 ≤ k ≤ N} corresponding to the oblique dual frame operator(Y #
VS⊥)∗ where

V = N (Y )⊥.

Note that from the discussion following Proposition 2, the vectorsỹS
k form a frame forS. As

we show in the next section, these frame vectors have properties analogous to the properties
of the conventional dual frame vectors [19, 6], which justifies our choice of terminology.
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From (3.1) and Proposition 2 it follows that the corrected measurementd̃[k] in Figure 8
are the inner products off with the oblique dual frame vectors ofyk onS: d̃[k] = 〈ỹS

k , f 〉.
SinceYY #

VS⊥ = EWS⊥ , anyf ∈ W can be expressed as

f = EWS⊥f =
N∑

k=1

〈ỹS
k , f 〉yk . (8.1)

Equation (8.1) is just a frame expansion of a signalf ∈ W. However, in contrast with
conventional frame expansions, here the synthesis frame vectors lie inW, while the analysis
frame vectors̃yS

k lie in an arbitrary spaceS, such thatW ∩ S⊥ = {0}.
In the special case in whichS = W, Y #

VS⊥ = Y † and the oblique dual frame operator
reduces to the conventional dual frame operator [6]. Then anyf ∈ W can be expressed
as f = ∑N

k=1 〈ỹk, f 〉yk, where ỹk ∈ W are the dual frame vectors [6] ofyk in W,
corresponding to(Y †)∗.

8.2 Properties of the Oblique Dual Frame Vectors

Given a frameyk for W, there are many choices of coefficientsd̃[k] that correspond
to measurements off using a frame forS, and such thatEWS⊥f = ∑

k d̃[k]yk. The
particular choicẽd[k] = 〈ỹS

k , f 〉 has some desirable properties which we now discuss.

Proposition 4.
Let {yk, 1 ≤ k ≤ N} denote a frame for anM-dimensional subspaceW ⊆ H, and

let S ⊆ H denote anM-dimensional subspace such thatW ∩ S⊥ = {0}. Then from all
possible coefficientsd[k] that satisfy

EWS⊥f =
N∑

k=1

d[k]yk (8.2)

for all f ∈ H, the coefficients̃d[k] corresponding tod̃ = Y #
VS⊥f with V = N (Y )⊥ have

minimall2-norm.

Proof. From (3.1) and Proposition 2 it follows that the coefficientsd̃[k] satisfy (8.2).
Now, let d denote an arbitrary sequence satisfying (8.2). Then

∑
k(d[k] − d̃[k])yk = 0,

which implies thatd − d̃ ∈ N (Y ). Sinced̃ = Y #
VS⊥f , d̃ ∈ R(Y #

VS⊥) = N (Y )⊥. Thus

d = d̃ + y wherey ∈ N (Y ) so that〈d̃, y〉 = 0. Then,‖d‖2 = ‖d̃‖2 + ‖y‖2 ≥ ‖d̃‖2, with
equality if and only ifd = d̃.

Since in Figure 8,̃d[k] = 〈ỹS
k , f 〉, it follows from Proposition 4 that these coefficients

have minimall2-norm from all possible coefficients leading to consistent reconstruction.
We can consider the property stated in Proposition 4 from a slightly different point of

view. Since the vectorsyk form a frame forW, anyf ∈ W can be expressed asf = Yd

for somed. However, since the vectorsyk are linearly dependent,d is not unique. The
minimal norm coefficients are the unique coefficients that lie inN (Y )⊥ = V. We may
express these coefficients asd = Y †f ; indeedYd = YY †f = PWf = f . Alternatively,
d = Y #

VS⊥f whereS⊥ is an arbitrary subspace ofH such thatW ∩ S⊥ = {0}; indeed

Yd = YY #
VS⊥f = EWS⊥f = f . Thus, although the minimal norm coefficientsd[k] are

unique, the resulting sampling vectorstk such thatd[k] = 〈tk, f 〉 are not unique. If in
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addition we impose the constraint thattk ∈ S, then the unique sampling vectors that result
in coefficients with minimal norm correspond to(Y #

VS⊥)∗. This interpretation is useful in
applications in which a signalf ∈ W is corrupted by noise that is known to lie in some
subspaceS⊥. By using appropriate sampling vectors inS, we can totally eliminate this
noise and at the same time recover the minimal norm coefficients.

Proposition 5.
Let f̂ = ∑N

k=1 b[k]wk for some vectors{wk, 1 ≤ k ≤ N} that form a frame for
W, and are to be determined. Let{tk, 1 ≤ k ≤ N} denote a given set of sampling
vectors corresponding toT . Then the vectorswk corresponding to the set transformation
(T #

N (T )⊥W⊥)∗ result inf̂ with measurements〈tk, f̂ 〉 that are as close as possible tob[k] in
a least-squares sense.

Proof. Letz denote the measurements off̂ with sampling vectorstk, so thatz = T ∗Wb.
Thenz ∈ R(T ∗) = N (T )⊥. To minimize‖z − b‖ we need to choose aW such that
z = PN (T )⊥b, i. e., such thatT ∗W = PN (T )⊥ . In addition we must have thatR(W) = W.
Let W = (T #

N (T )⊥W⊥)∗. Then from (3.3),T ∗W = (T #
N (T )⊥W⊥T )∗ = PN (T )⊥ , and

R(W) = N (T #
N (T )⊥W⊥)⊥ = W.

We conclude that the oblique dual frame vectors are very similar to the conventional
dual frame vectors: Given a frame{yk} for W, the dual frame vectors{ỹk} are the unique
vectors inW such that anyf ∈ W can be expressed asf = ∑

k 〈ỹk, f 〉yk, and the
coefficients〈ỹk, f 〉 have minimal norm. Similarly, the oblique dual frame vectors ofwk on
S, with W ∩ S⊥ = {0}, are the unique vectors inS such that anyf ∈ W can be expressed
asf = ∑

k 〈ỹS
k , f 〉yk, and the coefficients〈ỹS

k , f 〉 have minimal norm. Thus, using the
concept of oblique dual frame vectors we can extend the notion of a frame expansion to the
case in which the analysis frame vectors are not constrained to lie inW, but rather may lie
in an arbitrary subspaceS ⊆ H, with W ∩ S⊥ = {0}.

It is interesting to note that the oblique dual frame vectors ofỹS
k on W are the

vectorsyk. Thus not only do we havef = ∑N
k=1 〈ỹS

k , f 〉yk for any f ∈ W but also

f = ∑N
k=1 〈yk, f 〉ỹS

k for anyf ∈ S.

Proposition 6.
Let T = (Y #

VS⊥)∗ denote the set transformation corresponding to frame vectors

{ỹS
k ∈ S, 1 ≤ k ≤ N}, whereY is a set transformation corresponding to frame vectors

{yk ∈ W, 1 ≤ k ≤ N} andV = N (Y )⊥. Then the oblique dual frame vectors ofỹS
k onW

are the vectorsyk.

Proof. By definition the oblique dual frame vectors ofỹS
k on W are the vectors corre-

sponding to(T #
UW⊥)∗ whereU = N (T )⊥. Thus we need to show thatY = (T #

UW⊥)∗, or

equivalentlyY ∗ = T #
UW⊥ , which based on (3.2)–(3.4) reduces to proving that

T Y ∗ = ER(T )W⊥ ; (8.3)

Y ∗T = PU ; (8.4)

R (
Y ∗) = U . (8.5)

First, we note thatU = N (T )⊥ = N ((Y #
VS⊥)∗)⊥ = R(Y #

VS⊥) = V. Now, R(Y ∗) =
N (Y )⊥ = V so that (8.5) is satisfied. Next,T Y ∗ = (Y #

VS⊥)∗Y ∗ = (YY #
VS⊥)∗ =

(EWS⊥)∗ = ESW⊥ . Furthermore,R(T ) = R((Y #
VS⊥)∗) = N (Y #

VS⊥)⊥ = S so (8.3)
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is also satisfied. Finally,Y ∗T = Y ∗(Y #
VS⊥)∗ = (Y #

VS⊥Y )∗ = PV completing the proof.

9. Summary of Consistent Sampling and Reconstruction

We summarize our results regarding consistent reconstruction in the following theo-
rem:

Theorem 2 (Consistent sampling and reconstruction).
Let {c[k] = 〈xk, f 〉, 1 ≤ k ≤ N} denote measurements of a signalf ∈ H with

sampling vectors{xk, 1 ≤ k ≤ N} that form a frame for anM-dimensional subspace
S ⊆ H. Let {yk, 1 ≤ k ≤ N} denote a set of reconstruction vectors that form a frame
for an M-dimensional subspaceW ⊆ H, with W ∩ S⊥ = {0}. Then anyf ∈ H can be
consistently reconstructed from the measurementsc[k] using the reconstruction vectorsyk

as f̂ = ∑N
k=1 d[k]yk with d = (X∗Y )†c, and the consistent reconstruction is unique. In

addition,

1. d = Y #
VS⊥f whereY #

VS⊥ is the oblique pseudoinverse onV = N (Y )⊥ alongS⊥

so thatd[k] = 〈ỹS
k , f 〉 where the vectors{ỹS

k , 1 ≤ k ≤ N} are the oblique dual
frame vectors ofyk onS and correspond toX(Y ∗X)†.

2. If M = N , then

(a.) the coefficientsd[k] are unique;

(b.) {ỹS
k , 1 ≤ k ≤ M} are the unique vectors inS biorthogonal to{yk, 1 ≤ k ≤

M}.
3. If M < N , then

(a.) the coefficientsd[k] are not unique;

(b.) the coefficientsd[k] have minimall2-norm among all possible coefficients
e[k] such thatf̂ = ∑N

k=1 e[k]yk.

10. Reducing Quantization Error

One of the reasons for using redundant measurements is to reduce the average power of
the quantization error, when quantizing the corrected measurements prior to reconstruction.
If S = W, then it is well known that using a redundant procedure the quantization error
can be reduced by the redundancy of the frame [6, 14]. We now extend this result to the
case in whichS 6= W. In particular, we show that we can choose a normalized tight frame
yk for W such that when using the redundant sampling procedure of Figures 8 and 9 the
average power of the reconstruction error can be reduced by the redundancy, in comparison
with the nonredundant scheme of Figure 7.

Let {wk, 1 ≤ k ≤ M} denote reconstruction vectors that form an orthonormal basis
for W, and let{sk, 1 ≤ k ≤ M} denote sampling vectors that form a basis forS. From
Theorem 2,f̂ = ∑

k d[k]wk whered[k] = 〈vk, f 〉, and{vk, 1 ≤ k ≤ M} are the vectors
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corresponding toV = S(W ∗S)−1. Thus,

f̂ =
M∑

k=1

〈vk, f 〉wk =
M∑

k=1

q[k]〈vk, f 〉wk , (10.1)

whereq[k] = √
a[k]b[k], a[k] = 〈wk, wk〉 = 1, b[k] = 〈vk, vk〉, wk = wk/

√
a[k], and

vk = vk/
√

b[k].
Assume we quantize the normalized measurementsd[k] = 〈vk, f 〉 prior to recon-

struction, and model the quantization error as an additive zero-mean white noise source,
so that the quantized measurements are given byd[k] + e[k] whereE(e[k]e[j ]) = σ 2δkj .
The reconstruction error is thenε = ∑M

k=1 q[k]e[k]wk and the average power of the recon-
struction error, denoted by D, is

D = E (〈ε, ε〉) = σ 2
M∑

k=1

q2[k] = σ 2
M∑

k=1

b[k] . (10.2)

Suppose now we use a redundant procedure so that we reconstruct the signal using a
normalized tight frame{yk, 1 ≤ k ≤ N} for W, with redundancyN/M. ThenY = WZ

for someZ : C
M → C

N such thatZZ∗ = IM . From Theorem 2, the sampling vectors
leading to consistent reconstruction correspond toX = (Y #

VS⊥)∗ = S(W ∗S)−1Z, so that
in this case

f̂ =
N∑

k=1

〈xk, f 〉yk =
N∑

k=1

q̃[k]〈xk, f 〉yk , (10.3)

whereq̃[k] =
√

ã[k]b̃[k], ã[k] = 〈yk, yk〉, b̃[k] = 〈xk, xk〉, yk = yk/
√

ã[k], andxk =
xk/

√
b̃[k]. If we quantize the normalized redundant measurements〈xk, f 〉 and model the

error as before, then the average power of the reconstruction error using the redundant
procedure, denoted bỹD, is

D̃ = σ 2
N∑

k=1

q̃2[k] = σ 2
N∑

k=1

ã[k]b̃[k] . (10.4)

We now show that we can choose a normalized tight frameyk such thatD̃ = (M/N)D.
Let Y = W F̃ , whereF̃ is anM ×N matrix whose rows are equal to the firstM rows

of theN × N Fourier matrixF with elements(1/
√

N)e−j2πkm/N . SinceYY ∗ = PW , the
corresponding vectorsyk form a normalized tight frame forW. The oblique dual frame
vectorsxk of yk onS are

X =
(
Y #

VS⊥
)∗ = V

(
W ∗V

)−1 F̃ = V F̃ . (10.5)

Let fk denote thekth column ofF̃ . From the definition ofF̃ , 〈fk, fk〉 = M/N for all k so
that,

ak = 〈yk, yk〉 = 〈Wfk, Wfk〉 = 〈fk, fk〉 = M

N
, (10.6)



94 Yonina C. Eldar

sinceW ∗W = IM , and (10.4) reduces to

D̃ = σ 2M

N

N∑
k=1

b̃[k] . (10.7)

Now,

N∑
k=1

b̃[k] = Tr(X∗X) = Tr(V ∗V ) =
M∑

k=1

b[k] . (10.8)

Substituting (10.8) into (10.7), and comparing with (10.2) we conclude thatD̃ = (M/N)D.
Therefore, to reduce the quantization error in the sampling and reconstruction scheme

of Figure 7, we propose the following. Instead of directly quantizing the measurements
d[k] in Figure 7, we first take theN point DFT of the lengthM sequence of measurements
d[k], and then quantize the DFT coefficients. The reconstructed signal is then a linear
combination of the reconstruction vectorswk, where the coefficients are the firstM values
of the inverse DFT of the quantized DFT coefficients, as depicted in Figure 10. If we take
out the quantizer in Figure 10, then̂f = EWS⊥f as in Figure 7. However, in the presence
of the quantizer, using the redundant sampling scheme of Figure 10 the average power of
the quantization error is reduced by a factor ofN/M in comparison with a nonredundant
scheme.

FIGURE 10 Reconstruction off from quantized measurements using a redundant sampling scheme.

There are many other choices of frame vectorsyk forW and oblique dual frame vectors
xk onS, that lead to a noise reduction ofN/M in comparison with a basis expansion. We
refer to any such frame expansion as a ‘good’ oblique frame expansion. We then have the
following theorem.

Theorem 3.
Let {wk, 1 ≤ k ≤ M} denote an orthonormal basis forW, and let{vk, 1 ≤ k ≤ M}

denote the biorthogonal basis forS, with W ∩ S⊥ = {0}. Let {yk, 1 ≤ k ≤ N} denote a
frame forW, and let{xk, 1 ≤ k ≤ N} denote the oblique dual frame vectors ofyk on S.
LetF denote theN × N Fourier matrix, and letF̃ denote the firstM rows ofF . Then

1. The frame vectors corresponding toY = W F̃ , X = V F̃ form a good oblique
frame expansion;

2. The frame vectors corresponding toY = W F̃T , X = V F̃T whereT is a unitary
circulant matrix3 form a good oblique frame expansion.

Proof. We already proved the first part of the theorem; it remains to prove the second
part. We can immediately verify thatX = V F̃T is in fact the oblique dual frame operator

3A circulant matrix is a matrix where every row (or column) is obtained by a right circular shift (by one
position) of the previous row (or column).
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on S of Y = W F̃T . SinceT is circulant and unitary it is diagonalized byF∗ [8], so we
can expressT asT = F∗3F where3 is a diagonal matrix with diagonal elementsλk

satisfying|λk| = 1 for all k. Then,

Y = W F̃T = W F̃F∗3F = WĨ3F , (10.9)

whereĨ = [IM 0], and

Y ∗Y = F∗3∗Ĩ ∗Ĩ3F = F∗Ĩ ∗ĨF = F̃∗F̃ . (10.10)

Combining (10.10) and (10.6), we have〈yk, yk〉 = M/N for all k. From (10.4), the
average power of the reconstruction error using{yk, xk} is D̃ = σ 2M/N

∑N
k=1 〈xk, xk〉.

Now, X = V F̃T = V Ĩ3F so

N∑
k=1

〈xk, xk〉 = Tr
(
X∗X

) = Tr
(
F∗3∗Ĩ ∗V ∗V Ĩ3F

)
= Tr

(
V ∗V

)
, (10.11)

andD̃ = (M/N)D whereD is the average power of the reconstruction error using{wk, vk}.

Based on results derived in [8, 11, 10] we can show that Theorem 3 still holds when
we replaceF by a generalized Fourier matrix defined on a direct product of cyclic groups
(e. g., a Hadamard matrix), and replaceT by a real unitary permuted matrix whose rows
and columns are all permutations of each other. This is because a real permuted matrix
is diagonalized by a generalized Fourier matrix, and the magnitude of the elements of an
N × N generalized Fourier matrix are all equal 1/

√
N .
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