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Abstract—Cyber-physical systems bridge the gap between
cyber components, typically written in software, and the physical
world. Software written with traditional development practices,
however, likely contains bugs or unintended interactions among
components, which can result in uncontrolled and possibly
disastrous physical-world interactions. Complete verification of
cyber-physical systems, however, is often impractical due to out-
sourced development of software, cost, software created without
formal models, or excessively large or complex models where the
verification process becomes intractable.

Rather than mandating complete modeling and verification,
we advocate sandboxing of unverified cyber-physical system
controllers by augmenting the system with a verified safety
wrapper that can take control of the plant in order to avoid
violations of formal safety properties. The focus of this work is
an automatic method, based on reachability and time-bounded
reachability of hybrid systems, to generate verified sandboxes.
The method is shown to be both more general than previous
work, and allows the trade-off of increased computation time for
improved reachability accuracy. We also present an end-to-end
toolkit which performs the low-level computation to generate the
sandbox source code from Simulink/Stateflow models of a cyber-
physical system.

I. INTRODUCTION

This paper addresses the problem of verifying properties of
cyber-physical systems with partly unknown software com-
ponents. Consider, for example, a firm A which manufac-
tures autonomous vehicles outsourcing the development of
the embedded controller to firm B. A provides to B a set
of specifications, such as the details of the available sensor-
actuator signals, certain performance criteria, etc., based on
which B then designs the controller and hands it back to A. In
doing so, B may wish to provide the controller as a black-box
without revealing the source-code or the core algorithms used
for implementing it. How does A then guarantee the key safety
properties of the autonomous vehicle that it manufactures
without having complete access to B’s controller model? In an
analogous situation, the controller model provided by B may
be untrusted, or it may be too complicated to be analyzed in
conjunction with the rest of the autonomous vehicle.

As a more concrete example, consider the off-road vehicle
industry, where vehicles traditionally made with hydraulics
are starting to be built using steer-by-wire and drive-by-wire
control. Software-based controllers may implement advanced
features, such as locking the inner wheels on a sharp turn,
to improve operator productivity. However, the unverified
software may run on an unverified operating system which
communicates to the actuators over a non-real-time network
shared with other untrusted nodes. Complete verification is
prohibitively expensive, yet an uncontained fault in the system

Fig. 1. The Simplex Architecture includes the physical plant, and three cyber
components: a verified safety controller, a verified decision module, and an
unverified complex controller.

could result in arbitrary actuation of both the steering and
acceleration while the vehicle is in motion.

Sandboxing is a popular technique for addressing these
issues in the context of software and web-based security [1].
A sandbox is a testing environment that isolates untested and
untrusted code and protects critical resources, such as live
servers and their data, from changes that could be damaging.
In this paper we present a technique for sandboxing controller
software for cyber-physical systems in order to maintain
formal safety invariants and, furthermore, automate the most
difficult steps in the sandboxing process.

Our sandboxing technique uses the Simplex architecture [2].
As shown in Figure 1, Simplex, given a complex, untrusted
or unverified controller (CC), creates a protected environment
for the plant by adding a safety controller (SC) and a decision
module (DM) such that the DM activates the SC and deactivates
the CC whenever the CC may jeopardize the safety of the
system. The key challenge in using the Simplex approach
is determining the switching conditions for the DM, that is,
the states of the system in which it is safe to allow the
CC to remain active and the states in which SC must take
control in order to maintain safety, without being excessively
conservative. Previously, Lyapunov-function-based techniques
have been used to determine switching conditions for purely
continuous systems [2]. Alternatively, for discrete systems,
model checking can be effective for creating and verifying
the switching logic [3]. For combined continuous and discrete
systems, hybrid systems, we introduced an algorithm [4]
which computes the switching set by performing reach-set
computations on certain classes of hybrid automata. [5], [6],
[7].

At a high level, our earlier approach [4] computes the
switching set as follows: Let U be the set of unsafe states.
No SC with bounded actuation strength can guarantee safety



from every state outside of U , U c. If the system is at the
boundary of U then, because of delays and inertia, SC may
not be able to prevent entry into U . Instead, we strive to find a
smaller set R ( U c from which SC is guaranteed to drive the
system in a way which avoids U . Formally, R is computed
as the backwards reachable set, or backreach set, from U
using the SC behavior and plant dynamics. Furthermore, the
switching from CC to SC is not instantaneous as the DM can
only observe the plant state and make decisions at most once
every δ time, for some positive time interval δ. Thus, a still
smaller set R′ ( R is computed where CC can be active for
δ-time without threatening safety of the system. Once outside
R′, SC must be activated or safety may be violated. Formally,
R′ is computed as the δ-time-bounded backreach set from R
with the CC behavior and plant dynamics.

Computing exact reach sets for hybrid systems is, in general,
an undecidable problem [8], but various restrictive subclasses
have been identified for which it is decidable [8], [9], [10].
The applications we have in mind cannot be modeled nat-
urally using these decidable classes, and hence, we resort
to overapproximating the reach sets. In our earlier approach
[4], the backreach sets R and R′ were over-approximated by
first creating discrete abstractions (simulations) of the system
models, and then computing the backreach set and time-
bounded backreach set from the abstractions. One advantage of
the algorithm was that it could be used for systems with some
nonlinear dynamics. The earlier approach was used to guide
the design and verification of the DM for a Simplex-based
off-road vehicle system in order to prevent vehicle rollover.

Although the algorithm from our previous work was a good
first approach, several disadvantages were present. First, the
models for which a discrete abstraction could be constructed
were restricted. Second, even when a safe overapproxima-
tion of the backreach set could be produced, it was often
excessively pessimistic (for example, the overapproximation
computed of backreach of U in the SC model would be the
entire state space). Lastly, no technique was provided to reduce
the pessimism in the backreach computation.

In this paper, we address these core technical limitations
of the earlier algorithm and integrate it within a software tool
suite for sandboxing controllers for cyber-physical systems.

Specifically, the key contributions of this paper are:

• A fixpoint algorithm for computing backreachabililty
which is applicable for a more general class of hybrid
systems. The algorithm can be used with nonlinear
dynamics as long as a function is provided which
bounds each variable’s derivative in a section of the state
space.

• Three accuracy-increasing strategies which can be used
to decrease the pessimism of the backreach computation.
These are shown to be effective with an example, and
an error-bounding theorem is provided.

• A Simulink/Stateflow-based toolkit for generating the
switching set for a given plant, CC, and SC, which
automates the sandboxing process. The toolkit is applied
on a case study of a skid-steer system, which illustrates
the steps involved in system modeling and switching-set
generation.

The organization of this paper is as follows. First, in Section
II, we briefly review background material relevant to the dis-
cussion of our work. Next, Section III presents our algorithm
for computing backreachability and time-bounded backreach-
ability. The text is accompanied by pseudocode and accuracy-
improving strategies and an associated error-bounding theorem
is provided. Finally, we discuss a Simulink/Stateflow-based
toolkit which uses our algorithm to automatically generate
the source code for the Simplex switching set in Section IV.
This is presented in the context of case study of a skid-steer
vehicle system with nonlinear dynamics. The paper finishes
with related work in Section V and conclusions in Section VI.

II. PRELIMINARIES

In this section, a brief review is provided about the Simplex
Architecture and hybrid systems.

The Simplex Architecture enables verification of control
systems where the controller cannot be modeled completely.
This feature is particularly advantageous where the model of
the complex controller is unavailable or untrusted, or where it
is too complicated to be tractable by verification procedures.
The key components of a Simplex system (Figure 1) are (a)
an abstract model of the complex controller (CC), (b) a safety
controller (SC) and (c) a decision module (DM). Once every
δ-time, the DM observes the plant and makes a decision about
which controller (SC or CC) to activate. Roughly, if there is a
possibility of entering an unrecoverable state within the next
δ interval, then DM activates SC. Once SC restores the plant to
a state from which there is no possibility of violating safety
in the next δ-interval, it reactivates CC.

We model each controller/plant combination in the Sim-
plex system as a hybrid automaton. A hybrid automaton is
a combination of differential equations with a finite state
machine, where the state of the system can evolve both
continuously and discretely. The continuous evolution of a
hybrid system typically models the evolution of the physical
variables in the plant, while the discrete transitions typically
model software behavior. Formally, a hybrid automaton (HA)
H = (V,L, S, θ,D, T ) consists of: (1) a set V of variables
which define the dimensions of the system, (2) a finite set
L of locations and `0 ∈ L, the initial location, (3) a set
S of continuous states and a non-empty subset θ ⊆ S of
start states, (4) a set D ⊆ L × L of discrete transitions and
(5) a set T of trajectories (or flows) for V which define the
continuous behavior of the system in a given location. Each
location ` ∈ L, has an invariant condition I` associated with
it. I` should be satisfied for the system to be in the location
`. Each discrete transition τ ∈ T has a guard condition gτ
and a reset map Rτ associated with it. A hybrid automaton



can transition from `1 to `2, through a transition τ1, if and
only if the following conditions are satisfied: (a) I`2 should
be satisfied, and (b) gτ should be satisfied. The complete
formalism of hybrid systems has been further described in
earlier work [5], [6], [7].

Let U be the set of unsafe states of the plant model.
BackReach(U , SC) is defined as the set of states from which
U can be reached within the SC hybrid automaton. G =
BackReach≤δ(BackReach(U , SC), CC) is the set of states
from which BackReach(U , SC) can be reached in up to δ time
within the CC hybrid automaton. Previously [4], we showed
that if SC is activated when the plant state is first detected to be
in G then the overall Simplex system remains safe. Therefore,
in principle, if we can compute the backwards reachable set
of states with respect to SC, and time-bounded backwards
reachable sets with respect to CC, we can generate a DM
that is correct by construction. Unfortunately, as discussed
earlier, the problem of computing backwards reachable sets
for hybrid systems has been well studied and is, in general,
undecidable [8]. Furthermore, an accurate model for CC may
not be available for the reasons presented in the introduction.

We can circumvent these issues by computing an overap-
proximation G′ ⊇ BackReach≤δ(BackReach(U , SC), CC’)
based on an abstract model CC′ of the complex controller. For
example, the actual outputs generated by CC can be abstracted
by the range of values that are valid outputs for the actuators.
Since G′ overapproximates G, using G′ as the switching set
also guarantees overall system safety.

III. COMPUTING BACKREACHABILITY

In this section, we describe the details of the algorithm used
to construct Simplex switching set by overapproximating the
equation BackReach≤δ(BackReach(U , SC), CC’). Through-
out this section, we will augment the discussion with a
demonstrative Simple-Vehicle System, which is introduced in
Section III-A. Section III-B presents the assumptions of our
backreachability algorithm. Next, Subsection III-C presents the
algorithm for computing bounded and unbounded backreach
sets. Finally, in Section III-D, three strategies are proposed
which together can bound the error of a BackReach≤δ
computation to an arbitrary constant.

Additionally, although we are concerned with backreacha-
bility for Simplex, the explanations are easier to understand,
and therefore presented, in terms of forward reachability. The
two notions can be shown to be computationally equivalent.

A. Simple-Vehicle System Example
Consider a vehicle which moves along a one-dimensional

line, modeled as a point x on the x-axis which moves
according to the input acceleration a generated by the con-
troller. Physical constraints require that a ∈ [amin, amax], and
velocity the velocity v of the vehicle remains in the range
[vmin, vmax]. The safety property requires that the point x
remains in the range [xmin, xmax], where xmin < 0 < xmax.

For this system, one possible safety controller is a bang-
bang controller which outputs the maximal negative accelera-
tion a = amin for x > 0 and outputs a = amax if x ≤ 0. Two
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Fig. 2. The gray area indicates BackReach(U , SC) , states where using
the safety controller leads to safety violations for the example from Section
III-A. Both figures assume xmin = −xmax, vmin = −vmax and amin =
−amax.

possible sets of unrecoverable states (depending on the exact
parameters of the plant) are shown in Figure 2. This region can
be computed directly by examining the backreachability using
the SC automaton from set of unsafe states, U , or formally
BackReach(U , SC).

Next, we specify the hybrid automata for the CC’ system and
SC system, which are show in Figure 3. The hybrid automaton
for the CC’ system, in Figure 3(a), has three locations (discrete
modes). Under unsaturated operation, the location invariant is
vmin < v < vmax and the derivative equations are ẋ = v
and v̇ = [amin, amax] (v̇ is nondeterministic). There are two
other locations corresponding to when the point has reached
its minimum and maximum velocity (labeled min speed and
min speed) where v̇ is restricted to be either nonnegative
or nonpositive. The hybrid automaton for the SC, in Figure
3(b), contains two locations corresponding to the two states
of the controller (labeled forward and backward), and two
more locations for when the velocity has reached saturation
(labeled min speed and max speed). When we compute an
overapproximation of BackReach or BackReach≤δ , it will
be with respect to one of these automata.

B. System Assumption

In order to apply our algorithm, we have two assumptions,
which we outline and elaborate on in the context of the Simple-
Vehicle System below.



 

Invariant:

v̇ =[5,−5 ]
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ẋ = v

x≤0 ∧ vvmax

forward

max_speed min_speed

backward

(b) the SC (safety controller and plant) automaton

Fig. 3. The hybrid automata describing the Simple-Vehicle System have no
transition guard restrictions, so the discrete location switching is done solely
based on the invariants.

Assumption 1: For any rectangular set of states H ⊆ S,
for any continuous variable xi, there exist functions dbminxi and
dbminxi , that bound the derivative of xi with respect to time in
H . That is, dbminxi (H) ≤ dxi

dt ≤ db
max
xi (H), for every xi.

Assumption 2: We make a distinction between two types
of derivative dependencies, explicit ones directly extracted
from the differential equations in each location of the hybrid
automaton (for example, ẇ = v would create an directed edge
from the node corresponding to v to the node corresponding
to w), and implicit dependencies which arise because as time
advances, the continuous state may cause a change in hybrid-
automaton locations which causes the differential equations of
variables to be changed. Assumption 2 restricts the systems
we consider to those where the explicit dependency graph of
the state-variable derivatives does not have cycles, except for
self-loops. This restriction is more relaxed than in our pre-
vious work, where the combined explicit / implicit derivative
dependency graph was required to be acyclic, except for self-
loops.

Example: In the context of the Simple-Vehicle System, to
meet Requirement 1, we must provide the derivative bounds
functions for each variable, x and v, which can be automat-
ically extracted from the hybrid automata. These functions
takes as input a rectangle of the state space defined by
upper and lower bounds on each variable, ([vlower, vupper]×
[xlower, xupper]).

For the CC’ automaton, dbminx = vlower, dbmaxx = vupper,

dbminv =

{
−5 if vupper > vmin
0 otherwise

and
dbmaxv =

{
5 if vlower < vmax
0 otherwise

x v
(a) the CC’ derivative dependency
graph

x v
(b) the SC derivative dependency
graph

Fig. 4. The derivative dependency graphs for the Simple-Vehicle System
have explicit dependencies (solid arrows) and implicit dependencies (dashed
arrows).

For the CC’ automaton, again, dbminx = vlower, dbmaxx =
vupper, and

dbminv =


−5 if xupper > 0 ∧ vupper > vmin
0 if xupper > 0 ∧ vupper ≤ vmin
0 if xupper ≤ 0 ∧ vupper ≥ vmax
5 otherwise

and

dbmaxv =


5 if xlower ≤ 0 ∧ vlower < vmax
0 if xupper > 0 ∧ vupper ≤ vmin
0 if xupper ≤ 0 ∧ vupper ≥ vmax
−5 otherwise

To meet Requirement 2, we construct and check the deriva-
tive dependency graphs (shown in Figure 4). For both con-
trollers, in every location, the value of ẋ, explicitly depends
on v, and the value of v̇ does not explicitly depend on any
variables. However, due to the possibility of a change in
automaton location, there is an implicit dependence of v̇ on
v in the CC’ automaton. In the SC, there are two implicit
dependencies: one implicit dependence of v̇ on v, and a second
implicit dependence of v̇ on x. Since both of the explicit
dependency graphs (solid arrows) with self-loops removed
are acyclic, the system meets the second requirement. Notice,
however, that the SC automaton would not meet the restrictions
of our previous algorithm since the combined explicit / implicit
derivative dependency graph contains a cycle that is not a self-
loop.

C. Algorithm for Overapproximating Reach and Reach≤δ
In this section, we outline our proposed algorithm for

computing overapproximations of Reach and Reach≤δ . We
start by presenting the pseudocode of the algorithm, and then
elaborate on each of the functions.

The pseudocode uses the following notation: The expression
D.i refers to the ith element of a finite set D in an arbitrary
fixed ordering. The expression H/i refers to the projection
of the ith dimension of a hyperrectangle H . The minimum
value in this one-dimensional projection is referred to by
Hmin
/i and the maximum value is referred to by Hmax

/i . The
hybrid automaton has n continuous variables, x1, x2, . . . , xn,
which are ordered according to the topological sort of the
explicit derivative dependency graph with self-loops removed.
The values qxi for each variable xi are quanta used in the
computation which are fixed constants.



In the pseudocode, several functions are also used:
• getLocations takes a hyperrectangle state space as

input and outputs a set of integers corresponding to the
set of locations in which the hybrid automaton may be.

• getFirstImplicitDerivativeDependency
takes as input an integer corresponding to an automaton
location, and returns the implicit derivative dependency
of the node corresponding to xi that comes first in the
topologically-sorted variable order.

• α is an abstraction function which takes as input a set
of states, and outputs a set of abstract states represented
an integer for each variable. The α−1 function is the
concretization function which, given an abstract state,
returns the set of corresponding concrete states of
the system. Formally, if the continuous state space
is X = Rn and the abstract state space is Y = Zn,
then α : X −→ Y . α(x) = y1, y2, . . . , yn, where each
yi = xi/qxi and xi refers to the ith coordinate of a state
x ∈ X . In the abstraction function, qxi are the constant
quanta for each variable, as mentioned above. As usual,
α−1 : Y −→ 2X . In the pseudocode, we use the natural
lifting of these functions from a single input state to a
set of input states.

The pseudocode for the reachability and time-bounded reach-
ability algorithms is below:

1 %%% ComputeReach outputs an overapproximation of reachability from an initial set
2 ComputeReach(I}
3 {
4 declare D := α(I);
5 declare C := α−1(D);
6 declare m := |D|; % number of abstract states
7 declare array[m] E;
8 declare C′ := ∅;
9

10 for i = 1 to m
11 E[i] := α−1(D.i); % initialize the m exact reach sets
12

13 while (C 6= C′) % loop until fixpoint
14 C′ := C;
15

16 for (i = 1; i < m; i := i + 1)
17 (H, E) := ComputeDeltaReach(E[i ]);
18 E[i ] := E ; % update exact reach set
19 C := C ∪H; % accumulate reachability
20

21 return C;
22 }
23

24 %%% ComputeDeltaReach outputs (Reach≤δ,Reachδ) from an input hyperrectangle
25 ComputeDeltaReach(H)
26 {
27 declare E := H;
28 declare L := getLocations(H);
29

30 for (i = 1; i < n; i = i + 1) % loop over every variable
31 declare l = MinReach(i,H);
32 declare u = MaxReach(i,H);
33

34 E/i := [l, u]; % update exact delta reach
35 H/i := [min(Hmin/i , l), max(Hmax/i , u)]; % update delta reach
36

37 if (L 6= getLocations(H))
38 L := getLocations(H);
39 i := getFirstImplicitDerivativeDependency(i) − 1; % backtrack
40

41 return (H, E)
42 }
43

44 %%% MinReach overapproximates the minimum value of xi reached after δ time
45 MinReach(i, H)
46 {
47 return MinReachRecursive(H, i, δ, Hmin/i , dbminxi

, true);
48 }
49

50 %%% MinReachRecursive overapproximates the minimum value of xi reached
51 MinReachRecursive(i, H, time, start, db, isFirstInterval)
52 {
53 H/i := [start −qxi , start ]; % consider the current interval
54 declare der := db(H);
55 declare nextIntervalTime := (der = 0 ? time : −qxi/der);
56

57 if (nextIntervalTime < 0) % switch direction
58 if (!isFirstInterval) % can not safely reverse direction; be pessimistic
59 return start;
60 else
61 return MaxReachRecursive(i, H, time, start, db, false);
62 else if (nextIntervalTime ≥ time) % time expires in this interval
63 return start + nextIntervalTime ∗ der;
64 else % continue to next interval
65 return MinReachRecursive(i, H, time − nextIntervalTime, start −qxi , db, false);
66 }

The top-level of the algorithm, the ComputeReach func-
tion (lines 1-22), starts by dividing the state space into
hyperrectangles based on a provided constant quantum size for
each variable through the abstaction function α (line 4). The
fixpoint computation loop for computing reachability occurs
on lines 13-19. Starting from the hyperrectangle corresponding
to every discrete state which contains an unsafe state, we
use the ComputeDeltaReach function to compute both
the states reachable in up to δ time, Reach≤δ , and the states
reachable in exactly δ time, Reach=δ (line 17). The Reach=δ

result is used as the initial set of states for the next iteration
of the loop (line 18), while the Reach≤δ result is added to
the global reachable set (line 19). The intuition behind the
correctness of this function is that any state reachable in up
to k < δ time will necessarily pass through a state reachable
in exactly δ time (specifically, after δ − k time). Therefore,
we need not consider all of Reach≤δ as the initial states in
the next iteration. In terms of termination, notice that this
algorithm will clearly not terminate if the computed reach
set is infinite. If termination is desired, one can bound the
reachable state space with the hybrid automaton, and assure
the the variable derivatives do not asymptotically approach 0
(for example, by adding an ε amount of overapproximation in
the dbminxi and dbmaxxi functions).

The ComputeDeltaReach function (lines 24-42) is used
to overapproximate both Reach≤δ and Reach=δ . Starting
from an input initial hyperrectangle, the sets of states are
computed for each variable in the order of the topological
sort of the explicit derivative dependency graph with self-loops
removed (lines 30-39). This ensures that when the bounds is
being computed for a particular variable, all (non-self) depen-
dent variables already have valid computed Reach≤δ bounds,
ensuring correctness. After a Reach≤δ bound for a variable is
computed, this bound is used as input to the derivative bounds
function that is used to compute Reach≤δ for the subsequent
dependent variables (because of the assignment on line 35).
The Reach=δ set is also maintained (line 34). After we have
computed Reach≤δ for every variable, the cross product is an
overapproximation of Reach≤δ from the initial state (which



is iteratively constructed on line 35).
The proposed algorithm does allow models with cycles

caused by implicit derivative dependencies, restricting only
that the explicit-only dependency graph of derivatives be
acyclic except for self-loops. After we compute the Reach≤δ
for a variable with an implicit derivative dependency which
creates a cycle in the combined explicit / implicit derivative
dependency graph, we go back and check if we may have
entered a new state of the automaton (line 37). If we may have,
the algorithm backtracks and recomputes the reachability of all
the variables that could have possibly been affected (line 39).
Since there are only a finite number of discrete locations in
the hybrid automaton, the backtrack process can only happen a
finite number of times, and the algorithm remains terminating.

Example: Consider computing Reach≤δ in the Simple-
Vehicle System with respect to the safety controller / plant
automaton (Figure 3(b)), starting from (x = [−2,−1], v =
[4, 5]). We fix the quanta of both dimensions to be 1, fix δ
to be 0.5 time units, fix vmax to be 10, and fix amin = −5
and amax = 5. The algorithm will compute in the order of the
explicit dependency graph, first v then x. First the reachability
for v is computed using MinReach and MaxReach. These
two functions return 6.5 and 7.5, respectively. Due to the
capping of the minimum value (line 35) the Reach≤δ range is
set as v = [4, 7.5]. Second, the reachability for x is computed
to be x = [−2, 2.75]. The algorithm can not terminate here,
since the change in x may result in a change in hybrid-
automaton location (the condition on line 37 is true). The
algorithm goes back and recomputes Reach≤δ for v to be
v = [1.5, 7.5]. Next, the reachability of x is recomputed once
again to be x = [−2, 2.75]. Although there is an implicit
dependency, the set of possible discrete locations has not
changed since the last iteration (the condition on line 37 is
false due to the prior assignment on line 38), and the loop
terminates. The result of the algorithm is an overapproximation
of the actual Reach≤δ states, shown in Figure 5.

The MinReach and MinReachRecursive
functions (lines 44-66) (and symmetric MaxReach and
MaxReachRecursive, not shown), overapproximate
Reach=δ for one variable, under the assumption that the
passed-in hyperrectangle contains valid Reach≤δ bounds for
all dependent dimensions. This is done by starting at the
minimum value of the variable in the initial hyperrectangle
(line 47), and proceeding at the minimum derivative for δ
time, considering new derivatives as we enter new intervals
(line 53). Intuitively, this is correct because the all the bounds
of the dependent dimensions is correct are assumption so the
call to db (line 54) will yield a correct bound on the current
variable’s derivative. If the derivative is nondeterministic,
we will still overapproximate Reach=δ by considering
the minimum in each interval. Special care is taken if the
derivative is zero (line 55), or if the minimum derivative is
positive (lines 58-61), which avoids infinite loops caused by
Zeno behavior through the isFirstInterval variable.

Example: To help illustrate this algorithm, we compute
Reach≤δ from a state in the Simple-Vehicle System, in the
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Fig. 5. An estimate of Reach≤δ in the computed using 10,000 simulations
(light gray region) for the Simple-Vehicle System is shown in comparison with
the overapproximation computed with proposed Reach≤δ algorithm (solid
gray line). This computation is done with respect to the SC automaton. Here,
δ is 0.5 and the initial state is (x = [−2,−1], v = [4, 5]).

CC’ automaton (Figure 3(a)). Now, we will compute Reach≤δ
from the hyperrectangle (x = [1, 2], v = [8, 9]). The topologi-
cal sort of the self-loop-removed derivative-dependency graph
(Figure 4(a)) is v, x, so we start with the v dimension. The
inner loop of the algorithm, MinReach and MaxReach, will
compute the minimum and maximum values of v that can be
reached after δ time. In the functions, the variable time is
used to keep track of the time elapsed in terms of the execution
of the system when computing these values.

Initially, time = δ = 0.5. To compute the minimum
reachable velocity, we start by invoking dbminv with the
hyperrectangle (x = [1, 2], v = [7, 8]), which outputs the
derivative bounds -5. At the minimum derivative, -5, the next
interval is reached in 0.2 time units. We update time to be
0.5−0.2 = 0.3. The process then repeats for the next interval,
v = [6, 7]. The minimum derivative for v is again -5, and time
is updated to 0.1. On the third iteration, time is less than the
time it would take to reach the next interval, and the minimum
Reach≤δ value is computed as v = 4.5 (line 63).

To compute the maximum velocity we again, initialize
time to be δ = 0.5. First, dbmaxv with the hyperrectangle
(x = [1, 2], v = [9, 10]) outputs 5 as the maximum derivative
for the v variable. The time variable is updated to 0.3. On
the second iteration, however, dbmaxv with the hyperrectangle
(x = [1, 2], v = [10, 11]) outputs 0 as the maximum derivative
for the v variable, so the next interval is unreachable in 0.3
time units. The maximum Reach=δ value is therefore v = 10
(line 63). The Reach=δ values for v are [5, 10]
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Fig. 6. An estimate of Reach≤δ computed using 10,000 simulations (light
gray region) for the Simple-Vehicle System is shown in comparison with the
overapproximation computed with the proposed Reach≤δ algorithm (solid
gray line). This computation is done with respect to the CC’ automaton. Here,
δ is 0.5 and the initial state is (x = [1, 2], v = [8, 9]).

Now the ComputeDeltaReach function would proceeds
to compute the reachable values for the next variable, x, using
the values [5, 10] for the v-dimension of the hyperrectangle
when calling MinReach and MaxReach.

Computing the maximum value that can be reached for x,
the states of the computation proceed as: (t = 0.5, x = [2, 3],
dbmaxx (x = [2, 3], v = [5, 10]) = 10),
(t = 0.4, x = [3, 4], dbmaxx (x = [3, 4], v = [5, 10]) = 10),
(t = 0.3, x = [4, 5], dbmaxx (x = [4, 5], v = [5, 10]) = 10),
(t = 0.2, x = [5, 6], dbmaxx (x = [5, 6], v = [5, 10]) = 10),
(t = 0.1, x = [6, 7], dbmaxx (x = [6, 7], v = [5, 10]) = 10).
where t is the value of time. At this point, the next interval
can not be entered in 0.1 time, and the maximum Reach≤δ
value is x = 7.

Computing the minimum value x can reach, we start with
t = 0.5 and invoke dbminx with the hyperrectangle (x =
[0, 1], v = [5, 10]). This returns a minimum derivative in the x
dimension of 5, which is nonnegative, so we switch directions
and call MaxReachRecursive (line 61), with the dbminx

function as a parameter. This will eventually reach a minimum
Reach=δ value of x = 6. The Reach=δ values are x = [6, 7].
This example is shown in Figure 6

D. Accuracy Convergence

One important concern for using the proposed algorithm
to compute the Simplex switching set is the accuracy of
the Reach≤δ overapproximation, which in turn affects the
accuracy of the global-reachability overapproximation that it
computes. In this subsection, we propose three strategies that
can be used to reduce the error of the proposed algorithm.
Then, an important accuracy theorem is stated which allows
us, under some reasonable assumptions, to reduce the com-
puted Reach≤δ error for each variable to an arbitrarily small
constant. Finally, through example, the proposed strategies are
shown to, in fact, reduce the computed error.

We propose three strategies to reduce the error of the
Reach≤δ region from an initial hyper-rectangle, which we

call the quantum rule, the refine rule and the split rule. We
later show that these, when used in combination, can reduce
the error in each variable of theReach≤δ overapproximation
to an arbitrary constant.

The quantum rule uses the fact that the inner loop
(MinReach and MaxReach) of the algorithm considers
intervals one quantum in size. Since no restrictions are placed
on the minimum size of the quantum, the quantum rule, which
evenly splits the size of this quantum for one variable, is
always safe to apply. Intuitively, this helps with accuracy by, at
each time, providing a smaller hyperrectangle to the derivative
bounds function which allows it to output a more accurate
derivative bound.

The refine rule is based on the fact that Reach≤δ from
an initial set, w, is equal to the union of Reach≤δ from
multiple smaller sets, as long as the union of those smaller
sets is equal to the initial set w. Formally, if w = w1 ∪ w2 ∪
. . .∪wn, then Reach≤δ(w) = Reach≤δ(w1) ∪ Reach≤δ(w2)
∪ . . . ∪ Reach≤δ(wn). This allows us to refine the initial
hyperrectangle into smaller hyperrectangles and still obtain
a safe overapproximation by taking the union of the results.
The rule itself will be applied to a particular variable, and will
split the initial hyperrectangle into equal-sized hyperrectangles
along that variable. As with the quantum rule, this intuitively
helps with accuracy by providing a smaller hyperrectangle to
the derivative bounds function which allows it to output a more
accurate derivative bound.

The final rule, the split rule, is based on the fact
that Reach≤δ can be decomposed in a way similar
to the way in which we described computing full
reachability the ComputeReach function. Formally,
d1 + d2 + . . . + dn = δ implies that Reach≤δ(w)
= Reach≤d1 (w) ∪ Reach≤d2(Reach=d1(w))∪
Reach≤d3(Reach=d2(Reach=d1(w))) ∪ . . .. When we
say this rule is applied n times, we split δ with n equal
constants, d1 = d2 = . . . = dn = δ

n . Intuitively, this rule
will improve accuracy by, when computing the reachability
for a particular variable, reducing the variable ranges of the
dependent dimensions. This provides the derivative bounds
function with a smaller hyperrectangle, which allows it to
output a more accurate derivative bound.

The application of these three rules can be used to reduce
the pessimism of the error in the Reach≤δ overapproximation
to an arbitrarily small constant in each dimension. This is
reflected in the following theorem.

Theorem 1: By applying the quantum rule, the refine rule
and the split rule finitely many times, the maximum error in
each variable x of the computed Reach≤δ overapproximation,
for a fixed δ and from an initial hyperrectangle α, can be
reduced to below an arbitrary positive constant ex.

The proof of this theorem has two primary assumptions.
First, the derivative bounds function should not itself output
errors of the actual derivative bounds, as the computed set
relies on the accuracy of this function. Second, the derivative
function for each variable x, ẋ = f(y1, y2, . . . , yn) should
be a Lipschitz continuous function with respect to each input
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Fig. 7. An estimate of Reach≤δ computed using 10,000 simulations (dark
gray region) for the Simple-Vehicle System is shown in comparison with the
overapproximation computed with the Reach≤δ algorithm (light gray region)
with various amounts of accuracy-increasing strategies applied.

variable, and the derivative value ẋ should be bounded. This
essentially means that we can bound the rate of change of the
derivative ẋ (and therefore indirectly the rate of change of the
value of x) in a finite amount of time.

Due to space limitations, the proof of this theorem is
presented in this paper’s companion technical report [11].

As a demonstration of the implications of this theorem,
we show an example in the Simple-Vehicle System using
the safety controller / plant with an initial hyperrectangle of
(x = [−2,−1], v = [4, 5]) with a value of δ = 0.5. The
original computed Reach≤δ result, with no applied accuracy-
increasing strategies, was previously shown in Figure 5. By
applying the accuracy-increasing strategies, we can approach
the actual Reach≤δ set with arbitrary precision, as shown in
Figure 7.

IV. CASE STUDY: WAYPOINT TRACKING SYSTEM

We now discuss the proposed sandboxing approach for an
autonomous waypoint tracking system (WTS) with a short
case study. This system model is inspired by applications
such as automated lawn mowers or skid-steer loaders. The au-
tonomous vehicle is required to follow a (predefined) sequence
of waypoints while remaining within a fixed safe distance of
the line joining successive waypoints.

The controller software periodically senses the position
(x, y), the velocity v, and the heading θ, of the vehicle and
sets the acceleration (v̇) and the steering (θ̇) based on the

current waypoint (x∗, y∗) of the system. The vehicle models
a skid-steer system which can turn in place, i.e., the heading
θ can change even when the velocity v is 0. The equations of
motion for the vehicle’s position are given by the following
nonlinear differential equations:

ẋ = v cos θ, ẏ = v sin θ

We assume that there is no information available for the
complex controller (CC) we wish to sandbox, except that it
operates within the physical limits of the actuator. That is,
v̇ ∈ [amin, amax] and θ̇ ∈ [φmin, φmax]. Recall that the safety
requirement is to keep the vehicle within some distance of the
line joining the waypoints. Thus, a simple safety controller
(SC) strategy is to ‘slow down and stop the vehicle as fast as
possible’.

The Embedded Safety Critical Programming Environment
(ESCAPE) toolkit is a set of tools and design methodology
we are developing which is uses the Simplex Architecture to
generate cyber-physical system sandboxes. ESCAPE consists
of two parts, 1) HyLink, and 2) SimplexGen. HyLink is a
translation tool which takes as its input a Simulink/Stateflow
model and translates the model into an hybrid system inter-
mediate format. SimplexGen is an implementation of the
algorithm described in this paper which takes as its input,
1) the safety controller / plant (SC) model, 2) the abstract
complex controller / plant (CC’) model 3) the safety invariant
to verify 4) computation constants (the size of the quanta,
the value of the control interval δ) and generates the Simplex
switching set. ESCAPE provides a set of Simulink blocks
for defining the safety invariant and computation constants, as
shown in Figure 8(a).

The CC and SC were modeled as hybrid systems using Math-
work’s Simulink environment (Figure 8(b)). HyLink is used
to extract the hybrid automata from the Simulink/Stateflow
models and create an input format which SimplexGen can
use. The SimplexGen tool then uses the algorithm described
in Section III-C to generate the switching set. This switching
set can then be automatically encoded into a source code file
to be used in the Simplex decision module during operation.

For computing the backreach set, the algorithm in Sec-
tion III-C requires the derivative bounds for each variable.
These bounds are obtained from the translated hybrid automata
models of the CC and SC as follows: given a rectangular
set H of states, the derivative bounds of each variable in
H are determined from the trajectory definitions (differential
equations) of the locations of the hybrid automaton whose
invariants intersect H . The differential equations for each
variable xi are of the form ẋi = f(x). We then maximize
and minimize the function f(x) over the set H .

The size of the discrete state space for this example con-
sisted of 1,536,000 states, and the algorithm ran to termination
in about 20 minutes. The switching set generated for the WTS
is a four-dimensional set (x, y, v, θ) which cannot be easily
visualized. We can, however, analyze the output set by fixing
two of the dimensions (for example, v and θ) and plotting
the other two dimensions. Figure 9 shows two plots of the



(a) Custom ESCAPE blocks were created in Simulink to
provide the non-model input for SimplexGen.

(b) Simulink blocks are used to specify the system dy-
namics.

Fig. 8. The ESCAPE toolkit uses Simulink/Stateflow as a front end.

switching set for two values of v and a fixed θ. By changing
the values of v and θ, we can verify our intuition about the
switching set: that going away from the waypoint-connecting
line segment at high velocity will more quickly switch to the
safety controller.

V. RELATED WORK

There are several algorithms and tools for computing reach-
able states and approximate reachable states for hybrid systems
and a complete survey of these techniques is beyond the scope
of this paper [12], [13], [14], [15], [16], [17], [18], [19], [20].

Work related to the PESSOA [21] tool for synthesizing
embedded controllers is similar in spirit to our work. PESSOA
generates a finite state abstraction of a given system and uses
these abstractions for synthesizing controllers that are guar-
anteed certain restricted class of LTL properties such as �ϕ,
�ϕ, ��ϕ and ��ϕ∧�ϕ′. The controller synthesis uses earlier
techniques [22], [23], [24], [25]. The finite state abstractions
used in PESSOA are approximate simulations [26], [27] of
the original continuous system. In contrast, the finite state
abstractions we use are simulations of the original system in
the classical sense. Furthermore, our algorithm (and tool) can
handle plants which are described with hybrid automata with

x

x

y

y

Fig. 9. The switching set of points output by our algorithm is shown projected
onto fixed v and θ dimensions. Here, a single segment between two waypoints
(crosses) is analyzed. The light gray states indicate the unsafe regions, whereas
the dark gray states are states where the safety controller must be immediately
used in order to maintain safety. The top figure is for v = 1000mm/s and
bottom figure is for v = −1500mm/s. In both figures, θ is fixed at 0.

nonlinear differential equations. To the best of our knowledge,
PESSOA currently does not support such models.

Checkmate [14] is a tool for verifying control systems
modeled as a hybrid automaton. Checkmate computes the
reach set for a linear and non-linear systems by using the
flow pipe approximation technique [18] to approximate the
reachable sets by a sequence of convex polyhedra. Checkmate
restricts the class of hybrid systems that can be verified to
polyhedral-invariant hybrid systems. Our approach, however,
can verify hybrid systems without this restriction.

The Simplex Architecture [2] has been applied as a sand-
boxing technique for various systems ranging from a fleet
of remote-controlled cars [28], to a pacemaker [3], to a
set of advanced aircraft maneuvers [29]. Some approaches
rely on heuristics and testing to create the Simplex decision
module [30]. In contrast, we propose verification based on
system models. For a limited class of hybrid systems, we
have previously proposed an automatic method to verify the
Simplex decision module [4]. The algorithm presented in
this paper accepts more general models than our previous
work, and provides ways to increase reachability accuracy.
Additionally, we provide the ESCAPE toolkit to synthesize
automatically the decision module, rather than only checking
a decision module after it has been created, as in our previous
work.



VI. CONCLUSIONS

In this paper, we have addressed the problem of verifying
properties of cyber-physical systems with partly unknown
software components. The main technique to achieve this
was to sandbox unverified components by using the Simplex
Architecture. In this Simplex Architecture, however, the deci-
sion module, which switches between the unverified complex
controller and verified safety controller, must be verified as
correct.

This paper presented a hybrid-systems reachability approach
for creating this Simplex switching logic. The low-level algo-
rithm was shown to be more general than previous approaches,
with three techniques provided to improve accuracy. The
approach was integrated into an end-to-end toolkit where
Simulink/Stateflow models of the system can be used to create
source code for the Simplex decision module, and then the
toolkit was successfully applied to a skid-steer vehicle system
model.

The cyber-physical system sandbox approach presented
in this paper, however, should not be regarded as a silver
bullet that mitigates all possible system faults. For example,
hardware failure is not considered in our designs, so practical
systems may need to also incorporate redundancy. Addition-
ally, as with all model-based verification techniques, the result
of the verification is only as accurate as the models themselves.
Runtime monitoring may be necessary to ensure that the
deployed system behaves in accordance with the verification
model. The proposed algorithm is remains inapplicable for
hybrid systems with circular explicit derivative dependencies,
although this will be investigated as future work. Additionally,
we will explore techniques to reduce the computation time of
the method, which due to the accuracy-increasing rules, can
lead to improved accuracy of the reachability computation,
which will construct a less pessimistic decision module.
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