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Abstract. The Hammersley and Halton point sets, two well known low discrepancy
sequences, have been used for quasi-Monte Carlo integration in previous research.
A deterministic formula generates a uniformly distributed and stochastic-looking
sampling pattern, at low computational cost. The Halton point set is also useful for
incremental sampling. In this paper, we discuss detailed implementation issues and
our experience of choosing suitable bases of the point sets, not just on the 2D plane,
but also on a spherical surface. The sampling scheme is also applied to ray tracing,
with a significant improvement in error.

1 Introduction

Different sampling techniques are used in computer graphics for the purpose of anti-
aliasing. The two easiest ways to sample are randomly and regularly. Unfortunately,
random sampling gives a noisy result. Regular sampling gives aliasing, which
requires many extra samples to reduce. Several techniques in between these two
have been proposed. The thesis of Shirley [19] surveys the common sampling
techniques, including jittered [3], semi-jittered, Poisson disk and N-rooks sampling.
Cychosz [6] generated sampling jitters using look-up tables. Chiu et al.[2] combined
jittered and N-rooks methods to design a new multi-jittered sampling. Cross [4] used
a genetic algorithm to find the optimal sampling pattern for uniformly distributed
edges. All these methods make tradeoffs between noisiness and aliasing.

A sampling technique is hierarchical if when it is required to generateN0 samples,
the result coincides with the first N0 samples generated for N = N0 + 1 where N0

is a positive integer. This is a useful feature, since the number of samples can be
incrementally increased without recalculating the previous ones. Shoemake [20]
mentioned a means to incrementally sample the 1D space while keeping the samples
as uniform as possible. However, this method is not easy to be generalized to higher
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dimensions. Among previously mentioned methods, only Poisson disk and random
sampling are hierarchical.

Discrepancy analysis measures sample point equidistribution, that is, measures
how uniformly distributed the point set is. Shirley [18] first applied it to the sampling
problem. The possible importance of discrepancy in computer graphics is also pointed
out by Niederreiter [14]. Dobkin et al. [7, 9, 8] proposed various methods to measure
the discrepancy of sampling patterns and to generate the patterns [8]. Heinrich and
Keller [11, 12, 13] and Ohbuchi and Aono [16] applied low discrepancy sequences
to Monte Carlo integration in radiosity applications.

In this paper, we discusses two useful low discrepancy sequences, namely Ham-
mersley and Halton. They have been used in numerical [17, 23, 1] and graph-
ics [11, 12, 13, 16] applications, with a significant improvement in terms of error.
Previous researches mainly concentrate on sample generation on the 2D plane, cube
and hypercube. It has been recently found [5] that mapping Hammersley points with
base of 2 to the surface of a sphere also give uniformly distributed directional vectors.
We discuss the implementation issues and experience in choosing suitable bases of
Hammersley and Halton points on 2D plane and spherical surface.

The mathematical formulation is briefly described in Section 2. Section 3 com-
pares sampling patterns generated using different bases. Ray tracing experiments to
verify the usefulness of the method, are discussed in section 4. The C implementa-
tions are listed in the appendix.

2 Hammersley and Halton Points

We first describe the definition of Hammersley and Halton points, then discuss their
implementation in detail. For more mathematical detail, readers are referred to the
mathematics literature [15, 5].

Each nonnegative integer k can be expanded using a prime base p:

k = a0 + a1p+ a2p
2
+ : : :+ arp

r: (1)

where each ai is an integer in [0; p� 1]. Now define a function Φp of k by

Φp(k) =
a0

p
+
a1

p2
+
a2

p3
+ � � �+

ar

pr+1
: (2)

If p = 2, the sequence of Φ2(k), for k = 0; 1; 2; : : :, is called the Van der Corput
sequence [22].

Let d be the dimension of the space to be sampled. Any sequence p1; p2; : : : ; pd�1

of prime numbers defines a sequence Φp1 , Φp2 , : : : , Φpd�1 of functions, whose
corresponding k-th d-dimensional Hammersley point is

�
k

n
;Φp1(k);Φp2(k); : : : ;Φpd�1(k)

�
for k = 0; 1; 2; : : :; n� 1: (3)

where p1 < p2 < � � � < pd�1 and n is the total number of Hammersley points. To
evaluate the function Φp(k), the following algorithm can be used.
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p0 = p , k0 = k , Φ = 0
while k0 > 0 do

a = k0 mod p
Φ = Φ+

a

p0

k0 = int(k
0

p
)

p0 = p0p

where int(x) returns the integer part of x.
The above algorithm has a complexity of O(log

p
k) for evaluating the k-th point.

Hence the worst case bound of the algorithm for generating (N + 1) points is,
log

p
(1) + log

p
(2) + � � �+ log

p
(N � 1) + log

p
(N )

� log
p
(N ) + log

p
(N ) + � � �+ log

p
(N ) + log

p
(N )

= N log
p
N:

A Pascal implementation of this algorithm can be found in [10]. In most computer
graphics applications, the dimension of the sampled space is either 2 or 3. In this
paper, we concentrate on the generation of a uniformly distributed point set on the
surface of 2D plane and sphere using Hammersley points. Higher dimensional sets
can be similarly generated using formulæ (1–3).

Points on the 2D Plane On the 2D plane, formula (3) simplifies to
�
k

n
;Φp1(k)

�
for k = 0; 1; 2; : : :; n� 1: (4)

The range of k

n
is [0; 1), while that of Φp1(k) is [0; 1]. For computer applications,

a good choice of the prime p1 is p1 = 2. The evaluation of Φ2(k) can be done effi-
ciently with about log2(k) bitwise shifts, multiplications and additions: no division
is necessary. The C implementation of 2D Hammersley points with base 2 (Van der
Corput sequence) is shown in the Appendix (source code 1). We shift k

n
by 0:5 to

center the sequence. Otherwise, Φp1(0) will always equal 0 for any n, which is a
undesirable effect.

However, the original Hammersley algorithm is not hierarchical. This is due
to the first coordinate k

n
, which for different values of n results in different sets of

points. This can be resolved by using two p-adic Van der Corput sequences with
different prime numbers p1 and p2. This hierarchical version is known as the Halton
point set [15, 22].

(Φp1(k);Φp2(k)) for k = 0; 1; 2; : : : ; n� 1: (5)

Since both functions Φp1(k) and Φp2(k) are hierarchical (being independent of
n by construction), so are the Halton point sets. Source code 2 in the Appendix
implements the Halton point sets on the 2D plane.
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Points on the Sphere To generate directional vectors, or (equivalently) points on
the spherical surface, the following mappings [21] is needed:

�
k

n
;Φp(k)

�
7! (�; t) 7!

�p
1� t2 cos�;

p
1� t2 sin�; t

�T
: (6)

The first, from
�
k

n
;Φp(k)

�
to (�; t), is simply a linear scaling to the required cylindri-

cal domain, (�; t) 2 [0; 2�)�[�1; 1]. The mapping from (�; t) to (
p

1� t2 cos�;
p

1� t2 sin�; t)T

is z-preserving radial projection from the unit cylinder C = f (x; y; z) j x2
+ y2

=

1 jzj � 1g to the unit sphere.
As before, the coordinate k

n
makes the scheme non-hierarchical. Halton points

on the sphere can be generated in a similar manner by using two p-adic Van der
Corput sequences with different prime bases.

(Φp1(k);Φp2(k)) 7! (�; t): (7)

Source code 3 in Appendix A shows the C implementation of Hammersley points
on the sphere, with a similar 0:5-shift applied to prevent a fixed sample point from
appearing at the South Pole, and source code 4 shows the Halton point version. For
efficiency of computation, we fixed p1 = 2 while leaving p2 as a user input. This
restriction can be trivially removed.

3 Appearance

Figures 2 and 3 show the Hammersley points with different bases, on the plane and
the sphere respectively. We generated 500 samples for the planar test and 1000 for the
sphere test. Figures 2(a) and 3(a) are the patterns of random sampling on the plane
and the sphere respectively. Compared to the random sampling pattern (figure 2(a)),
the Hammersley point set with p1 = 2 (figure 2(b)) gives a pleasant, less clumped
pattern. The points are uniformly distributed without a perceptible pattern. Among
the patterns with different bases, Hammersley point set with p1 = 2 (figure 2(b))
also gives the most uniformly distributed pattern. As the base p1 increases (from
figures 2(b) to 2(f) ), the pattern becomes more and more regular. The points tend to
line up in slanting lines, which will clearly increase aliasing problems.

The same progression affects spherical sampling patterns (figures 3(b)-3(f)).
When p1 = 2, it gives the best uniformly distributed pattern on the sphere. Cui et
al. [5] measures the uniformity of Hammersley points with p1 = 2 on the sphere
using the generalized discrepancy. It gives the lowest generalized discrepancy (most
uniformly distributed) among the methods tested. As p1 increases (from figures 3(b)
to 3(f)), points start to line up and form regular lines on the sphere. The position of
the pole (marked with an arrow) becomes distinguishable from the pattern.

The Halton point sets give patterns with varying uniformity and regularity (fig-
ures 4 and 5). To compare the effect of different bases p1 and p2, all patterns generated
with p1 = 2 are placed on the left, while those with p1 = 3 are on the right. The
omission of the case where p1 = p2 = 3 is due to the constraint p1 < p2. Figure 4(b)
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gives a pattern with somewhat aligned points. Others give rather pleasant appear-
ances. Among the point sets tested, none give a better pattern than Hammersley
points with p1 = 2. In general the patterns of Halton points are quite unpredictable.
Nevertheless, after transforming the points to the sphere, there is no way to dis-
tinguish the pole and equator of the sphere (figures 5(a) – 5(e)). They are not as
uniformly distributed as Hammersley point set with p1 = 2, but there is no lining-up
like that observed in Hammersley points.

4 Ray Tracing Experiments

The method is tested in a ray-tracer. Instead of generating a distinct sampling pattern
for each pixel, a single sampling pattern is generated for the whole screen. Otherwise,
the sampling pattern for each pixel will be the same, since the Hammersley and Halton
points are actually deterministic. Hence, we can only specify the averagesample per
pixel.

Two scenes are chosen for testing: checker (figure 1(a)) and checker45
(figure 1(b)). The “correct” images, used for calculating the pixel error E in lumi-
nance, are produced by sampling the scenes using jittered sampling with 400 samples
per pixel. Five other sampling schemes, jittered sampling, multi-jittered sampling,
Poisson disk, random and regular sampling, are included for comparison. All of these
five sampling schemes are tested with 16 samples per pixel, while the Hammersley
and Halton point sets are tested with an average of 16 samples per pixel.

Four statistical data are recorded: average (MeanjEj), standard deviation (S.D.(jEj)),
root-mean-square (R.M.S.(E)) and maximum (Max.(jEj)) of the absolute pixel er-
ror in luminance. Tables 1 and 2 show the statistics from test scenes checker
and checker45 respectively. Methods listed in the tables are ranked by their
performance.

Among tested methods, Hammersley point set with p1 = 2 gives the lowest
average, standard derivation and root-mean-square of absolute pixel errors in both
test scenes. Multi-jittered sampling is the first runner-up. Hammersley point sets
with higher bases (p1 > 3) are not tested due to the lining-up phenomenon, which
certainly introduces aliasing. For Halton point sets, we arbitrarily choose two bases
for testing, since there is no general trend in the appearance of the patterns. In our
experiment, Hammersley point sets are better than the tested Halton point sets. Both
Hammersley and Halton point sets give lower error than that of traditional jittered
sampling and Poisson disk except the multi-jittered method.

5 Conclusions

The Hammersley point set withp1 = 2 gives the most uniformly distributedsampling
pattern. For higher p1, the points tend to align and reduce its usefulness. Although
the Halton point sets do not give patterns as uniformly distributed as Hammersley
point sets, they do not have the line-up problem and it allows incremental sampling.
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Hammersley points and Halton points have been proved useful for quasi-Monte
Carlo integration. The methods are applied to ray tracing applications with a signif-
icant improvement in pixel error. The complexity of both Hammersley and Halton
points generation algorithms is O(N log

p
N ), which is smaller than that of Poisson

disk.
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(a)checker (b)checker45

Figure 1: The two test scenes used in the sampling test.

Methods Mean(jEj) S.D.(jEj) R.M.S.(E) Max.(jEj)
Hamm., p1 = 2 0.0086 0.0247 0.0261 0.3451
multi-jitter, n = 4; N = 16 0.0091 0.0261 0.0277 0.3843
Hamm., p1 = 3 0.0097 0.0265 0.0282 0.3961
Halton, p1 = 2; p2 = 7 0.0105 0.0280 0.0299 0.3451
Halton, p1 = 2; p2 = 3 0.0110 0.0291 0.0312 0.3686
jittered, 4� 4 0.0128 0.0335 0.0358 0.3804
Poisson, d = 0:2 0.0132 0.0338 0.0363 0.3804
random 0.0179 0.0443 0.0478 0.3961
regular 0.0188 0.0491 0.0526 0.5098

Table 1: Statistics of ray traced image checker. E is the pixel error in luminance.

Methods Mean(jEj) S.D.(jEj) R.M.S.(E) Max.(jEj)
Hamm., p1 = 2 0.0101 0.0264 0.0282 0.3882
multi-jitter, n = 4; N = 16 0.0103 0.0270 0.0289 0.3686
Hamm., p1 = 3 0.0106 0.0274 0.0294 0.4431
Halton, p1 = 2; p2 = 3 0.0114 0.0287 0.0309 0.3882
Halton, p1 = 2; p2 = 7 0.0131 0.0289 0.0310 0.4118
jittered, 4� 4 0.0131 0.0332 0.0357 0.3765
Poisson, d = 0:2 0.0133 0.0332 0.0358 0.4118
regular 0.0138 0.0393 0.0416 0.5059
random 0.0185 0.0446 0.0483 0.4000

Table 2: Statistics of ray traced imagechecker45. E is the pixel error in luminance.
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(a) random (b) p1 = 2

(c) p1 = 3 (d) p1 = 5

(e) p1 = 7 (f) p1 = 11

Figure 2: Hammersley points on the 2D plane (n = 500).
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(a) random (b) p1 = 2

(c) p1 = 3 (d) p1 = 5

(e) p1 = 7 (f) p1 = 11

Figure 3: Hammersley points on the sphere (n = 1000).
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(a) p1 = 2; p2 = 3

(b) p1 = 2; p2 = 5 (c) p1 = 3; p2 = 5

(d) p1 = 2; p2 = 7 (e) p1 = 3; p2 = 7

Figure 4: Halton points with different bases on the 2D plane (n = 500).
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(a) p1 = 2; p2 = 3

(b) p1 = 2; p2 = 5 (c) p1 = 3; p2 = 5

(d) p1 = 2; p2 = 7 (e) p1 = 3; p2 = 7

Figure 5: Halton points with different bases on the sphere (n = 1000).
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A Appendix: Source Code

Source Code 1 Hammersley Points on 2D Plane withp1 = 2

void PlaneHammersley(float *result, int n)
{
float p, u, v;
int k, kk, pos;

for (k=0, pos=0 ; k<n ; k++)
{
u = 0;
for (p=0.5, kk=k ; kk ; p*=0.5, kk>>=1)
if (kk & 1) // kk mod 2 == 1
u += p;

v = (k + 0.5) / n;
result[pos++] = u;
result[pos++] = v;

}
}

Source Code 2 Halton Points on 2D Plane withp1 = 2

void PlaneHalton(float *result, int n, int p2)
{
float p, u, v, ip;
int k, kk, pos, a;

for (k=0, pos=0 ; k<n ; k++)
{
u = 0;
for (p=0.5, kk=k ; kk ; p*=0.5, kk>>=1)
if (kk & 1) // kk mod 2 == 1
u += p;

v = 0;
ip = 1.0/p2; // inverse of p2
for (p=ip, kk=k ; kk ; p*=ip, kk/=p2) // kk = (int)(kk/p2)
if ((a = kk % p2))
v += a * p;

result[pos++] = u;
result[pos++] = v;

}
}
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Source Code 3 Hammersley Points on Sphere withp1 = 2

void SphereHammersley(float *result, int n)
{
float p, t, st, phi, phirad;
int k, kk, pos;

for (k=0, pos=0 ; k<n ; k++)
{
t = 0;
for (p=0.5, kk=k ; kk ; p*=0.5, kk>>=1)
if (kk & 1) // kk mod 2 == 1
t += p;

t = 2.0 * t - 1.0; // map from [0,1] to [-1,1]
phi = (k + 0.5) / n; // a slight shift
phirad = phi * 2.0 * M_PI; // map to [0, 2 pi)
st = sqrt(1.0-t*t);
result[pos++] = st * cos(phirad);
result[pos++] = st * sin(phirad);
result[pos++] = t;

}
}

Source Code 4 Halton Points on Sphere withp1 = 2

void SphereHalton(float *result, int n, int p2)
{
float p, t, st, phi, phirad, ip;
int k, kk, pos, a;

for (k=0, pos=0 ; k<n ; k++)
{
t = 0;
for (p=0.5, kk=k ; kk ; p*=0.5, kk>>=1)
if (kk & 1) // kk mod 2 == 1
t += p;

t = 2.0 * t - 1.0; // map from [0,1] to [-1,1]
st = sqrt(1.0-t*t);
phi = 0;
ip = 1.0/p2; // inverse of p2
for (p=ip, kk=k ; kk ; p*=ip, kk/=p2) // kk = (int)(kk/p2)
if ((a = kk % p2))
phi += a * p;

phirad = phi * 4.0 * M_PI; // map from [0,0.5] to [0, 2 pi)
result[pos++] = st * cos(phirad);
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result[pos++] = st * sin(phirad);
result[pos++] = t;

}
}
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