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�e Sancus security architecture for networked embedded devices was proposed in 2013 at the USENIX

Security conference. It supports remote (even third-party) so�ware installation on devices while maintaining

strong security guarantees. More specifically, Sancus can remotely a�est to a so�ware provider that a specific

so�ware module is running uncompromised, and can provide a secure communication channel between

so�ware modules and so�ware providers. So�ware modules can securely maintain local state, and can securely

interact with other so�ware modules that they choose to trust.

Over the past three years, significant experience has been gained with applications of Sancus, and several

extensions of the architecture have been investigated – both by the original designers as well as by independent

researchers. Informed by these additional research results, this journal version of the Sancus paper describes

an improved design and implementation, supporting additional security guarantees (such as confidential

deployment) and a more efficient cryptographic core.

We describe the design of Sancus 2.0 (without relying on any prior knowledge of Sancus), and develop

and evaluate a prototype FPGA implementation. �e prototype extends an MSP430 processor with hardware

support for the memory access control and cryptographic functionality required to run Sancus. We report on

our experience with using Sancus in a variety of application scenarios, and discuss some important avenues

of ongoing and future work.
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1 INTRODUCTION

Computing devices and so�ware are omnipresent in our society, and society increasingly relies on
the correct and secure functioning of these devices and so�ware. Two important trends can be
observed. First, network connectivity of devices keeps increasing. More and more (and smaller
and smaller) devices get connected to the Internet or local ad-hoc networks. Many consumer
products contain embedded technology to have Internet connectivity. �is Internet of �ings (IoT)
is estimated to grow to an astonishing number of 26 billion units by 2020 [31]. Second, more and
more devices support extensibility of the so�ware they run – o�en even by third parties different
from the device manufacturer or device owner. �e IoT becomes infrastructure on which many
stakeholders can install and run so�ware applications. �ese two factors are important because
they enable a vast array of interesting applications, ranging from over-the-air updates on smart
cards, over updatable implanted medical devices, to programmable sensor networks or smart home
applications. However, these two factors also have a significant impact on security threats. �e
combination of connectivity and so�ware extensibility leads to malware threats. Researchers
have already shown how to perform code injection a�acks against embedded devices to build
self-propagating worms [30, 32]. [76] describe several recent incidents and summarize the state of
embedded device security as “a mess”.

For high-end devices, such as servers or desktops, the problems of dealing with connectivity and
so�ware extensibility are relatively well-understood, and there is a rich body of knowledge built
up from decades of research; we provide a brief survey in the related work section.

However, for low-end, resource-constrained devices, no effective low-cost solutions are known.
Many embedded platforms lack standard security features present in high-end processors, such as
privilege levels or advanced memory management units that support virtual memory. Depending
on the overall system security goals, as well as the context in which the system must operate,
there may be more optimal solutions than just porting the general-purpose security features from
high-end processors.
Over the past few years, researchers have been exploring alternative security architectures for

low-end networked devices. For instance, [25] propose SMART, a simple and efficient hardware-
so�ware primitive to establish a dynamic root of trust in an embedded processor, and [72] propose
a simple program counter-based memory access control system to isolate so�ware components.
For a more complete overview of this line of work, we refer to Section 7.

�e key contribution of this paper is the design, implementation and evaluation of one such secu-
rity architecture, the Sancus architecture. Sancus was first proposed in 2013 at the USENIX Security
conference [61] as a security architecture that supports secure third-party so�ware extensibility for
a network of low-end processors with a hardware-only Trusted Computing Base (TCB). Over the
past three years, significant experience has been gained with applications of Sancus, including for
instance the development of a trust assessment infrastructure that uses Sancus to protect the trust
measurement code [60], and the design of a smart meter secured by Sancus [59]. Also, researchers
have been investigating several extensions of Sancus, for instance to support more flexible resource
sharing [74] or to support confidential loading of code [35]. Informed by these additional research
results, this journal version of the Sancus paper describes an improved design and implementation,
supporting additional security guarantees, such as confidential deployment and a more efficient
cryptographic core. While this paper extends and improves the conference paper, we carefully
made sure that this paper is self-contained: readers do not have to be familiar with the conference
paper.
More specifically, we make the following contributions:
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Sancus 2.0: A Low-Cost Security Architecture for IoT Devices 0:3

• We propose Sancus1, a security architecture for resource-constrained, extensible networked
embedded systems, that can provide strong isolation guarantees, remote a�estation, secure
communication, secure linking, and confidential so�ware deployment with a minimal
(hardware) TCB.
• We implement the hardware required for Sancus as an extension of a mainstream micro-

processor, and we show that the cost of these hardware changes (in terms of performance,
area, and power) is small.
• We implement a C compiler that targets Sancus-enabled devices. Building so�ware modules
for Sancus can be done using simple annotations with standard C code, showing that the
cost in terms of so�ware development is low as well.
• We implement a Contiki-based (untrusted) so�ware stack to automate the deployment
process of Sancus modules.
• We report on our experience with implementing a variety of applications on Sancus, and
evaluate Sancus in terms of performance, hardware cost, and security.

To guarantee the reproducibility and verifiability of our results, all our research materials, including
the hardware design of the processor, the C compiler, and the deployment stack are publicly
available.
�e remainder of this paper is structured as follows. First, in Section 2 we clarify the problem

we address by defining our system model, a�acker model, and the security properties we aim for.
�e next two sections detail the design of Sancus and some interesting implementation aspects.
Section 5 describes applications that have been developed with Sancus, and outlines remaining
challenges for future work. Section 6 reports on our evaluation of Sancus and the final two sections
discuss related work and conclude.

2 PROBLEM STATEMENT

2.1 System Model

We consider a se�ing where a single infrastructure provider, IP, owns and administers a (potentially
large) set of microprocessor-based systems that we refer to as nodes Ni . A variety of third-party
so�ware providers SPj are interested in using the infrastructure provided by IP. �ey do so by
deploying so�ware modules SMj,k on the nodes administered by IP. Figure 1 provides an overview.
�is abstract se�ing is an adequate model for many ICT systems today, and the nodes in such

systems can range from high-performance servers (for instance in a cloud system), over smart
cards (for instance in GlobalPlatform-based systems [34]) to tiny microprocessors (for instance in
sensor networks). In this paper, we focus on the low-end of this spectrum, where nodes contain
only a small embedded processor that does not support a memory management unit, protection
rings, hypervisors, or other security mechanisms typically found on high-end processors.
Any system that supports extensibility (through installation of so�ware modules) by several

so�ware providers must implement measures to make sure that the different modules cannot
interfere with each other in undesired ways, either because of bugs in the so�ware or because
of malice. For high- to mid-end systems, this problem is relatively well-understood, and good
solutions exist. Two important classes of solutions are (1) the use of virtual memory, where each
so�ware module gets its own virtual address space, and where an operating system or hypervisor
implements and guards communication channels between them (for instance shared memory
sections or inter-process communication channels), and (2) the use of a memory-safe virtual

1Sancus was the ancient Roman god of trust, honesty and oaths.
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Fig. 1. Overview of our system model. IP provides a number of nodes Ni on which so�ware providers SPj
can deploy so�ware modules SMj,k .

machine (for instance a Java VM), where so�ware modules are deployed in memory-safe bytecode
and a security architecture in the VM guards the interactions between them.
For low-end systems with cheap microprocessors, providing adequate security measures for

the se�ing sketched above is still an open problem, and an active area of research [28]. One
straightforward solution is to transplant the higher-end solutions to these low-end systems: one
can extend the processor with virtual memory, or implement a Java VM. �is will be an appropriate
solution in some contexts, but there are two important disadvantages. First, the cost (in terms of
required resources such as chip surface, power or performance) is non-negligible. And second,
these solutions all require the presence of a sizable trusted so�ware layer (either the Operating
System (OS) or hypervisor, or the VM implementation).
�e problem we address in this paper is the design, implementation and evaluation of a novel

security architecture for low-end systems that is inexpensive and does not rely on any trusted
so�ware layer. �e TCB on the networked device is only the hardware. More precisely, a so�ware
provider needs to trust only the hardware of the infrastructure and his own modules; he does not
need to trust any infrastructural or third-party so�ware on the nodes.

2.2 A�acker Model

We consider a�ackers with two powerful capabilities. First, we assume a�ackers can manipulate
all the so�ware on the nodes. In particular, a�ackers can act as a so�ware provider and can deploy
malicious modules to nodes. A�ackers can also tamper with the operating system (for instance
because they can exploit a buffer overflow vulnerability in the operating system code), or even
install a completely new operating system.
Second, we assume a�ackers can control the communication network that is used by so�ware

providers and nodes to communicate with each other. A�ackers can sniff the network, can modify
traffic, or can mount man-in-the-middle a�acks. Note that the security of the communication
channel between IP and so�ware providers is out of scope.
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Sancus 2.0: A Low-Cost Security Architecture for IoT Devices 0:5

With respect to the cryptographic capabilities of the a�acker, we follow the Dolev-Yao a�acker
model [22]: a�ackers cannot break cryptographic primitives, but they can perform protocol-level
a�acks.
Finally, a�acks against the hardware of individual nodes are out of scope. We assume the

a�acker does not have physical access to the hardware, cannot place probes on the memory
bus, cannot disconnect components, and so forth. While physical a�acks are important, the
addition of hardware-level protections is an orthogonal problem that is an active area of research
in itself [4, 13, 41, 42]. �e addition of hardware-level protection will be useful for many practical
applications (in particular for sensor networks) but does not have any direct impact on our proposed
architecture or on the results of this paper.
Although our a�acker model excludes hardware a�acks, our security properties do limit the

consequences of such an event (Section 2.3, hardware breach confinement).

2.3 Security Properties

For the system and a�acker model described above, we want our security architecture to enforce
the following security properties:

• So�ware module isolation. So�ware modules on a node run isolated in the sense that no
so�ware outside the module can read or write its runtime state and code. �e only way for
other so�ware on the node to interact with a module is by calling one of its designated
entry points.
• Remote a�estation. A so�ware provider can verify with high assurance that a specific
so�ware module is loaded unmodified on a specific node of IP.
• Secure communication. A so�ware provider can communicate with a specific so�ware mod-

ule on a specific node with confidentiality, integrity, authenticity, and freshness guarantees.
• Secure linking. A so�ware module on a node can link with and call another module on
the same node with high assurance that it is calling the intended module. �e runtime
interactions between a module A and a module B that A links with cannot be observed or
tampered with by other so�ware on the same node.
• Confidential deployment. If so desired, a so�ware provider can deploy encrypted modules.

�is ensures that no a�acker will be able to inspect the module’s code at any point in time.
• Hardware breach confinement. If an a�acker manages to breach the hardware protections

on a node, they may be able to manipulate or impersonate modules running on that node.
However, such a breach should not allow them to do the same with modules running on
other nodes.

Obviously, these security properties are not entirely independent of each other. For instance,
it does not make sense to have secure communication but no isolation: given the power of our
a�ackers, any message could then simply be modified right a�er its integrity was verified by a
so�ware module.

3 DESIGN OF SANCUS

�e main design challenge is to realize the desired security properties without trusting any so�ware
on the nodes, and under the constraint that nodes are low-end, resource-constrained devices. An
important first design choice that follows from the resource-constrained nature of nodes is that we
limit cryptographic techniques to symmetric key, in particular authenticated encryption. While
public key cryptography would simplify key management, the cost of implementing it in hardware
is too high [46].

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 0000.
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We first present some cryptographic primitives that will be used in the rest of this paper (Sec-
tion 3.1). �en, we give an overview of our design (Section 3.2) followed by the elaboration of its
most interesting aspects (Sections 3.3 to 3.7). We conclude this section with an end-to-end example
(Section 3.8).

3.1 Cryptographic Primitives

�roughout the design of Sancus, we assume the existence of three cryptographic primitives. First,
a classical cryptographic hash function is used to compute digests of data. Second, a key derivation

function is used to derive a cryptographic key from a master key and some diversification data:

KM,D = kdf(KM ,D)

�ird, an authenticated encryption with associated data primitive is used to simultaneously provide
confidentiality, integrity, and authenticity guarantees on data. Such a primitive consists of two
functions: one for encryption and one for decryption. �e encryption function takes as input a key,
plaintext and associated data and produces ciphertext and an authentication tag. �e ciphertext
covers the given plaintext and the tag is a Message Authentication Code (MAC) over both the
plaintext and the associated data:

C,T = aead-encrypt(K ,P ,A)

�e decryption function does the opposite operation and fails (i.e., produces no plaintext) if the tag
is incorrect for the given ciphertext and associated data:

P = aead-decrypt(K ,C,A,T )

Note that this primitive can be used to compute a plain MAC over some data:

mac(K ,D) ≡ aead-encrypt(K , {},D)

(Here, we discard the ciphertext result of aead-encrypt.)

3.2 Overview

3.2.1 Nodes. Nodes are low-cost, low-power microcontrollers (our implementation is based on
the TI MSP430). �e processor in a node uses a Von Neumann architecture with a single address
space for instructions and data. To distinguish actual nodes belonging to IP from fake nodes set up
by an a�acker, IP shares a symmetric key with each of its nodes. We call this key the node master

key, and use the notation KN for the node master key of node N . Given our a�acker model where
the a�acker can control all so�ware on the nodes, it follows that this key must be managed by the
hardware, and it is only accessible to so�ware in an indirect way.

3.2.2 So�ware Providers. So�ware providers are principals that can deploy so�ware to the nodes
of IP. Each so�ware provider has a unique public ID SP.2 IP uses a key derivation function kdf to
compute a key KN ,SP = kdf(KN ,SP), which SP will later use to setup secure communication with
its modules. Since node N has key KN , nodes can compute KN ,SP for any SP. �e node will include
a hardware implementation of kdf so that the key can be computed without trusting any so�ware.

2�roughout this text, we will o�en refer to a so�ware provider using its ID SP.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 0000.



Sancus 2.0: A Low-Cost Security Architecture for IoT Devices 0:7

Table 1. Overview of the keys used in Sancus, how they are created and who can access them. Note that
derived keys are also accessible by any entity that has access to their master keys but this is not explicitly
mentioned.

Key Creation Accessible by

KN Random IP, N
KN ,SP kdf(KN ,SP) SP

KN ,SP,SM kdf(KN ,SP,SM) SM (indirectly)

3.2.3 So�ware Modules. So�ware modules are essentially simple binary files containing two
mandatory sections: a text section containing code and constants and a data section containing a
module’s runtime data. As we will see later, the contents of the la�er section are not a�ested and
are therefore vulnerable to malicious modification before hardware protection is enabled. �erefore,
the processor will zero-initialize its contents at the time the protection is enabled to ensure an
a�acker can not have any influence on a module’s initial state. Next to the two protected sections
discussed above, a module can opt to load a number of unprotected sections. �is is useful to, for
example, limit the amount of code that can access protected data. Indeed, allowing code that does
not need it access to protected data increases the possibility of bugs that could leak data outside of
the module. In other words, this gives developers the opportunity to keep the trusted code of their
own modules as small as possible. Each section has a header that specifies the start and end address
of the section.
�e identity of a so�ware module consists of a hash of (1) the content of the text section and

(2) the start and end addresses of the text and data sections. We refer to this second part of the
identity as the layout of the module. It follows that two modules with the exact same code and
data can coexist on the same node and will have different identities as their layout will be different.
We will use notations such as SM or SM1 to denote the identity of a specific so�ware module.

So�ware modules are always loaded on a node on behalf of a specific so�ware provider SP.
A so�ware module is deployed by loading each of the sections of the module in memory at the
specified addresses. For each module, the processor maintains the layout information in a protected
storage area inaccessible from so�ware. It follows that the node can compute the identity of all
modules loaded on it: the layout information is present in protected storage and the content of the
text section is in memory.

An important sidenote here is that the loading process is not trusted. It is possible for an a�acker
to intervene and modify the module during loading. However, this will be detected as soon as the
module communicates with its provider (Section 3.5).

Finally, the node computes a symmetric key KN ,SP,SM that is specific to the module SM loaded on
node N by provider SP. It does so by first computing KN ,SP = kdf(KN ,SP) as discussed above, and
then computing KN ,SP,SM = kdf(KN ,SP,SM). All these keys are kept in the protected storage, and
will only be available to so�ware indirectly by means of new processor instructions we discuss
later. Table 1 gives an overview of the keys used by Sancus.
Note that the provider SP can also compute KN ,SP,SM, since he received KN ,SP from IP and since

he knows the identity SM of the module he is loading on N . �is key will be used to a�est the
presence of SM on N to SP and to secure the communications between SM and SP.

Figure 2 shows a schematic of a node with a so�ware module loaded. �e picture also shows the
keys and the layout information that the node has to manage.
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Fig. 2. A node with a so�ware module loaded. The le� part of the protected storage area is global while the
right part is per module metadata. Sancus ensures the keys can never leave the protected storage area by
only making them available to so�ware in indirect ways through new processor instructions.

3.2.4 Memory Protection on the Nodes. �e various modules on a node must be protected from
interfering with each other in undesired ways by means of some form of memory protection. Our
design relies on program counter-based memory access control [72], as this memory access control
model has been shown to support strong isolation [71], as well as remote a�estation [25]. Roughly
speaking, isolation is implemented by restricting access to the data section of a module such that it
is only accessible while the program counter is in the corresponding text section of the same module.
Moreover, the processor instructions that use the keys KN ,SP,SM will be program counter-dependent.
Essentially, the processor offers special instructions to access the cryptographic capabilities. If
such an instruction is invoked from within the text section of a specific module SM, the processor
will use key KN ,SP,SM. Moreover, these instructions are only available a�er memory protection has
been enabled for module SM. It follows that only a well-isolated SM installed on behalf of SP on N

can compute cryptographic primitives with KN ,SP,SM, and this is the basis for implementing both
remote a�estation and secure communication.

3.2.5 Remote A�estation and Secure Communication. In order to provide a confidential, integrity-
protected, and authenticated communication channel between a so�ware provider and its modules,
Sancus includes an authenticated encryption primitive. New instructions are provided to encrypt
and decrypt messages using the key of the calling module. When SP receives a message encrypted
with KN ,SP,SM, he will have high assurance that it has been produced by SM since, as mentioned
above, only SM is able to use this key. Note that since SM is the identity of the module that SP is
communicating with, this primitive also provides for remote a�estation.

3.2.6 Secure Linking. A final aspect of our design is how we deal with secure linking. When a
so�ware provider sends a module SM1 to a node, this module can specify that it wants to link to
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Sancus 2.0: A Low-Cost Security Architecture for IoT Devices 0:9

another module SM2 on the same node, so that SM1 can call services of SM2 locally. SM1 specifies
this by including the identity (i.e., a hash) of SM2 in its text section.3 �e processor includes a new
instruction that SM1 can call to check that (1) there is a module loaded (with memory protection
enabled) at the address of SM2 and (2) the identity of that module has the expected value.

A similar mechanism can be used by SM2 to verify that it is indeed called by SM1 (caller authenti-
cation). In its entry point, SM2 can call a new instruction that verifies the identity of the module
that called the entry point. For this to work, the processor keeps track of the previously executing
so�ware module.
Fortunately, this expensive – a hash needs to be calculated over a potentially large text section

– authentication of so�ware modules is needed only once. Section 3.7 discusses a more efficient
procedure for subsequent authentications.

3.3 Key Management

We handle key management without relying on public-key cryptography [47]. IP is a trusted
authority for key management. All keys are generated and/or known by IP. �ere are three types
of keys in our design (Table 1):

• Node master keys KN shared between node N and IP.
• So�ware provider keys KN ,SP shared between a provider SP and a node N .
• So�ware module keys KN ,SP,SM shared between a node N and a provider SP, and the
hardware of N makes sure that only SM can use this key.

We have considered various ways to manage these keys. A first design choice is how to generate the
node master keys. We considered three options: (1) using the same node master key for every node,
(2) randomly generating a separate key for every node using a secure random number generator
and keeping a database of these keys at IP, and (3) deriving the master node keys from an IP master
key using a key derivation function and the node identity N .
We discarded option (1) because for this choice the compromise of a single node master key

breaks the security of the entire system, hence violating hardware breach confinement (Section 2.3).
Options (2) and (3) are both reasonable designs that trade off the amount of secure storage and the
amount of computation at IP’s site. Our prototype uses option (2).
�e so�ware provider keys KN ,SP and so�ware module keys KN ,SP,SM are derived using a key

derivation function as discussed in the overview section.
Finally, an important question is how compromised keys can be handled in our scheme. Since

any secure key derivation function has the property that deriving the master key from the derived
key is computationally infeasible, the compromise of neither a module key KN ,SP,SM nor a provider
key KN ,SP needs to lead to the revocation of KN . If KN ,SP is compromised, provider SP should
receive a new name SP′ since an a�acker can easily derive KN ,SP,SM for any SM given KN ,SP. If
KN ,SP,SM is compromised, the provider can still safely deploy other modules. SM can also still be
deployed if the provider makes a change to the text section of SM.4 If KN is compromised, it needs
to be revoked. Since KN is different for every node, this means that only one node needs to be
either replaced or have its key updated.

3Note that if SM2 also wants to link to SM1, this method creates a circular dependency between their identities. �is can be

resolved by not including the other’s identity in the text section but having the so�ware provider securely send it a�er

deployment and storing it in the data section.
4For example, a random byte could be appended to the text section without changing the semantics of the module.
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Table 2. Memory access control rules enforced by Sancus using the traditional Unix notation. Each entry
indicates how code executing in the “from” section may access the “to” section.

From/to Entry Text Data Unprotected

Entry r-x r-x rw- rwx

Text r-x r-x rw- rwx

Unprotected/
Other SM --x --- --- rwx

3.4 Memory Access Control

Memory can be divided into (1) memory belonging to modules, and (2) the rest, which we refer to
as unprotected memory. Memory allocated to modules is divided into two sections, the text section,
containing code and constants, and the data section containing all the data that should remain
confidential and should be integrity protected. Modules can also have an unprotected data section
that is considered to be part of unprotected memory from the point of view of the memory access
control system.
Apart from application-specific data, runtime metadata such as the module’s call stack should

typically also be included in the data section. Indeed, if a module’s stack were to be shared
with untrusted code, confidential data may leak through stack variables or control-data might be
corrupted by an a�acker. It is the module’s responsibility to make sure that its call stack and other
runtime metadata is in its data section, but our implementation comes with a compiler that ensures
this automatically (Section 4.2).

�e memory access control logic in the processor enforces that (1) the data section of a module is
only accessible while code in the text section of that module is being executed, (2) the text section
can only be executed by jumping to a well-defined entry point, and (3) the text section cannot
be wri�en and can only be read while code in that section is being executed. �e second part is
important since it prevents a�ackers from misusing code chunks in the text section to extract data
from the data section. For example, without this guarantee, an a�acker might be able to launch a
Return-Oriented Programming (ROP) a�ack [15] by selectively combining gadgets found in the
text section. Of course, if a module contains a bug that allows an a�acker to divert its control-flow,
he might still be able to launch such an a�ack; enforcing an entry point prevents these a�acks
being launched from code outside of the module. Note that, as shown in Figure 2, our design allows
modules to have a single entry point only. �is may seem like a restriction but, as we will show in
Section 4.2, it is not since multiple logical entry points can easily be dispatched through a single
physical entry point. Table 2 gives an overview of the enforced access rights.
Besides memory access control, the processor also ensures that modules cannot be interrupted

while being executed to prevent register contents from leaking outside the module. Supporting
interruptible modules is orthogonal to our goals and is le� as future work.

Memory access control for a module is enabled at the time the module is loaded. First, untrusted
code (for instance the node’s operating system) will load the module in memory as discussed in
Section 3.2. �en, a special instruction is issued:

protect layout, SP

�is processor instruction has the following effects:
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• the layout is checked not to overlap with existing modules, and a new module is registered
by storing the layout information in the protected storage of the processor (Section 3.2
and Figure 2);
• memory access control is enabled as discussed above; and
• the module key KN ,SP,SM is created – using the text section and layout of the actually loaded
module – and stored in the protected storage.

�is explains why we do not need to trust the OS that loads the module in memory: if the content of
the text section or the layout would be modified before execution of the protect instruction, then
the key generated for the module would be different, and subsequent a�estations or authentications
performed by the module would fail. Once the protect instruction has succeeded, the hardware-
implemented memory access control scheme ensures that so�ware on the node can no longer
tamper with SM.
�e only way to li� the memory access control is by calling the processor instruction:

unprotect continuation

�eeffect of this instruction is to li� thememory protection of themodule fromwhich the unprotect

instruction is called. To prevent the leakage of confidential data, this instruction also clears the
module’s code- and data sections. Since the unprotect instruction itself is part of the code section,
the programmer has to provide a pointer to the code where the execution is to be continued in the
continuation argument.
Finally, it remains to decide how to handle memory access violations. We opt for the simple

design of rese�ing the processor and clearing memory on every reset. �is has the advantage of
clearly being secure for the security properties we aim for. However an important disadvantage is
that it may have a negative impact on availability of the node: a bug in the so�ware may cause
the node to reset and clear its memory. An interesting avenue for future work is to come up with
strategies to handle memory access violations in less severe ways. Invalid reads could return
some default value as in secure multi-execution [21]. Invalid writes or jumps could be dropped or
modified to actions that are allowed as in edit-automata [50]. For instance, an invalid memory read
might just return zero, and an invalid jump might be redirected to an exception handler.

3.5 Remote A�estation and Secure Communication

We extend the processor with two more instructions that are used for remote a�estation and secure
communication:

encrypt plaintext, associated data, ciphertext (output), tag (output)[, key]

decrypt ciphertext, associated data, tag, plaintext (output)[, key]

�ese instructions have the same semantics as the aead-encrypt and aead-decrypt functions, respec-
tively (Section 3.1).

As can be seen from the signatures above, both instructions have the key as an optional argument.
If none is given, the module key of the invoking module is implicitly used (or an error code is
returned if invoked by unprotected code). �is is the only way for so�ware to access a module key
and the key KN ,SP,SM will only be used when invoked by the module with identity SM deployed
by SP on node N . Note that, besides being able to access the module key, these instructions are
not privileged and the same memory access rules are enforced as for any instruction that accesses
memory.

�ese instructions can be used to provide confidentiality, integrity, and authenticity guarantees
of data exchanged between modules and their providers. �e ciphertext plus the corresponding tag
can be sent using the untrusted operating system over an untrusted network. If the tag verifies
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correctly (using KN ,SP,SM) upon receipt by the provider SP, he can be sure that the decrypted
plaintext indeed comes from SM running on N on behalf of SP as the node’s hardware makes sure
only this specific module can use the module key KN ,SP,SM. �e reasoning is equivalent for data
sent to the module.

To implement remote a�estation, we only need to add a freshness guarantee (i.e., protect against
replay a�acks). Provider SP sends a fresh nonce No to the node N , and the module SM returns the
MAC of this nonce using the key KN ,SP,SM, computed with the encrypt instruction (Section 3.1
explains how this can be done). �is gives the SP assurance that the correct module is running on
that node at this point in time.

Building on this scheme, we can also implement secure communication. Whenever SP wants to
receive data from SM on N , it sends a request to the node containing a nonce No and possibly some
input data I that is to be provided to SM. �is request is received by untrusted code on the node
which passes No and I as arguments to the function of SM to be called. When SM has calculated
the output O , it asks the processor to calculate aead-encrypt(KN ,SP,SM,O ,No | |I ) using the encrypt
instruction. �e resulting ciphertext and tag are then sent to SP. By verifying the tag with its own
copy of the module key, the provider has strong assurance that O has been produced by SM on
node N given input I .
SP can use secure communication to establish a shared secret between two or more of its modules

to allow them to directly communicate with each other. Although this is feasible for modules
running on different nodes, the overhead is probably too high for secure communication between
modules running on the same node; we discuss a more efficient technique in Section 3.7.

3.6 Confidential Loading

If, besides the integrity guarantees provided through remote a�estation, one wants to have confi-
dentiality guarantees for a module’s text section, more architectural support is necessary. Indeed,
although a module’s text section is not readable by other modules (Table 2), this is only enforced
a�er enabling a module; i.e., up to that point an a�acker can easily read the module’s text section.
�erefore, we provide a second way to use the protect instruction:

protect layout, SP, MAC

In this form, the protect instruction behaves exactly the same (Section 3.4) except that, before
calculating the module key, the module’s text section is decrypted in place using KN ,SP. If the
integrity check using the given MAC, i.e., an authenticated encryption tag, fails, the text section is
cleared and the protection disabled.
Note that KN ,SP is now used to encrypt confidential modules, as well as for key derivation.

However, the uniqueness of both operations can be guaranteed by domain separation, i.e., by se�ing
the first bit of the associated data to 0 or 1 for the encryption and key derivation respectively.

It should be mentioned that the integrity check is not strictly necessary for confidential loading,
since any subsequent remote a�estation will also verify the module’s integrity. However, it could
be used as a simple form of module authentication: by disabling the non-decrypting form of the
protect instruction, only entities possessing a valid so�ware provider key can install modules on
the system.

3.7 Secure Linking and Local Communication

In this section, we discuss how we assure the secure linking property mentioned in Section 2.3.
More specifically, we consider the situation where a module SM1 wants to call another module SM2

and wants to be ensured that (1) the integrity of SM2 has not been compromised, and (2) SM2 is
correctly protected by the processor.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 0000.



Sancus 2.0: A Low-Cost Security Architecture for IoT Devices 0:13

In our design, if module SM1 wants to link securely to SM2, SM1 should be deployed with the
identity of SM2. �e processor provides a special instruction to check the existence and integrity of
a module at a specified address:

attest address, expected hash

�is instruction will:

• verify that a module is loaded (with protection enabled) at the provided address;
• compute the identity of that module (i.e., a hash of its text section and layout);
• compare the resulting hash with the expected hash parameter of the instruction; and
• if the hashes were equal, return the module’s ID (to be explained below), otherwise return
zero.

Using this processor instruction, a module can securely check for the presence of another
expected module, and can then call that other module.

Since this authentication process is relatively expensive (it requires the computation of a hash),
our design also includes a more efficient mechanism for repeated authentication. �e processor
will assign sequential IDs5 to modules that it loads, and will ensure that – within one boot cycle –
it never reuses these IDs. �is can be implemented by storing the ID to be used for the next module
in a register (“Next ID” in Figure 2), incrementing it a�er a new module is enabled, and generating
a violation when it overflows. A processor instruction:

get-id address

checks that a protected module is present at address and returns the ID of the module. Once a
module has checked using the initial authentication method that the module at a given address is the
expected module, it can remember the ID of that module, and then for subsequent authentications
it suffices to check that the same module is still loaded at that address using the get-id instruction.
For caller authentication, the processor keeps track of the previously executing module by

recording its ID in a register (“Caller ID” in Figure 2). �is register is updated whenever execution
enters a new module. Modules can a�est their caller through two instruction: attest-caller and
get-caller-id. �ese instruction behave similar to attest and get-id respectively but use the
previously executing module implicitly.

3.8 An End-to-End Example

To make the discussion in the previous sections more concrete, this section gives a small example of
how our design may be applied in the area of sensor networks. Figure 3 shows our example setup.
It contains a single node to which a sensor S is a�ached; communication with S is done through
memory-mapped I/O. �e owner of the sensor network, IP, has deployed a special module, SMS ,
that is in charge of communicating with S . By ensuring that the data section of SMS contains the
memory-mapped I/O region of S , IP ensures that no so�ware outside of SMS is allowed to configure
or communicate directly with S ; all requests to S need to go through SMS .
Figure 3 also shows a number of so�ware providers (SP1, . . . ,SPn) who have each deployed a

module (SM1, . . . ,SMn ). In the remainder of this section, we walk the reader through the life cycle
of a module in this example setup.
�e first step for a provider SP is to contact IP and request permission to run a module on the

sensor node. If IP accepts the request, it provides SP with its provider key for the node, KN ,SP.
Next, SP creates the module SM, that he wants to run on the processor and calculates the

associated module key, KN ,SP,SM. Since SM will communicate with SMS , SP requests the identity of

5To avoid confusion between the two different identity concepts used in this text, we will refer to the hardware-assigned

number as ID while the text section and layout of a module is referred to as identity.
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Fig. 3. Setup of the sensor node example discussed in Section 3.8. Sancus ensures only module SMS is allowed
to directly communicate with the sensor S . Other modules securely link to SMS to receive sensor data in a
trusted way.

SMS from IP. �is identity is included in the text section of SM, so that SM can use it to authenticate
SMS . �en SM is sent to the node for deployment.
Once SM is received on the node, it is loaded, by untrusted so�ware like the operating system,

into memory and the processor is requested to protect SM, using the protect processor instruction.
As discussed, the processor enables memory protection, computes the key KN ,SP,SM, and stores it in
hardware.
Now that SM has been deployed, SP can start requesting data from it. We will assume that

SM’s function is to request data from S through SMS , perform some transformation, filtering, or
aggregation on it, and return the result to SP. �e first step is for SP to send a request containing a
nonce No to the node. Once the request is received (by untrusted code) on the node, SM is called
passing No as an argument.
Before SM calls SMS , it needs to verify the integrity of module SMS . It does this by executing

the attest instruction passing the address of the expected identity of SMS (included in SM’s text
section) and the address of the entry point it is about to call. �e ID of SMS is then returned to SM
and, if it is non-zero, SM calls SMS to receive the sensor data from S . SM will usually also store the
returned ID of SMS in its data section so that future authentications of SMS can be done with the
get-id instruction.
Once the received sensor data has been processed into the output data O , SM will request the

processor to calculate aead-encrypt(KN ,SP,SM,O ,No) using the encrypt instruction. SM then passes
the ciphertext C and tag T to the (untrusted) network stack to be sent to SP. When SP receives the
output of SM, it can verify its integrity by calculating aead-decrypt(KN ,SP,SM,C,No,T ).

4 IMPLEMENTATION

�is section discusses the implementation of Sancus. We have implemented hardware support for
all security features discussed in Section 3, as well as a compiler that can create so�ware modules
suitable for deployment on the hardware.

4.1 The Processor

Our hardware implementation is based on an open source implementation of the TI MSP430
architecture: the openMSP430 from the OpenCores project [33]. We have chosen this architecture
because both GCC and LLVM support it, and there exists a lot of so�ware running natively on the
MSP430, for example the Contiki operating system.
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Fig. 4. Schematic of the Memory Access Logic (MAL), the hardware used to enforce the memory access rules
for a single protected module.

�e discussion is organized as follows. First, we explain the features added to the openMSP430 in
order to implement the isolation of so�ware modules. �en, we discuss how we added support for
the cryptographic operations. Finally, we describe the modifications we made to the openMSP430
core itself.

4.1.1 Isolation. �is part of the implementation deals with enforcing the access rights shown in
Table 2. For this purpose, the processor needs access to the layout of every so�ware module that
is currently protected. Since the access rights need to be checked on every instruction, accessing
these values should be as fast as possible. For this reason, we have decided to store the layout
information in special registers inside the processor. Note that this means the total number of
so�ware modules that can be protected at any particular time has a fixed upper bound. �is upper
bound, NSM, can be configured when synthesizing the processor.

Figure 4 gives an overview of the Memory Access Logic (MAL) circuit used to enforce the access
rights of a single so�ware module. �is MAL circuit is instantiated NSM times in the processor.
It has five inputs: pc and prev pc are the current and previous values of the program counter,
respectively. �e input mab is the memory address bus – the address currently used for load or store
operations6 – while mb en indicates whether the address bus is enabled for the current instruction
and mb wr whether the access is a write. �e MAL circuit has one output, violation, that is
asserted whenever one of the access rules is violated.

Apart from the input and output signals, the MAL circuit also keeps state in registers. �e layout
of the protected so�ware module is captured in the TS (start of text section), TE (end of text section),
DS (start of data section) and DE (end of data section) registers. �e EN register is set to 1 if there is
currently a module being protected by this MAL circuit instantiation. �e layout is saved in the

6Of course, this includes implicit memory accesses like a call instruction.
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registers when the protect instruction is called, at which time EN is also set. When the unprotect
instruction is called, we just unset EN which disables all checks.

Since the circuit is purely combinational, no extra cycles are needed for the enforcement of access
rights. As explained above, this is exactly what we want since these rights need to be checked for
every instruction. �e only downside this approach might have is that the large combinational
circuit adds to the length of the critical path of the processor. We will explore the implications our
design has on the processor’s critical path in Section 6.1.
Apart from hardware circuit blocks that enforce the access rights, we also added a single hard-

ware circuit to control the MAL circuit instantiations. It implements four tasks: (1) combine the
violation signals from every MAL instantiation into a single signal; (2) keep track of the value of
the current and previous program counter; (3) keep track of the currently and previously executing
SM; and (4) when the protect instruction is called, select a free MAL instantiation to store the
layout of the new so�ware module and assign it a unique ID.

4.1.2 Cryptography. As explained in Section 3.1, a hardware implementation of three crypto-
graphic primitives is needed to implement our design: authenticated encryption, key derivation
and hashing. Since our implementation is based on a small microprocessor, one of our main goals
here is to make the implementation of these features as small as possible.

We have chosen to build these cryptographic primitives on the SpongeWrap [11] authenticated
encryption construction using spongent [12] as the underlying sponge function. Since keyed
sponge functions are shown to be pseudorandom functions [6], we can reuse SpongeWrap to
calculate MACs, and consequently for key derivation. Since the security of SpongeWrap relies on
the soundness of the sponge function it uses, it can also be used as a hashing function by calling
aead-encrypt({}, {},M ).
Besides being able to use it for all necessary primitives, there are several reasons we use

SpongeWrap with spongent. Since the security of SpongeWrap is proportional to the capacity
of the underlying sponge function7, and spongent is defined for a large range of capacities, we
can create an implementation with a selectable security parameter. More specifically, our core can
be synthesized with a security parameter between 16 and 256 bits, although values less than 80
bits should be avoided. Since the security parameter influences the core’s area (Section 6.2), it is a
trade-off between cost and security.
As we will see later, all module keys are stored in hardware making the key size an important

design parameter regarding area. Another advantage of SpongeWrap is that the key size may
be as small as the security parameter whereas some other lightweight authenticated encryption
primitives require a key that is twice as long, e.g., APE [5].
A downside of SpongeWrap is that uniqueness of the associated data is required for confiden-

tiality, and no security guarantees can be given when a nonce is reused. More specifically, if two
ciphertext messages are captured that are encrypted with the same key and associated data, part of
the XOR of the corresponding plaintext message may be leaked (see [11] for details). �erefore,
the user of this primitive should ensure that, for a specific key, the associated data is unique, i.e.,
that it includes a nonce. Note that this is only necessary when encrypting data and there is no
nonce requirement for creating MACs. In contrast, nonce-misuse resistant authenticated encryption
algorithms (e.g., APE mentioned above) limit information leakage about the message when the
nonce is reused, but this comes at an additional implementation cost.

It is a so�ware provider’s responsibility that the nonce requirement is fulfilled by the modules it
deploys. In our prototypes, this is achieved by having SP send an initial counter value as nonce

7To be exact, for a sponge function with a capacity of c bits, SpongeWrap has a security of c/2 bits [11].
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in its first message to a newly deployed module. For subsequent messages, modules can simply
increment the counter and use that value as the next nonce. Alternatively, if SP never wants to
send messages to a module, the initial counter value can be included in the module’s text section.

�e node key KN is fixed when the hardware is synthesized and should be created using a secure
random number generator. When a module SM is loaded, the processor will first derive KN ,SP using
the SpongeWrap implementation which is then used to derive KN ,SP,SM. �e la�er key will then
be stored in the hardware MAL instantiation for the loaded module. Note that we have chosen to
cache the module keys instead of calculating them on the fly whenever they are needed. �is is a
trade-off between size and performance which we feel is justified because, when using 128 bit keys,
SpongeWrap needs about 90 cycles per input byte (Section 6.1). Since the module key is needed
for every remote a�estation and whenever the module’s output needs to be encrypted, having to
calculate it on the fly would introduce a runtime overhead that we expect to be too high for most
applications.

Because of the associated data uniqueness requirement explained above, our implementation of
confidential loading is slightly different from its design (Section 3.6). Since modules deployed on N

by SP are always encrypted using KN ,SP, the protect instruction takes an extra argument, nonce,
to be able to fulfill the nonce requirement. �is argument is used as the associated data input for
the decryption routine.

4.1.3 CoreModifications. �e largest modification that had to bemade to the core is the decoding
of the new instructions. We have identified a range of opcodes, starting at 0x1380, that is unused in
the MSP430 instruction set and mapped the new instructions in that range.
Further modifications include routing the needed signals, like the memory address bus, into

the access rights modules as well as connecting the violation signal to the internal reset. Note
that the violation signal is stored into a register before connecting it to the reset line to avoid the
asynchronous reset being triggered by combinational glitches from the MAL circuit.

Since our experience has shown that developing applications on a system that resets on violations
is rather tedious, we added a synthesis option to generate a non-maskable interrupt instead. If
this option is enabled, the memory backbone will disable all memory accesses when a violation is
generated and the frontend will initiate the IRQ sequence. Although this may superficially seem
secure, it brings with it a number of problems (e.g., if a module generates a violation, its register
contents will be leaked) we have not dealt with yet. �erefore, it currently is not enabled by default
and should not be used in production environments.
Figure 5 gives an overview of the added hardware blocks when synthesized with support for

two protected modules. In order to keep the figure readable, we did not add the input and output
signals of the MAL blocks shown in Figure 4.

4.2 The Compiler

Although the hardware modifications enable so�ware developers to create protected modules,
doing this correctly is tedious, as the module can have only one entry point, and as modules may
need to implement their own call-stack to avoid leaking the content of stack allocated variables to
unprotected code or to other modules. Hence, we have implemented a compiler extension based on
LLVM [52] that deals with these low-level details. We have also implemented a support library
that offers an API to perform some commonly used functions like calculating a MAC of data.
Our compiler compiles standard C files.8 To benefit from Sancus, a developer only needs to

indicate which functions should be part of the protected module being created, which functions

8We use Clang [51] as our compiler frontend. �is means any C-dialect accepted by Clang is supported.
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Fig. 5. Overview of the hardware blocks in the Sancus core. Lightly shaded blocks are part of the original
openMSP430 design while the darkly shaded ones are added specifically for Sancus. Remember that, while
we only draw two SM blocks for clarity, this number (NSM) can be chosen when synthesizing the core. Notice
how the SM control unit takes the program counter (PC) and the memory address bus (MAB) as input to
produce the violation signal using the memory access logic (MAL) circuits.

should be entry points and what data should be inside the protected section. For this purpose, we
offer three a�ributes – SM FUNC, SM ENTRY and SM DATA – that can be used to annotate functions
and global variables.

4.2.1 Entry Points. Since the hardware supports a single entry point per module only, the
compiler implements multiple logical entry points on top of the single physical entry point by
means of a jump table. �e compiler assigns every logical entry point a unique ID. When calling a
logical entry point, its ID is placed in a register before jumping to the physical entry point of the
module. �e code at the physical entry point then jumps to the correct function based on the ID
passed in the register.

When a module calls an external function, the same entry point is also used when this function
returns. �is is implemented by using a special ID for the “return entry point”. If this ID is provided
when entering the module, the address to return to is loaded from the module’s stack. Of course,
this is only safe if stack switching is enabled.

4.2.2 Stack Switching. As discussed in Section 3.4, it is preferable to place the runtime stack of
so�ware modules inside the data section. Our compiler automatically handles everything needed
to support multiple stacks. For every module, space is reserved at a fixed location in its protected
section for the stack. �e first time a module is entered, the stack pointer is loaded with the address
of this start location of the stack. When the module is exited, the current value of the stack pointer
is stored in the protected section so that it can be restored when the module is reentered.
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4.2.3 Exiting Modules. Our compiler ensures that no data is leaked through registers when
exiting from a module. When a module exits, either by calling an external function or by returning,
any register that is not part of the calling convention is cleared. �at is, only registers that hold a
parameter or a return value retain their value.

4.2.4 Secure Linking. Calls to protected modules are automatically instrumented to verify the
called module. �is includes automatically calculating any necessary module keys and identities
(Section 3.7). Of course, a so�ware provider needs to provide its key to the compiler for this function
to work.

4.3 Deployment

Since the identity of a module is dependent on its load addresses on node N , SP must be aware of
these addresses in order to be able to calculate KN ,SP,SM. Moreover, any identity hashes needed for
secure linking will also be dependent on the load addresses of other modules. Enforcing static load
addresses is obviously not a scalable solution given that we target systems supporting dynamic
loading of so�ware modules by third-party so�ware providers.

Given these difficulties, we felt the need to develop a proof-of-concept so�ware stack providing
a deployment solution. Our stack consists of two parts: a set of tools used by SP to deploy SM on N

and host so�ware running on N . Note that this host so�ware is not part of any protected module
and, hence, does not increase the size of the TCB.
We will now describe the deployment process implemented by our so�ware stack. First, SP

creates a relocatable Executable and Linkable Format (ELF) file of SM and sends it to N . �e host
so�ware on N receives this file, finds a free memory area to load SM and relocates it using a custom
made dynamic ELF loader. �en, hardware protection is enabled for SM and a symbol table is sent
back to SP. �is symbol table contains the addresses of any global functions9 as well as the load
addresses of all protected modules on N . Using this symbol table, SP is able to reconstruct the exact
same image of SM as the one loaded on N which can then be used to calculate KN ,SP,SM.
Note that an alternative linking strategy is for SP to first request the node’s symbol table, link

the module locally and then send it to the node to be loaded. �is would simplify the node since
the custom ELF loader is not needed in this scheme. However, since our toolchain does not support
position-independent code, this would mean that the memory locations where the module is going
to be loaded need to be reserved while SP links the module. We feel that this two-phase deployment
scheme adds more overall complexity than a simple ELF loader.
Since the dynamic loader needs to inspect and update parts of the text section of modules, this

process does not work when confidential loading is used. Although our tools currently do not
support the fully automatic loading of encrypted modules, it can be implemented as follows. First,
SP sends a request to N indicating the sizes of the sections of the module it wants to load. �en,
the host so�ware allocates memory for those sections and replies with a handle identifying the
allocated memory and a symbol table. Using this symbol table, SP links SM locally and sends the
resulting image, together with the memory handle, back to N . �e host so�ware on N then loads it
in the pre-allocated memory sections and enables its protection.
A�er SM has been deployed, the host so�ware on N provides an interface to be able to call its

entry points. �is can be used by SP to a�est that SM has not been compromised during deployment
and that the hardware protection has been activated.
�is interface is used to upload the identity hashes to SM of the modules it securely links to.

To this end, SP either calculates these hashes a�er it received the symbol table or, if it concerns

9For example, libc functions and I/O routines.
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modules belonging to a different so�ware provider that use confidential loading, receives them
from their respective providers. �en, SP encrypts those hashes using KN ,SP,SM and sends them to
SM using the interface described above.

5 APPLICATION SCENARIOS

We have investigated application scenarios for Sancus in the context of trust assessment for IoT
devices and sensor nodes [60], and for building a secure smart electricity meter for the emerging
smart electricity grid [59]. Both applications yield promising results, in particular with respect
to system performance and the size of the so�ware TCB. In this section we briefly present our
findings from these two scenarios, and outline challenges and future applications in domains such
as embedded real-time control systems.

5.1 Trust Assessment Modules for the Internet of Things

Devices in the IoT or in Wireless Sensor Networks (WSNs) are typically equipped with inexpensive
low-performance microcontrollers. Yet, these devices are interconnected and thereby exposed to
physical as well as virtual a�acks [66]. Even when not considering malicious interference, the
device’s autonomous mode of operation, exposure to harsh environmental conditions and resource
scarceness, make these systems prone to malfunction and the effects of so�ware aging.

�e problem of trustworthiness and trust management of low-power low-performance computing
nodes has been discussed in previous research, in particular in the context of WSNs [29, 36, 53].
Most techniques proposed focus on observing the communication behavior and on validating the
plausibility of sensor readings obtained from nodes, so as to assess the trustworthiness of these
nodes. �is approach is certainly suitable to detect the systematic failure or misbehavior of single
nodes. However, detection is not immediate and a malfunctioning node may output corrupted data
that is not labelled as such, before the network will begin to distrust the node: the quality of readings
from a sensor may degrade gradually, so�ware failures may lead to non-deterministic behavior or
a node may be captured by an a�acker, exposing benign and malicious behavior alternately.
In [60] we show that the above shortcoming can be mitigated by employing Sancus in an

approach to securely obtain measurements with respect to the integrity of the so�ware that runs
on a minimalist computing node autonomously or on demand. We use these measurements as
an indication of the trustworthiness of that node. Sancus allows us to integrate trust assessment
modules into a largely unmodified and untrusted embedded OS without using techniques such
as virtualization and hypervisors, which would incur unacceptable performance overheads for
many embedded applications. With Sancus’ remote a�estation functionality, our trust assessment
modules can be deployed dynamically, limiting memory consumption and restricting a�acker
adaptation. �e module may then inspect the OS or application code and securely report trust
metrics to an external trust management system.
We describe and evaluate a prototype implementation of our approach that integrates Sancus-

protected trust assessment modules with the Contiki OS [24], measuring properties such as code
integrity, the content of OS- and application data structures, the availability of system resources or
the occurrence of system events. As an example, we have implemented a trust assessment module
that monitors the process list maintained by Contiki’s scheduler, and checks code integrity of the
processes present in the above list. To test the effectiveness of our trust assessment module, our
scenario integrates a number of trivial application processes and an a�acker process that aims
to perform alterations to OS data and application code. Expectedly, all changes performed by
the a�acker are detected and reported with the subsequent invocation of the trust assessment
module. Our results demonstrate that, using Sancus, comprehensive inspection mechanisms can be
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implemented efficiently, incurring runtime overheads that should be acceptable in many deployment
scenarios with stringent requirements with respect to safety and security. Indeed, we believe that
our approach enables many state-of-the-art inspection mechanisms and countermeasures against
a�acks [26] to be adapted for IoT nodes and in the domain of WSNs.

5.2 High Assurance Smart Metering

With the rise of the smart electricity grid and the extended use of renewable energy resources,
there is need for appliances and metering equipment to become smart. Smart appliances can use
electricity efficiently when it is inexpensive due to, e.g., local production or the behavior of other
users of the grid. Smart electricity meters must therefore timely communicate measurements of
local energy consumption and production to grid operators. Being part of the critical infrastructure
of our society, security of the smart grid must be guaranteed, not only at the level of the grid
operator but also at the level of individual premises.
In [59] we implement a simplified scenario for smart meter deployment and evaluate security

aspects of this scenario. Our implementation is loosely based on the British “Smart Metering
Implementation Programme” [20] but simplifies communication protocols and adopts architectural
changes suggested in [17], relying on Sancus to implement security features. Importantly, the goal
of this case study is not to accurately implement [20] but to provide a security-focused reference
implementation that illustrates the use of Sancus to achieve a notion of high assurance smart

metering by means of logical component isolation, mutual authentication, and by minimizing the
so�ware TCB.
Our scenario contains so�ware components that implement a smart electricity meter to be

installed at a client’s premises, and a Load Switch that can enable or disable power supply to
the premises. We further implement components to represent the grid operator’s Central System
and an In-Home Display. �e smart meter and the Load Switch communicate with the Central
System via a Wide Area Network (WAN) Interface. In our case, the WAN Interface supports
periodic access to the smart meter’s operational data, as well as control of the Load Switch. �e
smart meter and the In-Home Display communicate via the Home Area Network (HAN) Interface.
Only consumption data is periodically sent from the smart meter to the In-Home Display via
this interface. All components are meant to be deployed as protected so�ware modules on a
Sancus-like infrastructure that facilitates so�ware component isolation and authenticated and
secure communication between these modules. Relying on these security primitives, our approach
and prototype guarantee that all outputs of the so�ware system can be explained by the system’s
source code and the actual physical input events. We further guarantee integrity and confidentiality
of messages while relying on a very small so�ware TCB at runtime – less than 300 LOC, excluding
drivers. For scenarios that involve critical infrastructure, such as the smart grid, we believe that
our approach has the strategic advantage of enabling formal verification and security certification
of small, isolated so�ware components while maintaining the strong security guarantees of the
distributed system that is formed by the interaction of these components.

5.3 Challenges and Future Directions

In the past few years we have seen a number of a�ack scenarios in which safety-critical infras-
tructure was successfully compromised and abused at the site of the end user. Amongst the most
prominent cases are certainly remote a�acks against insulin pumps [65], general hospital equip-
ment [27], and against automotive vehicles [58]. In all these cases the initial subject of an a�ack was
so�ware. In particular, so�ware that would interact with critical components of the appliance but
that was not considered safety-critical itself. We believe that these a�ack scenarios would become
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infeasible or at least very hard to implement if critical so�ware components would be integrity
protected, resistant against certain code misuse a�acks, not vulnerable to low-level a�acks that
exploit implementation details, and use authenticated encryption to securely communicate with
each other. Sancus provides a trusted computing infrastructure to securely implement the above
scenario, excluding many a�ack vectors by design, in particular when combined with fully abstract
compilation [64].

In future application scenarios for Sancus we will investigate authentic execution for distributed
event-driven applications that execute on a heterogeneous shared infrastructure and require a
small TCB. Similar to the above example of a high assurance smart meter, these applications are
characterized by consisting of multiple components that execute on different computing nodes and
for which program flow is determined by events such as the occurrence of sensor readings.
As an example, consider an automotive anti-lock braking system (ABS) with its sensors (pedal

and rotation) and actuators (brake hydraulics). For these systems, we strive for a notion of authentic
execution that entails, roughly speaking, the following: if the application produces a physical output
event (e.g., engaging the brakes), then there must have happened a sequence of physical input
events (sensor readings) such that this sequence, when processed by the application (as specified by
the application’s source code), produces that output event. �is provide strong integrity guarantees,
ruling out both spoofed events as well as tampering with the execution of the program. �e
problem of trustworthiness of automotive control systems has been addressed in recent standards
and research (e.g., [8, 62]), albeit without consideration of so�ware security and so�ware integrity
that our approach can provide. Ongoing research further investigates the reliability of automotive
sensor readings, which can be subject to active spoofing a�acks (cf. [68, 69]). Generally, these
vulnerabilities have to be addressed at the physical layer and are out of scope for Sancus.

Handling input and output events requires the ability to implement secure I/O drivers. Section 3.8
already described a simple way to implement such a driver: by mapping its data section over the
memory-mapped I/O region of a device, the driver gains exclusive access over this device. However,
future work will have to address open issues such as sharing devices between multiple modules
and securely delivering interrupts to drivers.

Yet, implementing distributed control systems based on Sancus or similar technology is difficult
beyond achieving security guarantees. In ongoing work we address challenges with respect to
efficiently implementing resource sharing between Sancus modules, and the problem of providing
availability and real-time guarantees.

5.3.1 Implementing Resource Sharing and Access Control. Traditionally, so�ware for small mi-
crocontrollers relies heavily on implementing communication between so�ware components via
shared memory, and sharing I/O devices between different components. Of course, this has security
implications such that so�ware components must mutually trust each other. Isolating different
so�ware components as protected modules, however, limits their ability to securely share sys-
tem resources, asking for new development paradigms and potentially imposing performance
overheads. In [74], we describe and evaluate an approach to implement and securely enforce
application-grained access control policies for IoT nodes. Our access control mechanism can man-
age access to various system resources such as file systems, I/O devices, or specific devices a�ached
to an external communication bus. While incurring low overheads, our mechanism guarantees
at runtime that only authenticated so�ware modules gain access to resources as specified in the
policy; the internal state of the access control implementation is protected and cannot be tampered
with. We evaluate a prototypic implementation of our access control mechanism in two application
scenarios that facilitate secure data sharing between so�ware modules through (1) a shared memory
implementation and (2) peripheral flash memory and the Coffee [73] file system. Our evaluation
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shows that module isolation and access control impose relatively low overheads that should be
acceptable in deployment scenarios with stringent safety and security requirements.

5.3.2 Availability and Real-Time Guarantees for Sancus. �e security guarantees offered by
current protected module architectures are limited to confidentiality and integrity guarantees –
they do not extend to availability. A buggy or malicious application can still harm the availability of
the platform by overwriting crucial OS data structures, or by monopolizing a shared system resource
such as CPU time. In [75], we report on our work-in-progress towards li�ing this limitation. We
argue that, in addition to isolating so�ware, hardware-level protection mechanisms can be extended
to also preserve availability (possibly even real-time) guarantees on a partially compromised
embedded system. �e objective of this line of work is to address some of the availability challenges
induced by hardware-level protectedmodule architectures, while keeping the TCB small. We outline
a hardware mechanism that makes Sancus’ protected modules fully interruptible and reentrant.
We show how our mechanism preserves deadlines for external events, and facilitates reasoning
about real-time guarantees by ensuring a deterministic interrupt latency at all times. We sketch a
multitasking model that introduces protection domains within a conventional control flow thread
and show how logical threads can be managed by an unprivileged scheduler.

6 EVALUATION

In this section we evaluate Sancus in terms of runtime performance, impact on chip size, and
provided security. All experiments were performed using a Xilinx XC6SLX25 Spartan-6 FPGA with
a speed grade of −2, synthesized using Xilinx ISE Design Suite.

6.1 Performance

�ere are two important performance aspects to consider with our design. First, since we made
changes to the CPU core, we evaluate the impact on its critical path, i.e., the maximum frequency
it can run at. Second, we measure the runtime overhead of the added instructions, as well as the
code transformations performed by the compiler.

6.1.1 Critical Path. Since the Xilinx tools offer no direct way to find the critical path of a design,
we measured it indirectly. Using timing constraints, one can specify what clock rate certain signals
should be able to sustain; the tools will then err when the constraint cannot be met. By varying
the constraint on the input clock signal, we can get a measure on how fast the design will be able
to run and, thus, on the length of the critical path. We found that the unmodified openMSP430
core can run at 51 MHz with our setup. For our modifications, there are two parameters that may
influence the critical path: the security level (i.e., the size of the keys) and the number of supported
modules NSM. �e reason these parameters may influence the critical path is the same for both.
�e keys are stored in the MAL circuits and routed to the crypto unit through a multiplexer. Both
the key size and NSM will increase the size of this multiplexer, and hence increase the length of the
critical path.

Figure 6 shows the maximum obtainable frequency in function of NSM for a number of different
security levels. Note that although our implementation allows for security levels up to 256 bits, 128
bits are ample for our target platforms, and we therefore do not evaluate higher security levels.
�e influence of the security level and NSM should be clear from the figure. However, it should

also be clear that the maximum frequency for any security level is not influenced much by values
of NSM up to 8 where it is always around 39 MHz. �e reason for the maximum frequency for low
numbers of NSM being smaller than the unmodified core (51 MHz) is because of the MAL circuits
(Figure 4), which add a number of comparators to the path of the memory address bus.
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Fig. 6. The maximum frequency for which the core can be synthesized in function of the number of modules
(NSM) for a number of security levels. Themaximum frequency decreases withNSM due to the largemultiplexer
needed to get the module key out of the MAL circuits. This also explains why the maximum frequency
decreases much faster when the key size is larger. Note that the unmodified openMSP430 core can be
synthesized at 51 MHz.

6.1.2 Microbenchmarks. To quantify the impact on performance of our extensions, we first
performed microbenchmarks to measure the cost of each new instruction. To this end, we added a
custom timestamp counter peripheral to the CPU core that allowed us to conveniently measure
the amount of cycles passed since power up. It should also be noted that all measurements are
completely noiseless and thus accurate. Consequently, it is not necessary to calculate an average
value over multiple measurements.

�e get-id and unprotect instructions are very fast: they both take one clock cycle. �e other
instructions perform cryptographic operations on their input, and hence their runtime cost depends
linearly on the size of the input they handle. Remember that all cryptographic operations are
implemented using the same underlying primitive (Section 4.1.2), which means their runtime cost
is almost exactly the same. �e only exception is the enable instruction when confidential loading
is used. In this case the underlying primitive is called twice: once for decryption and once for
key derivation. Its cost is therefore twice as big as the other instructions. Figure 7 shows the
measurements for the encrypt instruction for a number of different security levels.

Note that the performance of the 80- and 96 bit implementations is almost the same. �e reason
for this is that the performance of our crypto unit is determined by the underlying spongent

variant. Recall that spongent is defined in different variants and we select the correct variant
for the required security level (Section 4.1.2). �e 80- and 96 bit security levels require the same
spongent variant.

6.1.3 Macrobenchmark. To give an indication of the impact on performance in real-world
scenarios, we performed the following macro benchmark. We synthesized our processor with
128-bit keys and configured it as in the example shown in Figure 3. We measured the time it takes
from the moment a request arrives at the node until the response is ready to be sent back. More
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Fig. 7. Execution time of the encrypt instruction for a number of security levels. The cost of the other
cryptographic instructions is similar with the exception of enable for confidential loading, which is twice as
big. Notice how the performance for the 80- and 96 bit security levels is almost equal because they use the
same spongent variant.

specifically, the following operations are timed: (1) the request is passed, together with the nonce,
to SMi ; (2) SMi requests SMS for sensor data; (3) SMi performs some transformation on the received
data; and (4) SMi encrypts its output together with the nonce. �e overhead introduced by Sancus is
due to a call to attest in step (2) and a call to encrypt in step (4) as well as the entry and exit code
introduced by the compiler. Since this overhead is fixed, the amount of computation performed in
step (3) will influence the relative overhead of Sancus. Note that the size of the text section ofMS is
230 bytes, and that nonces and output data encrypted byMi both have a size of 16 bits.

We measured the fixed overhead to be 26,834 cycles for the first time data is requested from the
module. Since the call to attest in step (2) is not needed a�er the initial verification (Section 3.7),
we also measured the overhead of any subsequent requests, which is 3,481 cycles. Given these
values, the relative overhead can be calculated in function of the number of cycles used during the
computation in step (3). �e result is shown in Figure 8.

6.2 Area

We evaluated the area of our design using Synopsys Design Compiler v2013.12 with the UMC 130nm
and NanGate 15nm standard-cell libraries. �e default ASIC synthesis se�ings for the openMSP
were used, except for disabling clock gating and DFT insertion. �e unmodified openMSP430 core
measures 11kGE and 15kGE, respectively, using these libraries. �e area of Sancus in function of
the number of modules NSM for a number of security levels is shown in Figure 9. If computational
overhead is of lesser concern, the area can be reduced by computing the module key on the fly
instead of storing it in registers. Exploring other improvements is le� as future work.
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Fig. 9. The area of the whole openMSP430 core with Sancus extensions when synthesizing for different
security levels using the UMC 130nm and NanGate 15nm standard-cell libraries. Synthesis was done for a
target clock frequency of 25MHz.

6.3 Security

We provide an informal security argument for each of the security properties Sancus aims for (see
Section 2.3). First, so�ware module isolation is enforced by the memory access control logic in the
processor. Both the access control model as well as its implementation are sufficiently simple to
have a high assurance in the correctness of the implementation. Moreover, Agten et al. [1, 64] have
shown that higher-level isolation properties (similar to isolation between Java components) can be
achieved by compiling to a processor with program counter-dependent memory access control.
Sancus does not protect against vulnerabilities in the implementation of a module. If a module
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contains buffer overflows or other memory safety related vulnerabilities, a�ackers can exploit them
using well-known techniques [26] to get unintended access to data or functionality in the module.
Dealing with such vulnerabilities is an orthogonal problem, and a wide range of countermeasures
for addressing them has been developed [78].
�e security of remote a�estation and secure communication follows from the following key

observation: the computation of MACs with the module key is only possible by a module with the
correct identity running on top of a processor configured with the correct node key (and, of course,
by the so�ware provider of the module). As a consequence, if an a�acker succeeds in completing a
successful a�estation or communication with the so�ware provider, he must have done it with
the help of the actual module. In other words, within our a�acker model, only API-level a�acks
against the module are possible, and it is indeed possible to develop modules that are vulnerable
to such a�acks, for instance if a module offers a function to compute MACs with its module key
on arbitrary input data. But if the module developer avoids such API-level a�acks, the security of
Sancus against a�ackers conforming to our a�acker model follows.
If a module has access to the correct identity of another module it wants to call, the security

of secure linking follows from the definition of the attest instruction (Section 3.7). Indeed, this
instruction will only succeed if a module with the given identity is enabled at the given location.
�is means that an a�acker can only force the instruction to succeed by either (1) loading the
correct module; or (2) constructing a different module with the same identity. �e la�er amounts
to finding a hash collision, which our a�acker model precludes.

�e identity used for secure linking must not be stored in unprotected memory where an a�acker
can easily manipulate it. �ere are two options to provide the identity securely to a module. First,
it can be stored in a module’s text section. Although, if confidential loading is not used for this
module, an a�acker can manipulate the text section before protection is enabled,this manipulation
will be detected when its provider performs remote a�estation. Second, the identity can be sent
using secure communication a�er deployment and stored in the module’s data section. �is is the
technique that our implementation uses (Section 4.3).
�e security of confidential loading follows from two observations. First, before the enable

instruction is called, the module’s text section is encrypted using the vendor key, which the a�acker
does not have access to. Second, a�er the instruction is finished, Sancus’ access rules (Table 2)
will deny any access to the text section from outside the module. �erefore, only API-level a�acks
would enable an a�acker to read (parts of) the text section of modules that use confidential loading.

Finally, hardware breach confinement follows from the fact that we use independent master keys
on all nodes (Section 3.3).

7 RELATED WORK

Ensuring strong isolation of code and data is a challenging problem. Many solutions have been
proposed, ranging from hardware-only to so�ware-only mechanisms, both for high-end and low-
end devices. Below we discuss research that is more directly related to Sancus. For an extended
comparison of hardware-based trusted computing architectures we refer the reader to [54].

7.1 Isolation in High-End Devices

�e Multics [19] operating system marked the start of the use of protection rings to isolate less
trusted so�ware. Despite decades of research, high-end devices equipped with this feature are
still being a�acked successfully. More recently, research has switched to focus on the isolation of
so�ware modules with a minimal TCB by relying on recently added hardware support. McCune et
al. propose Flicker [56], a system that relies on a TPM chip and trusted computing functionality of
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modern CPUs, to provide strong isolation of modules with a TCB of only 250 LOCs. Subsequent
research [9, 55, 67, 71] focuses on various techniques to reduce the number of TPM accesses and
significantly increase performance, for example by taking advantage of hardware support for virtual
machines.
ARM TrustZone [2] implements hardware based access control to use a physical core as two

virtual processors so as to execute security critical applications in their own “world”, in isolation
from the normal world. �e secure world runs its own OS, libraries and applications, which
mutually trust each other. TrustZone for the v8-M architecture [7] employs a “secure gateway”
instruction to enter the secure world at specific entry point addresses, providing similar but more
coarsely-grained isolation properties than Sancus.
More recently, Intel started shipping x86 processors equipped with So�ware Guard Extensions

(SGX) [57] that allows the execution of security-critical code via hardware-enforced individually
isolated enclaves in a shared address space, managed by an untrusted OS. SGX also provides
functionality for local and remote a�estation and for data sealing [3].
While the aforementioned architectures focus on isolating relatively small, security-sensitive

application components, an alternative line of work seeks to protect largely unmodified legacy
applications from an untrusted OS. Overshadow [16] and InkTag [40] employ a trusted hypervisor,
whereas Haven [10] leverages Intel SGX processor extensions to isolate application binaries. �e
untrusted OS continues to provide resource management and application services. However, due to
the complex nature of legacy operating system interfaces and hardware, these designs are exposed
to a new class of powerful side-channel a�acks [77]. Compared to higher-end MMU-based systems,
Sancus can be considered less susceptible to such threats considering the elementary design of its
security extensions, as well as the underlying processor.
�e idea of deriving module specific keys from a master key using (a digest of) the module’s

code is also used by the On-board Credentials project [44]. �ey use existing hardware features
to enforce the isolated execution of credential programs and securely store secret keys. Only one
credential program can effectively be loaded at any single moment, but the concept of families is
introduced to be able to share secrets between different programs. Although secure communication
is implemented using symmetric cryptography, they rely on public key cryptography during the
deployment process.

7.2 Isolation in Low-End Devices

While recent research results on commodity computing platforms are promising, the hardware
components they rely on require energy levels that significantly exceed what is available to many
embedded devices such as pacemakers [38] and sensor nodes. A lack of strong security measures for
such devices significantly limits how they can be applied and vendors may be required to develop
closed systems or leave their system vulnerable to a�ack.

Sensor operating systems and applications, for example, were initially compiled into a monolithic
and static image without safety or security considerations, as in early versions of TinyOS [49]. �e
reality that sensor deployments are long-lived, and that the full set of modules and their detailed
functionality is o�en unknown at development time, resulted in dynamic modular operating
systems such as SOS [39] or Contiki [23]. As stated in the introduction of this paper, the availability
of networked modular update capability creates new threats, particularly if the so�ware modules
originate from different stakeholders and can no longer be fully trusted. Many ideas have been
put forward to address the safety concerns of these shared environments, and solutions to provide
memory protection, isolation, and (fair) multithreading have appeared. t-kernel [37] rewrites
code on the sensor at load time. Coarse-grained memory protection (basically MMU emulation)

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 0000.



Sancus 2.0: A Low-Cost Security Architecture for IoT Devices 0:29

is available for the SOS operating system by sandboxing in the Harbor system [45] through
a combination of backend compile time rewriting and run time checking on the sensor. Safe
TinyOS [18] equally uses a combination of backend compile time analysis andminimal run time error
handlers to provide type and memory safety. Java’s language features and the Isolate mechanism
are used on the Sun SPOT embedded platform using the Squawk VM [70]. SenShare [48] provides
a virtual machine for TinyOS applications. While these proposed solutions do not require any
hardware modifications, they all incur a so�ware-induced overhead. Moreover, third-party so�ware
providers must rely on the infrastructure provider to correctly rewrite modules running on the
same device.
To increase security of embedded devices, Strackx et al. [72] introduced the idea of a program

counter-based access control model, but without providing any implementation. Agten et al. [1]
prove that isolation of code and data within such a model only relies on the vendor of the module
and cannot be influenced by other modules on the same system. El Defrawy et al. [25] implemented
hardware support for allowing a�estation that amodule executed correctly without any interference,
based on a similar access control model. While this is a significant step forward, it does not
provide isolation, as sensitive data cannot be kept secret from other modules between invocations.
TrustLite [43], on the other hand, features an Execution-Aware Memory Protection Unit (EA-
MPU) that records program counter-based memory access rules in a configurable hardware table.
Compared to Sancus, this allows for more complex policies, such as multiple private data sections
per module, or protected data sharing between two or more modules. TrustLite, however, relies on
a trusted Secure Loader so�ware entity to initialize the EA-MPU table at boot time, and does not
allow modules to be unloaded at run time. More recently, the TyTAN [14] architecture extends
TrustLite with dynamic loading, and local and remote a�estation guarantees for isolated tasks from
mutually distrusting stakeholders. �eir approach to a�estation resembles Sancus’ in that they
derive keys from task identities and a hardware-level platform key. In contrast to Sancus however,
TyTAN relies on a trusted so�ware runtime to measure task identities, and to guard inter-module
authenticated communication.

Java Card [34, 63] by Oracle is a smart card technology with applications in, e.g., mobile commu-
nications and electronic citizen IDs. Java Card provides an isolated environment, the Java Card VM
and the Applet Firewall, to execute Java Card Applets in isolation from the operating system and
other such applets. �e technology features a range of symmetric and public key cryptographic
algorithms but does not provide lightweight embedded ciphers such as Sancus’ SpongeWrap [11].
Extensions for remote a�estation are under development. Overall, Java Card can be used to im-
plement many features of Sancus. Yet, Java Card has a larger hardware and so�ware TCB and
exhibits different performance characteristics than our approach, impeding deployment in some of
the scenarios outlined in Section 5.

8 CONCLUSION

�e increased connectivity and extensibility of networked embedded devices as illustrated for
instance by the trend towards decoupling applications and platform in sensor networks leads to
exciting new applications, but also to significant new security threats. �is paper proposed a novel
security architecture called Sancus, that is low-cost yet provides strong security guarantees with a
very small, hardware-only, TCB.
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9 AVAILABILITY

To ensure reproducibility and verifiability of our results, we make the hardware design and the
so�ware of our prototype publicly available. All source files, binary packages and documentation
can be found at h�ps://distrinet.cs.kuleuven.be/so�ware/sancus/.
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