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Abstract
Sanctum offers the same promise as Intel’s Software

Guard Extensions (SGX), namely strong provable isola-
tion of software modules running concurrently and shar-
ing resources, but protects against an important class of
additional software attacks that infer private information
from a program’s memory access patterns. Sanctum shuns
unnecessary complexity, leading to a simpler security
analysis. We follow a principled approach to eliminat-
ing entire attack surfaces through isolation, rather than
plugging attack-specific privacy leaks. Most of Sanctum’s
logic is implemented in trusted software, which does not
perform cryptographic operations using keys, and is easier
to analyze than SGX’s opaque microcode, which does.

Our prototype targets a Rocket RISC-V core, an open
implementation that allows any researcher to reason about
its security properties. Sanctum’s extensions can be
adapted to other processor cores, because we do not
change any major CPU building block. Instead, we
add hardware at the interfaces between generic building
blocks, without impacting cycle time.

Sanctum demonstrates that strong software isolation
is achievable with a surprisingly small set of minimally
invasive hardware changes, and a very reasonable over-
head.

1 Introduction

Today’s systems rely on an operating system kernel, or
a hypervisor (such as Linux or Xen, respectively) for
software isolation. However each of the last three years
(2012-2014) witnessed over 100 new security vulnerabili-
ties in Linux [1, 11], and over 40 in Xen [2].

One may hope that formal verification methods can
produce a secure kernel or hypervisor. Unfortunately,
these codebases are far outside our verification capabili-
ties: Linux and Xen have over 17 million [6] and 150,000
[4] lines of code, respectively. In stark contrast, the seL4

formal verification effort [26] spent 20 man-years to cover
9,000 lines of code.

Given Linux and Xen’s history of vulnerabilities and
uncertain prospects for formal verification, a prudent sys-
tem designer cannot include either in a TCB (trusted com-
puting base), and must look elsewhere for a software
isolation mechanism.

Fortunately, Intel’s Software Guard Extensions (SGX)
[5, 36] has brought attention to the alternative of provid-
ing software isolation primitives in the CPU’s hardware.
This avenue is appealing because the CPU is an unavoid-
able TCB component, and processor manufacturers have
strong economic incentives to build correct hardware.

Unfortunately, although the SGX design includes a vast
array of defenses against a variety of software and physi-
cal attacks, it fails to offer meaningful software isolation
guarantees. The SGX threat model protects against all
direct attacks, but excludes “side-channel attacks”, even
if they can be performed via software alone.

Furthermore, our analysis [13] of SGX reveals that it
is impossible for anyone but Intel to reason about SGX’s
security properties, because significant implementation
details are not covered by the publicly available docu-
mentation. This is a concern, as the myriad of security
vulnerabilities [16, 18, 39, 50–54] in TXT [22], Intel’s
previous attempt at securing remote computation, show
that securing the machinery underlying Intel’s processors
is incredibly challenging, even in the presence of strong
economic incentives.

Our main contribution is a software isolation scheme
that addresses the issues raised above: Sanctum’s isolation
provably defends against known software side-channel at-
tacks, including cache timing attacks and passive address
translation attacks. Sanctum is a co-design that com-
bines minimal and minimally invasive hardware modi-
fications with a trusted software security monitor that
is amenable to rigorous analysis and does not perform
cryptographic operations using keys.

We achieve minimality by reusing and lightly modi-

1



858  25th USENIX Security Symposium	 USENIX Association

fying existing, well-understood mechanisms. For exam-
ple, our per-enclave page tables implementation uses the
core’s existing page walking circuit, and requires very
little extra logic. Sanctum is minimally invasive because
it does not require modifying any major CPU building
block. We only add hardware to the interfaces between
blocks, and do not modify any block’s input or output.
Our use of conventional building blocks limits the effort
needed to validate a Sanctum implementation.

We demonstrate that memory access pattern attacks
by malicious software can be foiled without incurring
unreasonable overheads. Sanctum cores have the same
clock speed as their insecure counterparts, as we do not
modify the CPU core critical execution path. Using a
straightforward page-coloring-based cache partitioning
scheme with Sanctum adds a few percent of overhead in
execution time, which is orders of magnitude lower than
the overheads of the ORAM schemes [21, 43] that are
usually employed to conceal memory access patterns.

All layers of Sanctum’s TCB are open-sourced
at https://github.com/pwnall/sanctum and unen-
cumbered by patents, trade secrets, or other similar intel-
lectual property concerns that would disincentivize secu-
rity researchers from analyzing it. Our prototype targets
the Rocket Chip [29], an open-sourced implementation of
the RISC-V [47, 49] instruction set architecture, which
is an open standard. Sanctum’s software stack bears the
MIT license.

To further encourage analysis, most of our security
monitor is written in portable C++ which, once rigorously
analyzed, can be used across different CPU implemen-
tations. Furthermore, even the non-portable assembly
code can be reused across different implementations of
the same architecture.

2 Related Work

Sanctum’s main improvement over SGX is preventing
software attacks that analyze an isolated container’s mem-
ory access patterns to infer private information. We are
particularly concerned with cache timing attacks [7], be-
cause they can be mounted by unprivileged software shar-
ing a computer with the victim software.

Cache timing attacks are known to retrieve crypto-
graphic keys used by AES [8], RSA [10], Diffie-Hellman
[27], and elliptic-curve cryptography [9]. While early
attacks required access to the victim’s CPU core, recent
sophisticated attacks [35, 56] target the last-level cache
(LLC), which is shared by all cores in a socket. Re-
cently, [37] demonstrated a cache timing attack that uses
JavaScript code in a page visited by a web browser.

Cache timing attacks observe a victim’s memory ac-
cess patterns at cache line granularity. However, recent
work shows that private information can be gleaned even

from the page-level memory access pattern obtained by a
malicious OS that simply logs the addresses seen by its
page fault handler [55].

XOM [30] introduced the idea of having sensitive code
and data execute in isolated containers, and placed the
OS in charge of resource allocation without trusting it.
Aegis [44] relies on a trusted security kernel, handles
untrusted memory, and identifies the software in a con-
tainer by computing a cryptographic hash over the initial
contents of the container. Aegis also computes a hash of
the security kernel at boot time and uses it, together with
the container’s hash, to attest a container’s identity to a
third party, and to derive container keys. Unlike XOM
and Aegis, Sanctum protects the memory access patterns
of the software executing inside the isolation containers
from software threats.

Sanctum only considers software attacks in its threat
model (§ 3). Resilience against physical attacks can be
added by augmenting a Sanctum processor with the coun-
termeasures described in other secure architectures, with
associated increased performance overheads. Aegis pro-
tects a container’s data when the DRAM is untrusted
through memory encryption and integrity verification;
these techniques were adopted and adapted by SGX. As-
cend [20] and GhostRider [32] use Oblivious RAM [21]
to protect a container’s memory access patterns against
adversaries that can observe the addresses on the memory
bus. An insight in Sanctum is that these overheads are
unnecessary in a software-only threat model.

Intel’s Trusted Execution Technology (TXT) [22] is
widely deployed in today’s mainstream computers, due
to its approach of trying to add security to a successful
CPU product. After falling victim to attacks [51, 54]
where a malicious OS directed a network card to access
data in the protected VM, a TXT revision introduced
DRAM controller modifications that selectively block
DMA transfers, which Sanctum also does.

Intel’s SGX [5, 36] adapted the ideas in Aegis and
XOM to multi-core processors with a shared, coherent
last-level cache. Sanctum draws heavy inspiration from
SGX’s approach to memory access control, which does
not modify the core’s critical execution path. We reverse-
engineered and adapted SGX’s method for verifying an
OS-conducted TLB shoot-down. At the same time, SGX
has many security issues that are solved by Sanctum,
which are stated in this paper’s introduction.

Iso-X [19] attempts to offer the SGX security guaran-
tees, without the limitation that enclaves may only be
allocated in a DRAM area that is carved off exclusively
for SGX use, at boot time. Iso-X uses per-enclave page
tables, like Sanctum, but its enclave page tables require
a dedicated page walker. Iso-X’s hardware changes add
overhead to the core’s cycle time, and do not protect
against cache timing attacks.
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SecureME [12] also proposes a co-design of hardware
modifications and a trusted hypervisor for ensuring soft-
ware isolation, but adapts the on-chip mechanisms gener-
ally used to prevent physical attacks, in order to protect
applications from an untrusted OS. Just like SGX, Se-
cureME is vulnerable to memory access pattern attacks.

The research community has brought forward various
defenses against cache timing attacks. PLcache [28, 46]
and the Random Fill Cache Architecture (RFill, [34])
were designed and analyzed in the context of a small
region of sensitive data, and scaling them to protect a
potentially large enclave without compromising perfor-
mance is not straightforward. When used to isolate entire
enclaves in the LLC, RFill performs at least 37%-66%
worse than Sanctum.

RPcache [28, 46] trusts the OS to assign different hard-
ware process IDs to mutually mistrusting entities, and its
mechanism does not directly scale to large LLCs. The
non-monopolizable cache [15] uses a well-principled par-
titioning scheme, but does not completely stop leakage,
and relies on the OS to assign hardware process IDs.
CATalyst [33] trusts the Xen hypervisor to correctly tame
Intel’s Cache Allocation Technology into providing cache
pinning, which can only secure software whose code and
data fits into a fraction of the LLC.

Sanctum uses very simple cache partitioning [31] based
on page coloring [24, 45], which has proven to have rea-
sonable overheads. It is likely that sophisticated schemes
like ZCache [40] and Vantage [41] can be combined with
Sanctum’s framework to yield better performance.

3 Threat Model

Sanctum isolates the software inside an enclave from
other software on the same computer. All outside soft-
ware, including privileged system software, can only inter-
act with an enclave via a small set of primitives provided
by the security monitor. Programmers are expected to
move the sensitive code in their applications into enclaves.
In general, an enclave receives encrypted sensitive infor-
mation from outside, decrypts the information and per-
forms some computation on it, and then returns encrypted
results to the outside world.

We assume that an attacker can compromise any op-
erating system and hypervisor present on the computer
executing the enclave, and can launch rogue enclaves.
The attacker knows the target computer’s architecture and
micro-architecture. The attacker can analyze passively
collected data, such as page fault addresses, as well as
mount active attacks, such as direct or DMA memory
probing, and cache timing attacks.

Sanctum’s isolation protects the integrity and privacy
of the code and data inside an enclave against any practi-
cal software attack that relies on observing or interacting

with the enclave software via means outside the inter-
face provided by the security monitor. In other words,
we do not protect enclaves that leak their own secrets
directly (e.g., by writing to untrusted memory) or by tim-
ing their operations (e.g., by modulating their completion
times). In effect, Sanctum solves the security problems
that emerge from sharing a computer among mutually
distrusting applications.

This distinction is particularly subtle in the context of
cache timing attacks. We do not protect against attacks
like [10], where the victim application leaks information
via its public API, and the leak occurs even if the vic-
tim runs on a dedicated machine. We do protect against
attacks like Flush+Reload [56], which exploit shared hard-
ware resources to interact with the victim via methods
outside its public API.

Sanctum also defeats attackers who aim to compromise
an OS or hypervisor by running malicious applications
and enclaves. This addresses concerns that enclaves pro-
vide new attack vectors for malware [14, 38]. We assume
that the benefits of meaningful software isolation out-
weigh enabling a new avenue for frustrating malware
detection and reverse engineering [17].

Lastly, Sanctum protects against a malicious computer
owner who attempts to lie about the security monitor run-
ning on the computer. Specifically, the attacker aims to
obtain an attestation stating that the computer is running
an uncompromised security monitor, whereas a different
monitor had been loaded in the boot process. The un-
compromised security monitor must not have any known
vulnerability that causes it to disclose its cryptographic
keys. The attacker is assumed to know the target com-
puter’s architecture and micro-architecture, and is allowed
to run any combination of malicious security monitor, hy-
pervisor, OS, applications and enclaves.

We do not prevent timing attacks that exploit bottle-
necks in the cache coherence directory bandwidth or in
the DRAM bandwidth, deferring these to future work.

Sanctum does not protect against denial-of-service
(DoS) attacks by compromised system software: a ma-
licious OS may deny service by refusing to allocate any
resources to an enclave. We do protect against malicious
enclaves attempting to DoS an uncompromised OS.

We assume correct underlying hardware, so we do not
protect against software attacks that exploit hardware bugs
(fault-injection attacks), such as rowhammer [25, 42].

Sanctum’s isolation mechanisms exclusively target soft-
ware attacks. § 2 mentions related work that can harden a
Sanctum system against some physical attacks. Further-
more, we consider software attacks that rely on sensor
data to be physical attacks. For example, we do not ad-
dress information leakage due to power variations, be-
cause software would require a temperature or current
sensor to carry out such an attack.
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Non-sensitive code and data

User

Supervisor

Hypervisor

Machine
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Enclave

Security Monitor
Measurement Root

Enclave multiplexing

Operating System

Enclave management

Enclave syscall shims Sanctum-aware runtime
Sensitive code and data

Enclave setup

Figure 1: Software stack on a Sanctum machine; The
blue text represents additions required by Sanctum. The
bolded elements are in the software TCB.

4 Programming Model Overview

By design, Sanctum’s programming model deviates from
SGX as little as possible, while providing stronger secu-
rity guarantees. We expect that application authors will
link against a Sanctum-aware runtime that abstracts away
most aspects of Sanctum’s programming model. For ex-
ample, C programs would use a modified implementation
of the libc standard library. Due to space constraints,
we describe the programming model assuming that the
reader is familiar with SGX as described in [13].

The software stack on a Sanctum machine, shown in
Figure 1, resembles the SGX stack with one notable ex-
ception: SGX’s microcode is replaced by a trusted soft-
ware component, the security monitor, which is pro-
tected from compromised system software, as it runs at
the highest privilege level (machine level in RISC-V).

We relegate the management of computation resources,
such as DRAM and execution cores, to untrusted system
software (as does SGX). In Sanctum, the security moni-
tor checks the system software’s allocation decisions for
correctness and commits them into the hardware’s config-
uration registers. For simplicity, we refer to the software
that manages resources as an OS (operating system), even
though it may be a combination of a hypervisor and a
guest OS kernel.

An enclave stores its code and private data in parts of
DRAM that have been allocated by the OS exclusively for
the enclave’s use (as does SGX), which are collectively
called the enclave’s memory. Consequently, we refer
to the regions of DRAM that are not allocated to any
enclave as OS memory. The security monitor tracks
DRAM ownership, and ensures that no piece of DRAM
is assigned to more than one enclave.

Each Sanctum enclave uses a range of virtual mem-
ory addresses (EVRANGE) to access its memory. The
enclave’s memory is mapped by the enclave’s own page ta-

Host application
space

Host application
space

EVRANGE A

Enclave A Virtual
Address Space

Physical Memory

Enclave A region

Enclave A page tables

Enclave A region

Enclave B region

Enclave B page tables

OS region

OS region

OS page tables

Host application
space

Host application
space

EVRANGE B

Enclave B Virtual
Address Space

Figure 2: Per-enclave page tables

bles, which are stored in the enclave’s memory (Figure 2).
This makes private the page table dirty and accessed bits,
which can reveal memory access patterns at page granu-
larity. Exposing an enclave’s page tables to the untrusted
OS leaves the enclave vulnerable to attacks such as [55].

The enclave’s virtual address space outside EVRANGE
is used to access its host application’s memory, via the
page tables set up by the OS. Sanctum’s hardware exten-
sions implement dual page table lookup (§ 5.2), and make
sure that an enclave’s page tables can only point into the
enclave’s memory, while OS page tables can only point
into OS memory (§ 5.3).

Sanctum supports multi-threaded enclaves, and en-
claves must appropriately provision for thread state data
structures. Enclave threads, like their SGX cousins, run at
the lowest privilege level (user level in RISC-V), meaning
a malicious enclave cannot compromise the OS. Specif-
ically, enclaves may not execute privileged instructions;
address translations that use OS page tables generate page
faults when accessing supervisor pages.

The per-enclave metadata used by the security monitor
is stored in dedicated DRAM regions (metadata regions),
each managed at the page level by the OS, and each in-
cludes a page map that is used by the security monitor to
verify the OS’ decisions (much like the EPC and EPCM
in SGX, respectively). Unlike SGX’s EPC, the metadata
region pages only store enclave and thread metadata. Fig-
ure 3 shows how these structures are weaved together.

Sanctum considers system software to be untrusted, and
governs transitions into and out of enclave code. An en-
clave’s host application enters an enclave via a security
monitor call that locks a thread state area, and transfers
control to its entry point. After completing its intended
task, the enclave code exits by asking the monitor to un-
lock the thread’s state area, and transfer control back to
the host application.

Enclaves cannot make system calls directly: we cannot
trust the OS to restore an enclave’s execution state, so the
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Figure 3: Enclave layout and data structures

enclave’s runtime must ask the host application to proxy
syscalls such as file system and network I/O requests.

Sanctum’s security monitor is the first responder for
interrupts: an interrupt received during enclave execution
causes an asynchronous enclave exit (AEX), whereby the
monitor saves the core’s registers in the current thread’s
AEX state area, zeroes the registers, exits the enclave, and
dispatches the interrupt as if it was received by the code
entering the enclave.

Unlike SGX, resuming enclave execution after an AEX
means re-entering the enclave using its normal entry point,
and having the enclave’s code ask the security monitor to
restore the pre-AEX execution state. Sanctum enclaves
are aware of asynchronous exits so they can implement
security policies. For example, an enclave thread that
performs time-sensitive work, such as periodic I/O, may
terminate itself if it ever gets preempted by an AEX.

The security monitor configures the CPU to dispatch
all faults occurring within an enclave directly to the en-
clave’s designated fault handler, which is expected to be
implemented by the enclave’s runtime (SGX sanitizes
and dispatches faults to the OS). For example, a libc

runtime would translate faults into UNIX signals which,
by default, would exit the enclave. It is possible, though
not advisable for performance reasons (§ 6.3), for a run-
time to handle page faults and implement demand paging

securely, and robust against the attacks described in [55].
Unlike SGX, we isolate each enclave’s data throughout

the system’s cache hierarchy. The security monitor flushes
per-core caches, such as the L1 cache and the TLB, when-
ever a core jumps between enclave and non-enclave code.
Last-level cache (LLC) isolation is achieved by a simple
partitioning scheme supported by Sanctum’s hardware
extensions (§ 5.1).

Sanctum’s strong isolation yields a simple security
model for application developers: all computation that
executes inside an enclave, and only accesses data inside
the enclave, is protected from any attack mounted by soft-
ware outside the enclave. All communication with the
outside world, including accesses to non-enclave memory,
is subject to attacks.

We assume that the enclave runtime implements the
security measures needed to protect the enclave’s com-
munication with other software modules. For example,
any algorithm’s memory access patterns can be protected
by ensuring that the algorithm only operates on enclave
data. The runtime can implement this protection simply
by copying any input buffer from non-enclave memory
into the enclave before computing on it.

The enclave runtime can use Native Client’s approach
[57] to ensure that the rest of the enclave software only
interacts with the host application via the runtime to miti-
gate potential security vulnerabilities in enclave software.

The lifecycle of a Sanctum enclave closely resembles
the lifecycle of its SGX equivalent. An enclave is created
when its host application performs a system call asking
the OS to create an enclave from a dynamically loadable
module (.so or .dll file). The OS invokes the security
monitor to assign DRAM resources to the enclave, and
to load the initial code and data pages into the enclave.
Once all the pages are loaded, the enclave is marked as
initialized via another security monitor call.

Our software attestation scheme is a simplified version
of SGX’s scheme, and reuses a subset of its concepts.
The data used to initialize an enclave is cryptographically
hashed, yielding the enclave’s measurement. An enclave
can invoke a secure inter-enclave messaging service to
send a message to a privileged attestation enclave that can
access the security monitor’s attestation key, and produces
the attestation signature.

5 Hardware Modifications

5.1 LLC Address Input Transformation
Figure 4 depicts a physical address in a toy computer with
32-bit virtual addresses and 21-bit physical addresses,
4,096-byte pages, a set-associative LLC with 512 sets and
64-byte lines, and 256 KB of DRAM.

The location where a byte of data is cached in the
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Figure 4: Interesting bit fields in a physical address
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Figure 5: Address shift for contiguous DRAM regions

LLC depends on the low-order bits in the byte’s physical
address. The set index determines which of the LLC lines
can cache the line containing the byte, and the line offset
locates the byte in its cache line. A virtual address’s low-
order bits make up its page offset, while the other bits are
its virtual page number (VPN). Address translation leaves
the page offset unchanged, and translates the VPN into
a physical page number (PPN), based on the mapping
specified by the page tables.

We define the DRAM region index in a physical ad-
dress as the intersection between the PPN bits and the
cache index bits. This is the maximal set of bits that im-
pact cache placement and are determined by privileged
software via page tables. We define a DRAM region to
be the subset of DRAM with addresses having the same
DRAM region index. In Figure 4, for example, address
bits [14 . . .12] are the DRAM region index, dividing the
physical address space into 8 DRAM regions.

In a typical system without Sanctum’s hardware exten-
sions, DRAM regions are made up of multiple continuous
DRAM stripes, where each stripe is exactly one page
long. The top of Figure 5 drives this point home, by
showing the partitioning of our toy computer’s 256 KB
of DRAM into DRAM regions. The fragmentation of

DRAM Region
Index

Cache
Line OffsetS2

Address Translation Unit

Page OffsetVirtual Page Number (VPN)
5 061112

14151718

31

Physical address

Cache Tag

Virtual Address

Physical Page 
Number (PPN)

12

5 0611

DRAM Region
IndexS2

20

S1

S1

12141520 1718

Address bits used by 256 KB of DRAM

Cache Unit
Input

Cache Set Index

Cache 
Address 
Shifter

Figure 6: Cache address shifter, 3 bit PPN rotation

DRAM regions makes it difficult for the OS to allocate
contiguous DRAM buffers, which are essential to the effi-
cient DMA transfers used by high performance devices.
In our example, if the OS only owns 4 DRAM regions,
the largest contiguous DRAM buffer it can allocate is 16
KB.

We observed that, up to a certain point, circularly shift-
ing (rotating) the PPN of a physical address to the right
by one bit, before it enters the LLC, doubles the size of
each DRAM stripe and halves the number of stripes in a
DRAM region, as illustrated in Figure 5.

Sanctum takes advantage of this effect by adding a
cache address shifter that circularly shifts the PPN to
the right by a certain amount of bits, as shown in Figures
6 and 7. In our example, configuring the cache address
shifter to rotate the PPN by 3 yields contiguous DRAM
regions, so an OS that owns 4 DRAM regions could hy-
pothetically allocate a contiguous DRAM buffer covering
half of the machine’s DRAM.

The cache address shifter’s configuration depends on
the amount of DRAM present in the system. If our exam-
ple computer could have 128 KB - 1 MB of DRAM, its
cache address shifter must support shift amounts from 2
to 5. Such a shifter can be implemented via a 3-position
variable shifter circuit (series of 8-input MUXes), and a
fixed shift by 2 (no logic). Alternatively, in systems with
known DRAM configuration (embedded, SoC, etc.), the
shift amount can be fixed, and implemented with no logic.

5.2 Page Walker Input
Sanctum’s per-enclave page tables require an enclave page
table base register eptbr that stores the physical address
of the currently running enclave’s page tables, and has
similar semantics to the page table base register ptbr
pointing to the operating system-managed page tables.
These registers may only be accessed by the Sanctum
security monitor, which provides an API call for the OS
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to modify ptbr, and ensures that eptbr always points to
the current enclave’s page tables.

The circuitry handling TLB misses switches between
ptbr and eptbr based on two registers that indicate the
current enclave’s EVRANGE, namely evbase (enclave
virtual address space base) and evmask (enclave virtual
address space mask). When a TLB miss occurs, the cir-
cuit in Figure 8 selects the appropriate page table base
by ANDing the faulting virtual address with the mask
register and comparing the output against the base regis-
ter. Depending on the comparison result, either eptbr or
ptbr is forwarded to the page walker as the page table
base address.

5.3 Page Walker Memory Accesses
In modern high-speed CPUs, address translation is per-
formed by a hardware page walker that traverses the
page tables when a TLB miss occurs. The page walker’s
latency greatly impacts the CPU’s performance, so it is
implemented as a finite-state machine (FSM) that reads
page table entries by issuing DRAM read requests using
physical addresses, over a dedicated bus to the L1 cache.

Unsurprisingly, page walker modifications require a lot
of engineering effort. At the same time, Sanctum’s secu-
rity model demands that the page walker only references
enclave memory when traversing the enclave page tables,
and only references OS memory when translating the OS
page tables. Fortunately, we can satisfy these require-
ments without modifying the FSM. Instead, the security
monitor configures the circuit in Figure 9 to ensure that
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Figure 8: Page walker input for per-enclave page tables
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Figure 9: Hardware support for per-enclave page tables:
check page table entries fetched by the page walker.

the page tables only point into allowable memory.
Sanctum’s security monitor must guarantee that ptbr

points into an OS DRAM region, and eptbr points into
a DRAM region owned by the enclave. This secures the
page walker’s initial DRAM read. The circuit in Figure 9
receives each page table entry fetched by the FSM, and
sanitizes it before it reaches the page walker FSM.

The security monitor configures the set of DRAM
regions that page tables may reference by writing to a
DRAM region bitmap (drbmap) register. The sanitiza-
tion circuitry extracts the DRAM region index from the
address in the page table entry, and looks it up in the
DRAM region bitmap. If the address does to belong to
an allowable DRAM region, the sanitization logic forces
the page table entry’s valid bit to zero, which will cause
the page walker FSM to abort the address translation and
signal a page fault.

Sanctum’s security monitor and its attestation key are
stored in DRAM regions allocated to the OS. For security
reasons, the OS must not be able to modify the monitor’s
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code, or to read the attestation key. Sanctum extends
the page table entry transformation described above to
implement a Protected Address Range (PAR) for each set
of page tables.

Each PAR is specified using a base register (parbase)
register and a mask register (parmask) with the same
semantics as the variable Memory Type Range registers
(MTRRs) in the x86 architecture. The page table en-
try sanitization logic in Sanctum’s hardware extensions
checks if each page table entry points into the PAR by
ANDing the entry’s address with the PAR mask and com-
paring the result with the PAR base. If a page table entry
is seen with a protected address, its valid bit is cleared,
forcing a page fault.

The above transformation allows the security monitor
to set up a memory range that cannot be accessed by other
software, and which can be used to securely store the
monitor’s code and data. Entry invalidation ensures no
page table entries are fetched from the protected range,
which prevents the page walker FSM from modifying the
protected region by setting accessed and dirty bits.

All registers above are replicated, as Sanctum maintains
separate OS and enclave page tables. The security monitor
sets up a protected range in the OS page tables to isolate
its own code and data structures (most importantly its
private attestation key) from a malicious OS.

Figure 10 shows Sanctum’s logic inserted between the
page walker and the cache unit that fetches page table
entries.

5.4 DMA Transfer Filtering
We whitelist a DMA-safe DRAM region instead of fol-
lowing SGX’s blacklist approach. Specifically, Sanctum
adds two registers (a base, dmarbase and an AND mask,
dmarmask) to the DMA arbiter (memory controller). The
range check circuit shown in Figure 8 compares each
DMA transfer’s start and end addresses against the al-
lowed DRAM range, and the DMA arbiter drops transfers
that fail the check.

6 Software Design

Sanctum’s chain of trust, discussed in § 6.1, diverges sig-
nificantly from SGX. We replace SGX’s microcode with
a software security monitor that runs at a higher privilege
level than the hypervisor and the OS. On RISC-V, the
security monitor runs at machine level. Our design only
uses one privileged enclave, the signing enclave, which
behaves similarly to SGX’s Quoting Enclave.

6.1 Attestation Chain of Trust
Sanctum has three pieces of trusted software: the mea-
surement root, which is burned in on-chip ROM, the se-
curity monitor (§ 6.2), which must be stored alongside
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Figure 10: Sanctum’s page entry transformation logic in
the context of a Rocket core

the computer’s firmware (usually in flash memory), and
the signing enclave, which can be stored in any untrusted
storage that the OS can access.

We expect the trusted software to be amenable to rig-
orous analysis: our implementation of a security monitor
for Sanctum is written with verification in mind, and has
fewer than 5 kloc of C++, including a subset of the stan-
dard library and the cryptography for enclave attestation.

6.1.1 The Measurement Root

The measurement root (mroot) is stored in a ROM at the
top of the physical address space, and covers the reset vec-
tor. Its main responsibility is to compute a cryptographic
hash of the security monitor and generate a monitor at-
testation key pair and certificate based on the monitor’s
hash, as shown in Figure 11.

The security monitor is expected to be stored in non-
volatile memory (such as an SPI flash chip) that can re-
spond to memory I/O requests from the CPU, perhaps
via a special mapping in the computer’s chipset. When
mroot starts executing, it computes a cryptographic hash
over the security monitor. mroot then reads the proces-
sor’s key derivation secret, and derives a symmetric key
based on the monitor’s hash. mroot will eventually hand
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Figure 11: Sanctum’s root of trust is a measurement
root routine burned into the CPU’s ROM. This code reads
the security monitor from flash memory and generates an
attestation key and certificate based on the monitor’s hash.
Asymmetric key operations, colored in blue, are only
performed the first time a monitor is used on a computer.

down the key to the monitor.
The security monitor contains a header that includes

the location of an attestation key existence flag. If the
flag is not set, the measurement root generates a monitor
attestation key pair, and produces a monitor attestation
certificate by signing the monitor’s public attestation key
with the processor’s private attestation key. The monitor
attestation certificate includes the monitor’s hash.
mroot generates a symmetric key for the security mon-

itor so it may encrypt its private attestation key and store
it in the computer’s SPI flash memory chip. When writing
the key, the monitor also sets the monitor attestation key
existence flag, instructing future boot sequences not to re-
generate a key. The public attestation key and certificate
can be stored unencrypted in any untrusted memory.

Before handing control to the monitor, mroot sets a
lock that blocks any software from reading the processor’s
symmetric key derivation seed and private key until a reset

occurs. This prevents a malicious security monitor from
deriving a different monitor’s symmetric key, or from
generating a monitor attestation certificate that includes a
different monitor’s measurement hash.

The symmetric key generated for the monitor is simi-
lar in concept to the Seal Keys produced by SGX’s key
derivation process, as it is used to securely store a se-
cret (the monitor’s attestation key) in untrusted memory,
in order to avoid an expensive process (asymmetric key
attestation and signing). Sanctum’s key derivation pro-
cess is based on the monitor’s measurement, so a given
monitor is guaranteed to get the same key across power
cycles. The cryptographic properties of the key derivation
process guarantee that a malicious monitor cannot derive
the symmetric key given to another monitor.

6.1.2 The Signing Enclave

In order to avoid timing attacks, the security monitor does
not compute attestation signatures directly. Instead, the
signing algorithm is executed inside a signing enclave,
which is a security monitor module that executes in an en-
clave environment, so it is protected by the same isolation
guarantees that any other Sanctum enclave enjoys.

The signing enclave receives the monitor’s private attes-
tation key via an API call. When the security monitor re-
ceives the call, it compares the calling enclave’s measure-
ment with the known measurement of the signing enclave.
Upon a successful match, the monitor copies its attesta-
tion key into enclave memory using a data-independent
sequence of memory accesses, such as memcpy. This way,
the monitor’s memory access pattern does not leak the
private attestation key.

Sanctum’s signing enclave authenticates another en-
clave on the computer and securely receives its attestation
data using mailboxes (§ 6.2.5), a simplified version of
SGX’s local attestation (reporting) mechanism. The en-
clave’s measurement and attestation data are wrapped into
a software attestation signature that can be examined by a
remote verifier. Figure 12 shows the chain of certificates
and signatures in an instance of software attestation.

6.2 Security Monitor

The security monitor receives control after mroot finishes
setting up the attestation measurement chain.

The monitor provides API calls to the OS and enclaves
for DRAM region allocation and enclave management.
The monitor guards sensitive registers, such as the page
table base register (ptbr) and the allowed DMA range
(dmarbase and dmarmask). The OS can set these regis-
ters via monitor calls that ensure the register values are
consistent with the current DRAM region allocation.

9
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6.2.1 DRAM Regions

Figure 13 shows the DRAM region allocation state tran-
sition diagram. After the system boots up, all DRAM
regions are allocated to the OS, which can free up DRAM
regions so it can re-assign them to enclaves or to itself. A
DRAM region can only become free after it is blocked by
its owner, which can be the OS or an enclave. While a
DRAM region is blocked, any address translations map-
ping to it cause page faults, so no new TLB entries will be
created for that region. Before the OS frees the blocked
region, it must flush all the cores’ TLBs, to remove any
stale entries for the region.

OWNED BLOCKED FREE
block
DRAM
region

free
DRAM
region

assign DRAM region

Figure 13: DRAM region allocation states and API calls
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Figure 14: Security monitor data structures

The monitor ensures that the OS performs TLB shoot-
downs, using a global block clock. When a region is
blocked, the block clock is incremented, and the current
block clock value is stored in the metadata associated with
the DRAM region (shown in Figure 3). When a core’s
TLB is flushed, that core’s flush time is set to the current
block clock value. When the OS asks the monitor to free a
blocked DRAM region, the monitor verifies that no core’s
flush time is lower than the block clock value stored in the
region’s metadata. As an optimization, freeing a region
owned by an enclave only requires TLB flushes on the
cores running that enclave’s threads. No other core can
have TLB entries for the enclave’s memory.

The region blocking mechanism guarantees that when
a DRAM region is assigned to an enclave or the OS, no
stale TLB mappings associated with the DRAM region
exist. The monitor uses the MMU extensions described
in § 5.2 and § 5.3 to ensure that once a DRAM region
is assigned, no software other than the region’s owner
may create TLB entries pointing inside the DRAM region.
Together, these mechanisms guarantee that the DRAM
regions allocated to an enclave cannot be accessed by the
operating system or by another enclave.

6.2.2 Metadata Regions

Since the security monitor sits between the OS and en-
clave, and its APIs can be invoked by both sides, it is
an easy target for timing attacks. We prevent these at-
tacks with a straightforward policy that states the security
monitor is never allowed to access enclave data, and is
not allowed to make memory accesses that depend on
the attestation key material. The rest of the data handled
by the monitor is derived from the OS’ actions, so it is
already known to the OS.

A rather obvious consequence of the policy above is
that after the security monitor boots the OS, it cannot
perform any cryptographic operations that use keys. For
example, the security monitor cannot compute an attesta-
tion signature directly, and defers that operation to a sign-
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Figure 15: Enclave states and enclave management API
calls

ing enclave (§ 6.1.2). While it is possible to implement
some cryptographic primitives without performing data-
dependent accesses, the security and correctness proofs
behind these implementations are non-trivial. For this
reason, Sanctum avoids depending on any such imple-
mentation.

A more subtle aspect of the access policy outlined
above is that the metadata structures that the security mon-
itor uses to operate enclaves cannot be stored in DRAM
regions owned by enclaves, because that would give the
OS an indirect method of accessing the LLC sets that
map to enclave’s DRAM regions, which could facilitate a
cache timing attack.

For this reason, the security monitor requires the OS to
set aside at least one DRAM region for enclave metadata
before it can create enclaves. The OS has the ability to
free up the metadata DRAM region, and regain the LLC
sets associated with it, if it predicts that the computer’s
workload will not involve enclaves.

Each DRAM region that holds enclave metadata is
managed independently from the other regions, at page
granularity. The first few pages of each region contain
a page map that tracks the enclave that tracks the usage
of each metadata page, specifically the enclave that it is
assigned to, and the data structure that it holds.

Each metadata region is like an EPC region in SGX,
with the exception that our metadata regions only hold
special pages, like Sanctum’s equivalent of SGX’s Secure
Enclave Control Structure (SECS) and the Thread Control
Structure (TCS). These structures will be described in the
following sections.

The data structures used to store Sanctum’s metadata
can span multiple pages. When the OS allocates such a
structure in a metadata region, it must point the monitor to
a sequence of free pages that belong to the same DRAM
region. All the pages needed to represent the structure are
allocated and released in one API call.

6.2.3 Enclave Lifecycle

The lifecycle of a Sanctum enclave is very similar to that
of its SGX counterparts, as shown in Figure 15.

The OS creates an enclave by issuing a create enclave
call that creates the enclave metadata structure, which is
Sanctum’s equivalent of the SECS. The enclave metadata

structure contains an array of mailboxes whose size is es-
tablished at enclave creation time, so the number of pages
required by the structure varies from enclave to enclave.
§ 6.2.5 describes the contents and use of mailboxes.

The create enclave API call initializes the enclave meta-
data fields shown in Figure 3, and places the enclave in
the LOADING state. While the enclave is in this state,
the OS sets up the enclave’s initial state via monitor calls
that assign DRAM regions to the enclave, create hardware
threads and page table entries, and copy code and data
into the enclave. The OS then issues a monitor call to
transition the enclave to the INITIALIZED state, which
finalizes its measurement hash. The application hosting
the enclave is now free to run enclave threads.

Sanctum stores a measurement hash for each enclave
in its metadata area, and updates the measurement to ac-
count for every operation performed on an enclave in the
LOADING state. The policy described in § 6.2.2 does
not apply to the secure hash operations used to update
enclave’s measurement, because all the data used to com-
pute the hash is already known to the OS.

Enclave metadata is stored in a metadata re-
gion (§ 6.2.2), so it can only be accessed by the security
monitor. Therefore, the metadata area can safely store
public information with integrity requirements, such as
the enclave’s measurement hash.

While an OS loads an enclave, it is free to map the
enclave’s pages, but the monitor maintains its page ta-
bles ensuring all entries point to non-overlapping pages
in DRAM owned by the enclave. Once an enclave is
initialized, it can inspect its own page tables and abort if
the OS created undesirable mappings. Simple enclaves
do not require specific mappings. Complex enclaves are
expected to communicate their desired mappings to the
OS via out-of-band metadata not covered by this work.

Our monitor ensures that page tables do not overlap
by storing the last mapped page’s physical address in
the enclave’s metadata. To simplify the monitor, a new
mapping is allowed if its physical address is greater than
that of the last, constraining the OS to map an enclave’s
DRAM pages in monotonically increasing order.

6.2.4 Enclave Code Execution

Sanctum closely follows the threading model of SGX
enclaves. Each CPU core that executes enclave code
uses a thread metadata structure, which is our equivalent
of SGX’s TCS combined with SGX’s State Save Area
(SSA). Thread metadata structures are stored in a DRAM
region dedicated to enclave metadata in order to prevent
a malicious OS from mounting timing attacks against
an enclave by causing AEXes on its threads. Figure 16
shows the lifecycle of a thread metadata structure.

The OS turns a sequence of free pages in a metadata
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region into an uninitialized thread structure via an allocate
thread monitor call. During enclave loading, the OS uses
a load thread monitor call to initialize the thread structure
with data that contributes to the enclave’s measurement.
After an enclave is initialized, it can use an accept thread
monitor call to initialize its thread structure.

The application hosting an enclave starts executing en-
clave code by issuing an enclave enter API call, which
must specify an initialized thread structure. The monitor
honors this call by configuring Sanctum’s hardware exten-
sions to allow access to the enclave’s memory, and then
by loading the program counter and stack pointer registers
from the thread’s metadata structure. The enclave’s code
can return control to the hosting application voluntarily,
by issuing an enclave exit API call, which restores the
application’s PC and SP from the thread state area and
sets the API call’s return value to ok.

When performing an AEX, the security monitor atomi-
cally tests-and-sets the AEX state valid flag in the current
thread’s metadata. If the flag is clear, the monitor stores
the core’s execution state in the thread state’s AEX area.
Otherwise, the enclave thread was resuming from an AEX,
so the monitor does not change the AEX area. When the
host application re-enters the enclave, it will resume from
the previous AEX. This reasoning avoids the complexity
of SGX’s state stack.

If an interrupt occurs while the enclave code is ex-
ecuting, the security monitor’s exception handler per-
forms an AEX, which sets the API call’s return value to
async exit, and invokes the standard interrupt handling
code. After the OS handles the interrupt, the enclave’s
host application resumes execution, and re-executes the
enter enclave API call. The enclave’s thread initialization
code examines the saved thread state, and seeing that the
thread has undergone an AEX, issues a resume thread API
call. The security monitor restores the enclave’s registers
from the thread state area, and clears the AEX flag.

6.2.5 Mailboxes

Sanctum’s software attestation process relies on mail-
boxes, which are a simplified version of SGX’s local attes-
tation mechanism. We could not follow SGX’s approach

empty fullsend message

read message

accept message
accept

message

Figure 17: Mailbox states and security monitor API calls
related to inter-enclave communication

because it relies on key derivation and MAC algorithms,
and our timing attack avoidance policy (§ 6.2.2) states
that the security monitor is not allowed to perform cryp-
tographic operations that use keys.

Each enclave’s metadata area contains an array of mail-
boxes, whose size is specified at enclave creation time,
and covered by the enclave’s measurement. Each mailbox
goes through the lifecycle shown in Figure 17.

An enclave that wishes to receive a message in a mail-
box, such as the signing enclave, declares its intent by
performing an accept message monitor call. The API
call is used to specify the mailbox that will receive the
message, and the identity of the enclave that is expected
to send the message.

The sending enclave, which is usually the enclave wish-
ing to be authenticated, performs a send message call
that specifies the identity of the receiving enclave, and
a mailbox within that enclave. The monitor only deliv-
ers messages to mailboxes that expect them. At enclave
initialization, the expected sender for all mailboxes is an
invalid value (all zeros), so the enclave will not receive
messages until it calls accept message.

When the receiving enclave is notified via an out-of-
band mechanism that it has received a message, it issues
a read message call to the monitor, which moves the
message from the mailbox into the enclave’s memory. If
the API call succeeds, the receiving enclave is assured
that the message was sent by the enclave whose identity
was specified in the accept message call.

Enclave mailboxes are stored in metadata re-
gions (§ 6.2.2), which cannot be accessed by any software
other than the security monitor. This guarantees the pri-
vacy, integrity, and freshness of the messages sent via the
mailbox system.

Our mailbox design has the downside that both the
sending and receiving enclave need to be alive in DRAM
in order to communicate. By comparison, SGX’s local
attestation can be done asynchronously. In return, mail-
boxes do not require any cryptographic operations, and
have a much simpler correctness argument.

6.2.6 Multi-Core Concurrency

The security monitor is highly concurrent, with fine-
grained locks. API calls targeting two different enclaves
may be executed in parallel on different cores. Each
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DRAM region has a lock guarding that region’s metadata.
An enclave is guarded by the lock of the DRAM region
holding its metadata. Each thread metadata structure also
has a lock guarding it, which is acquired when the struc-
ture is accessed, but also while the metadata structure
is used by a core running enclave code. Thus, the enter
enclave call acquires a slot lock, which is released by an
enclave exit call or by an AEX.

We avoid deadlocks by using a form of optimistic lock-
ing. Each monitor call attempts to acquire all the locks it
needs via atomic test-and-set operations, and errors with
a concurrent call code if any lock is unavailable.

6.3 Enclave Eviction
General-purpose software can be enclaved without source
code changes, provided that it is linked against a runtime
(e.g., libc) modified to work with Sanctum. Any such
runtime would be included in the TCB.

The Sanctum design allows the operating system to
over-commit physical memory allocated to enclaves, by
collaborating with an enclave to page some of its DRAM
regions to disk. Sanctum does not give the OS visibility
into enclave memory accesses, in order to prevent private
information leaks, so the OS must decide the enclave
whose DRAM regions will be evicted based on other
activity, such as network I/O, or based on a business
policy, such as Amazon EC2’s spot instances.

Once a victim enclave has been decided, the OS asks
the enclave to block a DRAM region (cf. Figure 13),
giving the enclave an opportunity to rearrange data in
its RAM regions. DRAM region management can be
transparent to the programmer if handled by the enclave’s
runtime. The presented design requires each enclave to
always occupy at least one DRAM region, which contains
enclave data structures and the memory management code
described above. Evicting all of a live enclave’s memory
requires an entirely different scheme that is deferred to
future work.

The security monitor does not allow the OS to forcibly
reclaim a single DRAM region from an enclave, as do-
ing so would leak memory access patterns. Instead, the
OS can delete an enclave, after stopping its threads, and
reclaim all its DRAM regions. Thus, a small or short-
running enclave may well refuse DRAM region manage-
ment requests from the OS, and expect the OS to delete
and restart it under memory pressure.

To avoid wasted work, large long-running enclaves
may elect to use demand paging to overcommit their
DRAM, albeit with the understanding that demand paging
leaks page-level access patterns to the OS. Securing this
mechanism requires the enclave to obfuscate its page
faults via periodic I/O using oblivious RAM techniques,
as in the Ascend processor [20], applied at page rather
than cache line granularity, and with integrity verification.

This carries a high overhead: even with a small chance
of paging, an enclave must generate periodic page faults,
and access a large set of pages at each period. Using an
analytic model, we estimate the overhead to be upwards
of 12ms per page per period for a high-end 10K RPM
drive, and 27ms for a value hard drive. Given the number
of pages accessed every period grows with an enclave’s
data size, the costs are easily prohibitive. While SSDs
may alleviate some of this prohibitive overhead, and will
be investigated in future work, currently Sanctum focuses
on securing enclaves without demand paging.

Enclaves that perform other data-dependent communi-
cation, such as targeted I/O into a large database file, must
also use the periodic oblivious I/O to obfuscate their ac-
cess patterns from the operating system. These techniques
are independent of application business logic, and can be
provided by libraries such as database access drivers.

7 Security Argument

Our security argument rests on two pillars: the enclave
isolation enforced by the security monitor, and the guar-
antees behind the software attestation signature. This
section outlines correctness arguments for each of these
pillars.

Sanctum’s isolation primitives protect enclaves from
outside software that attempts to observe or interact with
the enclave software via means outside the interface pro-
vided by the security monitor. We prevent direct attacks
by ensuring that the memory owned by an enclave can
only be accessed by that enclave’s software. More subtle
attacks are foiled by also isolating the structures used to
access the enclave’s memory, such as the enclave’s page
tables and the caches that hold enclave data.

7.1 Protection Against Direct Attacks
The correctness proof for Sanctum’s DRAM isolation can
be divided into two sub-proofs that cover the hardware
and software sides of the system. First, we need to prove
that the page walker modifications described in § 5.2 and
§ 5.3 behave according to their descriptions. Thanks to
the small sizes of the circuits involved, this sub-proof
can be accomplished by simulating the circuits for all
logically distinct input cases. Second, we must prove
that the security monitor configures Sanctum’s extended
page walker registers in a way that prevents direct attacks
on enclaves. This part of the proof is significantly more
complex, but it follows the same outline as the proof for
SGX’s memory access protection presented in [13].

The proof revolves around a main invariant stating that
all TLB entries in every core are consistent with the pro-
gramming model described in § 4. The invariant breaks
down into three cases that match [13], after substituting
DRAM regions for pages.
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7.2 Protection Against Subtle Attacks
Sanctum also protects enclaves from software attacks that
attempt to exploit side channels to obtain information
indirectly. We focus on proving that Sanctum protects
against the attacks mentioned in § 2, which target the page
fault address and cache timing side-channels.

The proof that Sanctum foils page fault attacks is cen-
tered around the claims that each enclave’s page fault han-
dler and page tables and page fault handler are isolated
from all other software entities on the computer. First,
all the page faults inside an enclave’s EVRANGE are
reported to the enclave’s fault handler, so the OS cannot
observe the virtual addresses associated with the faults.
Second, page table isolation implies that the OS cannot
access an enclave’s page tables and read the access and
dirty bits to learn memory access patterns.

Page table isolation is a direct consequence of the claim
that Sanctum correctly protects enclaves against direct
attacks, which was covered above. Each enclave’s page
tables are stored in DRAM regions allocated to the en-
clave, so no software outside the enclave can access these
page tables.

The proof behind Sanctum’s cache isolation is straight-
forward but tedious, as there are many aspects involved.
We start by peeling off the easier cases, and tackle the
most difficult step of the proof at the end of the section.
Our design assumes the presence of both per-core caches
and a shared LLC, and each cache type requires a sep-
arate correctness argument. Per-core cache isolation is
achieved simply by flushing per-core caches at every tran-
sition between enclave and non-enclave mode. To prove
the correctness of LLC isolation, we first show that en-
claves do not share LLC lines with outside software, and
then we show that the OS cannot indirectly reach into an
enclave’s LLC lines via the security monitor.

Showing that enclaves do not share LLC lines with out-
side software can be accomplished by proving a stronger
invariant that states at all times, any LLC line that can
potentially cache a location in an enclave’s memory can-
not cache any location outside that enclave’s memory. In
steady state, this follows directly from the LLC isolation
scheme in § 5.1, because the security monitor guarantees
that each DRAM region is assigned to exactly one enclave
or to the OS.

Last, we focus on the security monitor, because it is the
only piece of software outside an enclave that can access
the enclave’s DRAM regions. In order to claim that an
enclave’s LLC lines are isolated from outside software,
we must prove that the OS cannot use the security mon-
itor’s API to indirectly modify the state of the enclave’s
LLC lines. This proof is accomplished by considering
each function exposed by the monitor API, as well as
the monitor’s hardware fault handler. The latter is con-
sidered to be under OS control because in a worst case

scenario, a malicious OS could program peripherals to
cause interrupts as needed to mount a cache timing attack.

7.3 Operating System Protection
Sanctum protects the operating system from direct attacks
against malicious enclaves, but does not protect it against
subtle attacks that take advantage of side-channels. Our
design assumes that software developers will transition all
sensitive software into enclaves, which are protected even
if the OS is compromised. At the same time, a honest
OS can potentially take advantage of Sanctum’s DRAM
regions to isolate mutually mistrusting processes.

Proving that a malicious enclave cannot attack the host
computer’s operating system is accomplished by first
proving that the security monitor’s APIs that start exe-
cuting enclave code always place the core in unprivileged
mode, and then proving that the enclave can only access
OS memory using the OS-provided page tables. The first
claim can be proven by inspecting the security monitor’s
code. The second claim follows from the correctness
proof of the circuits in § 5.2 and § 5.3. Specifically, each
enclave can only access memory either via its own page
tables or the OS page tables, and the enclave’s page tables
cannot point into the DRAM regions owned by the OS.

These two claims effectively show that Sanctum en-
claves run with the privileges of their host application.
This parallels SGX, so all arguments about OS security
in [13] apply to Sanctum as well. Specifically, malicious
enclaves cannot DoS the OS, and can be contained using
the mechanisms that currently guard against malicious
user software.

7.4 Security Monitor Protection
The security monitor is in Sanctum’s TCB, so the system’s
security depends on the monitor’s ability to preserve its
integrity and protect its secrets from attackers. The moni-
tor does not use address translation, so it is not exposed
to any attacks via page tables. The monitor also does
not protect itself from cache timing attacks, and instead
avoids making any memory accesses that would reveal
sensitive information.

Proving that the monitor is protected from direct attacks
from a malicious OS or enclave can be accomplished in
a few steps. First, we invoke the proof that the circuits
in § 5.2 and § 5.3, are correct. Second, we must prove
that the security monitor configures Sanctum’s extended
page walker registers correctly. Third, we must prove that
the DRAM regions that contain monitor code or data are
always allocated to the OS.

Since the monitor is exposed to cache timing attacks
from the OS, Sanctum’s security guarantees rely on proofs
that the attacks would not yield any information that the
OS does not already have. Fortunately, most of the secu-
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rity monitor implementation consists of acknowledging
and verifying the OS’ resource allocation decisions. The
main piece of private information held by the security
monitor is the attestation key. We can be assured that the
monitor does not leak this key, as long as we can prove
that the monitor implementation only accesses the key
when it is provided to the signing enclave (§ 6.1.2), that
the key is provided via a data-independent memory copy
operation, such as memcpy, and that the attestation key is
only disclosed to the signing enclave.

7.5 The Security of Software Attestation
The security of Sanctum’s software attestation scheme
depends on the correctness of the measurement root and
the security monitor. mroot’s sole purpose is to set up
the attestation chain, so the attestation’s security requires
the correctness of the entire mroot code. The monitor’s
enclave measurement code also plays an essential role in
the attestation process, because it establishes the identity
of the attested enclaves, and is also used to distinguish be-
tween the signing enclave and other enclaves. Sanctum’s
attestation also relies on mailboxes, which are used to se-
curely transmit attestation data from the attested enclave
to the signing enclave.

8 Performance Evaluation

While we propose a high-level set of hardware and soft-
ware to implement Sanctum, we focus our evaluation on
the concrete example of a 4-core RISC-V system gener-
ated by Rocket Chip [29]. Sanctum conveniently isolates
concurrent workloads from one another, so we can exam-
ine its overhead via individual applications on a single
core, discounting the effect of other running software.

8.1 Experiment Design
We use a Rocket-Chip generator modified to model Sanc-
tum’s additional hardware (§ 5) to generate a 4-core 64-bit
RISC-V CPU. Using a cycle-accurate simulator for this
machine, coupled with a custom Sanctum cache hierarchy
simulator, we compute the program completion time for
each benchmark, in cycles, for a variety of DRAM region
allocations. The Rocket chip has an in-order single issue
pipeline, and does not make forward progress on a TLB or
cache miss, which allows us to accurately model a variety
of DRAM region allocations efficiently.

We use a vanilla Rocket-Chip as an insecure baseline,
against which we compute Sanctum’s overheads. To pro-
duce the analysis in this section, we simulated over 250
billion instructions against the insecure baseline, and over
275 billion instructions against the Sanctum simulator.
We compute the completion time for various enclave con-
figurations from the simulator’s detailed event log.

Our cache hierarchy follows Intel’s Skylake [23] server
models, with 32KB 8-way set associative L1 data and
instruction caches, 256KB 8-way L2, and an 8MB 16-
way LLC partitioned into core-local slices. Our cache hit
and miss latencies follow the Skylake caches. We use a
simple model for DRAM accesses and assume unlimited
DRAM bandwidth, and a fixed cycle latency for each
DRAM access. We also omit an evaluation of the on-chip
network and cache coherence overhead, as we do not
make any changes that impact any of these subsystems.

Using the hardware model above, we benchmark the
integer subset of SPECINT 2006 [3] benchmarks (unmod-
ified), specifically perlbench, bzip2, gcc, mcf, gobmk,
hmmer, sjeng, libquantum, h264ref, omnetpp, and
astar base. This is a mix of memory and compute-
bound long-running workloads with diverse locality.

We simulate a machine with 4GB of memory that is
divided into 64 DRAM regions by Sanctum’s cache ad-
dress indexing scheme. Scheduling each benchmark on
Core 0, we run it to completion, while the other cores are
idling. While we do model its overheads, we choose not
to simulate a complete Linux kernel, as doing so would in-
vite a large space of parameters of additional complexity.
To this end, we modify the RISC-V proto kernel [48] to
provide the few services used by our benchmarks (such as
filesystem io), while accounting for the expected overhead
of each system call.

8.2 Cost of Added Hardware
Sanctum’s hardware changes add relatively few gates
to the Rocket chip, but do increase its area and power
consumption. Like SGX, we avoid modifying the core’s
critical path: while our addition to the page walker (as
analyzed in the next section) may increase the latency of
TLB misses, it does not increase the Rocket core’s clock
cycle, which is competitive with an ARM Cortex-A5 [29].

As illustrated at the gate level in Figures 8 and 9, we es-
timate Sanctum to add to Rocket hardware 500 (+0.78%)
gates and 700 (+1.9%) flip-flops per core. Precisely, 50
gates for cache index calculation, 1000 gates and 700 flip-
flops for the extra address page walker configuration, and
400 gates for the page table entry transformations. DMA
filtering requires 600 gates (+0.8%) and 128 flip-flops
(+1.8%) in the uncore. We do not make any changes to
the LLC, and exclude it from the percentages above (the
LLC generally accounts for half of chip area).

8.3 Added Page Walker Latency
Sanctum’s page table entry transformation logic is de-
scribed in § 5.3, and we expect it can be combined with
the page walker FSM logic within a single clock cycle.

Nevertheless, in the worst case, the transformation
logic would add a pipeline stage between the L1 data
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Figure 18: Detail of enclave overhead with a DRAM
region allocation of 1/4 of LLC sets.

cache and the page walker. This logic is small and com-
binational, and significantly simpler than the ALU in the
core’s execute stage. In this case, every memory fetch
issued by the page walker would experience a 1-cycle
latency, which adds 3 cycles of latency to each TLB miss.

The overheads due to additional cycles of TLB miss
latency are negligible, as quantified in Figure 18 for
SPECINT benchmarks. All TLB-related overheads con-
tribute less than 0.01% slowdown relative to completion
time of the insecure baseline. This overhead is insignif-
icant relative to the overheads of cache isolation: TLB
misses are infrequent and relatively expensive, several
additional cycles makes little difference.

8.4 Security Monitor Overhead
Invoking Sanctum’s security monitor to load code into an
enclave adds a one-time setup cost to each isolated pro-
cess, relative to running code without Sanctum’s enclave.
This overhead is amortized by the duration of the compu-
tation, so we discount it for long-running workloads.

Entering and exiting enclaves is more expensive than
hardware context switches: the security monitor must
flush TLBs and L1 caches to avoid leaking private infor-
mation. Given an estimated cycle cost of each system
call in a Sanctum enclave, and in an insecure baseline,
we show the modest overheads due to enclave context
switches in Figure 18. Moreover, a sensible OS is ex-
pected to minimize the number of context switches by
allocating some cores to an enclave and allowing them
to execute to completion. We therefore also consider this
overhead to be negligible for long-running computations.

8.5 Overhead of DRAM Region Isolation
The crux of Sanctum’s strong isolation is caching DRAM
regions in distinct sets. When the OS assigns DRAM re-
gions to an enclave, it confines it to a part of the LLC. An
enclaved thread effectively runs on a machine with fewer
LLC sets, impacting its performance. Note, however, that
Sanctum does not partition private caches, so a thread can
utilize its core’s entire L1/L2 caches and TLB.
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Figure 19: Overhead of enclaves of various size relative
to an ideal insecure baseline.

Figure 19 shows the completion times of the SPECINT
workloads, each normalized to the completion time of
the same benchmark running on an ideal insecure OS
that allocates the entire LLC to the benchmark. Sanctum
excels at isolating compute-bound workloads operating
on sensitive data. SPECINT’s large, multi-phase work-
loads heavily exercise the entire memory hierarchy, and
therefore paint an accurate picture of a worst case for our
system. mcf, in particular, is very sensitive to the avail-
able LLC size, so it incurs noticeable overheads when
being confined to a small subset of the LLC. Figure 18
further underlines that the majority of Sanctum’s enclave
overheads stem from a reduction in available LLC sets.

We consider mcf’s 23% decrease in performance when
limited to 1/8th of the LLC to be a very pessimistic view
of our system’s performance, as it explores the case where
the enclave uses a quarter of CPU power (a core), but
1/8th of the LLC. For a reasonable allocation of 1/4 of
DRAM regions (in a 4-core system), enclaves add under
3% overhead to most memory-bound benchmarks (with
the exception of mcf and bzip, which rely on a very large
LLC), and do not encumber compute-bound workloads.

9 Conclusion

Sanctum shows that strong provable isolation of concur-
rent software modules can be achieved with low overhead.
This approach provides strong security guarantees against
an insidious software threat model including cache timing
and memory access pattern attacks. With this work, we
hope to enable a shift in discourse in secure hardware
architecture away from plugging specific security holes
to a principled approach to eliminating attack surfaces.
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