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ABSTRACT
Dynamic analysis of malware is widely used to obtain a bet-
ter understanding of unknown software. While existing sys-
tems mainly focus on host-level activities of malware and
limit the analysis period to a few minutes, we concentrate
on the network behavior of malware over longer periods.
We provide a comprehensive overview of typical malware
network behavior by discussing the results that we obtained
during the analysis of more than 100,000 malware samples.
The resulting network behavior was dissected in our new
analysis environment called Sandnet that complements ex-
isting systems by focusing on network traffic analysis. Our
in-depth analysis of the two protocols that are most popular
among malware authors, DNS and HTTP, helps to under-
stand and characterize the usage of these prevalent proto-
cols.

1. INTRODUCTION
Dynamic analysis, i.e. runtime monitoring, has proven to

be a well-established and effective tool to understand the
workings of yet unknown software [8, 14, 17]. Understand-
ing the behavior of malicious software may not only provide
insights about actions of malicious intents, upcoming tech-
niques, and underground economy trends, but it also gives
the opportunity to develop novel countermeasures specifi-
cally built on top of that understanding. Current analy-
sis systems have specialized in monitoring system-level ac-
tivities, e.g., manipulation of Windows registry keys and
accesses to the file system, but little effort has generally
been devoted to understanding the network behavior ex-
posed by malware. In fact, similarly to system-level ac-
tivities, network-level activities also show very distinct be-
haviors that can back up the insights provided by system-
level analyses. Second, the very same network behaviors can
uniquely provide further specific understanding necessary to
develop novel approaches to collect, classify and eventually
mitigate malicious software. Driven by this observation we
focus our research on dissecting, analyzing, and understand-
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ing the behavior of malicious software as observed at the
network level.

As we will show later, the observed malware behavior
highly depends on the duration of the dynamic analysis.
Current systems try to analyze as many malware samples as
possible in a given period of time. This results in very short
analysis periods, usually lasting only a few minutes, which
makes it difficult to observe malicious network behavior that
goes beyond the bootstrapping process. From a network be-
havior point of view, however, the post-bootstrap behavior
is often more interesting than what happens in the first few
minutes. A thorough analysis is key to understanding the
highly dynamic workings of malware, which is frequently ob-
served to be modular and often undergoes behavior updates
in a pay-for-service model.

In this paper we present an in-depth analysis of mal-
ware network behavior that we gathered with a new system
called Sandnet during the last 12 months. Sandnet [3] is an
analysis environment for malware that complements existing
systems by a highly detailed analysis of malicious network
traffic. With Sandnet, we try to address two major limita-
tions we see in publicly available dynamic analysis systems:
a short analysis period and the lack of detailed network-
behavior analysis. While existing systems have usually spent
only a couple of minutes to run a malware sample, we ran
each sample for at least one hour. In addition, using the
data collected through Sandnet, we provide a comprehen-
sive overview of network activities of current malware. We
first present a general overview of network protocols used by
malware, showing that DNS and notably HTTP are preva-
lent protocols used by the majority of malware samples. We
will then provide an in-depth analysis of DNS and HTTP
usage in malware. The results of our analysis [3] can be used
to spawn new research such as clustering malware based on
network-level features or network-level malware detection.

The main contributions of this work are:

• We have in operation a new data collection and analy-
sis environment called Sandnet that will be up for the
long run and that we will continuously use to gather
information on malware network behavior.

• We give an overview of the network activities of more
than 100,000 malware samples and compare the results
with data from previous efforts.

• An in-depth analysis of DNS and HTTP traffic pro-
vides details on typical protocol-specific usage behav-
iors of malware, e.g. DNS fast-flux or click fraud.



This paper is structured as follows. In Section 2, we will
give an overview of Sandnet. Section 3 describes the dataset
our analysis is based on. We will then provide a general
malware network traffic overview in Section 4. In Section
5, we will provide a deep analysis on the usage of the DNS
protocol by malware. Section 6 describes the usage of the
HTTP protocol by malware. We will discuss related work
in Section 7 and show future work in Section 8.

2. SYSTEM OVERVIEW
In Sandnet, malware is analyzed in execution environ-

ments known as sandpuppets consisting of (virtualized) hard-
ware and a software stack. Currently, we use VMs with Win-
dows XP SP3 based on VirtualBox as sandpuppets. The
machines are infected immediately after booting and grace-
fully shut down after a configurable time interval, which is
typically one hour. Each sandpuppet is configured to have
a local IPv4 address and a NATed Internet connection. A
local DNS resolver is preconfigured.

The sandherder is a Linux system hosting the sandpuppet
virtual machines. Besides virtualization, the sandherder also
records, controls and transparently proxies network traffic
to the Internet. We limit the potential damage of run-
ning malware samples by transparently redirecting certain
traffic (e.g. spam, infections) to local sinkholes or honey-
pots. In addition, we limit the number of concurrent con-
nections as well as the network bandwidth and packet rate
per sandpuppet to mitigate DoS activities. Internet connec-
tivity parameters such as bandwidth and packet rate must
be shared fairly among all sandpuppets in order to avoid
inter-execution artifacts. The current Sandnet setup com-
prises five bot sandherders with four sandpuppets each, re-
sulting in twenty sandpuppets dedicated to malware analy-
sis. Herders and sandpuppets can easily be added due to a
flexible and distributed design.

After executing a malware binary, we dissect the recorded
network traffic for further analysis. A flow-extractor con-
verts raw .pcap-files into UDP/TCP flows. A flow is a net-
work stream identified by the usual 5-tuple (layer 4 pro-
tocol, source IP addr., destination IP addr., source port,
destination port). For TCP, a flow corresponds to a re-
assembled TCP connection. For UDP, a flow is considered
to be a stream of packets terminated by an inactivity pe-
riod of 5 minutes. Our experience shows that this time-
out length is a reasonable mechanism to compensate the
lack of UDP flow termination frames. Additionally, we use
payload-based protocol detection in order to determine the
application-level protocol of a flow. We define a flow to be
empty, if no UDP/TCP payload is transmitted in this flow.

Automated execution of malicious software raises some
ethical concerns. Given unrestricted network connectivity,
malware could potentially harm others on the Internet. Pos-
sible attack scenarios are, but not limited to, Denial-of-
Service attacks, spam or infection of other hosts. We tried to
find the right balance between ethical concerns when design-
ing Sandnet and restrict the Internet connectivity. Techni-
cally, we integrated certain honeywall techniques. The harm
of DoS attacks is limited by network level rate-limiting, spam
is transparently redirected to local mail servers and proto-
cols known to be used for infection are redirected to local
honeypots. Sandnet is closely monitored during execution.
Admittedly, it is technically impossible to completely pre-
vent all possible attacks. However, we are convinced that

within the bounds of possibility we implemented a huge
part of mitigation techniques and that the value of Sandnet
strongly outweighs the reasonably limited attack potential.

3. DATASET
In order to study malicious network traffic, we analyzed

malware samples that were provided to a great degree by
partner research institutions. For each sample we acquire
A/V scan results from VirusTotal [1]. 85% of the samples
that we executed had at least one scan result indicating mal-
ware (see Figure 1). In order to avoid accidental benign
samples we collated our set of samples with a list of known
software applications using Shadowserver’s bintest [4]. We
randomly chose the samples from a broad distribution of all
malware families. We tried to mitigate side-effects of poly-
morphism by extracting the family name of a given malware
sample’s A/V labels and limit the number of analyses per
malware family.
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Figure 1: Histogram of VirusTotal Labels per Sample

For our analysis we defined the following set of samples.
We analyzed a total of 104,345 distinct samples (in terms
of MD5 hashes) over a timespan of one year. Samples were
executed with regard to their age. On average, the samples
were executed about 7.8 days after submission. We gradu-
ally increased the time between sample acquisition and exe-
cution from 6 hours to 150 days in order to evaluate whether
the execution age significantly influences malware activity.
Some statistics on the database of our data set is provided
in annex F. The total analysis time of all samples in this
data set sums up to an analysis period of 12 years.

4. NETWORK STATISTICS OVERVIEW
Of the 104,345 samples, the subset SNet of 45,651 (43.8%)

samples exhibited some kind of network activity. The net-
work traffic caused by these samples sums up to more than
70 million flows and a volume of 207 GB. It remains an open
issue to understand why a majority of the samples did not
show any network activity. We suspect that most of the in-
active samples a) are invalid PE files, b) operate on a local
system only (e.g. disk encryption), c) are active only if there
is user-activity or d) detected that they are being analyzed
and stopped working.

Protocol inspection reveals that a typical sample in SNet

uses DNS (92.3%) and HTTP (58.6%). IRC is still quite
popular: 8% of the samples exposed IRC. Interestingly, SMTP
only occurred in 3.8% of the samples in SNet. A complete list
of the ISO/OSI layer-7 protocol distribution can be found



in annex A. As DNS and HTTP are by far the most widely
used protocols in Sandnet traffic, we will inspect these in
more detail in Table 1. Table 1 also compares our proto-
col statistics with data based on Anubis provided by Bayer
et al. [7] in 2009. Interestingly, when comparing the re-
sults, the samples we analyzed showed increased usage of
all protocols. However, the ranking and the proportion of
the protocols remain similar. We suspect this increase is a)
due to a relatively long execution of malware samples and
b) caused by a growing usage of different application-level
protocols by malware.

Protocol Reference Sandnet

DNS 44.5 92.3

HTTP 37.6 58.6

IRC 2.3 8.0

SMTP 1.6 3.8

Table 1: Sandnet: Layer-7 protocol distribution
compared with [7] (% of SNet)

30.1% of the flows were empty (no payload was trans-
mitted). All these flows are presumable scanning attempts.
Already 90% of the empty flows targeted NetBIOS/SMB ser-
vices. The remaining empty flows are normally distributed
over lots of different ports.

Of the remaining flows with payload (69.9%), for 22.8%
no well-known protocol could be determined. Over 60% of
these flows account for NetBIOS or SMB-related communi-
cation (mostly scanning) according to the destination port.
Again, the remaining flows with failed protocol detection are
normally distributed across many destination ports.

Payload-based protocol detection is a big advantage if pro-
tocols are used over other than their well-known ports. We
found that 12.8% of SNet use protocols over other than the
well-known ports. We speculate that in these cases mal-
ware tries to communicate via ports opened in the firewall,
independent from the actual communication protocol. For
instance, we regularly found IRC bots connecting to IRC
servers listening on TCP port 80. Thus, non-standard port
usage might serve as a malware classification or detection
feature. The top 3 affected protocols are listed in Table 2.

Protocol SNet Samples (%) Distinct Ports

HTTP 8.17 303

IRC 7.13 174

Flash 0.91 9

Table 2: Top 3 protocols over non-standard ports

As additional analysis, we found out that a longer anal-
ysis period is indeed helpful for a better understanding of
malware behavior. To judge on this, we performed three
measurements each after an analysis period of 5 minutes
and after 1 hour. First, we found out that only 23.6% of the
communication endpoints that we have seen samples con-
necting to were contacted in the first 5 minutes of analysis.
We then calculated that only a minor fraction (6.1%) of all
flows started within the first 5 minutes. Lastly, we found
that 4.8% of the samples started using a new protocol after
5 minutes that they have not used in the first minutes.

5. DNS
DNS is by far the most prevalent layer-7 protocol in Sand-

net network traffic and gives an interesting insight into mal-
ware activity. The subset of samples using DNS is denoted
by SDNS.

5.1 DNS Resolution
Although all sandpuppets have their Windows stub re-

solver point to a working DNS resolver, we observed mal-
ware that used a different resolver or even carried its own
iterative resolver. We developed the following heuristic in
order to detect executions that carry an iterative resolver.
An execution is considered as carrying an iterative resolver if
there is an incoming DNS response from a server other than
the preconfigured DNS resolver with a referral concerning a
TLD (a resource record of type NS in the authority section)
and the Recursion Available flag set to 0. We cross checked
the resulting executions whether at least one of the DNS
root servers had been contacted via DNS.

We can only speculate on the reasons why the preconfig-
ured local DNS resolver is avoided. Using one’s own resolver
clearly has advantages. Resolution of certain domains might
be blocked at the preconfigured resolvers in some environ-
ments (e.g. corporate ones). Additionally, using one’s own
resolver avoids leaving traces in logs or caches of the precon-
figured resolver. If the Windows stub resolver is configured
to use one’s own resolver, local queries can be modified at
will. This could be used for phishing attacks (redirect to a
proxy) or to prevent A/V software from updating. Further-
more, preconfigured resolvers might be rate-limited.
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Figure 2: Violin plot of DNS activity end distribution

We found that 99% of the samples in SDNS use the pre-
configured resolver. Given this high ratio, a DNS resolver
indeed turns out to be an interesting source for network-
based malware detection - much more suitable than we had
expected beforehand. We leave it up to future work to look
into malware detection methods based on DNS resolver logs.
3% of SDNS perform recursive DNS resolution with other re-
solvers than the preconfigured one (termed foreign resolvers
in the following). Only 2% of SDNS expose iterative DNS
resolution. Note that the sets are not disjunct, as an execu-
tion may exhibit multiple resolution methods or resolvers.
We speculate that this is due to the fact that malware oc-
casionally downloads and executes multiple binaries, each
of which might have different resolution methods. The for-
eign resolvers used include Google’s Public DNS (used by
0.38%) as well as OpenDNS (0.25%). However, there is
a large number of foreign resolvers that are used less fre-
quently. One resolver that was located in China got our
attention because queries for well-known popular domains



such as facebook.com and youtube.com resolved into arbi-
trary IP addresses with no recognizable relation to the do-
main. We consider this to be an artifact of the so-called
Great Firewall of China [10]. In total 932 of 5092 (18.3%)
distinct DNS servers were used recursively at least once and
thus can be regarded as publicly available recursive DNS
resolvers.

Furthermore, we looked into the activity distribution of
the different resolution methods (see Figure 2). The precon-
figured resolver (PCR) was typically used throughout the
whole analysis period. The end of the usage of foreign re-
solvers (FR) is wide-spread over time, leaning toward the
end of the analysis. Interestingly, iterative resolution ap-
pears to end much sooner compared to the other resolution
methods.

5.2 DNS TTL Analysis
The Time To Live parameter was of special interest to

us, as it could be an indicator of fast flux usage. Fast flux
is used as a means to provide flexibility among the C&C
infrastructure of bots [12].
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Figure 3: CDF of DNS TTL per domains

Figure 3 shows that 10% of all domains have a maximum
TTL of 5 minutes or below. As spotted elsewhere [12], we
expected domains with a small TTL and a large set of dis-
tinct answer records to be fast-flux candidates. However,
when inspected manually, we found many domains of con-
tent distribution networks and large web sites. Using small
TTLs seems to have become common among web hosters.
As a result, the distinction between malicious fast-flux net-
works and legitimate hosting services becomes much more
difficult. Interestingly, we also found a couple of responses
with a TTL of zero that looked themselves like C&C commu-
nication. These responses were characterized by very long
domain names as hex-strings. The TTL of zero prevents
caching of these responses, effectively causing the resolver
to always fetch the newest response from the authoritative
DNS server. All in all, DNS suits well as a low-profile, low-
bandwidth C&C channel in heavily firewalled environments,
e.g. for targeted attacks.

5.3 DNS Message Error Rate
In order to measure DNS transaction failure, we defined

the DNS request error rate as the number of DNS requests
that were not successfully resolved over the total number of
DNS requests. When aggregating the DNS message error
rate per sample, we realized that for 10.1% of the samples
in SNet all of their DNS resolution attempts fail. However,
the majority of the samples in SNet (60.3%) have all DNS

queries successfully resolved. The complete CDF is provided
in Figure 4.
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Figure 4: CDF of DNS message error rate

5.4 Resource Record Type Distribution
Figure 5 shows the distribution of the Resource Record

types of the query section. Obviously, A records dominate
DNS queries in Sandnet traffic, followed by queries for MX
records. All samples in SDNS have queried for an A record
at least once. The high prevalence of A records is expected
as A records are used to translate domain names into IP ad-
dresses. Furthermore, 2.3% of the samples in SDNS queried
blacklists. MX records have been queried by far less sam-
ples (8%). Interestingly, when comparing the MX query rate
with SMTP activity, we have seen both: samples that per-
formed MX lookups but had no SMTP activity and samples
that successfully used SMTP but showed no MX queries at
all. We assume that in the latter case, the required infor-
mation on the MX destinations is provided via other means,
e.g. C&C.
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Figure 5: Resource Record distribution among samples

5.5 Resolution for Other Protocols
DNS, though itself a layer-7 protocol, plays a special role

as it provides resolution service to all other layer-7 protocols.
We analyzed how malware uses DNS before connecting to
certain destinations. 23% of the samples in SDNS show at
least one flow without prior DNS resolution of the destina-
tion (DNS flows and scans excluded). In such a case either
the destination’s IP address is known (e.g. hard-coded in the
binary) or resolution takes place via some other mechanism
than DNS. A table providing flow destination DNS resolu-
tion by protocol can be found in annex I. Furthermore, 2.3%
of the samples in SDNS queried blacklists (26% of these also
sent spam).



6. HTTP
HTTP traffic sums up to 88 GB inbound and 21 GB out-

bound, which makes HTTP by far the most prevalent pro-
tocol in Sandnet measured by traffic. The subset of samples
using HTTP is denoted by SHTTP. Given the high detail
of the OpenDPI protocol classification, additional protocols
that are carried in HTTP traffic are treated separately and
thus contribute additional traffic: The Macromedia Flash
protocol sums up to an additional 32 GB, video streams like
MPEG and Apple Quicktime sum up to an additional 9 GB.
We observed that the protocols carried in HTTP are usually
caused by embedded objects included in websites that are
visited by samples.

The immense potential abuse of HTTP-driven services
motivated us to perform an in-depth analysis of typical mal-
ware HTTP traffic. Not only botnets started using HTTP
as C&C structures. To name but a few, click fraud (i.e. the
abuse of advertising services), mail address harvesting, drive-
by downloads and DoS attacks on web servers are malicious
activities of a wide range of malware authors. Of all samples
with network activity (SNet), the majority of 58.6% exposed
HTTP activity. This section provides details to which ex-
tent, how, and why malware typically utilizes the HTTP
protocol.

6.1 HTTP Requests
The analyzed samples typically act as HTTP clients and

contact HTTP servers, mainly because the Sandnet commu-
nication is behind a NAT firewall. As a consequence, we can
assume that virtually all recorded HTTP requests were made
by malware. Figure 6 gives a general overview of how many
HTTP requests malware typically made during the analysis
period. The number of requests gives us a lead for which
role malware has. Whereas one would expect a tremendous
amount of requests during click fraud campaigns or DoS
activities, malware update functionality and C&C channels
potentially need little HTTP activity only. Interestingly,
only 65% of the samples in SHTTP made more than 5 HTTP
requests. 16.3% of the samples in SHTTP made only one
HTTP request and then stopped their HTTP activity, al-
though 70% of these samples continued with other network
activity. We manually checked a fraction of these cases and
found that many samples use HTTP to load second-stage
binaries and continue with non-HTTP based damage func-
tionality. The samples that completely ceased communicat-
ing after their initial HTTP flow presumably either failed to
update themselves or waited for user-input triggers.
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Figure 6: Histogram of HTTP Request Distribution

The GET request method was used by 89.5% of the sam-
ples in SHTTP. We observed that 72% of the samples in
SHTTP additionally included GET parameters. Analysing
just the fraction of GET requests with parameters, GET re-
quests have on average 4.3 GET parameters. The average
size of GET parameter were 12 characters for the key and
33.3 characters for the value. Although other means (such
as steganography) allow to pass data to the sever, GET pa-
rameters seem to remain a popular method. On average,
we have observed 1966 GET requests per sample with at
least one request parameter. Interestingly, the number of
unique GET parameter keys used by a sample is signifi-
cantly lower than the total number of GET parameters per
sample. This trend is particularly strong for samples with
many parametrized GET requests and indicates that param-
eter keys are reused for follow-up requests. On average, the
ratio between the number of distinct GET parameter keys
and the total number of GET parameters is merely 1:16. We
plan to further analyze the vast use of GET parameters, as
started in [13], in the future.

The POST request method was used by 56.3% of the sam-
ples in SHTTP. The average body size of POST requests
is 739 bytes. We manually inspected a randomly chosen
fraction of POST bodies to find out for what purpose mal-
ware uses POST requests. A large fraction of the inspected
POST requests was used within C&C communication with
a botnet server. We commonly observed that data passed to
the server was base64-encoded and usually additionally ob-
fuscated/encrypted. In addition, we frequently saw POST
requests directed to search engines.

42% of the samples in SHTTP used both POST and GET
requests. Only 0.9% of the samples in SHTTP showed HEAD
requests at all. All other HTTP methods were used by less
than 0.1% of the samples in SHTTP and seem insignificant.

6.2 HTTP Request Headers
Annex C gives a comprehensive list of the 30 most pop-

ular HTTP request headers as observed in Sandnet. These
HTTP headers include common headers usually used by be-
nign web browsers. In total, we have observed 144 unique
HTTP request headers. At a closer look at these, we identi-
fied a significant amount of misspelled or non-standard head-
ers (excluding all extension headers, i.e. those starting with
’X-’ ). Manual inspection shows that the fewer a specific
header is used (in terms of samples), the more suspicious
it is. Merely 5.7% of all samples in SHTTP sent an HTTP
request without any header at all. As a consequence, we see
a need to further analyze specific request headers that we
consider interesting.

6.2.1 User-Agent
In an ideal world, the HTTP User-Agent header speci-

fies which exact web browser (including its version number)
is requesting web content. However, the client and thus
also malware samples can potentially forge the User-Agent
header to be less suspicious. Annex B gives a detailed list
of the 30 most popular raw User-Agent strings observed in
Sandnet. Most samples (98.6% of SHTTP) specified a User-
Agent header at least once.

In an approach to get an overview of actual user agents
we developed heuristics to filter the User-Agent list. First,
we observed that 29.9% of the samples in SHTTP specified
wrong operating systems or Windows versions in their forged



HTTP User-Agent headers. Next, we identified that at least
13.4% of the samples in SHTTP claim to use non-existing
browser versions (e.g. wget 3.0, Mozilla 6.0 ). In addition,
we saw that 37.8% of the samples in SHTTP specified mal-
formed or very short and to us unknown User-Agent values.
In total, 67.5% of the samples in SHTTP transmitted at least
once a suspicious User-Agent string. Over the whole analysis
period, only 31% of the samples in SHTTP specified appar-
ently correct User-Agent strings.

This result suggests that most samples have their own
HTTP components that are bad in forging real web browsers.
Interestingly, about half (50.6%) of the samples in SHTTP

change or alternate the User-Agent header during their anal-
ysis period. We hypothesize that this is due to the modular
architecture of malware, where the modules have inconsis-
tent User-Agent strings. Furthermore, based on this ob-
servation, we suspect that malware adapts the User-Agent
header (and possibly other headers) depending on the target
website.

6.2.2 Localization Headers
HTTP requests typically include headers that tell the server

which languages and character sets the client understands
(Accept-Language and Accept-Charset). We inspected these
two localization headers and compared it with the locale
setting (German) of the sandpuppets. While the Accept-
Charset header was used by 0.35% of the samples in SHTTP,
the Accept-Language values are more interesting to analyze:
In total, 44.3% of the samples in SHTTP included Accept-
Language as an HTTP request header. Of these samples,
24.1% did not respect the locale setting and specified a non-
German language. Chinese (zh) and English (en) are the
foreign languages specified most frequently, followed by Rus-
sian (ru). We speculate that in these cases malware authors
forge HTTP headers either as observed at their own local
systems or with respect to the target website. This would
depict yet another indicator that malware carries its own
(possibly self-made) HTTP implementation. Another rea-
son could be that malware authors explicitly specify foreign
languages to hoax web servers.

6.3 HTTP Responses
In Sandnet, all HTTP responses observed originated from

HTTP servers on the Internet that were contacted by a sam-
ple. Therefore, the following analysis is not an analysis of
the samples themselves, but may give indications to which
type of servers malware communicates.

We observed that 97.8% of the HTTP requests were an-
swered with an HTTP response. We define the HTTP er-
ror rate as the ratio between failed responses (HTTP status
codes 4XX and 5XX) and all responses. Figure 7 shows a
distribution of the sample-wise HTTP error rate. Only a
small fraction (less than 10%) of samples virtually always
get non-successful status-codes and apparently completely
fail to retrieve the requested web content. Most samples
have a relatively small error-ratio, indicating the web sites
requested by the samples are still in place. We will give an
overview of the requested servers in Section 6.6.

6.4 HTTP Response Headers
As opposed to HTTP request headers, response headers

are set by servers and are not chosen by the malware sam-
ples. Analyzing the headers helps us to understand which
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servers are contacted by malware samples and gives infor-
mation about the type of the retrieved content.

6.4.1 Content-Type
The Content-Type header shows which type of web con-

tent was retrieved by the samples. Figure 8 shows that
most samples at least retrieve web sites with Content-Type
text/*. By far the most popular content-type of textual re-
sponses is text/html. However, only about half of all samples
retrieved rich documents with Content-Type set to images/*
(48%) or application/* (59.4%). 23.9% of the HTTP ac-
tive samples with more than a single request got textual re-
sponses only. We see two reasons for such presumably light
HTTP clients: First, spidering web sites without loading
images is much more efficient. Second, we hypothesize that
a considerable number of samples lacks a full-blown HTTP
implementation that can recursively fetch objects embedded
in web sites.
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Figure 8: Ratio of samples using given Content-Type

6.4.2 Server
The Server HTTP response header indicates which type

of web server is responding to the malware’s HTTP request.
Note that the content of this header can again be forged.
Moreover, the majority of contacted web servers is presum-
ably benign. However, when manually inspecting the HTTP
Server response header, we spotted servers that presented
suspicious banner strings. Annex E summarizes the list of
the 30 most popular server types observed in Sandnet.

6.5 HTTP Responses with PE Binaries
After compromising a system with minimized exploits, at-

tackers usually load so-called second-stage binaries. These
binaries carry the actual malware functionality rather than
just the exploit with minimized shell-code. In Sandnet, we



usually analyze second-stage binaries instead of shell-code
binaries. Yet, malware authors - as we will show - frequently
load new portable executable (PE) binaries that expand or
update the functionality of a malware sample. We assume
this is due to a modular structure of the typical malware.

We extracted all binaries downloaded via HTTP by search-
ing for the typical PE bytes in the body of HTTP responses.
This straight-forward extraction of PE binaries already dis-
covered that 16.7% of the samples in SNet loaded additional
PE files. To our surprise, we observed that 19% of these
samples load binaries for multiple times - occasionally even
more than 100 times. We verified that the five binaries
downloaded most often were not corrupt and lack reason-
able explanations why the binaries were downloaded that
often. In total, we detected 42,295 PE headers, resulting in
17,676 unique PE files. The maximum size of a downloaded
binary was 978 kB, the average size is 144 kB.
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Figure 9: Distribution of # of PE binaries loaded

Figure 9 shows that most of the samples load more than
a single PE binary. For readability of the graph we pre-
cluded 21 samples that loaded more than 100 and up to
1080 unique PE binaries. Annex D summarizes the Content-
Type values of all HTTP responses that contain PE binaries.
Most samples retrieve reasonable Content-Type values from
the server. However, a significant number of servers tries to
camouflage PE binary downloads as text, HTML, JavaScript
or image files.

6.6 HTTP Servers
When recalling that HTTP is a protocol used by malware

authors excessively, we see a need in analyzing which par-
ticular HTTP servers are visited by malware. We created
a list of the 50 most popular domains ordered by the num-
ber of different samples visiting it in annex G. Obviously,
many HTTP requests were put to presumably benign web
sites. The next sections should briefly discuss why malware
contacts these services.

6.6.1 Ad Services
We identified a significant number of ad service networks

in the list of popular domains. Of the Top 50 domains in
annex G, we manually identified 40 domains that are related
to ads. Thousands of different malware samples use these
services. A possible reason for this is that ads are included
in virtually every web site and crawlers also follow the ads.
However, after manually exploring the HTTP traffic of par-
ticular samples we assume that the reason for the popularity
of ad services is vicious: click fraud. We leave it up to fu-
ture work to analyze and mitigate the abuse of ad services
by malware samples in greater detail.

6.6.2 Public Web APIs
Similarly to its popularity among benign users, Yahoo’s

and particularly Google’s public Web APIs are present in
Sandnet traffic, too. We suspect there are two reasons be-
hind the popularity of these or similar services. First, some
of these services are ubiquitous on the Internet. For exam-
ple, a wide variety of web sites for example include Google
Analytics to record statistics on the visitor behavior. Each
time a sample visits such a web site and follows the embed-
ded links, it will contact Google. As most of such services are
open to anyone, we also suspect malicious usage of Google’s
and Yahoo’s services by malware samples to be a reason for
their popularity. A typical scenario that we observed was the
abuse of search engines as a kind of C&C engine. In this case
the malware searched for specific keywords and fetched the
web sites suggested from the search results. Moreover, we
have observed malware using the search engines to harvest
new e-mail addresses for spamming campaigns. In general,
benign human interaction with these services is particularly
hard to be distinguished from abuse, especially from the
client-perspective. We assume this is one of the main rea-
sons malware authors use these HTTP-based services.

6.6.3 PE File Hosters
Based on the set of PE files that malware samples down-

loaded, we analyzed the file hosting servers. Annex H lists
the most popular of all 1823 PE file hosters that we iden-
tified. 42.3% of the samples that downloaded PE files con-
tacted the PE host directly without prior DNS resolution.
This proves that still a significant number of malware sam-
ples include hard-coded IP addresses to download binaries.
We further observed that a significant fraction of the URIs
requested from file servers are non-static, although frequently
only the parameters change. This observation may be im-
portant for blacklists trying to block entire URIs instead of
IP addresses or domains.

6.6.4 HTTP C&C Servers
HTTP based botnets such as e.g. Torpig [15] switched

from the classical IRC protocol to using HTTP. While man-
ually inspecting Sandnet HTTP traffic, we occasionally en-
counter C&C traffic. What we see most is that samples
include infection status information in their GET request
parameters. Whereas some samples include clear-text status
information, we and others [16] have observed many samples
started encoding and encrypting the data exchanged with
the server. However, we found it difficult to automatically
spot C&C servers without knowing the command syntax of
specific botnets. The big difference to IRC is that HTTP
is a prevalent protocol on clean, non-infected systems and
is thus harder to spot in the volume of HTTP data. En-
couraged by the results reported in [9, 13], we believe that
clustering the network behaviors of malware may help us in
spotting generic C&C communication channels.

7. RELATED WORK
The malware phenomenon has been considerably studied

over the last years by researchers and security practitioners.
The community has proposed numerous techniques to col-
lect [5], analyze [2, 8, 9, 11, 13, 17], or detect malware [9, 13].

For instance, Perdisci et al. [13] present an interesting
system to cluster network-level behavior of malware by fo-
cusing on similarities among malicious HTTP traffic traces.



Similarly, Cavallaro et al. [9] present cluster-based analyses
aimed at inferring interesting payload-agnostic network be-
haviors of malicious software. While Sandnet is currently
limited to analyzing a large corpus of network protocols, it
is clear how the adoption of similar cluster-level analyses can
provide better understandings of the network behaviors of
unknown software.

Anubis [7, 8] and CWSandbox [17] are probably the closest
work related to our research. Although they both provide
interesting—but basic—network statistics, their main goal is
to provide insights about the host behaviors of unknown—
potentially malicious—software. In this context, Sandnet
complements Anubis and CWSandbox important results by
providing an in-depth analysis of the network behaviors of
the analyzed samples. As described elsewhere, this is only
the first step toward a comprehensive understanding of the
network activities perpetrated by such software. More anal-
yses are currently being examined (e.g., [9, 13]) and are planned
to extend Sandnet as part of our future research.

8. CONCLUSION AND FUTURE WORK
In this work, we presented a comprehensive overview of

network traffic as observed by typical malware samples. The
data was derived by analyzing more than 100k malware sam-
ples in Sandnet. Our in-depth analysis of DNS and HTTP
traffic has shown novel malware trends and led to numer-
ous inspirations to combat malware. The provided data
is not only of great value because it is that detailed. It
also perfectly complements related work that is either out-
dated, analyzes particular malware families only, or focuses
mainly on the host behavior of malware. To share these
insights with the research community, Sandnet is accessible
via http://www.if-is.net/sandnet/.

We are currently expanding Sandnet to mitigate some of
its current limitations and to perform a number of more de-
tailed and sophisticated analyses, which will provide more
insights into the behaviors of the network activities perpe-
trated by unknown, potentially malicious, software. For in-
stance, clustering the network behavior of malware may au-
tomatically filter out uninteresting actions while unveiling
the core patterns that represent the most interesting behav-
ior of the malware [9, 13]. Furthermore, cross-correlation
of network- and host-level clusters [6] may disclose inter-
esting relationships among malware families. We also plan
to assign public IP addresses to sandpuppets and to com-
pare the malware behavior with a restricted, NATed net-
work breakout. Similarly, we plan to integrate the analysis
of system-level activities to Sandnet, such as linking process
information to network activity. Including observations on
how processes react to varying network input could further
help to identify C&C channels. In addition, we strive to a
more accurate view on the analysis data, particularly to dis-
tinguish benign from malicious communication endpoints.

Another direction our research may suggest is tailored
toward performing a more detailed analysis of ad service
abuse, especially click fraud. We plan on exploring click
fraud detection mechanisms derived from the web site re-
quest behavior of malware observed in Sandnet. Possibly,
we will expand this idea by also inspecting the abuse of
public web services (e.g. the Google API).

We believe the data collected and analyzed by Sandnet
represents a first step toward a comprehensive characteriza-
tion of the network behaviors of malware. Driven by recent

results, we thus hope our ongoing research to be of a great
value to researchers and practitioners to help them acquir-
ing a more detailed understanding of such behaviors. Not
only this enables the development of more effective counter-
measures and mitigation techniques, but it may also help to
understand the social trends and facts of the underground
malware economy.
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APPENDIX

A. GENERAL TRAFFIC OVERVIEW
L7 Protocol Samples Flows Bytes Out Bytes In Bytes Destinations Dst Domains

DNS 42143 11845193 3730 MB 1355 MB 2375 MB 241126 14732

HTTP 26738 13492189 110 GB 21 GB 88 GB 36921 55032

Unknown 18349 32265514 24 GB 14 GB 10 GB 9145625 86523

Flash 5881 299986 32 GB 692 MB 31 GB 2955 2205

SSL 5104 79344 1884 MB 139 MB 1745 MB 2278 1622

SMB 4275 8602414 6116 MB 4210 MB 1906 MB 7253975 10

IRC 3657 169833 70 MB 15 MB 55 MB 564 554

SMTP 1715 3155014 20 GB 19 GB 1124 MB 282401 118959

MPEG 1162 2200 220 MB 1050 kB 219 MB 58 44

SSDP 885 1861 3651 kB 3651 kB 0 bytes 2 0

Quicktime 389 1222 8315 MB 1518 kB 8313 MB 62 41

FTP 243 7523 3144 kB 860 kB 2285 kB 159 121

NetBIOS 184 134600 54 MB 36 MB 18 MB 108909 0

TDS 163 1086 31 MB 1044 kB 30 MB 44 36

NTP 102 2950 266 kB 156 kB 109 kB 13 5

STUN 68 276 71 kB 54 kB 18 kB 19 8

TFTP 48 12492 626 MB 5165 kB 621 MB 19 0

PPLIVE 37 1481 85 MB 9042 kB 76 MB 1321 0

Gnutella 32 20545 181 MB 102 MB 79 MB 15640 0

DDL 28 277 29 MB 140 kB 29 MB 52 35

Bittorrent 26 1180 147 MB 5090 kB 142 MB 588 32

Mysql 21 33 38 kB 4288 bytes 34 kB 12 7

B. HTTP USER AGENTS
User Agent Requests Samples

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.507 17193201 11168

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0) 861353 5628

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 2.0.507 1937020 5376

Microsoft-CryptoAPI/5.131.2600.5512 17581 3485

Mozilla/6.0 (Windows; wget 3.0) 12851 3242

Download 5022 2042

Mozilla/4.0 (compatible; MSIE 8.0.6001.18702; Windows NT 5.1.2600) 23022 1802

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1) 12569 1546

ClickAdsByIE 0.7.3 34615 1208

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) 69078 992

XML 3403 891

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1) 1714 849

PinballCorp-BSAI/VER STR COMMA 3454 771

Mozilla/3.0 (compatible; Indy Library) 71971 761

Microsoft Internet Explorer 8652 750

gbot/2.3 22791 694

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.1.4322) 23772 608

5327 589

NSISDL/1.2 (Mozilla) 692 535

Microsoft-ATL-Native/9.00 3827 524

Mozilla/5.0 (Windows; U; Windows NT 5.1; de; rv:1.9.2.6) Gecko/20100625 Firefox/ 31078 514

Mozilla/4.0 (compatible) 6004 487

Mozilla/4.0 (compatible; MSIE 8.0; 10.1.53.64; Windows NT 5.1) 884 426

NSIS Inetc (Mozilla) 515 403

wget 3.0 3917 339

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322) 946 311

opera 946 300

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.3) Gecko/20100401 Firef 6764 300



C. HTTP REQUEST HEADERS

HTTP Header Samples HTTP Requests

Host 27771 21054208

User-Agent 26359 20923840

Connection 21205 20570434

Cache-Control 18529 1346260

Accept 18483 20554040

Content-Length 14811 977547

Accept-Encoding 14406 19424065

Content-Type 14135 1033111

Accept-Language 11382 18319897

Referer 10079 18311670

Cookie 10075 10939127

If-Modified-Since 5462 3044837

If-None-Match 4696 1005364

x-flash-version 4386 464334

Pragma 4290 73427

x-requested-with 2079 14329

Range 1597 15451

If-Range 1006 3882

Unless-Modified-Since 962 3868

Accept-Charset 922 69908

X-Agent 658 36302

Keep-Alive 642 87149

X-Moz 511 517

Content-length 438 1494

x-prototype-version 408 1831

http 287 13984

UA-CPU 208 12899

x-svn-rev 111 351

x-type 84 167

Content-type 81 4876

D. CONTENT-TYPE OF PE DOWNLOADS

Content-Type # Binaries # Samples

application/octet-stream 6468 5908

text/plain 356 1716

application/x-msdownload 732 1082

application/x-msdos-program 550 786

image/gif 177 402

image/jpeg 390 365

text/plain; charset=UTF-8 166 344

text/html 776 326

application/x-javascript 190 78

image/png 68 55

E. HTTP SERVER TYPES

Server Ratio (%) Servers

Apache 68.4 326237

Microsoft-IIS 49.4 102652

nginx 40.9 108104

Golfe 21.4 20534

lighttpd 21.4 32934

YTS 20.0 28320

sffe 19.4 15128

GFE 18.3 21089

Apache-Coyote 17.6 41875

QS 15.4 6906

PWS 14.7 16297

DCLK-AdSvr 13.9 6782

cafe 13.7 11399

AmazonS3 13.7 17203

ADITIONSERVER 1.0 10.9 6092

AkamaiGHost 10.3 3520

Cookie Matcher 10.1 4011

gws 9.5 6075

VM BANNERSERVER 1.0 9.4 2620

CS 9.1 3987

Adtech Adserver 8.9 4842

CacheFlyServe v26b 8.0 2242

RSI 7.8 2196

yesup httpd 89 7.8 2160

yesup httpd 103 7.7 2151

Resin 7.7 4375

ECS (fra 6.7 7615

Oversee Turing v1.0.0 6.1 2579

JBird 6.0 1987

TRP Apache-Coyote 5.7 1966

F. DATABASE STATISTICS

Attribute Value

Distinct samples 104,345

Total traffic 207 GB

Outbound traffic 61 GB

Inbound traffic 146 GB

Number of Flows 70,106,728



G. HTTP SERVERS

HTTP domain # Samples

www.google-analytics.com 5286

ad.yieldmanager.com 5046

cookex.amp.yahoo.com 4716

content.yieldmanager.com 4655

ak1.abmr.net 4288

pixel.quantserve.com 4050

content.yieldmanager.edgesuite.net 4009

edge.quantserve.com 3957

ad.doubleclick.net 3677

ad.harrenmedianetwork.com 3470

ad.103092804.com 3458

s0.2mdn.net 3370

ib.adnxs.com 3280

pixer.meaningtool.com 3219

ad-emea.doubleclick.net 2972

www.google.com 2940

ad.harrenmedia.com 2920

www.mupimg.de 2823

imagesrv.adition.com 2770

www.mupads.de 2759

view.atdmt.com 2754

ad.xtendmedia.com 2726

cm.g.doubleclick.net 2669

googleads.g.doubleclick.net 2657

fpdownload2.macromedia.com 2619

www.myroitracking.com 2573

serw.clicksor.com 2489

ad.adition.net 2468

ads.clicksor.com 2466

ad.tlvmedia.com 2449

ad.adserverplus.com 2414

b.scorecardresearch.com 2376

pub.clicksor.net 2375

ajax.googleapis.com 2335

img.billiger.de 2308

tags.bluekai.com 2308

adx.adnxs.com 2287

adfarm1.adition.com 2286

admax.quisma.com 2201

pagead2.googlesyndication.com 2199

a.collective-media.net 2115

ads.revsci.net 2099

pix04.revsci.net 2065

js.revsci.net 2050

ad.globe7.com 2040

staging.pixer.meaningtool.com 2030

ad.reduxmedia.com 2028

suresafe1.adsovo.com 2012

adserver.adtech.de 2010

crl.verisign.com 1999

H. PE FILE HOSTERS

PE File Server #S #B

64.79.86.26 775 1340

66.96.221.102 681 1063

ku1.installstorm.com 487 944

origin-ics.hotbar.com 483 483

64.191.44.9 480 727

img.ub8.net 458 460

pic.iwillhavesexygirls.com 437 478

64.120.232.147 431 747

origin-ics.clickpotato.tv 390 390

p2pshares.org 389 391

sky.installstorm.com 363 363

208.43.146.98 331 531

file0129.iwillhavesexygirls.com 323 853

173.45.70.226 315 437

173.45.70.227 313 444

dl.ghura.pl 302 302

122.224.6.48 300 553
#S = number of samples contacting file hoster
#B = number of binaries downloaded

I. DNS RESOLUTION BY PROTOCOL

Protocol Samples (%)

NetBIOS 0.00

MSN 0.00

SMB 0.00

SIP 0.00

DHCP 0.00

TFTP 0.00

Gnutella 0.00

STUN 0.00

SSDP 0.00

mDNS 0.00

Bittorrent 19.23

TDS 39.88

SMTP 41.05

Unknown 46.84

FTP 47.74

DDL 53.57

Oscar 57.89

Mysql 66.67

HTTP 67.72

IRC 80.45

NTP 82.35

POP 83.33

Flash 83.63

SSL 87.93

Quicktime 93.57

MPEG 96.04


