
1

SAMS: Synchronous, Asynchronous, Multi-Synchronous Environments
Pascal Molli, Hala Skaf-Molli, Gérald Oster, Sébastien Jourdain

ECOO Team

LORIA, INRIA Lorraine

BP 239

54506 Vandoeuvre-les-Nancy, France

{molli,skaf,oster,jourdain}@loria.fr

Abstract

In the context of cooperative work, a team alternates

divergence phases where each member works in

insulation on copies of objects and convergence phases

during which the group reconciles and validates data. To

support this style of working, we propose the concept of

SAMS environments. A SAMS environment allows team

members to work in Synchronous, Asynchronous or

Multi-Synchronous mode while ensuring the coherence of

shared data.

1. Introduction

“Virtual teams work across space, time and

organizational boundaries with links strengthened by webs

of communication technologies” [10].Virtual teams are

useful because they can be quickly brought together to

produce a business objective within limited time and

resources. This provides the opportunity for different

organizations to cooperate by leveraging their core

competencies. One can completely sets up a virtual team

to carry out software development, book writing or

building design. We can imagine companies like Bull

France, IBM USA and Hitachi Japan delegate a few

engineers to build quickly a prototype for a new promising

technology. These engineers do not work in the same

place, at the same time and do not belong to the same

company.

Team members can interact in various ways :

Synchronous members work at the same time on the

same data. Modifications on one shared object are carried

out immediately and observed in a real time by other team

members. Shared application’s tools, like NetMeeting,

allow synchronous work.

Asynchronous members work at the same time or

postponed on the same data. Modifications on shared

objects are carried out immediately and are observed by

other members either immediately if they are connected,

or delayed until they reconnect themselves[14]. Online

web pages editors allow asynchronous work.

Multi-synchronous each member has a copy of the

shared data. They modify their copies in parallel. This

allows them to achieve their objective quicker. Of course,

that does not go without posing problems of coherence

between the various copies of the shared data. Work is a

cycle of divergence and convergence. During divergence

phases, each participant works in insulation. During

convergence phases, participants synchronize their

different copies to reestablish a common view of the data.

Further individual activities will cause divergence again,

necessitating further synchronization and so on [5, 6, 12].

Configuration Management tools [8] like CVS [3],

ClearCase [1], NSE [9] are multi-synchronous

environments for software development.

Existing tools and environments support synchronous

and/or asynchronous or multi-synchronous mode

separately. But no one provide all those three modes in a

single environment.

 However, it is interesting to have this kind of multi

mode environment. Synchronous work seems to be

suitable for conflicts resolution phases. Asynchronous

work is more suitable for integration phases. Multi-

synchronous work is adequate for production phases.

We develop an original concept of environment

allowing working in Synchronous, Asynchronous and

Multi-Synchronous modes (SAMS) [4]. Users of SAMS

environment can choose interaction mode according to

their needs, and the environment will ensure the coherence

of data. In this paper, we give the main principles of such

environment, which allow you to build your own SAMS

environment.

We have implemented the first SAMS environment.

This environment has two editors: CRC cards editor [17]

and HTML editor. It is independent of the type of

manipulated data. We can thus build a SAMS editor for

2

HTML, XML, text, CAD document or even more largely

for calendar, bookmarks ...

The paper is organized as follows: The next section

presents SAMS editors for CRC cards and for HTML.

Section 3 gives the main principles of SAMS

environments. The last section concludes with some

pointers on future works.

2. Examples of SAMS Environment

Figure 1.1 presents the SAMS editor of CRC cards.

CRC cards (Class, Responsibility, Collaboration) are used

in objects oriented design to define classes and

components of a software system.

Figure 1. SAMS-CRC editor

The part DOM preview introduces the editor itself. It

allows creating and manipulating the cards.

The part Objects shows the local state of the shared

objects. In our case, it is an XML tree.

The part Log represents the log of operations applied to

local objects. It contains all executed operations in a site.

The part Reception queue shows operations received

from other sites that have not yet been integrated.

Finally, Synchrone, Commit and Update commands

allow to choose the interaction mode with the other team

members.

When the user checks the Synchrone box, his

operations are immediately propagated to the other sites.

Received operations from other sites are also immediately

integrated. This is the synchronous mode.

1
The editor can be tested online at the following address:

http://woinville.loria.fr/simu/

If the Synchrone box is not selected, then the multi-

synchronous mode is activated. Local operations are sent

to the other sites when the user clicks on Commit.

Received operations are integrated when the user clicks on

Update. The user can send his local operations only if he

has already integrated all the operations submitted by the

other users.

If the user is not connected, then all the operations sent

to him are stored in a persistent, fault-tolerant queue of

messages. This is the asynchronous mode.

Our SAMS environment is based on XML object

model. Editors available in the environment are viewers

and controllers of a single given model. To illustrate our

aim, the figure 2 shows the same SAMS environment

where we replace the functions of edition of CRC cards

by an editor of structured HTML document.

Figure 2. SAMS-XML editor

It is also possible to have the editor of CRC cards and

the editor of HTML document within the same

environment as shown in the figure 3.

Figure 3. SAMS-XML environment

3

3. SAMS Environment Working Principles

A SAMS environment is based on typed objects (here

XML) and log of operations. Each site has its own log.

While working, a user modifies his copies. Trace of these

operations is reported in his log. To propagate those

operations to other sites, he has to integrate the concurrent

operations before. The integration phase can generate

conflicts that the environment will try to solve

automatically.

Two principles drive this environment : Generating

local operations and integrating distant ones.

3.1. Generating Local Operations

Each user has a copy of shared objects. In our case, the

shared object is an XML tree provided with the following

operations:
CreateNode(n,tn):nid;
DeleteNode(n):void;
CreateAttribute(n,a):void;
DeleteAttribute(n,a):void;
ChangeAttribute(n,a,v):void;

n is the identifier of XML node, tn is the name of the

XML marker, a is the name of an attribute. v represents

the value of the attribute.

Figure 4. CRC Card

When a user creates a CRC card, he generates a sequence

of elementary operations. These operations are executed

immediately on his site. For example, the creation of CRC

card illustrated in the figure 4 generates in the local log

the following sequence of operations :

CreateNode(1,''Class'')
CreateNode(2,''Responsibility'')
CreateNode(3,''Collaborations'')
CreateAttribute(1,''Model'')
CreateAttribute(2,''Provides functional core of the
application'')
CreateAttribute(2,''Notify dependent component about
data'')
CreateAttribute(3,''View'')
CreateAttribute(1,''Controller'')

and an XML tree illustrated in the figure 5.

Figure 5. XML Tree

3.2. Integrating Distant Operations

The main difficulty of the SAMS editors resides in the

integration phase. Indeed, when an operation is received,

the local state of the shared objects can be different from

that observed during its generation. Integrate, in our

context, means transform the distant operation so it can be

merged with the local ones. This transformation is not

obvious. Similar problems have been treated in

synchronous groupware.

In synchronous groupware, operational transformation

algorithms are used in distributed real-time collaborative

environments [15, 7, 2, 16]. In those environments, each

site keeps a copy of shared objects. Operations that are

locally executed on one site are broadcasted to all other

sites where they will be executed. Consistency problems

will occur when conflicting concurrent operations are

produced in parallel. An operational transformation

algorithm allows to re-establish a consistent state by

merging, in real-time on each site, the locally executed

operations and the concurrent ones. Merging is done

while preserving intention, causality and ensuring

convergence [15, 7, 16].

Causality If an operation op1 precedes an operation

op2 on a site, then op1 precedes op2 on all sites.

Convergence Copies of the shared objects are

identical at all sites at quiescence (i.e., all generated

operations have been integrated and executed at all sites).

Intention Preservation If an operation has to be

transformed, then the result of the transformation must

respect the semantics of the operation.

Transformation algorithms are independent of objects

types. To use a transformation algorithm, one must define

his typed objects and the corresponding transformation

functions. In our example, the typed object is an XML

4

tree provided with the operations CreateNode,

DeleteNode ... To integrate concurrent operations, it is

necessary to define the concurrent behavior of all the

couples of operations; exactly 25 transformations in our

example.

Now we can give some examples of transformation

functions. They use the operational transformation

algorithm of SOCT4 [16]. We use the following notation:

T(distant operation (not executed), local operation
(executed)): transformed operation.

Function T takes as parameter a distant operation and a

concurrent local one. The result of the transformation is a

new operation.

The following function defines how to transform the

received CreateNode (op1) operation considering that the

operation DeleteNode (op2) was executed locally.

T(CreateNode(n1,t1),DeleteNode(n2)):-
if(n1 ChildOf n2)

return noop /* nothing to do */
else

return CreateNode(n1,t1)

If n1 is not a child of n2, then there is no conflict

between op1, op2 i.e. the sequential execution of op1 o

op2 is equivalent to op2 o op1. The result of the

transformation is op1.

If n2 is deleted locally and n1 is a child of n2, then it

is not possible to execute op1. The result of the

transformation function is the null operation. Another

possible solution could have been to cancel the local

deletion of n2 and to execute op1. Simply we do not

define the operation undelete for our XML tree. By

writing this transformation, we make a choice for conflict

resolution. We estimate that this choice respects the

intention of the operation CreateNode.

Transformation functions depend on the

transformation algorithm that we use. For example, to

ensure copies convergence, an algorithm as SOCT4 [16]

obliges the transformation functions to verify the

following condition:

op1oT(op2,op1)=op2oT(op1,op2) [C1]

This condition ensures that: Starting with the same

state, the execution (on one site) of op1 followed by the

transposed of op2 with respect to op1 produces the same

state as the execution (on other site) of op2 followed by

transposed of op1 with respect to op2.

 The following transformation defines the concurrent

behavior of two ChangeAttribute operations:

T(ChangeAttribute(n1,a1,v1),ChangeAttribute(n2,a2,v2)):-
if n1=n2 and a1=a2 and v1=v2

return noop /* nothing to do */
if n1=n2 and a1=a2 and v1<>v2

return ChangeAttribute(n1,a1,max(v1,v2))
else

return ChangeAttribute(n1,a1,v1)

If two users modify the same attribute of the same

node with two different values then the transformation

function will choose the maximum value automatically.

This choice respects the property [C1]. Of course, this

choice is arbitrary, one could choose the minimal value.

As we see, transformation functions make sometimes-

arbitrary decisions to ensure copies convergence.

However, if the state of convergence does not satisfy the

users, they can continue to interact. Work in synchronous

mode seems to be completely adapted to converge

towards a state accepted by all users.

4. Conclusions and perspectives

A SAMS environment is an original concept. In this

environment, a team member can use a working style

according to his needs and the environment still ensures

the consistency. Multi-synchronous mode is suitable for

production phases where user wants to work in insulation

and synchronous mode is suitable for discussion phases

where user needs to work with others to converge towards

a state that satisfy all people.

A SAMS environment is independent of shared objects

types. We present in this paper our SAMS environment

based on XML document. We developed in this

environment two editors: a CRC cards editor and HTML

editor. We could very easily add an SVG editor, UML,

CAD editor…

As this environment is flexible, we can develop a

SAMS environment for text editors, drawings, diaries....

However several limits remain:

Operational transformation algorithms are adequate

for short periods of divergence (about a second). In

multi-synchronous mode, the divergence can increase

beyond this period. In this case, the arbitrary side of the

transformation will tend to increase divergence. A state of

convergence will be reached. Simply, it is likely not to

satisfy anybody.

We currently work on a semi-automatic and

collaborative resolution of the conflicts.

5

In asynchronous mode, the periods of disconnections

can be significant. In this case, the size of the log of

stored operations risks to be very significant.

We currently evaluate algorithms of log compression

to overcome this problem.

SAMS environments rely on the availability of the

log. It is not easy to re-use the existing tools within the

environment.

We work on a posteriori generation of the log by

using diff algorithms [18, 13, 11].

5. Acknowledgement

Many thanks to Marc Patten for his help.

6. References

[1] Larry Allen, Gary Fernandez, Kenneth Kane, David Leblang,

Debra Minard, and John Posner. ClearCase MultiSite:

Supporting geographically distributed software development.

Software Configuration Management: Selected Papers of the

ICSE SCM-4 and SCM-5 Workshops, number 1005 LNCS,

October 1995.

[2] M. Beaudouin-Lafon and A. Karsenty. Transparency and

awareness in a real-time groupware system. In 5th Annual ACM

Symposium on User Interface Software and Technology. 1992.

[3] B. Berliner. CVS II : Parallelizing software development.

Proceedings of USENIX, 1990.

[4] Abdelmajid Bouazza and Pascal Molli. Unifying coupled

and uncoupled collaborative work in virtual teams. ACM

CSCW’2000 workshop on collaborative editing systems,

Philadelphia, Pennsylvania, USA, December 2000.

[5] Paul Dourish. A divergence-based model of synchrony and

distributed in collaborative systems. Technical Report EPC-

1994-102, Rank Xerox Research Centre, Cambridge Laboratory,

1994.

[6] Paul Dourish. The parting of the ways: Divergence, data

management and collaborative work. Fourth European

Conference on Computer-Supported Cooperative Work, 1995.

[7] C. A. Ellis and S. J. Gibbs. Concurrency control in

groupware systems. In SIGMOD Conference, volume 18, 1989.

[8] Jacky Estublier, editor. Software Configuration

Management: Selected Papers of the ICSE SCM-4 and SCM-5

Workshops, number 1005 in LNCS. Springer-Verlag, October

1995.

[9] Peter H. Feiler and Grace F. Downey. Transaction-Oriented

Configuration Management: A Case Study. Technical Report

CMU/SEI-90-TR-23 ESD-90/TR-224, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania

15213, November 1990.

[10] Jessica Lipnack and Jeffrey Stamps. Virtual Teams:

Reaching Across Space, Time, and Organizations with

Technology. Wiley, 1997.

[11] Webb Miller and Eugene W. Myers. A file comparison

program. Software Practice and Experience, 15(11):1025–1040,

1985.

[12] P. Molli, H. Skaf-Molli, and G. Oster. Divergence

awareness for virtual team through the web. International

Conference on Integrating Design and Process Technology

(IDPT’02), June 2002.

[13] Eugene W. Myers. An o(nd) difference algorithm and its

variations. Algorithmica, 1(2):251–266, 1986.

[14] Mark Roseman and Saul Greenberg. Teamrooms: Network

places for collaboration. Conference on Computer Supported

Cooperative Work, 1996.

[15] C. Sun and C. Ellis. Operational transformation in real-time

group editors: Issues, algorithms and achievements. Computer

Supported Cooperative Work, 1998.

[16] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies

convergence in a distributed real-time collaborative

environment. Computer Supported Cooperative Work, 2000.

[17] Nancy Wilkinson. Using CRC Cards: An Informal

Approach to Object-Oriented Development. SIGS Books, New

York, 1995.

[18] XMLDiff. Xml diff and merge tool. Online

http://alphaworks.ibm.com/, (28 June 2000).

