
CHAPTER 66 

SAND CONCENTRATION IN AN OSCILLATOR! FLOW 
1) 

by W.T. Bakker ' 

0. Abstracts 

In this paper first a numerical model is described con- 
cerning the velocity distribution in an oscillatory flow, res- 
pectively without and with resultant current . From the mo- 
mentaneous velocity gradients eddy viscosities are derived . 
Using the approach of VANONI [13 , a numerical model is given 
for the calculation of sediment concentration and suspended 
sediment transport. In order to give reliable results, the 
bed-load concentration should be knowno This will be investi- 
gated in the future; at the moment the model only provides 
qualitative results. 

1. Introduction. 

This paper deals about the calculation of suspended 
sediment transport in an oscillatory flow, with or without 
resultant current. The approach is the same as the one of 
VANONI [1], however unstationary effects have been taken into 
account: the sediment transport is found by multiplying mo- 
mentaneous concentrations with momentaneous velocities and 
integrating these over the wave periodo 
The investigation only covers a part of a larger schedule for 
research: 
a. Computation of the velocity distribution in a horizontally 

oscillating flow, as occurs for instance in a oscillatory 
water tunnel. Assumptions and computations are given in ch<, 
2. 

bo From the velocity distributions the gradient of the velo- 
cities and the eddy viscosity is derived, after which the 
suspended load can be calculated. The method is treated in 
ch. 4. 

c. For the solution given ad b, a boundary condition near the 
bottom is needed and therefore investigations have to be 
made about the bottom transport. These investigations still 
have to be carried out. As the sand concentration at the 
bottom determines the concentration in the higher layers, 
this means, that the present investigation only can give 
qualitative results. 

d. The results of the mentioned computations should be checked 
in a oscillatory wave tunnel. Also this check still has to 
be made. 

TT Senior Soientifie Officer-, Techn. TJniv, of Delft, 
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1130 COASTAL ENGINEERING 

e. The following step is the adding of a constant additional 
current. Ch. 3 deals with the computation. 

fig. Again the same procedure can be applied, including the cal- 
culation of the sediment transport (f, chapter k)  and the 
check in an oscillatory water tunnel (g). 

h,i,j. Finally the three-dimensional problem has to be tackled: 
waves and currents making an angle with each other. The 
way of solving is in principle the same (h: investigation 
water motion, i: investigation sediment motion), however 
now checks in prototype and hydraulic model should be made 
(j). The three-dimensional problem will not be treated 
here: the paper ends with a conclusion (chapter 5). 

2. Numerical computation of the velocity distribution in an os- 
cillatory flow. 

2.1. Assumptions. 
2.1.1 Apart from turbulent fluctuations, the flow is assumed to 

be horizontally directed and to be uniform in horizontal 
direction. Hence, the velocity u is assumed to be only a 
function of the vertical coordinate z and of the time t, 
but no function of the horizontal coordinate x. The pres- 
sure gradient is acting in horizontal direction; the 
pressure is only a function of x and t. 

2.1.2 In the inner part of the fluid, a turbulent shear stress 
is assumed, according to the assumptions of PRANDTL [2] 
equal to: 

in which! is the shear stress, taken positive when ac- 
ting in positive x-direction from the upper layer to the 
lower layer, p is the specific density of the fluid, t is 
the mixing length, being according to von KABMAN Z31  pro- 
portional to the distance z from the theoretical bottom: 

L=xz (2) 

X being the von KARMAN constant. 

2.1.3 With respect to the boundary conditions, two cases a and Is 
are considered: 
a The fluid motion far from the bottom is such, that a har- 
•" monic shear stress velocity at the bottom results; 
b The velocity TJ of the fluid far from the bottom elapses 
"~ harmonically in course of time. 
The bottom is assumed to be hydraulically rough. The velo- 
city at a distance zo above the theoretical bottom level is 
assumed to be zero, z0 is assumed to be .03 times the 
ripple height. 

2.2. Derivation of the equation for the shear stress velocity. 
The acceleration on a rectangular element of the fluid 

is caused by the gradient of the shear stress ia vertical 
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direction z and the gradient of the normal pressure p in hori- 
zontal direction x: 

-QU _ "OX  "OP,. . . 

T>t " "DZ  "OX 
Far from the bottom, the shear stress is reduced to zero, as 
well as ^J-. There, according to (3),^r- will be no function of 
z, as p is assumed to be no function of z. 
The velocity far from the bottom, of which the variable part is 
only a function of t (not of z) will be called U, being deter- 
mined by: 

1 "Ot   T>X 

We assume U only a function of t in this section. 
JONSSON M calls u-U the "defect velocity" defined by: 

ud = u-U (5) 

The defect velocity has a physical meaning: it is the velocity 
which occurs when considering the case of an oscillating plate 
in a fluid being at rest at infinity instead of the case of a 
moving fluid above a stable bottom. Subtracting (4) from (3) 
and substitution of u from (5) gives: 

T)Ud  T3 ( T /p ) 
T>t  "   T3Z 

or, introducing (1) and (2): 

"Oil, T>(xzS£|:czm|) 
'd  -"^--OZ 

(6) 

(7) 
-Dt -DZ 

This equation can be transformed into an equation for the inter- 
nal shear stress velocity. In this paper this will be denoted 
by p instead of U„, as the star as index will be reserved for 
dimensionless quantaties. Define p as: 

p=sign(x) . Vt/P" (8) 

From (1) and (2): 

P
:XZ

1T (9) 
According to (5), U in (9) may be replaced by u , and hence, 
differentiation of eq (7), to z and multiplying by xz gives a 
differential equation for the internal shear stress velocity: 

^P .X.^(P|P|) (10) 

This equation can be solved by numerical procedures, as will be 
shown in the appendix,, For this goal, first the equation has 
been made dimensionless by introducing the dimensionless 
variables: 
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P* = P/P-U where     p, = the maximum shear stress, exerted 
at the bottom 

t„ = t/T  where     T  = the period of the periodical 
motion 

z„ = z/Z  where Z= Xp I = a reference length 

Then eq (10) reduces to: 

•°Pt -z ^
2(PjPj) (n) 

"Dt*    *   -D l\ 

The equation has first been solved with the assumption of a 
sinusoidal shear stress velocity plat the bottom, i«e. with 
the following boundary conditions: 

p* =SIN2 Ttt„  for   z„ = 0 (12) 

and   p* = 0        for   z. = z* (13) 1 * max 

The upper boundary should be p„,«-0 for z„ is infinite; how- 
ever as this values is difficult to obtain numerically, it 
has been replaced ^>J 

z
* m&x' From an approximate analytical 

solution it was found that the maximum value of pt at z„=1 
was about 3 /oo of the maximum value at the bottom; there- 
fore for most computations z *max=1 has been chosen. Also 
numerical computations,with larger z *max always gave low 
values of p„ at z,=1. 

2.3. The initial condition. 
As initial condition has been chosen: 

p„ = 0  for t„ = 0 (14) 

Considering the symmetry of the motion, it is reasonable 
to assume, that for the final solution at every level and 
time is valid: 

P. <*,) = -P. (t. + i) (15) 
As the initial condition does not coincide with the perio- 
dical solution of p, at any time, the initial condition 
gives an initial disturbance, which fades away after a num- 
ber of periods calculation. In order to fasten the process 
of convergence to the periodic solution, corrections were 
applied after each of the first calculated wave periods 
(up to half of the total number of calculated periods)o If 
the calculated velocity after (n+1) T was a and after nT 
was b, a correction (b-a)/2 was applied,, This way of correc- 
ting attenuated the initial effect very soon and after the 
first half number of periods the motion remained very well 
periodic during the computation. 

2„4. Calculation of p and U. 
In the appendix an explicite method of numerical com- 

putation is described for solving eq (11). The solution 
has been checked by RADDER and GEILVOET,using an implicite 
method C5D ° The implicite and the explicite method showed 
to be about equivalent, although illconditioned matrices 
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could make the implioite results less reliable when p was 
about ze'roC53» In fig. 1 (left-hand side) the results of the 
explicite and implicite method are shown: for various levels 
z„ curves are drawn indicating p„ as function of t„. In fig. 
5a, left-hand side, curves are drawn showing p„ as function 
of z  for various values of t„. # * 

By numerical integration the dimensionless defect velo- 
city u* = u,/p. can be found. Using (9) '• 

4=4-J 
CO 

P* dz, (16) 
* z 

z,' 
For the lower boundary of integration z„ the various levels 
on which p, has been computed can be substituted. The right 
hand side of fig. 1 shows u* as function of t„, at various 
levels z+, fig. 5 gives u* as function of z„ for various 
values of t„. 

At a distance z=z , u equals zero, according assumption 
2.1.3, and thus u* equals--U, according to (5). By assuming 
the values of z„ at the successive levels for which p„ has 
been computed, equal to 0.03 r*=0.03 r/Z, for the correspon- 
ding values of the dimensionless ripple height r„ the dimen- 
sionless velocity U„=U/p. far from the bottom can be found. 
Then according to (5), U„=U/p, equals u* + U+. Fig. 5 shows 
velocity profiles u, for various t,. 

From the value of U, a first-order approximation of the 
friction coefficient can be derived. 

A usual definition of the friction coefficient is (vide 
for instance JONSSON LQ,l7l: 

f"zikr {17) 

where X denotes the top shear stress, caused by a harmonic 
velocity with amplitude Uh far from the bottom. Of course, 
then Tvie not harmonic in" course of time. 

As in the calculated case U does not elapse harmoni- 
cally, it does not seem correct to replace (17) by: 

fw"~5T 
Instead, the first and third harmonic V* and U, of V 

have been calculated and for f the relationship has been 
assumed: 

Iw" 8 U*2 (18) 

The coefficient "3TI/8" originates from the consideration, 
that a schematized harmonic shear stress should have an 
amplitude, equal to 8/3TC times the top value of the real, 
non-harmonic one in order to be equivalent with respect to the 
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energy dissipation €81, [93. 
It will be reminded that in (18) U./p, equals U *. Thus, 

starting from a certain level on which p„ and TJ„ have "been 
computed and assuming this level zQ*   equal to 0»03rt, one 
finds f . for r, = z */0.03 from (18). On the other hand, z * 
can be expressed in the ratio stroke length /ripple heignt 
a, A: 

Z* z0.03l\ =0.03-C-r 0,03 —~  r  0,°}      ,L, .  ^-  0    *    Z     xpbT  271X Vfw/2' UT/2TI 

r _ 2TtxVW2  7* MQ\ 
a ~      0.03     ° ^ ]JJ 

in which f  is known from (18). w As z   *   can be, in principle every level for which u, has been 
calculated, from one numerical computation (with a small 
A z,,) a number of combinations of a/r and f  can be found. w 

These are given in fig. 3« 
However, still the assumed coefficient 3 ^/8 as well 

as the stated boundary condition (U in this way, that a har- 
monical shear stress velocity results) seems artificial and 
not quite logical. In a more elegant way, one can add a 
third harmonic to p„ (£>, then being defined as the amplitude 
of the first harmonic of p ) and minimize by an iteration 
procedure the third harmonic of U„, starting from u* at a 
oertain level z *. Then f  can be found as: 

o        w 
* a 

fw=2-*V 
(20) 

u* 
where p\ * equals the top value of the combination of the 
first and third harmonic 

In fig. 2, analogous  to fig. 1, a third harmonic equal 
to 17% of the first one and having a phase difference of 15 
with the first one, has been added to the shear stress ve- 
locity.2-' 

By this, the third harmonic of U*at a level z„=0.0625 
dropped to 1% of the first one (being originally 15%). 

As in this particular case, the value of p appeared to 
be 10% smaller than p , eq (20) gave considerable lower 
friction coefficients than (18). This is a reason for fu- 
ture researsch; now only the way of solution has been indi- 
cated.   

As Z equals X? T, i.e. 2 Tt X aA/f /2| and f can be 
found from a/r, the aimensionless numerical modeS can be 
connected with the prototype. 

1) for reasons of symmetry of the motion the second harmo- 
nic of as w.ell p* as It should be zero. 

i.e.p = sin ult-i-0.17 sin (3u)t+15°) 
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fig.5a    ATTENUATION OF  SHEAR  STRESS  VELOCITY     P*   IN   Z *   DIRECTION 

fig.5d   MEAN  DEFECT VELOCITY  COMPARED   WITH 

LOGARITHMIC   PROFILE 

U%        ^      -16 -14 -12 -10 

fig. 5b   DEFECT VELOCITY  PROFILES        fig.5c    DEFECT   VELOCITY   PROFILES    (RESULTANT  CURRENT) 

{ NO RESULTANT CURRENT) 

O U.0 O 

fig. 5e   VELOCITY   PROFILES fig.5f    VELOCITY  PROFILES  ( RESULTANT CURRENT) 

(NO  RESULTANT CURRENT) 



SAND CONCENTRATION 1139 

2.5. Comparison with measurements and other theories. 
Fig. 3 shows a comparison between the friction coeffi- 

cient found by JONSSON C63 and the results of the numerical 
computation. Fig. 4 shows a graph in which the data is plot- 
ted collected by JONSSON C4U from his experiments described 
in C63 and from experiments of KALKANIS [11D.') Furthermore, 
the amplitude of the dimensionless defect velocity u* found 
from the computer program is plotted versus the dimension- 
less height above the bottom zf. 
The correspondence is quite satisfactory. 

In fig. 3 the obtained friction coefficients are com- 
pared with the results of JONSSON C6H . For low values of 
a/r the numerical model gives somewhat lower results. 

3.   Oscillatory flow plus resultant current. 

A shear stress velocity, constant over the vertical and 
in the time, results according to (16) into a logarithmic 
velocity profile, being a good approximation of the velocity 
profile of a stationary current. Therefore, the approximation 
p=constant (say p ) was assumed to be good enough to repro- 
duce the velocity profile in the layers of the fluid above 
the turbulent boundary layer. In this section U (defined by 
(4) ) will be assumed to consist of a logarithmic part, 
being zero at z=z    and an unstationary part U' being no 
function of z, U' thus denotes the velocity at z=z   : J      max 

U = Ib-ln-f-*u'(t) 

z   is assumed to be so large, that =r-=- in eq (3) can be 
neglected. As in sect. 2.2 the defect velocity u, will be 
defined as the deviation of u from U, occuring in the tur- 
bulent boundary layer, cf eq (5). 

The combination of an oscillatory flow plus a resul- 
tant current has been simultated with the explicite com- 
puter program by adding, after some wave periods of a normal 
run, a constant shear stress velocity over the whole stretch 
from bottom to z*   . After that, the calculation was con- 
tinued over a number of wave periods until a periodical 
shear stress velocity resulted. The curves of p„ as function 
of zt   for various t^ are plotted in fig. 5a, together with 
the analogous  ones in the case that no resultant shear 
stress is present. It shows, that the variation of the shear 
stress velocity attenuates much more slowly in upward direc- 
tion in the case with a resultant shear stress velocity than 
in the case without and further more, that the envelope of 
minimum shear stress velocity at each level tends faster to 
the imposed consta»t shear stress velocity than the envelope 

"z/6  " in fig. 1  of C43 has been transferred to zt. 
From HOD , eq (4.4)  (4.14) and (4.18) it shows that 
6 =(0.04  Tla  Vf /2')/x   and as Z=2 TC X a  Vf /2\   it 

appears that "z/6 " = 8 z , asx = 0.4. 
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of the maxima. Because of the last-mentioned feature, the mean 
shear stress velocity inside the fluid differs from the mean 
shear stress velocity, imposed in the beginnings 

In fig. 5a with a thick drawn line the mean shear stress 
velocity has been indicated, with an interrupted line the im- 
posed one. 

Fig. 5 shows the integration from p, to U * carried out 
in the same way as done for oscillatory flow without current 
in fig. 5b, i.e. by integrating, according to (16), taking as 
upper boundary zt=z*   *). 

In fig. 5 , analogous  to figo 5°,with a thick drawn line 
the mean value of u* has been indicated, with an interrupted 
line the logarithmic profile, resulting from a stationary 
shear stress velocity equal to p, . 

From fig. 5° figure 5f can Be derived, by a parallel 
shift of the velocity distributions, in this way, that the ve- 
locity at a distance z *=0o03 r„ equals zero. This gives the 
real velocity distribution for various times t„0 Also the line 
of the mean value of u * and the line of the logarithmic pro- 
file are shifted (thick drawn-, resp„ interrupted line in fig. 
5f) and one observes, that the time-average of the velocity 
above the bottom will be larger than one would find from the 
logarithmic profile (interrupted line), which would result 
when leaving the variation in the shear stress velocity out 
of consideration. Far from the bottom the interrupted line 
and the drawn line will be parallel. This means, that for a 
given value of the average mean shear stress velocity the 
mean velocity over the depth will be larger with an oscilla- 
tory motion than without. If the mean shear stress velocity 
p, equals the amplitude of the variation $, 2' from the nu- 
merical computation it appeared that this xncrease is of the 
same order as this shear stress velocity. 

Furthermore, comparing fig. 5^ with fig. 5°, it shows 
that the same variation of the shear stress velocity p, * re- 
sults in a much larger variation of u* when a resultant cur- 
rent is present than when there is not. This is the effect 
of the deeper intrusion into the fluid of the variation of 
the shear stress when a resultant current is present (cf. 
fig. 5 )o This results in a larger variation of U (compare 
fig. 5 with fig. 5 ) with the same amplitude p. . 
Summarizing and concluding: 

In a stationary current without oscillatory flow V  is 
proportional to the bottom shear stress p^: 

C being the Chezy coefficient andgthe acceleration of gravi- 
ty. Of an oscillatory flow is present one finds: 

T) c z*   has been chosen somewhat too small in fig. 5 • This 
max is no matter of principle. 

2) - Note, that the top value of p, equals p. +p, . 
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j-—( _ ,   where  U    is  a positive  residual velocity   ' 
U=V-^-  p+U U    is  arfunction of p\/p,   and of a/r.  Thus 

A v^ 

U  can be hidden in a decreasing coeffi- 
cient f . 

c 

and U: pfe v .       f decrease when apart from the oscillat- 
w      ory flow a current is present 2). 

The average value over the wave period of the bottom shear 

r? 
stress  equals,   when  p   < p   : 

x = |pb+pb  sin(0)t*<p)|=^*J^ 

X = |-(U-Ur)
2
+^U2 (21) 

Therefore, although the existance of U and the decrease of 
f , still an increase of the average shear stress can be ex- 
pected by the presence of waves. 

k.  Sand concentration and sand transport. 

The calculation of the sand concentration is based on the 
equation: 

-DC  -O  ,,_ "DC 
=6T- ̂ (E^'wc) (22) -oz   -oz 

Eq (22) is a continuity equation for the sediment. The right- 
hand part between the parentheses indicates the sediment flux 
in a vertical downward direction, w being the settling velo- 
city, positive in negative z-direction, the first term indi- 
cating the turbulent exchange, the second one the settling. 
c is the sediment concentration. The turbulent exchange factor 
has been taken equal to the eddy viscosity £, defined by: 

where, according to (1) and (2): 

e--xaz2|2i| (24) 

In a dimensionless shape, eq (22) reads: 

where   e^e/x2^ T(=ET/Z2) (26) 
  

- from numerical computations it was found, that V    is of the 
order of p. , when p,=p, 

2) b*      b r
b 

Seductions of 30% may occur when Pb=PD 
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or, from (24) :e„= Yj pj (27) 

and w: w/x pb (-wT/z) (28) 

w„, indicating the ratio between the falling distance of a grain 
in still water in a wave period on one hand and the decay dis- 
tance Z of the shear stress on the other hand, also can be com- 
pared with "Z"="w/x V," as defined by EINSTEINC12], where V„ is 
the shear stress velocity of a uniform flow with mean velocity 
Vo 

From the differential equation (22) the difference equa- 
tion (29) can be derived, in which c' denotes the concentration 
at time t +At and c at time t: 

c' ( z„)-c ( z,) = e (z j c(z„+Az„ ) - 2c(z,)+ c(z*- 4z,) 

At, (Az,)2 

+ e»(vi
z,)'e.(v4z.)tw  c(z,tiz,)-c(v^,)  (29) 

2izt 2Aa, 

The computation of c has been carried out in the same way 
as the calculation of p„, described in appendix A„ First p„ is 
calculated in all points of the wanted grids at a certain time 
t„, and after thatSt (from(27))and c in the same way in the 
same points at the same time. Values of c smaller than zero are 
replaced by zero. As initial condition has been taken: pt=c=o; 
the boundary condition at z* is c=p=o. 

The bottom boundary condition remains a problem in its 
own, which will be investigated later on. In the exemple, given 
in fig. 6, some arbitrary function has been chosen. The concen- 
tration has been chosen equal to the probability that the lift 
force on a particle is larger than its own weight. For this 
probability p was found by KALKANISD13 (using the well-known 
EINSTEIN-aproach02: : 

^ e dz (30) 

where lj) is proportional to the ratio between the lift force and 
the own weight: 

<i>-^ (3D 

where A is the relative specific density ( P - P)/P, D is the 
grain diameter and u is the velocity at a distance 0„35 D from 
the theoretical bed.'Relating u with the shear stress velocity 
p, assuming a logarithmic velocxty distribution, one finds for 
a rough bed: u =5.24- p' (vide D2J, p. 35, eq (45) to (46) ); 
where p' is the part of the bottom frictionx'  , exerted on the 
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grains. 
If T' is a fraction |i. (ripple fact or) of the total shear 

stress, one finds: 

t|)=i|>min/p2 (32) 

where 
^min.-l—,.A.9D (33) 
Y (5.24)2    M-     pf 

In (30) B» has teen taken k  and 1/T)0 equal to 1.5, follo- 
wing KALKANIS [113. 

Fig. 6 shows the concentration at various levels as a 
function of time for an oscillatory flow without current. Fig, 
7 shows the velocity distribution and the sediment transport, 
i.e. concentration times velocity for an oscillatory flow 
with resultant current. 

5. Conclusion. 

It may be expected, that the computer programs under 
development  ' may   provide a powerful tool in the under- 
standing of unstationary periodical water- and sediment motion. 
Careful testing on data will be obligatory. Already a better 
insight in the water motion of an oscillatory current with a 
resultant flow has been obtained (ch. 3). 

Appendix A. 

The numerical computation according to the explicite 
method. 

The differential equation (11) can be written as the fol- 
lowing difference equation, relating the value of p„ after one 
increment of time to the original value of p, in the same 
point and in the two adjacent points. 

P»   Cz»,   t.+ At,] =  p.  [z»,   t„] + 

+
  

Z
*  

(At
*
}

     P.   Cz.-Az„   t,3.  abs   (p. &..-,•**„*«]  ) 

(Az„)2 

-2 P»   Hz,,   tj.   abs   (p»Cz»,t,l   ) 

+  P* Cz»+A z,,t„].   abs   Cp»Cz-#+'A z**t#3   ) (A1) 

In (A1) the factor At%/( Az„)  can be chosen arbitrary, 
with the limitation, that numerical instabilities have to be 
avoided. From the solution of similar linear differential 
equations this appears to include the condition: 

Details about the programs are given in the internal re- 
ports C8D and LljH. 
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At. 
(As,)2" 

2  p.        .z 
^•max    max 

(A2) 

in which: P*max=
the maximum p, which occurs. This maximum is 
found at the bottom and equals 1. 

z*  =the maximum z„ for which the computation is 
carried out. As stated in ch. 2, z*   mostly 
equals 1. aax 

As the "boundary condition will be: U=0 at z=003 times the 
ripple height r, near the bottom a maximum grid height Az=.Q3 
r/Z=.03 r/2Ttx aVf»/2Nrill be required. For a reasonable value 
r/assJfOO this would make Az, of the order 1/3 000. Then from 
(A2) it appears, that a maximum At, is required, equal to 
10~°/18. Calling a "basic calculation" the calculation of one 
value of p„ Cz»i t„+ At,3 according to (A1), the required num- 
ber of basic calculations which have to be carried out for only- 
one wave period would be of the order 3 000x18x10^= 54x109, 
which is very much, even for a computer. 

Therefore, a more economic way of computation had to be 
developed, which is called: the method of the "pulsating grid". 

BOUNDARY 
CONDITION 

I 
8 16 

HEIGHT   ABOVE  THE    BOTTOM     !,/» !, 

_20 ih 3 2 

(t/it  divisible 

by 8) 

12   3^5 

©    ©    ©   ©    © 
i n m 

© 

IV 

t + At 1   2 J   h 

t + 2At 1   2 3   't  5 

©    ©   ®    © 
t + 3At 12 3   4 

t + k&t 123*5 

©    ©   ©   ©   © 

fig. A1. Schedule of calculations according to the pulsating grid. 

This system gives a high accuracy and much information near 
the bottom and relatively less far from the bottom. 

For this aim a small grid length Az, has been chosen near 
the bottom (fig. A1), consisting of 5 points 1 to 5. When the 
number of time steps nst^/At,, was odd, calculations were 
carried out in this grid. When the number n was divisible by 
2 but not by k  however, calculations were carried out also in 
a grid with a double grid length, consisting also of 5 points 
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(T)to(f) (fig. A1). When n was divisible by k  but not by 8, the 
width of the grid was doubled again (points I to V) and calcula- 
tions were carried out in the smallest, the medium and the largest 
grid, etc. 

Thus of the total number of grids equals m, the first four 
points of the last one cover the whole stretch from z„=0 to zt=1 
and the first one has a length of £.2~m+ . The distance Az„ 
equals one fifth of the length of the smallest grid, i.e. 2~m~'1 . 

The maximum z„ of the smallest grid is 5x2_m~'', and there- 
fore, according to (A2), the maximum time step, which does not 
give instabilities will be: 

At»=2"m~5 with Az»=2"m_1 (A3) 

Eq (A2) shows one of the advantages of the chosen system: 
because z*   is taken never more than 5 times Az„, At, is pro- 
portional toAz„ instead of proportional to (Az,r. 

It can be easily shownC8J, that when Att=2~
m~5, the number 

of basic calculations per wave period will be of the order 
128/Az,. In the caseAz, equals 1/3 000, this number becomes 
'tOO 000, being a very small fraction of the original number of 
calculations. This indicates, that the more intricate way of 
programming is feasible. 

The following schedule of computations is used (fig. A1). 
Assume the values of p„ in the points 1 to 5, © to® and I to V 
at time t are known and that t is divisible by 8. 

At time t + At, the points 2, 3 and k-  are found from point 
1, 2, 3, *)-, 5 at time t, using eq (A1). Point 1 at time t +At 
is found from the boundary condition, point 5 is not calculated. 

At time t + 2 At the following calculations are carried out 
(fig. A1). Point 2, 3 are calculated from point 1, 2, 3» 't at 
time t +At, using eq (A1); point (2} Q), (?) are found from point 
(Q di ©i ©» <3) at time t, using eq (A1) with double values of Ay 
and At. Point 1 at time t + 2 At is found from the boundary con- 
dition at the bottom; p„ at point Q) equals the calculated value 
in point 2 (fig. A1), point k  equals point(2), point 5 is found 
by extrapolating between(g)and(j\ using an extrapolation formula: 

P5 = (-P3 + 4 ^ i  1$-$  H$>/6      u*o 

(A*t) relates the values of p„ in the smaller and the larger 
grids; all values apply for the same time. The index indicates 
the grid point. In (A*0 the indices surrounded by a circle de- 
note the values in a larger grid, the indices without a circle 
in a smaller grid. 

Now the way of calculation will be clear: at time t + 3 At 
only calculations in the smallest grid are carried out; at time 
t + %At the same schedule of t + 2 At is followed, only up to 
one grid larger: the points II, III, IV are found from I, II, III, 
IV, V at time t, the points©, © from point® <2l @, © at time 
t + 2 At, the points 2, 3 from point 1, 2, 3, k  at time t + 3 At« 
Point@ equals point II, point Q) is interpolated between II and 
III. Point 4 equals point ®,  point 5 is interpolated between(2) 
and (JV Point (J) equals point 2, point I equals pointQ), point 1 
is found from the boundary condition. 
Now the following time step can be calculated, etc. 
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