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Abstract

To address the need of a practical motion planner for manipulators, we

present an efficient and resolution-complete algorithm that has performance

commensurate with task difficu._ty. The algorithm uses SANDROS, a new

search strategy that combines hierarchical, nonuniform-multi-resolution, and

be_t-first search to find a near-optimal solution in the configuration space. This

algorithm can be applied to any manipulator, and has been tested with 5 and

6-degree-of-freedom robots, with execution time ranging from 20 seconds to 10
minutes on a 16 MIPS workstation.

1 Introduction

Every robotic system requires a motion planner for manipulators to execute t,,usks

without colliding with objects in the workspace. Motion planning of a manipulator

refers to finding a. short and collision-free path from the start to goal position of

the. manip_11ator. At, present, manipulators are eitlmr controlled by h:lma.n operators

[TeVTS91] or restricted to follow trajectories that have beer: pr,:-comp,_ted _hro_gt:

hours of off-line progra.mming [LozaST]. Human operators, however, ha,w." a, fatig,1,"

factor. _M nee(t e×pmlsiv,: safety equipment to work in hazardc),Is environnlent, s. ()n

t.t:,: ,,tll,:r }la.nal: of[-linc • progralfli:ling can only br.' iis<.'(l in a ]:i_tllv st,rllct.,ir_.ct ai:ct

w,-.tl-c,:,::tr,_lla(t envircmn/r'llt with little toleral_l,, l_osiriona.1 err,,:s a:l,t i_o ,_n,_×l..,_,,({

O1._j (.'Ct _,I1COil III_('F.
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Autonlation of motion planning offers a nll_llber of advantages over ttle existing
Mternatives. lt relieves human workers of the continual burden of detailed motion

design and collision avoidance, and allo,;.s them to concentrate on the robotic tasks

at a supervisory level. Robots with an automatic motion planner can accomplish

tasks with fewer, higher-level operative commands. Robotic tele-operations can then

be made much more efficient, as commands can be given to robots at a coarser time

interval. With an automatic motion planner and appropriate sensing systems, robots

can adapt quickly to unexpected changes in the environment, and be tolerant to

modeling errors of the workspace.

Unfortunately, it is unlikely [Reif79] to have a uniformly fast motion planner

capable of finding a collision-free motion within a few seconds for all tasks. Hence,

the next best alternative is to h_ve an algorithm with performance commensurate

with task difficulty. In this paper, we present an efficient, resolution-complete motion

planner with exactly this characteristic. It can be used with any manipulator, and

can solve "easy" problems very quickly and "difficult" problems systematically with

a gradual increase of computation time. For typical problems and robots with 5 or

6 degrees of freedom (dol), the running time ranges from 20 seconds to 10 minutes.

The overall performance should become real-time with faster computers in the near
future.

In the following, we review previous work in Section 2, and describe our algorithm

in Section 3. We illustrate tile algorithm with examples in Section 4, and evaluate its

performance in Section 5. We assume a polytmdral representation of the robot and

its environment, and use the terms manipulator and robot interchangeably to refer

to the ensemble of the robot and tl_e objects being handled.

2 Previous Work

Planning motions for a general 6-dol rnaniplllator is very ditficult [Reif79], _.nd there

are presently no practical motion planners tllat guarantee solutions. Motion plan-

ners can be classified int,o two categories: <_'×a_tor heuristic. Exact motion planners

are slow but sure in that they reqllire long conlputation time (typically hours for 6

dol) [Loza87. PaMF89, BrNeg0. CannSS], bllt can either find a solution if there is

one. or prove tlla_ there is none. [t_llristic Inoti,_ll plann,,rs at,:, fast (typic.ally tlncter

lO nainlltes), t)llt they often fail t,o tirl,t a s(,l_llioi_ _'v,_n if tll<,ro is one.

There are five known exact motion plant_<'vs irnl-_lex-_e_t,,-'(tat l)ros_'.nt, and they

ali require lone; <Oml)utatiotl tiIl,'s ,'>:,:,:t,t Ileal ixl [I(o_,t!_1]. "I;1,,? motioll l,lanner

in [i_oza.87} tal.:,'s a,bollt 15 nlinlxtes t,)t_lan ti_,)li_,I_s for _, _vl)ical 4-(tor rnanil_lator

wittxin l,tt_, r,)t_,,t'._ _v_.;_r[.:.:-s[);t,7,'.) ()1.]1,'[ ,..'.:it,l [li, ,l i, ,tl [,];ttI'[I,'F. q 11;1\',' ],,','Ii ,Ii:. "li.q:-;,.,] iii



robots due to their extensive computation time requirements. Paden ct al. [PaMF89]

have presented an exact algorithm which takes 35 seconds on a 1 MIPS computer

for a 2-dol robot. Its estimated computation times for 5 and 6 degrees of freedom

robots are also too long to be practical. Branicky et al. [BrNe90] have developed a

motion planner that works fast for robots with up to three degrees of freedom. This

approach cannot be implemented for robots with higher degrees of freedom because

of huge memory requirements and long search time. In the Roadmap algorithm and

its variant [Cann88, CaLl90], a collision-free motion is found from a one-dimensional

skeleton of the free space in the configuration space. They are not implemented for

6-dol robots, but expected to take a long time. Kondo [Kond91] has reported an

exceptionally fast exact algorithm for 6-dol robots. We believe, however, that this

algorithm would take substantially more time for harder yet realistic problems. (See

Section a.a for more discussion.)

There are many heuristic motion planners [Fax_cS7, Ha_e88, BaLa90] with com-

putation times less than 10 minutes. However, they often fail to find a collision-free

motion even if there exists one. These motion planners are typically developed for

specific applications, and cannot be used for general situations.

3 Algorithm

We have developed an efficient, resolution-complete algorithm capable of planning

motions for arbitrary robots operating in cluttered environments. (Our notion of

efficiency and completeness will be discussed in Section a.a) We plan a motion

of a robot in the configuration space. The configuration space is a representation

of possible robot motions through the use of robot joint positions and angles. For

a robot manipulator with six joints, i.e., six motors, the configuration space is six

dimensional. The tollowing design decisions are crucial in developing an effective

motion planner without sacrificing completeness.

( y_ 7lFirst we use the distance algorithm in [Gi.II 85] to compute collision-free parts

of the configuration space. One can use contact conditions between the robot and

obst_cles to get a range of collision-free joint v_lues As done in [Loza87]. Howev,:r, the

distatlce inforn:ation between the robot and the obstacles at a particular configdration

allows ,1._ t,o select, "safer ''_ configurations for the. rol)ot to follow.

Sc,coKld, we ,iso" a two-level hierarchical planning scheme to rcd_lce memory re-

({,lircs,_(_ll as dogie in [I:a'Fo87]. lt is diftic,llt to store ali the collision-free points evei_

if v,,_ ,:,),iI(1 complzt,:, tlle_n all, since the cont]gllra.tion si)ace typically llas an enor-

t l_())2._iil2nll>cr of points even al. a coarse resollltion. \Ve circ)In_v('nt this problenl I)v

t>lg,ni_i))g al ),wo levels _lsing a a glot)al and local l)lanne.r. The glol)al planner keeps

tr._ck (>f r('acI_al)lc'. _)_,reachabl(:, a_d l)otcntially r,'acha.t)l(:, portions of tl)(' (;ot_tig_r>_-

li(_) ._I';'""- a:_d tt_(, lo,:al l_lan_,.', is l_s,d to cl_eck l l_,, r(-'act_abilitv of a l),)rtion of tt_,.

sp;_c,' tr,_r_ a poiI_l. If a portion of space is r,mcl_a.l,le fron_ a l_oini., t.l_en l t_, c_)rr,.-
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readily' recovered by the local planner at any later stage of tile algorithm. Alttlough

this scheme requires re-computing the solution path, it is more efficient than storing

hundreds of path segments generated during the search process.

Third, we use a multi-resolution approach to reduce search time. The high dimen-

sionality of the configuration space has hindered the development of a fast, complete

motion planner. An exhaustive search for a collision-free motion is prohibitive be-

cause of the enormous size of the configuration space. Yet, heuristic algorithms that

do not examine the entire space are inevitably incomplete. To achieve both time effi-

ciency and completeness, we use the global planning module to first search promising

portions of the configuration space at a coarse resolution. It increases the resolution

to finer levels only if a solution is not found at the coarse level, and only in promising

portions of the configuration space. The planner searches the space both heuristi-

cally and systematically so that each motion planning problem can be solved in time

according to its difficult3'.

These design decisions are embodied in a new search strategy called SANDROS,

which stands for Selective And Non-uniformly Delayed Refinement Of Subgoals. Given

two points s and t representing the start and goal configurations of a robot, the

planner maintains a set of subgoals to be used by the robot as guidelines in moving

to the goal configuration. Subgoals represent portions of the configuration space that

have relatively large clearances to obstacles, and hence correspond to configurations

that are easy for the robot to reach using the local planner. Initially, tile planner

maintains only a small number of "big" subgoals, each of which represents a large

portion of the configuration space. Because these subgoals are big, they provide only

coarse guidelines for tile robot to follow. A collision-free motion can be found very

quickly with only these coarse guidelines if the problem is easy'. However, if the

robot cannot find a collisiol>free path with these subgoals, then some of the subgoals

are broken down to several smaller, he_lristically selected subgoals to provide more

specific guidelines. The process of subgoal refinement is delayed as mucll as possible.

and is performed in a non-uniform fashion.

At the highest level, l,he SANDROS planner uses a generate-arid-test strategy

to plan motions. It has two maill modules: a .qlobal planner G tllat generates a

plausible sequence of subgoals to guide the robot, and a local plarlncr /2 that tests

the teachability of each subgoal in the sequence. If £ s_lcceeds in reaching cacti

subgoal through the tested seqllence, l.tlen a collision-free patll is found. If £ fails

to reach a subgoal :_t_u'.to collisions, then _d would first try to tiI_<l another sc'rtllC'llcc

witl_out any subgoal refinement.. If no seqlmnce is available, llmi_ the c,_rrent s_,t .-

of subgoals wollld be retiiled repc'atcdly accorditlg to the S:\NI)IU)S strat(.'<y I_Ilii]

eith,:r a seqllOllC.(: becomes avails, bl,.. or i1o f,lrther rofineiimnt is possit)lo.

lt should be noted l,[lal, t, ll,, gl,_l,al l)lalliIcr is coTl/l)lete[y itld<'l)O.ndellt of t.}l,' l,,c_,l

i)lanner, llowc'ver, tllerc is a trad,><_tt I)(,Ixrd,en tile local l)lal_,,r's sit_l)licitv ai_(I ran,,*,'

._ ._l('_raL_.dllV Slll_ff();tls IH'('it, ll:-;_' Ill,



local planner's range of effectiveness encoml)asses the entire configuration space. At

the other extreme, if the local planner is a simple algorithm like connect-with-straight-

line, then the burden of planning rests almost completely on the global planner in

that it will have to generate many subgoals before a solution can be found. We have

empirically found that the overall computation time is the shortest whet: the local

planner implements a hill-climb algorithm (see Section 3.2). The global and local

planners are explained in the following subsections, and illustrated with an example
in Section 4.

3.1 Global Planning

Global planning takes place in three stages: sequence generation, sequence verifica-

tion, and node refinement. In the sequence generation stage, the global planner _7

finds a "good" sequence of subgoals by searching through a dynamic graph G contain-

ing s and t with additional nodes representing subgoals. For a robot with n degrees

of freedom, a node at (refinement) level k is an n-vector with only the first k com-

ponents specified. A point is an n-vector with every component upecified. Thus, the

totally unspecified node v0 at level 0 represents the entire configuration space, and a

fully specified node represents a single point. A node v is considered reachable from

a point p if 12 is able to find a collision-free path from p to a point q in v.

The nodes of G are divided into three sets: U, the reachable nodes, V, nodes not

yet reachable, and P, the points that are reached when a node is declared reachable

by £. Set P is further divided into Ps and Pt representing points reachable from _q

and t, respectively. The edges of G establish three types of connections: those between

1)_ and V, Pt and V, and those within U U V. The edge cost between two nodes is

defined ,'ts the sum of the differences between the coordinates that are specified in

both nodes (a modified Manhattan metric). Nodes are connected by an edge only if

the edge cost does not exceed a certain threshold T_. For each point in P, we also

sl ore a point cost indicating the cost of reaching it from s or t. We initialize G by

setting P._ = {s}, Pt = {t}. U = {}, V = {v0}, and connecting s to v0 and v0 to t wit]_

edges, rlo control the subgoal refinement process, we also maintain a node queue Q.

initialized to tlle elnpty set..

:I)o generate a plausible sequence, we simply apply I)ijkstra's shortest-path algo-

ritI_m [AI_HU74] on G \ U with source nodes f_., and sink nodes &. We define rh,,

cost of a sequence with end points in 12 and intermediate nodes in 1/"as the sum of

lhe edge costs plus the costs of the end points. Ttlis cost serves only ms an estimate

of l.tle actlial length of a solution going throtlgh the subgoals. To restrict, tl_e n_lnlber

¢_ft_ossible seqllences throllg, h a sllbgoal, we adopt tlm principlo, that no otllor ways of

r,"acllillg a sill)goal would be co_lsidered once ii is declared reacha.t_le. We iml)leErl<'rlt

tills principle by associating exactly one point ill I_ with every node ill U. Allowitl:z

lll_I'(' l,llan one l)oillt per ilode is also i)ossil)l_, t_lt xw, favor l,ll_" one-l)Oi:lt,-l_(:r-_lo_{,,

__1_.f,)r ils concept_al and i_nplenu:ntatiot_al si_plic.itv. (\Ve will allow a ro,,,:lt,:,l _,,_I,,
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to be reached again at other points when the node is el)lit into smaller nodes through

i refinement.)

If Dijkstra's algorithm produces a sequence, then we enter the sequence verification

stage. In this stage, we determine tile connectability of the sequence by searching

bi-directionally with £. Let s' E Ps and t' EPt be the end points of this sequence.

Let d(q) be the minimum Euclidean distance between the robot at configuration q

and the obstacles. We begin by choosing the search direction using d(s') and d(t') as a

guide: If the d(t') is smaller than d(s'), then we will search backward by starting at t';

otherwise, we will search forward by starting at s'. Heuristically, the point chosen (s'

or t') should have less clearance from the obstacles, and hence should be extricated

first to constrain search. Let iu be the point chosen and iu' be the other point. To

search forward, we call £ to check the reachability of the first node v from point p; to

search backward, we call £ to check the reachability of the last node v from point iu.

Either way, if v is reachable, then the corresponding point reached, q, has to agree

with v on ali of its specified coordinates. Once v is focused onto q in this fashion, we

1. swap v from V to U,

2. insert q into P,

3. store a pointer A(q) = v,

4. connect q to the original neighbors of v in V with new edges, and

5. store a back pointer B(v) = p, so that a path from s or _ to q can be retraced.

Then, we continue the verification stage by checking the connectability between p'

and q.

The verification stage ends when eittmr the sequence is connected, or a node v

is found unreachat)le from a point p. In the former, we retrace a path from s to l

through G to yield a motion for the robol_. In the latter, however, we disconnect p

from v, push both A(p) and v into Q, and return to generating another sequence.

Continuing with the sequence generation process, if Dijkstra's algorithm produces

no candidate sequence, then we enter the node refinement stage. In this stage, we

modify G continually by reIining the. subgoals in Q until either a candidate sequei_ce

t)ecomes available, or Q becomes empty. \_q: pop off every node v in Q at the minimum

refinement h:vel /,'. and refine eacll as follows: First, we use the specified colnponents

of v as the first k joint values for the robot. Then, using only the links whose

positions are totally specifiable 1)y the first 1_"+ 1 joints, we cornl)ute til(: (lisl, a.nce

between t l_e li_ks al_d other el,jeers in tlm wc,rk.sl)ace for ali possible (lc + 1) 'h joint

value at a l)rescril)ed resolutioll. "l'lle process is sinlilar Lo that reported in [l_ozaST].

Til(., res_llting set, of nodes witl_ 1,"+ 1 Sl)(,citied con_l)onenl, s is tllen tiit(,red into a

list of nodes C/(_,) usil_g a dom inal(::-and-kill llle(llo(l. [11 tills metllod, tlle process of

selecting a node _' witli tlle nlaxilnunl distalic_: val,_e, altd r_,.nlovip.g eacll llode wllos_

.. (lc + 1)'l' cOlUl_onelil" is wit, llii_ A _ln.'r of _odes of r is rel_,,a.l,e_t _nl, il every _o,1_' is

li_ks.

' H II .... _ ' ' II



After refining v into C(v), the next step is to modify G to retlect the change in V.

We augment G with C(v) by inserting C(v) into V, and connecting every neighbor

node of v with every node of C(v). Also, if A(B(v)) has not been refined already,

then we push A(B(v)) into Q to ensure the eventual chance that every node of U gets
refined.

3.2 Local Planning

The local planner simulates robot movements in the configuration space in small

steps. A step is defined as a configuration change where each joint is changed by a

preset amount, which represents the resolution. This preset amount of change in each

joint is indicated by a number called stride. The stride in each joint is normalized so

that the maximum distance traveled by any point on the robot is about the same for

each stride. A point that is within one step of another is a neighbor of that point.

Collision checking is done after the robot takes a step. It is thus possible for the robot

to collide with the objects while taking a step, although it does not collide before and

after taking the step. We will assume, however, that given small enough strides, such

collisions are very minor and can be ignored.

The local planner/2 checks the reachability of a node v from a point p by moving

the manipulator from p to a point q in the subspace of v. Recall that a point has all

the coordinates specified, and a node has partially specified coordinates. The iterative

procedure of moving p toward v is as follows: First, we make progress toward v by

sampling uniformly for a number (n 2) of the 3n - 1 neighbors of p that are closer to v,

and picking among them the point p' that has the maximum clearance d(p'). Next,

we slide in the unspecified dimension by sampling for an additional number (n 2) of

neighbors of p' with the specified coordinates unchanged, and picking among them

the final point q with the maximum d(q). If Ilo progress can be made, then £ would

report a failure; otherwise, the procedure is repeated until v is reached.

3.3 Completeness and Efficiency

To recapitulate, our algorithm searches for a solution by repeating the process of

finding a promising sequence of nodes in a graph G, verifying its feasibility witll £.

and modifying G with tile refinement procedure. The efficiency of our algorithm

comes from the fact that we use a non-trivial ,\ in the refinenmnt procedure, and that

we delay tile refinement of nodes until l.here is no sequence in the current (;.

lt is of course possible to refine every node of G down to a i)oi)_l, first, and tll(.'n plan

a patll based on the resulting network of points (). In fact, if wt" wore to use A = O,

then the resulting network is simply the discretizcd nlal) of ttle free configllration

space. Itowever, it would be terribly inetiicient Io tilld the sllorte.sl plausible sequetlc_"

of s_ll)goa.ls lw.cause of the size of (;. For sucli a (2:/2 only iloeds t.o cl_,.'ck wll,.'ll_er _,zl

adja.cctlt point is collision-free. Noi_-trivial ,\ allows tls Io colnl,ille siIllilal' S_ll_g(,,tls



into one single subgoal so that (; (:olltaills only a small number of subgoals that are

also representative of ali regions of tile free configuration space. We therefore reduce

the size of O by using a larger A, and utilize the power of/2.

To further minimize the number of nodes in G, we do not search for a solution

from (_, tile completely refined graph. Rather, we refine G only if we cannot find a
solution with G at the current refinement level, lt remains to show that SANDROS'

interleaving process of search and refinement will eventually find a solution if there

is a solution in the completely refined graph (_.

Theorem 1 Suppose that a task of moving from s to t is solvable by first refining the

configuration space into a network of points (_;, and then planning a path through

using £ to connect s to t. Then our algorithm is complete in that it can also solve

the same problem, but with possibly less node refinement.

Proof If the problem of moving from s to t is solvable through total refinement,

then there must be a loopless sequence

Po = (s = v0, vi,..., vn = t)

with vi C G such that £ is able to connect vi with vi+t) for all i < n. Suppose that

our algorithm fails to solve the same problem, and terminates with a partially refined

G :_ G. Then consider the sequence

r, =

where _(vi) denotes the node of G that dominates vi in that the specified coordinates

of _0(vi) match that of vi. By contracting any loop of this sequence repeatedly, we

can obtain a loopless (but not unique) sequence of the form

I_2= (s = _o0,*,,,..., w,,, = t)

with m _< n, and each w+ in G. Since F2 contains no repetitiotl of nodes and has cost,

less than that of F0, it must be a sequence verified by G to be infeasible. Now, since Fu

is looplesa, every fully expanded node wi in F2 Inust correspond to a unique v A in Fo.

Further, for such i < n, wit, ro,tsl domit_ate vj+l. Hence, for F2 to be infeasible, there,

must exist a smallest k :> 1 such that _l_t.strictly dominates vk in that wk ltas at least

one unspecified coordinate. On tl,: other hand, such k cannot exist for the following

reason. If w_ were reachal)le I)y l.ll(: end of our algorithm, ttmn w,+would eventua.lly I_(,

pushed into Q. (See the last l)ort, io_l of Sect.ioll 3.1 .) If wa. were not :'eachal_le, ttmn tl'_:

would have been puslled itlto Q imtt_e(tiat, cly after tllis dc_l,(;rrt_inatiozl. I,;il.ll(.'r way, "_a-

would llavc, be(.'n (.'xl)atlded ('.v(.'ttl.tlally, ittll)lyittg tllat ii. is actually a l)Oitlt, atl(t lle_c_,

(:attt_ot st.ri(;tly (lott_inat.(> v_. q'l_e,'('+f()r(_,o,tr algorit, l_,_ t_t_st, have also stt(:(:<_(xl(:+ll,3'

co tttra(li(:Lion. I
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Motion Planner 2 dof 4 dof 5 dol 6 dol

Lozano-P6rez 6 sec 15rain 3 b,r* 40 tw*
,--.

Paden 4 sec 5 rain* 2 hr* 50 hr*

SANDROS 5sec 2rain 5min 10 rain • .-. .

Table 1: Time comparisons scaled to a 10 MIPS computer

(* indicates estimated times)

We now examine experimentally the efficiency of our algorithm by comparing it

with other algorithms. Two things must be considered when comparing the perfor-

mances of motion planners: what kind of problems they can solve, and how fast they

can solve them. Exact planners are by definition better than heuristic planners since

they guarantee a solution. However, a fast heuristic planner that finds solutions for

many realistic problems has an advantage in that it can be applied to a problem before

applying an exact planner, which is typically computationMly expensive. Heuristic

algorithms are harder to compare as they tend to be application specific. From the

practical point of view, efficiencies of motion planners should be compared with the

average-case analysis rather than the worst-case theoretical complexity. Compar-

ing the performances of motion planners has been difficult, since there is no set of

bench-mark problems that represent realistic and non-pathological motion planning

problems. We urge future motion planning researchers to include at least one example

satisfying the following criteria. First, the number of obstacles should be between 5

and 10, and some obstacles should be concave. Second, the solution path should be

non-trivial and utilize all dofs available. Third, there should be a narrow space at

some point along the solution path so that the pioblem cannot be solved with a coarse

discretization of joint variables, tourth, there should be a large but not artificial trap

in the space so that some back-tracking is required to find a solution. In Section 4,

we show e.n example that meets all these requirements.

Since our goal is to develop an exact motion planner for 6-dol general manipulators

in a three-dimensional world, we compare the performance of our algorithm with only

such algorithms [boza87, PaMF89, Kond91]. Because the actual computation times of

the algorithms in [Loza87, PaMF89] for 5 and 6-dof problems are not available, they

are estimated conservatively based on a resolutioli of 30 points per dimension and

linear extrapolation. We should only consider the orders of magnitude of tlmse tilnes.

because of tlm sparsity of examples and the different examples and computers used. As

c&Ii be seen in Table 1, our algol'ittlm l)erforms milch l)etter for 5 or 6 dol robots, which

are colnmon in real applications. Xondo's a.lgorithm in [l(ond91] uses an a.verage of"

70/.)0 collision detections to solve 7 different 6-dof prol)lems, as Ol)posed Lo 10001)

collision detections in our a lgoritllms, l lis oxa,nplc's, Ilowev(;r, t, se ra.th<'.r a. coa.rse

disci'etiza.tiotl (5 <leerees_,as compared to 9_<t(,,,,oo'_,.s ixl <_,lr(,.xalnples), and we expect l,llo

algoritllnl to use illax_y more coIlisioll d(.'l.(?('l;i()llsa lie] ]lax'_, [llOll/()r}r lirnita.tio_l prol_lc'ins

wll(:ll a filmr resolution is llsecl. I(otldo sttgg(.'st.s Lit("us(.' of "2'_-l,r('("_o solve tl_e In(n_lorv



Figure 1: A 2-1ink robot example with SANDR.OS' solution shown in both world (a)

and configuration (b)space.

problem, but our experience tells us that such a hierarchical representation has a let
of overhead associated with keeping track of adjacency relationship among the cells

as in [PaMF89].

4 Examples

We have tested our planner with a planar 2-1ink robot (RR), Puma (RRRRRR),

Adept (SCARA robot, RRPRR) and a gantry robot (PPPRRR with a long wrist) in

computer simulations, and actually implemel_ted it on the Adept robot. A 16 MIPS

Silicon Graphics workstation is used tc implement tqe SANDROS planner. For the

planar 2-1ink robot, the computation times are all less than 30 seconds for problems

with 5 to 7 obstacles. For the example in Figure la, it takes 3 seconds to find the

sol_tion. The configuration space obstacles are shown in Figure lb.

Figures 2a through 2f show the intermediate stages of the search performed in

the configuration space. Initially, tl_e global l)la._ner {7 invokes tl_,.• local planner 12

to connect the start configuration .s and l,l_e goal config,ui'atio_ t directly. Since

d(t) < d(s), the robot chooses to scarcl_ 1)ackward fro_ 1,to s. Because of the gre.edy

nature of £, ii, was not able to avoid collision al I]_c point _arl<ed l_y a triangle

(Figure 2a).

'l'l_us, tl_(,,wl_ole configtlration Sl)aCe is relined i_lo s(_v(,ral s_all_,r s_l_goals cef

respo_cli_g to t_a\'ing l,l_e lirst joint ,u_gle 0_ Sl><:citic<l.,Sillc<,t,l,,, r('Ii_l('I_<'I_t,i_roc<'ss

inclt_(les a, filtcri_Lg stage, t,l_e rcs_ll, i_g "good" sul)goals wit,l_o_ly 0_ Sl_'('ili_'_l(sl_ow_

1()



Fig. 2a Fig. 2b

Figure 2: Se;wcl_ sl,ages of l,l_e SANI)ROS l>la,,_,_e,.

11



with vertical bars in Figure 2b) have large clearances between tile first link and tile
obstacles.

At this stage, the shortest sequence of subgoals between s and t is s-b-c-d-e-f-

g-h-i-t. The local planner succeeds in connecting t to node i at point p, and s to

node b, but fails to connect node b to node c. Since there is no other sequence of

subgoals available, the reached subgoals farthest from s and t, which are nodes b

and i, are refined to generate smaller subgoals. These new subgoals have the second
i4

joint angle 02 specified as well as 01. These subgoals (shown with dark squares in

Figure 2c) correspond to positions of the second link with large clearances to the

obstacles. After augmenting the graph of subgoals with these new nodes, the process

of finding and verifying a shortest sequence continues.

The shortest sequence is now s-b2-c-...-p-t, but /2 fails to connect b2 to c. The

next shortest sequence is s-b2-b3-c-...-p-t, but 12 also fails between c and d. These

failures are shown in Figure 2d.

Since there is no sequence of subgoals, node c is refined (Figure 2e). The shortest

sequence is now s-a-bl-cl-d-...-il-t. When the robot reaches node a, it is too far from

bl, so/_ considers them unconnectable.

After two more sequences are tried unsuccessfully, a solution is finally found (Fig-

ure 2f) by following sequence s-b2-b3-b4-c2-d-...-p-t. The total number of points, bars,

and squares approximately corresponds to the number of distance computations per-

formed. Only a small portion of the configuration space is examined in finding the

solution, hence the increase in performance.

For the three-dimensional problems tested, we model the gantry, Puma, and Adept

robots with 5 to 8 polyhedra in environments filled with 5 to 7 polyhedral obstacles.

Figure 3 shows the Adept robot pulling an L-shaped object c_ut of a wicket, simulating

a disassembly task. This particular example takes 3 minutes of computation. In

other examples tested, the computation time ranges from 20 seconds to 10 minutes,

depending upon the complexity of the task and environment.

5 Conclusions

We have presented a general motion planner for manipulators that has performance

cornmensurate wittl task difficulty. The efficiency of our algorithm can be attributed

to the following design features. \'Ve use a bi-directiona,1, two-level search scheme to

guide the robot out of tight places and reduce memory requirenmnt. We use large

subgoals to provide coarse guidelines and limit search, and only when finer resolutions

becom(" necessary do we selectively and sequentially refine these subgoals. \'Ve use

the heuristic of best-first ill selecting botll promising parts of tile configuratioll spac(.'

for increased resolutions, and l)rolnising sequ('nce of sul)goals to be t('.st(,d wil,ll l,llc

local l)lallner. ]"ina,lly, we 11se a local I)la.nn(;r of an eml)irica,lly optilllal cOlnl)lexity

and power so l,]_al, l.]le l,ol,;tl (:OIIIl)lll,/:tl,lO11t i111C"SI_(:IIt.t_3,'l,]l(',glo1)al a t_,l local l_lallTl(:rs
are lnii_ilnizc'cl.

12





One drawback of our algoritllm i_ that it, is a gross motion planner, and cannot be

used for fine motion planning, e.g., peg-in-a-.hole. One should also note that although

our algorithm can be used for the classical mover's problem, it may not be as efficient

as for the manipulator case. A single rigid body in three dimensions must have at least

the position of its reference specified in order to do any partial collision detection.

Hence, the largest subgoals we can have are three dimensional. As a result, our

algorithm has to start the search with a large number of three dimensional subgoals,

thereby having less potential savings than that for manipulators.

In summary, our algorithm is a judicious combination of several important ideas

developed in motion planning over the past decade [FaToS7, LozaS7, GiJK88]. To

obtain a planner significantly faster than ours would seem to require using massively

parallel m,_chines, or taking a totally different approach utilizing sensors or additional

knowledge. The next line of research would be to develop a fully functional motion

planner by incorporating our algorithm with a fine motion planner.
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