-
/// : V-

SAND--91-1871C

DE92 000229

SANDROS: A Motion Planner with

Performance
Proportional to Task Difficulty”

Pang C. Chen Yong K. Hwang
Sandia National Laboratories
Albuquerque, NM 87185

September 10, 1991

Abstract

To address the need of a practical motion planner for manipulators, we
present an efficient and resolution-complete algorithm that has performance
commensurate with task difficu’ty. The algorithm uses SANDROS, a new
search strategy that combines hierarchical, nonuniform-muldi-resolution, and
best-first search to find a near-optimal solution in the configuration space. This
algorithm can be applied to any manipulator, and has been tested with 5 and
6-degree-of-freedom robots, with execution time ranging from 20 seconds to 10
minutes on a 16 MIPS workstation.

1 Introduction

Every robotic system requires a motion planner for manipulators to execute tasks
without colliding with objects in the workspace. Motion planning of a manipulator
refers to finding a short and collision-free path from the start to goal position of
the manipulator. At present, manipulators are either controlled by human operators
[TeVTS91] or restricted to follow trajectories that have been pre-computed chrough
hours of off-line programming [LozaS7]. Human operators, however. have a fatigue
factor. And need expensive safety equipment to work in hazardous environments. On
the other hand, off-line programiming can only be used in a hichly structured and
woll-controlled environment with little tolerable positional errors and no nnexpected
object encounter.

“This work has been performed at Sandia National Laboratories and supported by the U5 De-
partment of Energy under Contract DE-ACH1-T6DPOOTR.

B G iD
C WROIER

DISTRIBUTION OF THIS DOC a

s

- ,«/'L/:} _ ,/ul

UMENT IS UNLIMITED

Automation of motion planning offers a number of advantages over the existing
alternatives. It relieves human workers of the continual burden of detailed motion
design and collision avoidance, and allows them to concentrate on the robotic tasks
at a supervisory level. Robots with an automatic motion planner can accomplish
tasks with fewer, higher-level operative commands. Robotic tele-operations can then
be made much more efficient, as commands can be given to robots at a coarser time
interval. With an automatic motion planner and appropriate sensing systems, robots
can adapt quickly to unexpected changes in the environment, and be tolerant to
modeling errors of the workspace.

Unfortunately, it is unlikely [Reif79] to have a uniformly fast motion planner
capable of finding a collision-free motion within a few seconds for all tasks. Hence,
the next best alternative is to have an algorithm with performance commensurate
with task difficulty. In this paper, we present an efficient, resolution-complete motion
planner with exactly this characteristic. It can be used with any manipulator, and
can solve “easy” problems very quickly and “difficult” problems systematically with
a gradual increase of computation time. For typical problems and robots with 5 or
6 degrees of freedom (dof), the running time ranges from 20 seconds to 10 minutes.
The overall performance should become real-time with faster computers in the near
future.

In the following, we review previous work in Section 2, and describe our algorithm
in Section 3. We illustrate the algorithm with examples in Section 4, and evaluate its
performance in Section 5. We assume a polyhedral representation of the robot and
its environment, and use the terms manipulator and robot interchangeably to refer
to the ensemble of the robot and the objects being handled.

2 Previous Work

Planning motions for a general 6-dof manipulator is very difficult [Reif79], and there
are presently no practical motion planners that guarantee solutions. Motion plan-
ners can be classified into two categories: exact or heuristic. Exact motion planners
are slow but sure in that they require long computation time (typically hours for 6
dof) [Loza87. PaMF89, BrNey0. CannS83], but can either find a solution if there is
one, or prove thal there is none. Heuristic motion planners are fast (tyvpically under
10 minutes), but they often fail to find a solution even if there i< one.

There are five known exact motion planners inplemented at present. and they

all require long computation times except that in [Kond91]. The motion planner
in [Lozal7] takes about 15 minutes to plan motions for a typical 4-dof manipulator
problem, and hours for a 6-dof manipulator. It shonld be noted that the computation
times for 5 and 6-dof robots are important . hecanse they are useful for ceneral purpose
manipulation. (A 6-dof robot is required 1o arbitrarily position and orient an ohject
within the robot’s workspace.) Other exact motion planners have been dicenssed i

the research literature, but have not heen miplemented on 5 or 6 degree of freedom

robots due to their extensive computation time requirements. Paden et al. [PaMF'89]
have presented an exact algorithm which takes 35 seconds on a 1 MIPS computer
for a 2-dof robot. Its estimated computation times for 5 and 6 degrees of freedom
robots are also too long to be practical. Branicky et al. [BrNe90] have developed a
motion planner that works fast for robots with up to three degrees of freedom. This
approach cannot be implemented for robots with higher degrees of freedom because
of huge memory requirements and long search time. In the Roadmap algorithm and
its variant {Cann88, CaLi90], a collision-free motion is found from a one-dimensional
skeleton of the free space in the configuration space. They are not implemented for
6-dof robots, but expected to take a long time. Kondo [Kond91] has reported an
exceptionally fast exact algorithm for 6-dof robots. We believe, however, that this
algorithm would take substantially more time for harder yet realistic problems. (See
Section 3.3 for more discussion.)

There are many heuristic motion planners [FaTc87, Hale38, BaLa90] with com-
putation times less than 10 minutes. However, they often fail to find a collision-free
motion even if there exists one. These motion planners are typically developed for
specific applications, and cannot be used for general situations.

3 Algorithm

We have developed an efficient, resolution-complete algorithm capable of planning
motions for arbitrary robots operating in cluttered environments. (Our notion of
efficiency and completeness will be discussed in Section 3.3.) We plan a motion
of a robot in the configuration space. The configuration space is a representation
of possible robot motions through the use of robot joint positions and angles. For
a robot manipulator with six joints, i.e., six motors, the configuration space is six
dimensional. The following design decisions are crucial in developing an effective
motion planner without sacrificing completeness.

First, we use the distance algorithm in [{GiJKS88] to compute collision-free parts
of the configuration space. One can usc contact conditions between the robot and
obstacles to get a range of collision-free joint values as done in [LozaS7]. Howevir, the
distance information between the robot and the obstacles at a particular configuration
allows us to select “safer” configurations for the robot to follow.

Second. we use a two-level hierarchical planning scheme to reduce memory re-
quircment as done in [FaToS7]. It is difficult to store all the collision-free points even
if we conld compute them all, since the configuration space typically has an enor-
mous number of points even at a coarse resolution. We circiumvent this problem by
planning at two levels using a a global and local planuer. The global planner keeps
track of reachable. unreachable, and potentially reachable portions of the configura-
tion space. and the local planner s used to check the reachability of a portion of the
space from a point. If a portion of space is reachable from a point. then the corre-
sponding collision-free motion need not be stored as in [Calivo]. since they can be

readily recovered by the local planner at any later stage of the algorithm. Although
this scheme requires re-computing the solution path, it is more efficient than storing
hundreds of path segments generated during the search process.

Third, we use a multi-resolution approach to reduce search time. The high dimen-
sionality of the configuration space has hindered the development of a fast, complete
motion planner. An exhaustive search for a collision-free motion is prohibitive be-
cause of the enormous size of the configuration space. Yet, heuristic algorithms that
do not examine the entire space are inevitably incomplete. To achieve both time effi-
ciency and completeness, we use the global planning module to first search promising
portions of the configuration space at a coarse resolution. It increases the resolution
to finer levels only if a solution is not found at the coarse level, and only in promising
portions of the configuration space. The planner searches the space both heuristi-
cally and systematically so that each motion planning problem can be solved in time
according to its difficulty.

These design decisions are embodied in a new search strategy called SANDROS,
which stands for Selective And Non-uniformly Delayed Refinement Of Subgoals. Given
two points s and t representing the start and goal configurations of a robot, the
planner maintains a set of subgoals to be used by the robot as guidelines in moving
to the goal configuration. Subgoals represent portions of the configuration space that
have relatively large clearances to obstacles, and hence correspond to configurations
that are easy for the robot to reach using the local planner. Initially, the planner
maintains only a small number of “big” subgoals, each of which represents a large
portion of the configuration space. Because these subgoals are big, they provide only
coarse guidelines for the robot to follow. A collision-free motion can be found very
quickly with only these coarse guidelines if the problem is easy. However, if the
robot cannot find a collision-free path with these subgoals, then some of the subgoals
are broken down to several smaller, heuristically selected subgoals to provide more
specific guidelines. The process of subgoal refinement is delayed as much as possible,
and is performed in a non-uniform fashion.

At the highest level, the SANDROS planner uses a generate-and-test strategy
to plan motions. It has two main modules: a globel planner G that generates a
plansible sequence of subgoals to guide the robot, and a local planner £ that tests
the reachability of each subgoal in the sequence. If £ succeeds in reaching each
subgoal through the tested sequence, then a collision-free path i1s found. If £ fails
to reach a subgoal due to collisions, then G would first try to find another sequence
without any subgoal refinement. If no sequence is available, then the current set
of subgoals would be refined repeatedly according to the SANDROS strategy until
either a sequence becomes available, or no further refincment is possible.

It should be noted that the global planner is completely independent of the local
planner. However, there is a trade-off between the local planner’s simplicity and rance
of effectiveness. If the local planner s as complicated as one of the exact aleorithms

mentioned above. then the global planner will never generate anv subgoals hecanse the

local planner’s range of effectiveness encompasses the entire configuration space. At
the other extreme, if the local planner is a simple algorithm like connect-with-straight-
line, then the burden of planning rests almost completely on the global planner in
that it will have to generate many subgoals before a solution can be found. We have
empirically found that the overall computation time is the shortest when the local
planner implements a hill-climb algorithm (see Section 3.2). The global and local
planners are explained in the following subsections, and illustrated with an example
in Section 4.

3.1 Global Planning

Global planning takes place in three stages: sequence generation, sequence verifica-
tion, and node refinement. In the sequence generation stage, the global planner G
finds a “good” sequence of subgoals by searching through a dynamic graph G contain-
ing s and ¢ with additional nodes representing subgoals. For a robot with n degrees
of freedom, a node at (refinement) level & is an n-vector with only the first k com-
ponents specified. A point is an n-vector with every component specified. Thus, the
totally unspecified node vy at level O represents the entire configuration space, and a
fully specified node represents a single point. A node v is considered reachable from
a point p if £ is able to find a collision-free path from p to a point g in v.

The nodes of G are divided into three sets: U, the reachable nodes, V, nodes not
vet reachable, and P, the points that are reached when a node is declared reachable
by L. Set P is further divided into P; and P, representing points reachable from s
and ¢, respectively. The edges of (¢ establish three types of connections: those between
P and V, P, and V, and those within U U V. The edge cost between two nodes is
defined as the sum of the differences between the coordinates that are specified in
both nodes (a modified Manhattan metric). Nodes are connected by an edge only if
the edge cost does not exceed a certain threshold T.. For each point in P, we also
store a point cost indicating the cost of reaching it from s or t. We initialize G by
setting P, = {s}, P, = {t}, U = {}, V = {vo}, and connecting s to vg and vg to t with
edges. To control the subgoal refinement process, we also maintain a node queue Q.
initialized to the empty set.

To generate a plausible sequence, we simply apply Dijkstra’s shortest-path algo-
rithm [AhWHU74] on G\ [/ with source nodes P, and sink nodes P,. We define the
cost of a sequence with end points in P and intermediate nodes in V' as the sum of
the edge costs plus the costs of the end points. This cost serves only as an estimate
of the actual length of a solution going through the subgoals. To restrict the number
of possible sequences through a subgoal, we adopt the principle that no other wayvs of
reaching a subgoal would be considered once it is declared reachiable. We implement
this principle by associating exactly one point in 7 with every node in /. Allowing
more than one point per node is also possible, but we favor the one-point-per-node
ritle for its conceptual and implementational simplicity. (We will allow a reached node

~!

i
|
i
{
i

N

to be reached again at other points when the node is split into smaller nodes through
refinement.)

If Dijkstra’s algorithm produces a sequence, then we enter the sequence verification
stage. In this stage, we determine the connectability of the sequence by searching
bi-directionally with £. Let s’ € P and ¢’ € P, be the end points of this sequence.
Let d(q) be the minimum Euclidean distance between the robot at configuration ¢
and the obstacles. We begin by choosing the search direction using d(s') and d(t') as a
guide: If the d(t) is smaller than d(s’), then we will search backward by starting at t';
otherwise, we will search forward by starting at s’. Heuristically, the point chosen (s’
or t') should have less clearance from the obstacles, and hence should be extricated
first to constrain search. Let p be the point chosen and p’ be the other point. To
search forward, we call £ to check the reachability of the first node v from point p; to
search backward, we call £ to check the reachability of the last node v from point p.
Either way, if v is reachable, then the corresponding point reached, ¢, has to agree
with v on all of its specified coordinates. Once v is focused onto ¢ in this fashion, we

1. swap v from V to U,

insert ¢ into P,

store a pointer A(q) = v,

connect ¢ to the original neighbors of v in V' with new edges, and

5. store a back pointer B(v) = p, so that a path from s or { to ¢ can be retraced.

o

Then, we continue the verification stage by checking the connectability between p'
and q.

The verification stage ends when either the sequence is connected, or a node v
is found unreachable from a point p. In the former, we retrace a path from s to ¢
through G to yield 2 motion for the robot. In the latter, liowever, we disconnect p
from v, push both A(p) and v into @, and return to generating another sequence.

Continuing with the sequence generation process, if Dijkstra’s algorithm produces
no candidate sequence, then we enter the node refinement stage. In this stage, we
modify G continually by refining the subgoals in @ until either a candidate sequence
becomes available, or Q becomes empty. We pop ofl every node v in @ at the minimum
refinement level &, and refine each as follows: First, we use the specified components
of v as the first & joint values for the robot. Then, using only the links whose
positions are totally specifiable by the first & 4+ 1 joints, we compute the distance
between the links and other objects in the workspace for all possible (X + 1) joint
value at a prescribed resolution. The process is similar to that reported in [LozaS7).
The resulting set of nodes with & + 1 specified components is then filtered into a
list of nodes C'(v) using a dominate-and-kill method. In this method, the process of
selecting a node v with the maximum distance value, and removing cach node whose
(k4 1) component is within A number of nodes of v is repeated until every node is
considered. The idea is to condense the set of possible nodes into a sparse collection
of heuristically good subgoals, cach having a maximal clearance based on its specified
links.

After refining v into C(v), the next step is to modify G to reflect the change in V.
We augment G with C(v) by inserting C(v) into V, and connecting every neighbor
node of v with every node of C(v). Also, if A(B(v)) has not been refined already,
then we push A(B(v)) into @ to ensure the eventual chance that every node of U gets
refined.

3.2 Local Planning

The local planner simulates robot movements in the configuration space in small
steps. A step is defined as a configuration change where each joint is changed by a
preset amount, which represents the resolution. This preset amount of change in each
joint is indicated by a number called stride. The stride in each joint is normalized so
that the maximum distance traveled by any point on the robot is about the same for
each stride. A point that is within one step of another is a neighbor of that point.
Collision checking is done after the robot takes a step. It is thus possible for the robot
to collide with the objects while taking a step, although it does not collide before and
after taking the step. We will assume, however, that given small enough strides, such
collisions are very minor and can be ignored.

The local planner £ checks the reachability of a node v from a point p by moving
the manipulator from p to a point q in the subspace of v. Recall that a point has all
the coordinates specified, and a node has partially specified coordinates. The iterative
procedure of moving p toward v is as follows: First, we make progress toward v by
sampling uniformly for a number (n?) of the 3" — 1 neighbors of p that are closer to v,
and picking among them the point p’ that has the maximum clearance d(p'). Next,
we slide in the unspecified dimension by sampling for an additional number (n?) of
neighbors of p’ with the specified coordinates unchanged, and picking among them
the final point ¢ with the maximum d(q). If no progress can be made, then £ would
report a failure; otherwise, the procedure is repeated until v is reached.

3.3 Completeness and Efficiency

To recapitulate, our algorithm searches for a solution by repeating the process of
finding a promising sequence of nodes in a graph G, verifying its feasibility with L.
and modifying G with the refinement procedure. The efficiency of our algorithm
comes from the fact that we use a non-trivial A in the refinement procedure, and that
we delay the refinement of nodes until there is no sequence in the current .

[t is of course possible to refine every node of G down to a point first, and then plan
a path based on the resulting network of points . In fact, if we were to use A = 0,
then the resulting network is simply the discretized map of the free configuration
space. However, it would be terribly inefficient to find the shortest plausible sequence
of subgoals because of the size of (7. For such a (7, £ onlv needs to chieck whether an
adjacent point is collision-free. Non-trivial A allows us to combine similar subgoals

into one single subgoal so that (' contains only a small number of subgoals that are
i also representative of all regions of the {rce configuration space. We therefore reduce
i the size of G by using a larger A, and utilize the power of L.

To further minimize the number of nodes in G, we do not search for a solution
from G, the completely refined graph. Rather, we refine G only if we cannot find a
solution with G at the current refinement level. It remains to show that SANDROS’
interleaving process of search and refinement will eventually find a solution if there

is a solution in the completely refined graph G.

Theorem 1 Suppose that a task of moving from s to t is solvable by first refining the
configuration space into a network of points G, and then planning a path through G
using L to connect s to t. Then our algorithm is complete in that it can also solve
the same problem, but with possibly less node refinement.

Proof If the problem of moving from s to t is solvable through total refinement,
then there must be a loopless sequence

o= (s =uvp,v1,...,0n =1)

with v; € G such that £ is able to connect v; with v;41) for all 7 < n. Suppose that
our algorithm fails to solve the same problem, and terminates with a partially refined
G # GG. Then consider the sequence

I = (e(vo), -, o(vn)),

where ¢(v;) denotes the node of G that dominates v; in that the specified coordinates
of ©(v;) match that of v;. By contracting any loop of this sequence repcatedly, we
can obtain a loopless (but not unique) sequence of the form

FQ = (S = Wo, Wiy ..y, Wy = t)

with m < n, and each w; in G. Since 'y contains no repetition of nodes and has cost,
less than that of ['g, it must be a sequence verified by G to be infeasible. Now, since [,
is loopless, every fully expanded node w; in I'y must correspond to a unique v; in I'y.
Further, for such 7 < n, w;4; must dominate vj4;. Hence, for I'; to be infeasible, there
must exist a smallest & > 1 such that w, strictly dominates vy in that wy has at least
one unspecified coordinate. On the other hand, such & cannot exist for the following
reason. If wy were reachable by the end of our algorithm, then wy would eventually be
pushed into @. (See the last portion of Section 3.1.) If w, were not reachable, then wy,
would have been pushed into @ immediately after this determination. Either way, wy
would have been expanded eventually, implying that it is actually a point, and henee
cannot strictly dominate vi. Therefore, our algorithm must have also succeeded by
contradiction, |

1 10 000000 0 A 000000 A A

Motion Planner | 2 dof | 4 dof | 5 dof | 6 dof
Lozano-Pérez 6 sec | 15 min | 3 hr* | 40 hr*
Paden 4 sec | 5 min* | 2 hr* | 50 hr*
SANDROS 5sec | 2min | 5 min | 10 min |.

Table 1: Time comparisons scaled to a 10 MIPS computer
(* indicates estimated times)

We now examine experimentally the efficiency of our algorithm by comparing it
with other algorithms. Two things must be considered when comparing the perfor-
mances of motion planners: what kind of problems they can solve, and how fast they
can solve them. Exact planners are by definition better than heuristic planners since
they guarantee a solution. However, a fast heuristic planner that finds solutions for
many realistic problems has an advantage in that it can be applied to a problem before
applying an exact planner, which is typically computationally expensive. Heuristic
algorithms are harder to compare as they tend to be application specific. From the
practical point of view, efficiencies of motion planners should be compared with the
average-case analysis rather than the worst-case theoretical complexity. Compar-
ing the performances of motion planners has been difficult, since there is no set of
bench-mark problems that represent realistic and non-pathological motion planning
problems. We urge future motion planning researchers to include at least one example
satisfying the following criteria. First, the number of obstacles should be between 5
and 10, and some obstacles should be concave. Second, the solution path should be
non-trivial and utilize all dofs available. Third, there should be a narrow space at
some point along the solution path so that the problem cannot be solved with a coarse
discretization of joint variables. Fourth, there should be a large but not artificial trap
in the space so that some back-tracking is required to find a solution. In Section 4,
we show an example that meets all these requirements.

Since our goal is to develop an exact motion planner for 6-dof general manipulators
in a three-dimensional world, we compare the performance of our algorithm with only
such algorithms {L0za87, PaMI'89, Kond91]. Because the actual computation times of
the algorithms in [Loza87, PaMF89] for 5 and 6-dof problems are not available, they
arc estimated conservatively based on a resolution of 30 points per dimension and
lincar extrapolation. We should only consider the orders of magnitude of these times,
because of the sparsity of examples and the different examples and computers used. As
can be seen in Table 1, our algorithm performs much better for 5 or 6 dof robots, which
arc common in real applications. Kondo’s algorithm in [Kond91] uses an average of
7000 collision detections to solve T different 6-dof problems, as opposed to 10000
collision detections in our algorithms. His examples, however, use rather a coarse
discretization (5 degrees as compared to 2 degrees in our examples), and we expect the
algorithm to use many more collision detections and have memaory limitation problems
when a finer resolution is used. Kondo suggests the use of 2™-tree o solve the memory

-

Figure 1: A 2-link robot example with SANDROS’ solution shown in both world (a)
and configuration (b) space.

problem, but our experience tells us that such a hierarchical representation has a lot
of overhead associated with keeping track of adjacency relationship among the cells

as in [PaMF89].

4 Examples

We have tested our planner with a planar 2-link robot (RR), Puma (RRRRRR),
Adept (SCARA robot, RRPRR) and a gantry robot (PPPRRR with a long wrist) in
computer simulations, and actually implemented it on the Adept robot. A 16 MIPS
Silicon Graphics workstation is used te implement tae SANDROS planner. For the
planar 2-link robot, the computation times are all less than 30 seconds for problems
with 5 to 7 obstacles. For the example in Figure la, it takes 3 seconds to find the
solution. The configuration space obstacles are shown in Figure 1b.

Figures 2a through 2f show the intermediate stages of the search performed in
the configuration space. Initially, the global planner G invokes the local planner £
to connect the start configuration s and the goal configuration ¢ directly. Since
d(t) < d(s), the robot chooses to scarch backward from £ to s. Because of the greedy
nature of L, it was not able to avoid collision at the point marked by a triangle
(Figure 2a).

Thus, the whole configuration space is refined into several smaller subgoals cor-
responding to having the first joint angle 8y specified. Since the refinement process
includes a filtering stage, the resulting “good” subgoals with only 0y specified (shown

10

Fig. 2a Fig. 2b

abc def gihd @ o - al) c def ‘g hi

Figure 2: Search stages of the SANDROS planuner.

11

with vertical bars in Iigure 2b) have large clearances between the first link and the
obstacles.

At this stage, the shortest sequence of subgoals between s and ¢ is s-b-c-d-e-f-
g-h-i-t. The local planner succeeds in connecting t to node : at point p, and s to
node b, but fails to connect node b to node c. Since there is no other sequence of
subgoals available, the reached subgoals farthest from s and ¢, which are nodes b
and 7, are refined to generate smaller subgoals. These new subgoals have the second
joint angle 6, specified as well as ;. These subgoals (shown with dark squares in
Figure 2c) correspond to positions of the second link with large clearances to the
obstacles. After augmenting the graph of subgoals with these new nodes, the process
of finding and verifying a shortest sequence continues.

The shortest sequence is now s-b2-c-...-p-t. but L fails to connect b; to c. The
next shortest sequence is s-02-b3-c-...-p-t, but L also fails between ¢ ana d. These
failures are shown in Figure 2d.

Since there is no sequence of subgoals, node c is refined (Figure 2e). The shortest
sequence is now s-a-bl-cl-d-...-i1-t. When the robot reaches node a, it is too far from
bl, so L considers them unconnectable.

After two more sequences are tried unsuccessfully, a solution is finally found (Fig-
ure 2f) by following sequence s-62-b3-b4-c2-d-. . .-p-t. The total number of points, bars,
and squares approximately corresponds to the number of distance computations per-
formed. Only a small portion of the configuration space is examined in finding the
solution, hence the increase in performance.

For the three-dimensional problems tested, we model the gantry, Puma, and Adept
robots with 5 to 8 polyhedra in environments filled with 5 to 7 polyhedral obstacles.
IFigure 3 shows the Adept robot pulling an L-shaped object cut of a wicket, simulating
a disassembly task. This particular example takes 3 minutes of computation. In
other examples tested, the computation time ranges from 20 seconds to 10 minutes,
depending upon the complexity of the task and environment.

5 Conclusions

We have presented a general motion planner for manipulators that has performance
commensurate with task difficulty. The efliciency of our algorithm can be attributed
to the following design features. We use a bi-directional, two-level search scheme to
guide the robot out of tight places and reduce memory requirement. We usc large
subgoals to provide coarse guidelines and limit search, and only when finer resolutions
become necessary do we selectively and sequentially refine these subgoals. We use
the heuristic of best-first in selecting both promising parts of the configuration space
for increased resolutions, and promising sequence of subgoals to be tested with the
local planner. Finally, we use a local planner of an empirically optimal complexity
and power so that the total computation time spent by the global and local planners
arc minimized.

oL us puR :r;;.i; jonpod pdovny iy g odtd

One drawback of our algorithm is that it is a gross motion planner, and cannot be
used for fine motion planning, e.g., peg-in-a-hole. One should also note that although
our algorithm can be used for the classical mover’s problem, it may not be as efficient
as for the manipulator case. A single rigid body in three dimensions must have at least
the position of its reference specified in order to do any partial collision detection.
Hence, the largest subgoals we can have are three dimensional. As a result, our
algorithm has to start the search with a large number of three dimensional subgoals,
thereby having less potential savings than that for manipulators.

In summary, our algorithm is a judicious combination of several important ideas
developed in motion planning over the past decade [FaTo87, Loza87, GiJK88]. To
obtain a planner significantly faster than ours would seem to require using massively
parallel machines, or taking a totally difterent approach utilizing sensors or additional
knowledge. The next line of research would be to develop a fully functional motion
planner by incorporating our algorithm with a fine motion planner.

A cknowledgeme at

We are grateful to Professor E.G. Gilbert of University of Michigan for providing the
software for computing the distance between polyhedra. We also thank B.K. Chris-
tiansen, C.S. Loucks and LL.P. Ray of Sandia National Laboratories for helping us
execute our algorithm’s solutions on the robots.

References

[AhHU7T4] Aho, A.. Hopcroft, J., and Ullman, J. The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, 1974.

[BaLa90] Barraquand. J. and Latombe, J., “A Monte-Carlo a2lgorithm for path plan-
ning with many degrees of freedom,” Proceedings of IEEFE International Confer-
ence on Robotics and Automation, pp. 1712-1717, 1990.

[BrNe90] Branicky. M. S. and Newman. W. S., “Rapid computation of configura-
tion obstacles.” Proceedings of [EEFE [nternational Conference on Robotics and
Automation, pp. 304-310, 1990,

Calivo] Canny. J. Fooand Lino Mo CU “An Opportunistic Global Path Planner.”
L A pp
Proceedings of [EEE [nternational Conference on Koboties and Automation.
pp. 1951-135090 109G,

(Canuss] Cannyv, Jo o The Complerity of Robot Motion Planning, NUL Press, 1988,
DISCLAIMER

This samn e
This repert wos prepars

prepared ag an account of waork snoncared by an agency of the linited States
Government. Neither the United States Government nor any agency thereof. nor any of their
employees. makes any warranty, express or implied. or assumes any legal liability or responsi-
bility for the accuracy. completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owied rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect tiose of the
United States Government or any agency thereof

"

[FaTo87] Faverjon, B. and Tournassoud,, P., A local approach for path planning of
manipulators with a high number of degrees of freedom,” Proceedings of IEEE
International Conference on Robotics and Automation, pp. 1152-1159, 1987.

[GiJK88] Gilbert, E. G., Johnson, D. W. and Keerthi, S. S.; “A Fast Procedure
for Computing the Distance Between Complex Objects in Three-Dimensional
Space,” IEEE Journal of Robotics and Automation, vol. 4, no. 2, pp. 193-203,
April 1988.

{HaTe88] Hasegawa, T. and Terasaki, H., “Collision avoidance: divide-and-conquer
approach by space characterization and intermediate goals,” /[EEE Transactions
on Systems, Man, and Cybernetics, vol. 18, no. 3, pp. 337-347, May/June 1988.

[Kond91] Kondo, K., “Motion Planning with Six Degrees of Freedom by Multi-
strategic Bidirectional Heuristic Free-Space Enumeration™, IEEFE Transactions
on Robotics and Automation, vol. 7, no. 3, pp. 267-277, June 1991.

[Loza87] Lozano-Pérez, T., “A Simple Motion-Planning Algorithm for General Robot
Manipulators,” [EEE Journal of Robotics and Automation, vol. RA-3, no. 3,
pp- 224-238, June 1987.

[PaMF89] Paden, B., Mees, A. and Fisher, M., “Path Planning Using a Jacobian-
Based Freespace Generation Algorithm,” Proceedings of [FEE I[nternational
Conference on Robotics and Automation, pp. 1732-1737, 1989.

[Reif79] Reif, J. H., “Complexity of the Mover’s Problem and Generalizations,” Pro-
ceedings of 20th [FEE Symposium on Foundations of Computer Science, pp.
421-427, 1979.

[ScSh83] Schwartz, J. T. and Sharir, M., “On the Piano Movers’ Problem: 1. The
Case of a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal

Barriers,” Communications on Pure and Applied Mathematics, vol. 34. pp. 345-
398, 1983.

[TeVTS91] Tendick, F., Voichick, F.. Tharp, G. and Stark, L.. “A Supervisory Teler-
obotic Control System Using Model-Based Vision Feedback.” Procecdings of

[EEFE International Conference on Robotics and Automation, pp. 2250-2235,
1991.

5

DATE
FILMED

LLIIAIQA

“ 1 &1 IS

X

