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Abstract

Most approaches to classifying data streams either divide
the stream into fixed-size chunks or use gradual forgetting.
Due to evolving nature of data streams, finding a proper size
or choosing a forgetting rate without prior knowledge about
time-scale of change is not a trivial task. These approaches
hence suffer from a trade-off between performance and sen-
sitivity. Existing dynamic sliding window based approaches
address this problem by tracking changes in classifier error
rate, but are supervised in nature. We propose an efficient
semi-supervised framework in this paper which uses change
detection on classifier confidence to detect concept drifts, and
to determine chunk boundaries dynamically. It also addresses
concept evolution problem by detecting outliers having strong
cohesion among themselves. Experiment results on bench-
mark and synthetic data sets show effectiveness of the pro-
posed approach.

1 Introduction

As technological advancement continues to pave the path
for Internet of Things (IoT), mining data streams is be-
coming increasingly important. However, data stream min-
ing is challenging due to large volume and high velocity of
data. Furthermore, certain properties of data streams distin-
guish themselves from traditional data mining, namely infi-
nite length, concept drift, concept evolution, limited amount
of labeled data etc. (Haque, Khan, and Baron 2015b).

Infinite length problem of data streams is typically ad-
dressed by dividing the stream into fixed-size chunks,
e.g., (Parker and Khan 2015) or using gradual forgetting,
e.g., (Klinkenberg 2004). Since data streams are evolving in
nature, without prior knowledge of the time-scale of change,
both strategies suffer from a trade-off between performance
and sensitivity. Concept drift occurs when the target class
or concept evolves within the feature space in such a way
that the class encroaches or crosses previously defined deci-
sion boundaries. This challenge is addressed by updating the
classifier periodically, e.g., (Masud et al. 2011) or by using
an explicit change detector, e.g., (Bifet and Gavald 2007) to
decide when an update is necessary. These approaches as-
sume that true labels for all data instances are readily avail-
able. However, typically true labels are provided manually
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by a user or a human annotator. Therefore, given the con-
straint of time and resource, it is not feasible to have true
labels for all instances in a data stream available. Concept
Evolution occurs when a new class emerges in any data
stream (Masud et al. 2011). It has received less attention
than concept drift problem in the literature. Therefore, most
approaches misclassify novel class instances as one of the
existing classes, and increase the classification error.

We propose a framework in this paper which addresses
all of the above challenges. A change detection technique
(CDT) is used in the framework to detect any concept drift
and chunk boundary immediately. However, unlike exist-
ing approaches, it employs two unsupervised estimators
(namely, Purity and Association) to calculate classifier con-
fidence in predictions, and applies the CDT on confidence
scores. Therefore, the proposed CDT is fully unsupervised.
To further reduce the execution time, we have proposed two
strategies to execute CDT selectively without losing classi-
fication accuracy.

The proposed framework maintains an ensemble of
clustering-based classifier models, each trained on a differ-
ent dynamically determined partially labeled chunk of data.
Motivated by the principle of Uncertainty Sampling (Set-
tles 2009), our framework reuses classifier confidence scores
calculated during prediction to select a few data instances
for labeling. The classifier is then updated using this limited
amount of labeled data without adding any extra overhead.

Our framework incorporates a novel class detector for
handling concept evolution. The detector assumes appear-
ance of a single novel class at a time. Any instance falling
outside of decision boundary of the ensemble classifier is
identified as an outlier. The framework interprets presence
of sufficiently large number of outliers with strong cohesion
among themselves as emergence of a novel class.

Primary contributions of our work are as follows: 1) We
present an unsupervised technique to estimate classifier con-
fidence in predicting labels of data instances. We theoreti-
cally justify choice of the estimators. 2) We design a suit-
able change detection technique for this specific scenario. 3)
To update the classifier, we use a limited amount of labeled
data selected without any extra overhead by reusing classi-
fier confidence scores calculated during prediction. 4) We
present a semi-supervised framework which uses dynam-
ically determined chunks to address both of concept drift
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and concept evolution effectively. We employ several strate-
gies for selective execution of CDT to reduce the execution
time of the proposed framework. 5) We evaluate our pro-
posed framework on several benchmark and synthetic data
sets. Experiment results show that our framework exhibits
competitive performance compared with other state-of-the-
art approaches, regardless of using limited amount of labeled
data instances.

The rest of the paper is organized as follows: In Section 2,
we briefly discuss some related work. Section 3 describes
our approach in detail. We describe the data sets, evaluation
metrics and present experiment results in Section 4. Finally,
Section 5 concludes the paper.

2 Related Work
Approaches that divide data streams into fixed-size chunks,
e.g., (Parker and Khan 2015) cannot capture concept drift
immediately if the chunk size is too large, or suffer from un-
necessary frequent training during stable time period if the
chunk size is too small (Bifet and Gavald 2007). Gradual
forgetting is also used in the literature, e.g., (Klinkenberg
2004) to address the infinite length problem of data streams.
However, finding the perfect decay function for mining an
evolving data stream is a challenge. In this paper, we use
an explicit change detection technique (CDT) to detect any
change of concept, and to determine the chunk size dynam-
ically.

In data stream mining, CDT is used either to detect a
change in the input data distribution, or to detect a change
in the classifier feedback. Several methods, e.g., (Song et al.
2007; Kuncheva and Faithfull 2013) exist to detect change
of the input data distribution in a data stream. However, de-
tecting change in a multidimensional space is a hard prob-
lem (Harel et al. 2014). It introduces error while finding
changes in the multidimensional input space, hence not ef-
ficient in the context of data stream mining. In this paper,
we focus on detecting change in one dimensional classifier
confidence.

Various CDTs have been proposed in the literature to de-
tect concept drift from any significant change in the classifier
feedback. Adwin (Bifet and Gavald 2007) is a sliding win-
dow based technique that determines the size of the window
according to the rate of change observed from the window
data itself. (Gama et al. 2004) detects a change when the er-
ror rate over the whole current window significantly exceeds
the lowest error rate recorded. (Cieslak and Chawla 2007)
exploits Kruskal Wallis analysis and Kolmogorov Smirnov
tests to detect changes. (Harel et al. 2014) is based on ob-
taining statistics from the loss distribution of the learning al-
gorithm by reusing the data multiple times via re-sampling.
Concept drift detection in (Alippi, Boracchi, and Roveri
2013) contains two CDTs based on ICI (Intersection of con-
fidence intervals), one to detect change in the input data dis-
tribution and another to detect change in the classifier error
rate. Considering the large volume and high speed of today’s
data streams, running two CDTs after testing each instance
is expensive. Another ICI based approach is ACE (Nishida,
Yamauchi, and Omori 2005). All of the above CDTs detect
change in the classifier error rate, requiring true labels of all

data instances be readily available. This assumption is not
practical in the context of data streams (Masud et al. 2008).
Our proposed CDT detects change in classifier confidence,
which does not require any supervised information.

Existing semi-supervised approaches to classifying data
streams use active learning, computational geometry etc.
to select important data instances for labeling. For exam-
ple, complex active learning is used in (Masud et al. 2010;
Zhu et al. 2007; Fan et al. 2004). Computational geometry
based approach COMPOSE (Dyer, Capo, and Polikar 2014)
can only address gradual (limited) drift, rather than abrupt
drift. Our proposed approach reuses the same confidence
scores calculated during prediction to select instances for la-
beling without adding any extra overhead.

Cluster based single class novelty detection methods
have been proposed in (Spinosa, de Leon, and Gama 2009;
Hayat and Hashemi 2010), which are not suitable for multi-
class environment. (Masud et al. 2011) propose an approach
for multi-class novelty detection but use fixed-size chunks,
hence suffering from the trade-off discussed earlier. Un-
like these approaches, our proposed approach uses dynamic
chunks for multi-class novelty detection.

Figure 1: High level work flow of SAND

3 Proposed Approach

Our proposed framework uses a semi-supervised ensemble
classifier consisting of k-NN type models for classification.
Instead of applying change detection technique (CDT) on
the classifier error rate, we apply CDT on classifier con-
fidence estimates to detect concept drift, and the chunk
boundary. Subsequently, our approach requests labels for a
limited amount of instances based on the classifier confi-
dence estimates to update the classifier. We also integrate
a novel class detector in our framework. This framework
will henceforth be referred to as “SAND” (Semi-Supervised
Adaptive Novel Class Detection and Classification over
Data Stream).
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High level workflow of SAND is depicted in Figure 1.
The framework has four modules, i.e., Classification, Novel
Class Detection, Change Detection, and Update. SAND
maintains an ensemble M of t classification models, and
a dynamic window W containing classifier confidence es-
timates in predicting labels of test data instances. Let
{M1, ...,Mt} be the models in the ensemble. At the begin-
ning, the ensemble classifier contains models trained on the
initial training data. Once the warm up period is over, each
incoming instance in the data stream is first examined to
determine whether it is an outlier or not. It detects an in-
stance as an outlier if the instance falls outside of the deci-
sion boundary of the ensemble classifier. If the instance is
not an outlier, it is classified as instance of an existing class
using majority voting among the models in the ensemble.
On the contrary, if the instance is an outlier, it is temporar-
ily stored in a buffer. When there are enough instances in
the buffer, the Novel Class Detection module is invoked. We
define a class as novel class if none of the models in the en-
semble has been trained with any instance from that class. If
a novel class is detected, the instances of the novel class are
tagged accordingly. Otherwise, the instances in the buffer
are considered as from existing classes and classified using
the current ensemble classifier. Details on training, classifier
decision boundary, classification and novel class detection
processes will be discussed later in this Section.

As soon as any test instance arrives, SAND along with
predicting the label of the instance, also estimates the confi-
dence in the prediction. These confidence scores are stored
in W . Following insertion of a confidence estimate, the
Change Detection module searches for any change of distri-
bution in the values stored in W . If it detects any significant
change in the confidence estimates, i.e., values stored in W ,
SAND assumes that a concept drift has occurred, and de-
termines a chunk boundary immediately. Next, the classifier
needs to be updated to adapt to the changed concept. To form
the training data, SAND requests true labels for instances
in the current data chunk on which the classifier showed
weak confidence during prediction. For rest of the instances,
it uses the predicted labels as the final labels and includes
them in the training data. Finally, a new model is trained
on the training data, the ensemble is updated by including
the newly trained model, and W is reinitialized. On the con-
trary, if the Change Detection module finds no significant
change in the confidence scores, the current ensemble is re-
tained and W keeps growing. Based on memory resource
available, we set a maximum size Smax for W . If W grows
beyond Smax, ensemble classifier is updated and W is reini-
tialized. Later in this Section, we discuss about calculation
of confidence scores and Change Detection module. Due to
limited space in this paper, more details on SAND along
with a list of frequently used symbols have been provided
in the technical report (Haque, Khan, and Baron 2015a).

3.1 Training and Classification

Each model in the ensemble is based on the idea of k-NN.
Rather than storing the raw training data, a number of clus-
ters are built using a clustering algorithm, e.g., K-means,
DBSCAN (Ester et al. 1996) etc. Only a portion of the train-

ing data is required to be labeled to build the models. In our
experiments, we use an impurity based K-means clustering
algorithm (details in (Haque, Khan, and Baron 2015a)). We
set the value of K based on the size of the training data. Raw
data points are discarded after saving summaries (mentioned
as pseudopoints) of the clusters. Therefore, each model Mi

is a collection of K pseudopoints. Summary of a cluster,
i.e., a pseudopoint contains centroid, radius, and number of
data points belonging to each of the classes (referred to as
frequencies). Radius of a cluster is defined as the distance
between the centroid and the farthest data point in that clus-
ter. A test instance x is classified using Mi as follows. Let
h ∈ Mi be the pseudopoint whose centroid is the nearest
from x. The predicted class of x is the class that has the
highest frequency in h. The data point x is classified using
the ensemble M by taking majority vote among all classi-
fiers.

Each pseudopoint corresponds to a “hypersphere” in the
feature space. The decision boundary of a model Mi is the
union of the feature spaces encompassed by all pseudopoints
h ∈ Mi. The decision boundary of the ensemble M is the
union of the decision boundaries of all models Mi ∈ M.

3.2 Novel Class Detection

Each test instance is first examined by the ensemble classi-
fier M. If the instance is inside the decision boundary, it is
classified normally as described in Section 3.1. Otherwise,
it is declared as a filtered outlier, or F-outlier. The principle
behind the novel class detection is that a data point should be
closer to the data points of its own class (cohesion) and far-
ther apart from the data points of other classes (separation).
Therefore, if there is a novel class in the stream, instances
belonging to that class will be far from the existing class
instances, and will be close to other novel class instances.
Since F-outliers are outside of the decision boundary, they
are far from the existing class instances. So, the separa-
tion property for a novel class is satisfied by the F-outliers.
Therefore, F-outliers are potential novel class instances, and
they are temporarily stored in a buffer to observe whether
they also satisfy the cohesion property. The buffer is exam-
ined periodically to see whether there are enough F-outliers
that are close to each other. This is done by computing the
q-Neighborhood Silhouette Coefficient, or q-NSC (Masud et
al. 2011). This is defined based on q, c-neighborhood of an
F-outlier x (q, c(x) in short), which is the set of q instances
from class c that are nearest to x. Here q is a user defined
parameter.

For example, q, c1(x) of an F-outlier x is the q-nearest
class c1 neighbors of x. Let D̄cout,q(x) be the mean distance
of an F-outlier x to its q-nearest F-outlier neighbors. Also,
let D̄c,q(x) be the mean distance from x to its q, c(x), and
let D̄cmin,q(x) be the minimum among all D̄c,q(x), c ∈{Set
of existing classes}. In other words, q, cmin is the nearest
existing class neighborhood of x. Then q-NSC of x is given
by:

q-NSC(x) =
D̄cmin,q(x)− D̄cout,q(x)

max(D̄cmin,q(x), D̄cout,q(x))
(1)
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The expression q-NSC is a unified measure of cohesion
and separation, and yields a value between -1 and +1. A
positive value indicates that x is closer to the F-outlier in-
stances (more cohesion) and farther away from existing class
instances (more separation), and vice versa. The q-NSC(x)
value of an F-outlier x must be computed separately for each
classifier Mi ∈ M. A new class is declared if there are at
least q′ (> q) F-outliers having positive q-NSC for all clas-
sifiers Mi ∈ M.

Algorithm 1 Change detection algorithm
1: W ← ∅ // Initialize W
2: Th ←−log(α) // α is sensitivity parameter
3: while true do
4: [ŷ, Cx] ← Classify(x)
5: W ⇐ Cx // Enqueue Cx into W
6: N ← |W |; wn ← 0;
7: ecp ← −1 // ecp contains the estimated change point
8: for k ← Δ to N −Δ do
9: mb ← mean(W [1 : k])

10: ma ← mean(W [k + 1 : N ])
11: if ma ≤ (1− α) ∗mb then
12: Sk ← 0
13: Beta[α̂b, β̂b] ← estimateParam(W [1 : k])

14: Beta[α̂a, β̂a] ← estimateParam(W [k + 1 : N ])

15: for i ← k + 1 to N do

16: Sk ← Sk + log

(
f(W [i] | α̂a,β̂a)
f(W [i] | α̂b,β̂b)

)

17: end for
18: if Sk > wn then
19: wn ← Sk

20: end if
21: end if
22: end for
23: if wn > Th then
24: UpdateClassifier(M,W, τ)
25: W ← ∅ // Reinitialize W
26: end if
27: end while

3.3 Calculation of Confidence Scores

First, two heuristics, i.e., association and purity are used to
estimate the confidence of each individual model. Next, indi-
vidual model confidences are combined to estimate the over-
all confidence of the ensemble classifier which is stored in
W . Let hip be the pth pseudopoint in Mi, and cm be the class
having the highest frequency in hip. Assuming the closest
pseudopoint from an instance x in model Mi is hip, We de-
fine the heuristics as follows:
• Association is calculated by R(hip) − Dip(x), where
R(hip) is the radius of hip and Dip(x) is the distance of
x from hip. Therefore, smaller the Dip(x), higher the as-
sociation.

• Purity is calculated by |Lip(cm)|
|Lip| , where |Lip| is sum of all

the frequencies in hip and |Lip(cm)| is the frequency of

cm in hip.

Association and purity of the model Mi is denoted by Ai

and Pi respectively. Theoretical justification of these heuris-
tics is provided in (Haque, Khan, and Baron 2015a). Both
of the heuristics contribute to model confidence according
to their estimation capability. This capability is measured
by the correlation between heuristic values and classifica-
tion accuracy using the initial training instances as follows.
Heuristic values for Mi are calculated for each of the labeled
training instances. Let Hk

ij be the value of jth heuristic in
Mi’s classification of instance k. Since we use two heuris-
tics, j ∈ {1, 2}. Let ŷki be the prediction of Mi on instance k
and yk be the true label of that instance. Let vi be the vector
containing vki values indicating whether the classification of
instance k by model Mi is correct or not. In other words,
vki = 1 if ŷki = yk and vki = 0 if ŷki �= yk. Finally, a cor-
relation vector ri is calculated for model Mi. It contains rij
values which are pearson’s correlation coefficients between
Hij and vi for different j. No labeled data is required for
confidence estimation after initial training.

To calculate model confidence in the testing phase, SAND
first calculates heuristic values Hx

i for a test instance x. Let
Cx
i be the confidence of model Mi in predicting test instance

x. Next, Cx
i is calculated by taking the dot product of Hx

i and
ri calculated during initial training, i.e., Cx

i = Hx
i .ri. Sim-

ilarly, SAND calculates confidence scores for each of the
models in the ensemble. These scores are then normalized
between 0 and 1. Finally, SAND takes the average confi-
dence of the models towards the predicted class to estimate
confidence of the entire ensemble Cx.

3.4 Change Detection

As discussed earlier, SAND maintains a variable size win-
dow W to monitor estimates of classifier confidence on re-
cent data instances. These estimates tend to follow a beta
distribution which is confirmed by Chi-Square goodness-
of-fit test. It can be shown theoretically that the classifier
confidence reduces consistently when there is a concept
drift (Haque, Khan, and Baron 2015a). A CDT is therefore
applied on W values to detect any significant change, i.e., a
concept drift.

We propose a CUSUM (Baron 1999)-type change detec-
tion technique (CDT) on beta distribution to use in this con-
text. Algorithm 1 sketches the proposed CDT. As soon as
a new test instance arrives, along with predicting the label,
confidence of the classifier is estimated and stored in W
(Line 4 and Line 5). Next, the proposed CDT divides W into
two sub-windows for each k between Δ to N − Δ, where
N is the total number of observations in W . Let Wb and Wa

be the sub-windows respectively, where Wa contains confi-
dence estimates on more recent instances. Each sub-window
is required to contain at least Δ number of values to pre-
serve statistical properties of a distribution. When a concept
drift occurs, confidence scores are expected to decrease. So,
only changes in the negative direction are required to be de-
tected. In other words, if ma and mb are the mean values of
the observations in Wa and Wb respectively, change point is
searched only if ma ≤ (1 − α) ∗mb, where α is the sensi-
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tivity. We use α = 0.05 and Δ = 100 in our experiments,
which are also widely used in the literature.

It is known that the values in each sub-window tend to
follow a beta distribution. However, the actual parameter
values are unknown. The proposed CDT estimates these pa-
rameters at Line 13 and 14. Then, the sum of the log like-
lihood ratios Sk is calculated in the inner for loop between
Lines 15 and 17, where f(Xi, α̂, β̂) is the probability den-
sity function (PDF) of the beta distribution having parame-
ters

(
α̂, β̂

)
applied on the data instance Xi. Next, a score

wn for all the values stored in W is calculated in the outer
for loop between Lines 8 and 22. Let kmax is the value of
k for which the algorithm calculated the maximum Sk value
where Δ ≤ k ≤ N − Δ. Finally, a change is detected at
point kmax if wn is greater than a pre-fixed threshold. We
use −log(α) as the threshold value. W is reinitialized and a
chunk boundary is determined if a change is detected, other-
wise W keeps growing.

3.5 Updating the Ensemble using Limited
Labeled Data

Once a change is detected, the classifier is updated using
the recent chunk. However, instead of requiring true labels
of all the data instances, SAND intelligently selects a few
instances using the classifier confidence scores. First, if the
confidence is below the confidence threshold (τ ), SAND re-
quests for its true label and includes it in the labeled instance
set. Otherwise, SAND uses the predicted label and includes
the instance in the unlabeled instance set. Next, the labeled
and unlabeled set of instances are used to form the training
data set. It is apparent that the value of τ is inversely propor-
tional to the percentage of labeled data. Therefore, the value
of τ is set based on the availability of labeled instances. Fi-
nally, a new model is trained on the training data set. Detail
algorithm is provided in (Haque, Khan, and Baron 2015a).

Once a new model is trained, it replaces the oldest one
among the existing models in the ensemble. This ensures
that we have exactly t models in the ensemble at any time.
In this way, the infinite length problem is addressed because
a constant amount of memory is required to store the ensem-
ble. The concept drift problem is addressed by keeping the
ensemble up-to-date with the most recent concept.

3.6 Run Time Reduction

Time complexity of SAND is analyzed in (Haque, Khan, and
Baron 2015a). The bottleneck of SAND is to invoke CDT
after inserting each confidence value in W . We examine the
following strategies for selective execution of the CDT:

1. CDT is executed if classifier confidence is below τ . This
will be referred to as SAND-F.

2. CDT is executed with a probability of e−Cx

, i.e., higher
the confidence, lower the probability of executing CDT
and vice versa. This will be referred to as SAND-D.

4 Experiment Results

4.1 Data Sets

Table 1 depicts the characteristics of the data sets. Forest-
Cover is obtained from the UCI repository as explained
in (Masud et al. 2011). We normalize the data set, and ar-
range the data in order to prepare it for novel class detection
so that in any chunk at most three and at least two classes
co-occur, and new classes appear randomly. For the sec-
ond data set, we use Physical Activity Monitoring data set
(PAMAP) from UCI (Reiss and Stricker 2012). Powersup-
ply (Zhu 2010) data set contains hourly power supply infor-
mation of an Italian electricity company. HyperPlane (Zhu
2010) is a synthetic data stream which is generated using the
equation: f(x) =

∑d−1
j=1 aj

(xj+xj+1)
xj

, where f(x) is the la-
bel of instance x and aj , j = 1, 2, .., d, controls the shape
of the decision surfaces. SynRBF@X are synthetic data sets
generated using RandomRBFGeneratorDrift of MOA (Bifet
et al. 2010) framework, where X is the Speed of change
of centroids in the model. Therefore, increasing X refers to
more frequent concept drifts in the data set. We use Forest-
Cover and PAMAP for simulating both concept drift and
novel classes. Rest of the data sets are used to test only con-
cept drift handling capability of different approaches.

Table 1: Characteristics of data sets
Name of Num of Num of Num of
Data set Instances Classes Features

ForestCover 150,000 7 54
PAMAP 150,000 19 52

Power Supply 29,927 2 24
HyperPlane 100,000 5 10

SynRBF@0.002 100,000 7 70
SynRBF@0.003 100,000 7 70

4.2 Experiment Setup

We compare classification and novel class detection per-
formance of SAND with ECSMiner (Masud et al. 2011).
We have chosen ECSMiner since it is a robust and ef-
ficient framework for classifying data streams, and ad-
dresses both of concept drift and concept evolution prob-
lems. Apart from that, we compare SAND with OzaBa-
gAdwin (OBA) and Adaptive Hoeffding Tree (AHT) imple-
mented in MOA (Bifet et al. 2010) framework. Both of OBA
and AHT use adwin (Bifet and Gavald 2007) as the change
detector. These approaches do not have novel class detection
feature. So, we compare these approaches with our approach
only in terms of classification performance.

We evaluate each of the above classifiers on a stream by
testing and then training with chunks of data in sequence. To
evaluate ECSMiner, we use 50 pseudopoints, ensemble size
6 as suggested in (Masud et al. 2011). We use 100% labeled
training data to evaluate ECSMiner, OBA and AHT. On the
other hand, we set t = 6 and q = 50 in SAND using cross
validation.
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Table 2: Summary of classification results
Name of SAND-D (τ = 0.9) SAND-F (τ = 0.9) ECSMiner AHT OBA
Data set Error% Error% Error% Error% Error%

ForestCover 3.75 6.445 4.55 22.89 18.06
PAMAP 4.26 4.817 35.26 8.76 7.27

Power Supply 0.02 0.02 0.05 85.59 86.92
HyperPlane 0.01 0.02 3.73 46.24 48.55

SynRBF@0.002 32.13 20.035 63.43 38.75 37.04
SynRBF@0.003 34.61 25.886 65.39 48.65 46.86

Table 3: Comparison of classification performance using limited amount of labeled data
Name of
Data Set

SAND-D (τ = 0.4) SAND-F (τ = 0.4) ECSMiner AHT OBA
Error% % of labeled data Error% % of labeled data Error% Error% Error%

ForestCover 4.69 45.26 4.91 32.86 4.55 22.89 18.06
PAMAP 5.11 70.72 5.13 69.80 35.26 8.76 7.27

Power Supply 0.03 0.122 0.05 0.1 0.05 85.59 86.92
HyperPlane 0.02 0.227 0.04 0.23 3.73 46.24 48.55

SynRBF@0.002 54.4 33.18 56.67 34.70 63.43 38.75 37.04

SynRBF@0.003 53.86 42.20 55.38 38.76 65.39 48.65 46.86

4.3 Performance Metrics

Let FN = total novel class instances misclassified as ex-
isting class, FP = total existing class instances misclassi-
fied as novel class, TP = total novel class instances cor-
rectly classified as novel class, Fe = total existing class
instances misclassified (other than FP ), Nc = total novel
class instances in the stream, and N = total instances in
the stream. We use the following performance metrics to
evaluate our technique: 1) Error%: Total misclassification
error (percent), i.e., (FP+FN+Fe)∗100

N . 2) Mnew: % of novel
class instances misclassified as existing class, i.e., FN∗100

Nc
.

3) Fnew: % of existing class instances falsely identified as
novel class, i.e., FP∗100

N−Nc
.

4.4 Classification Performance

Unlike ECSMiner, SAND determines the chunk size dy-
namically based on changes in classifier confidence. There-
fore, SAND avoids unnecessary training during stable pe-
riod and frequently updates the classifier when needed. As
an instance, with increasing speed of change of centroids X
in SynRBF@X data sets, our proposed CPD helps SAND
to update the ensemble classifier more frequently to cope
up with more frequent concept drift. SAND-D (τ = 0.9)
creates 540 and 554 number of chunks while classifying
SynRBF@0.002 and SynRBF@0.003 respectively, where
ECSMiner creates same 47 number of chunks in both of
the cases. Further experiment results presented in (Haque,
Khan, and Baron 2015a) show that despite using limited la-
beled data, SAND successfully detects concept drifts and
updates the classifier timely.

Table 2 compares classification error of SAND-D (τ =
0.9) and SAND-F (τ = 0.9) with other baseline approaches.
SAND-D and SAND-F outperform other approaches in all
the cases. As mentioned in Section 3, increasing value of

τ results in fewer labeled data instances. Results from Ta-
ble 3 show that SAND-D and SAND-F using τ = 0.4
also show very competitive classification performance com-
pared with other approaches, if not better, despite using very
limited amount of labeled data instances. Furthermore, we
observed from our experiment results (Haque, Khan, and
Baron 2015a) that SAND achieves speed up by using run
time reduction strategies stated in Section 3.6.

Table 4: Summary of novel class detection results
Data set Method Mnew Fnew

ForestCover SAND-D (τ = 0.9) 8.525 1.865
SAND-F (τ=0.9) 12.427 2.120
ECSMiner 8.417 2.128

PAMAP SAND-D (τ = 0.9) 0.048 3.884
SAND-F (τ=0.9) 0.049 4.325
ECSMiner 0.047 37.530

4.5 Novel Class Detection Performance

As discussed in Section 3.2, SAND detects emergence of a
novel class if it finds enough filtered outliers that are close to
each other. Similar to ECSMiner, we consider arrival of 400
instances as the maximum allowable time, until which the
classifier can wait to detect a emerging class (Masud et al.
2011). Table 4 compares novel class detection performance
of SAND-D and SAND-F using τ = 0.9 with ECSMiner
on different data sets. We observe that, SAND-D shows the
best Fnew and very competitive Mnew despite using a lim-
ited amount of labeled data. SAND-F can be used where
satisfactory result is required within tight time constraint by
adjusting the value of τ .

Experiment results presented in (Haque, Khan, and Baron
2015a) indicate that SAND is not excessively sensitive to the
parameters t and Smax. Considering overall performance
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(Error%, Mnew, and Fnew), SAND clearly outperforms all
the other baseline approaches. Moreover, SAND can also
be very useful to save time and resources by using limited
amount of labeled data and by executing change detection
selectively, without sacrificing accuracy.

5 Conclusion

SAND is a semi-supervised framework which estimates
classifier confidence in predicting instances from any evolv-
ing data stream. It facilitates addressing of both concept
drift and concept evolution by detecting changes in classifier
confidence estimates, and dynamically determining chunk
boundaries. Several strategies have been proposed to further
reduce the execution time of SAND. Empirical results show
that, SAND is effective regardless of using only a limited
amount of labeled data.
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