
396 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 3, MAY 2003

SANet: A Service-Agent Network for
Call-Center Scheduling

Qiang Yang, Member, IEEE, Yong Wang, and Zhong Zhang

Abstract—We consider a network of service-providing agents,
where different agents have different capabilities, availability, and
cost to solve problems. These characteristics are particularly im-
portant in practice for semi-automated call centers which provide
quality customer service in real time. We have developed SANet, a
service agent network for call center automation, to serve as an ex-
perimental testbed for our research. SANet can select appropriate
agents to provide better solutions for customer problems according
to the changing capabilities and availability of service agents in
the network. It can also add or delete appropriate agents to bal-
ance problem-solving quality, efficiency, and cost according to the
number and types of incoming customer problems. On this net-
work, each service agent can be a human service agent, an auto-
mated software service agent, or a combination of the two. This
paper describes the architecture, a problem scheduling algorithm
and an agent assignment algorithm on the SANet. We highlight an
application in which we apply SANet to a call-center scheduling
problem for a cable-TV company. Finally, we show the efficiency
and adaptability of our system via experimental results and discuss
related works.

Index Terms—Agent-based systems, call-center applications, in-
telligent scheduling and planning.

I. INTRODUCTION

OUR research is motivated by a realistic problem in call
center environments. To solve customers’ problems,

many telecommunications companies, such as cable-TV and
telephone companies, maintain large call centers that are
aimed at providing real-time solutions to their customers. In
a cable-TV call center environment, for example, a customer
may phone in to ask about a solution to his fuzzy-picture
problem. A human agent is selected for answering the question
and interactively diagnoses the source of the problem. In this
environment, the human agent’s expertise is distributed and
changing. They are not always available either due to time
shifts, or changing interests and training. A solution is to create
a number of software agents which can provide subsets of the
expertise that human agents can provide, and cater to customers
through a network of human and software agents.

From the agent research point of view, a call center is a
multiagent system which includes customer service agents and

Manuscript received November 30, 2000; revised March 26, 2003. This work
was supported by grants from a Canadian IRIS-III Project and Hong Kong RGC.
This paper was recommended by Associate Editor L. Fang.

Q. Yang is with the Department of Computer Science, Hong Kong Univer-
sity of Science and Technology, Clearwater Bay, Kowloon, Hong Kong (e-mail:
qyang@cs.ust.hk).

Y. Wang is with the School of Computing Science, Simon Fraser University,
Burnaby, BC, V5A 1S6, Canada (e-mail: yongwang@canada.com).

Z. Zhang is with the School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada (e-mail: zzhang@cs.sfu.ca).

Digital Object Identifier 10.1109/TSMCA.2003.817047

an agent who schedules customer problems to service agents.
Using agent development techniques based on IBM’s Aglet
package [8], we have developed SANet—a service agent net-
work for call center automation. SANet integrates both human
and software service agents in providing customer service in
real time. It employs a broker to schedule customer problems
to service agents for better solutions according to the nature
of the input problems as well as the changing capabilities and
availability of service agents in the network. A main feature
is an agent scheduling and assignment algorithm based on
problem type, capabilities, and availability of service agents.
SANet employs a manager to assign appropriate agents in the
network according to the number and types of the incoming
customers’ problems. The manager balances between problem
solving quality and cost in real time, by dynamically adding
and deleting agents to the network.

In SANet, agent assignment plays an important role. Usu-
ally, it costs more to get higher service quality for customers.
The cost may include hiring more experienced service agents,
spending more time with customers, etc. In contrast, reducing
the cost may reduce the service quality. Hence, it is a key issue
to balance quality of service and cost. The management agent in
SANet is responsible for this task: based on the incoming prob-
lems and the system performance from the near past, it estimates
the system performance in the near future and adjusts the service
agents by adding or deleting appropriate agents. In this way, the
network can be adapted dynamically to fit the current situation
for a better balance between service quality and cost.

This paper describes the architecture, an agent assignment
algorithm and a problem-type learning method for SANet. As
we will see, SANet is aflexible network on which agents can
be added or deleted on demand at any time and its capability
to solve problems can be tracked and utilized. Our work con-
tributes to artificial intelligence and distributed problem solving
in several aspects. First, our system represents an innovative at-
tempt to adjust the number and type of agents to in order to
tradeoff quality with time. Second, our proposed architecture
integrates multiple human and software agents into a unified
framework. Our system relates scheduling, multiple-agent com-
munication, learning and reasoning approaches in artificial in-
telligence.

There are at least three ways in which we envision our frame-
work can be applied. First, the agents in the network provide in-
ternal help-desk assistance functions for human customer-ser-
vice personnel. When an incoming problem arrives, the agent
assigned to help a human agent can act to provide solutions
to the agent in real time in response to the type of incoming
problem. The human agent, equipped with the real-time solu-

1083-4427/03$17.00 © 2003 IEEE

YANG et al.: SANet: SERVICE-AGENT NETWORK FOR CALL-CENTER SCHEDULING 397

Fig. 1. Architecture of SANet.

tion, can provide higher quality solutions more efficiently and
uniformly. This can lead to a reduction in customer service costs
to the company. Second, the agent system can be used as a sim-
ulation and designing tool for setting up a call center. Based
on past and anticipated records of incoming calls, designers of
a call center can invoke the system and test for the need for
human agents in each specific problem area. Such a simula-
tion and design tool would be invaluable in the continual op-
eration of a call center as well. Third, the system can be used
as part of an automated call-center solution for customer ser-
vice. The software agents and managers can be installed over a
network of computers in a call center. These agents can then be
dynamically managed to answer customers’ questions. Because
all agents are automated, this solution will use less resources
than human agents. However, the number of incoming calls can
easily out-pace the available computer resources. To deal with
this, a typical method in network research is replication, by du-
plicating the resources. However, as we point out in this paper, to
know which agents to replicate requires that we know the distri-
bution and the growth of different problem types as a function of
time. This is addressed by the schedule management algorithm
discussed in the paper.

The organization of the paper is as follows. In Section II we
first describe the architecture of SANet. Then, in Section III, we
describe the scheduling algorithm for assigning incoming prob-
lems to agents. We then develop the agent assignment algorithm
and the problem-type learning method in Sections IV and V, re-
spectively. In Section VI, we present an application in which
we simulate a call center environment of a cable-TV company
and demonstrate our the experimental results that show that the
proposed architecture and algorithms can provide high-quality
service in real time. We discuss related works in Section VII and
conclude in Section VIII.

II. SANet ARCHITECTURE

To begin with, our work makes the following assumptions.

1) There is a collection of service agents who each spe-
cialize in one or more problem solving areas. Further-
more, agents’ capability can change with time and an
agent may increase his/her capability in solving a type
of problem through more practice. Alternatively, an agent

may decrease his/her capability in solving a problem due
to other assignments.

2) Service agents overlap in their capabilities in problem-
solving, and the amount of the overlap is not known by
the broker agent ahead of time. This makes it important
for the broker agent to learn and track the change in ca-
pabilities.

3) A service agent may or may not be available at any point
in time. An example of an unavailable software agent is
one such agent that is offered through a Web site where
the server is temporarily out of order.

4) Each software agent freely maintains its own database,
which in turn affects its capability. Also, at all times, the
system functions can be monitored by a monitor agent for
management purposes.

5) If a problem can be solved by an agent, then the agent can
solve the entire problem rather than portions of it.

Our goal is to maintain high problem-solving quality and ef-
ficiency when large numbers of problems arrive.

A. Agents in the SANet

Fig. 1 shows the architecture of SANet. SANet has the fol-
lowing components:

1) Software and Human Service Agents:A software service
agent is a problem solver which is capable of solving one or
more types of problems. This agent may be an expert system,
a rule-based reasoning system, a case-based reasoning system,
or other type of reasoning system. In the experiment that we
present, we used a case-based reasoning system as a software
agent. Software agents are coupled with the human agents in
the network, forming the basic components in the SANet. Each
software agent is usually associated with a knowledge base or
case base. Software agents have different capabilities in solving
problems because of the difference in the content of the data
bases and case bases associated with them. They are distributed
on a network of computers in a call center.

2) Broker Agent: The broker is responsible for selecting the
appropriate agents to solve incoming problems according to the
availability and capabilities of the agents. It is trained to identify
problem types from problem descriptions and hence can decide
on the type of a given problem automatically. Fig. 2 shows the
architecture of the broker agent. The broker agent also consists

398 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 3, MAY 2003

Fig. 2. Architecture of the broker agent.

of sub-brokers which help divide the problem set according to
problem types. This helps scale-up the problem domain. We will
describe the sub-brokers in more detail in the next several sec-
tions.

To divide the problems to problem types, a set of subbrokers
maintain a table of availability and capabilities of the agents
who can solve the problems of the corresponding type. To avoid
being a bottleneck, the broker can also be split into several du-
plicates that can work in parallel. However, in the experiments
in this paper, we test the architecture with only one broker agent.

3) Manager: To reduce the problem-solving time and get
the higher problem-solving quality for customer’s problems,
sufficient service agents in the network are needed. However,
hiring more service agents will increase the service cost. There-
fore, a balance between cost and efficiency should be main-
tained. For example, if all agents in the network are very busy
and many problems are still coming in, then the management
agent should add more appropriate agents automatically. In con-
trast, if some agents in the network are near-idle, then they
should be temporarily laid off. The manager is responsible for
service agent assignment of this type. It maintains an informa-
tion table for all service agents who can be added to the network.
We discuss our agent-assignment algorithm in Section IV.

4) Formalizer: Problems in a call center environment may
come in many ways, through telephone, fax, letter, email etc.
The formalizer transforms the input problems into a standard
representation—a set of attribute/value pairs. More than one for-
malizer can register with the broker agent. At this point, our
formalizers are associated with the user interfaces (UIs) which
are used by users to input the problems and display the solu-
tions. To get the attribute/value pairs, each attribute is designed
as a question and then the user’s answer becomes the value of
the attribute. For example, the problem type “picture problem”
may be the value of attribute “what’s the problem type?” When
a formalizer receives a problem, a problem package is created,
which includes a problem ID, a problem description, solutions
suggested by agents and their respective quality.

5) Monitor: The monitor watches the working situation of
the network and presents to the human user and the broker in-
formation such as the availability of the service agents, problem
delivery procedure, etc. for the purpose of system management.

III. OVERVIEW OF NETWORK ALGORITHMS

A. System Function and Parameters

We provide an overview of the operation of the SANet system
in this section. The system is implemented in Java using the

Aglet package from IBM [8]. Communication between different
agents is done through KQML [4]. Initially, the broker should
be launched at a certain location. As soon as the broker is cre-
ated, it creates the manager and the monitor agent. Then we can
create service agents and formalizers which can be located any-
where. After a service agent or formalizer is created, it sends out
a registrar to the location of the broker. When the registration of
a service agent is announced by the registrar, the broker will
check the problem types which the service agent can solve, as
well as updating the list of registered service agents. If there is
a new problem type, the broker will create a new subbroker for
this type. Then it sends the service agent ID and the capability
for each problem type to the corresponding subbroker. When the
problems are sent to the broker by the formalizers, the broker
will deliver these problems to the subbrokers according to their
types. The subbrokers then use the scheduling algorithm de-
scribed in the next section to send each problem to the selected
service agent according to the availability and capabilities of the
service agents.

As soon as a service agent receives a problem, it sends a “not
available” message to the broker and then the broker can in-
form both the monitor and the subbroker. When a service agent
is done, the list of suggested agents and the list of the agents
who have worked on the problem are updated. Also, the service
agent updates the quality of solving this type of problem by the
following quality-updating formula:

(1)

where is the average quality of solving the prob-
lems of type before solving the problem is the
average quality after solvingand is the quality of
solving . Essentially, this formula is a running average of the
quality of the agent. In deciding on the new weight after solving
the problem , we allocate a weight ratio of 100 to one for
the historical average over the new quality value . The
choice of 100 as the weight here is determined by the designer
of the SANet network; in general the assignment of the weight
should reflect how drastic a new quality value will change the
running average, and the weight can be tuned by the designer.
Finally, the denominator is used for keeping the re-
sulting quality value in the range of zero to one.

One simple way to decide is

if is solved
if is not solved

(2)

Another way is to ask the user to provide a feedback in the form
of a ranking score on the quality of the solution provided by the
agent.

An important feature of our SANet system is its ability to
continuously update the capabilities and availability of different
agents in real time. After a problem is solved, the solution and
the quality at this time are added to the problem package. Then
the agent sends back the problem and the new quality to the sub-
broker, along with an “available” message to the broker. When a
subbroker receives an availability changing message of a service
agent, it updates its availability table. When a subbroker receives
a problem with a new quality returning from a service agent, it

YANG et al.: SANet: SERVICE-AGENT NETWORK FOR CALL-CENTER SCHEDULING 399

updates its capability table. If the problem was not solved, then
the subbroker delivers it to a different agent. If the problem was
solved, the subbroker sends it back to the broker and then the
broker sends it back to the user through the corresponding for-
malizer.

B. SANet’s Problem Scheduling Algorithm

We now describe SANet’s scheduling method for the
subbroker to deliver problems to agents. We assume that the
type of each problem can be decided based on the result of
problem-type learning (see Section V), whereby each problem
is sent to a corresponding subbroker.

The problems a subbroker may receive can be divided into
three kinds:
New problem A new problem is one delivered from

the broker.
Problem with
solution

A problem with solution is one re-
turned from an agent which solved the
problem.

Problem without
solution

A problem-without-solution is one re-
turned by an agent which did not solve
the problem.

Besides the capability table, the subbroker also maintains a
problem queue. Each problem, which cannot be sent to any
agent at current time will be put into the queue for future de-
livery. To select an agent to solve the problem, we define a ca-
pability function for each problem type.

Thecapability functionfor a problem type is a function that
maps the problem type to a real value in [0, 1]. It is assumed that
the quality value of zero is considered undesirable and a quality
value of one is the most desirable. We would like to relate this
function to both the average quality of the solution provided by
the agent for a problem and the average time it takes to provide
such solutions. Let be an agent under discussion. Let

be the average quality for this agent to solve the problems
of type , and be the average solution time. We
denote the capability of the agent by .

The capability of an agentis proportional to the quality
of solution it provides. In addition, the longer it takes for the
agent to provide a solution, the worse off the agent’s capability.
Depending on the specific problem domain and business case,
different companies may define the delay cost differently. For
example, in a large telephone company, a delay in answering a
customer’s questions may cause the customer to go to another
company. Let be a function of time that maps the time delay
to the quality of solution in interval . should be a
monotonically decreasing function. For example, in our exper-
iments described below, we set , where the 1
is added to in the denominator to prevent a division by zero
problem.

Given the above definitions, the capability of an agent for
problem type is defined as

(3)

In our scheduling algorithm, we assume that we are given
problems, each associated with a problem type .

Fig. 3. Problem scheduling algorithm. We assume that some agents has not
worked onP yet. Otherwise, we sendP to a special human agent.

There are agents . Agents can have over-
lapping capabilities as well that are changing with time. We wish
to assign problems to agents such that the total sum of the
capability values for all agents is maximized.

We adopt a greedy, first-come first-serve algorithm. The basic
idea is to assign problems to the next available agent who can
solve it with the highest quality. The scheduling algorithm is
careful to avoid cycles by assigning an unsolved problem to the
next capable and available agent. The greedy scheduling method
is shown in Fig. 3.

This algorithm is designed to have the following two prop-
erties. First, we can ensure that a problem cannot wait forever
before it is solved by an available agent. This is ensured instep 3
of the algorithm, which commits a problem to an agent. Second,
we claim that this greedy algorithm returns solutions with good
quality and solution time. We verify this point experimentally
in Section VI.

IV. A GENT ASSIGNMENT

To balance between service quality and cost, the agents in the
network need to be adjusted according to the number and type
of problems. We call the adjustmentagent assignment. This in-
cludes adding and deleting some agents. The assignment is per-
formed once in a period of time. Based on the number of in-
coming problems for each type and the agents in the network
one period before, the manager estimates how many agents are
needed in the near future to maintain the balance between ser-
vice quality and cost. Then it adds or deletes appropriate agents
based on the result. This section describes the cost model and
the agent assignment algorithm used by the manager agent.

A. Cost Model

To evaluate the balance between service quality and cost of
the network, we define a benefit function based on the difference
between the reward and expense of using the network to solve
problems. If the benefit is maximized, we have the best balance
between service quality and cost. Our goal in agent assignment
is then to maximize the benefit by adding/deleting appropriate
agents.

400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 3, MAY 2003

TABLE I
AGENT ASSIGNMENTALGORITHM BASED ON LOCAL SEARCH

Fig. 4. Diagram of agent-assignment algorithm.

Let be the set of all problems of typein a problem set
. Thebenefitfor an agent set to solve all problems in

is denoted by and is defined as follows:

(4)

where and are the average reward and
the expected expense for agents into solve all problems in

during a previous period of time, respectively.
We estimate and as follows:

(5)

(6)

where the maximum is taken over all agents and problems. The
final benefit value is a number between plus and minus one.
In these estimations, is the average solution quality
and is the average solution cost per problem of type

using agents in set. is the average solution time.

The parameter , which converts time to cost, deserves some
explanation. This parameter represents the cost to the call-center
if a problem solution is delayed over a period of time. For ex-
ample, suppose that every second a customer’s problem is not
solved from the time the customer enters the queue, the com-
pany loses $10. Thenwill be set to 10. In general, this constant
can be set by the specific call-center company. For example, in a
telecommunications company, the cost of delay is usually quite
high because any delay in solving a customer’s problem may
cost the company the customer altogether.

B. Agent Assignment Algorithm

Using the definitions described above, the agent assignment
algorithm is shown in Table I.

As we can see, this greedy algorithm is based on thelocal
search algorithms. In each iteration, we try to find an agent to
be added to or deleted from the network so that the estimated
benefit has the maximal value. We keep doing this until no such
agent can be found. Fig. 4 shows the diagram of this algorithm.

YANG et al.: SANet: SERVICE-AGENT NETWORK FOR CALL-CENTER SCHEDULING 401

TABLE II
EXAMPLE OF AGENTS.

TABLE III
EXAMPLE OF AGENT ASSIGNMENT

When an agent is added to agent set A, it adds its cost to the
overall cost of the set, but reduces the problem solving time of
the agents that share the same type by a certain amount.

Consider an example where there are six kinds of agents as
shown in Table II. For instance, can solve the problems of
type “no picture” with the initial solving quality 0.8 and the
initial solving time 60 s. The cost of is $200. For agents
and , they can solve the problems of both types “no picture”
and “poor reception.”

Consider a period of time s (1 hour), after which
agent assignment is performed. Let the problemsinclude 100
problems of type “no picture” and ten problems of type “poor
reception.” That means the network received these problems
during the last period of agent assignment (i.e., the last one
hour). Let , which means three agents are in
the network before the assignment. Letbe a set of available
agents which include enough agents of each kind as shown in
Table II. That means the same agents in Table II can be added
to the network more than once.

Before the loop, we set and to empty.
Loop 1: We try to add or delete an agent in and cal-

culate the estimated benefit for each after the
deleting/adding. The results are shown in Table III.

The biggest value for the estimated benefit is 0.23 when add
to . Hence, we have

The rest of the calculation simply repeats until no improve-
ments can be observed. Finally, we get and

for this time of agent assignment. Based on this
result, the manager will delete and from the network, and
add three ’s to the network.

V. MATCHING PROBLEMS WITH SERVICE AGENTS

THROUGH LEARNING

In order to pass a given problem to an appropriate subbroker,
the broker has to decide what type the problem is. We can relay
this task to the outside end users, but this will impose an extra
requirement that an end user have to know the problem typea
priori . This will not only burden the users but also, more impor-
tantly, force a user to choose a problem type when in fact the user
may not know exactly what the problem type is. Furthermore,
the situation is made more complex by the dynamic nature of
the capabilities and availability of the distributed agents. Obvi-
ously, we wish to alleviate such a burden, making automatic the
decision-making process of problem types in the broker agent.

As discussed before, after a problem is input, the formal-
izer will convert it into a standard representation form—a set
of attribute/value pairs. Essentially, the broker will decide the
problem type based on these attribute/value pairs. Therefore,
we can view the relationship between attribute/value pairs and
problem types as that shown in Fig. 2. From the figure, it can
be seen that each problem type is connected to a set of at-
tribute/value pairs. The input attribute/value pairs will map to
a problem type. The mapping is done through a weighted sum
of the attribute-values that are present in a problem description.
However, in real applications, not all attribute/value pairs have
equal importance in this decision-making process. We thus con-
sider assigning different weights to the connections between
attribute/value pairs and problem types. These weights can be
learned through a training phase.

In [16], a learning model is applied to a network which is
very similar to the one shown in Fig. 2. The learning model
is a two-level architecture following a the learning algorithm
that is a variation of the perceptron learning algorithm using a
back-propagation algorithm to adjust the weights [18].

In particular, the training process of a problem type in the
broker can be described as follows. After an input problem is
formalized into a set of attribute/value pairs, these pairs will be
fed into the network shown in Fig. 2. The ranking scores for in-
dividual problem types will be computed. During the training,
an expert critiques whether the highest-ranking problem type is
the correct one. This will, in turn, be taken by the learning policy
to update the relevant weights. In our broker agent, the training
process is offline assisted by domain experts. Our experiments
show that after learning, the broker agent will choose, on behalf
of the user, an appropriate problem type to be sent to the corre-
sponding subbroker.

The learning algorithm can also deal with occasional misclas-
sification of incoming problems. When a problem is misclassi-
fied into a wrong type, it is sent to an agent who has low ca-
pability in solving the problem. The quality of the solution will
be used to complete a feedback loop for retraining the weights.
This will cause the classifier to improve its classification ability
the next time it sees the same or a similar problem during re-
training.

Consider the overall computational complexity of the SANet
system, we note that the training time complexity is mainly
dominated by the training time for the weights of the classifier.
In our subsequent experiments, we show that this cost is around

402 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 3, MAY 2003

3–5 s per training problem in each training round, and it usually
takes around three training rounds for the errors to diminish. In
real-time operations of the system, we also note that the assign-
ment for an incoming problem takes linear time in the number of
problem features. In addition, the assigned agent will solve the
problem using a certain amount of time. If we assume that the
agents use case bases to organize their knowledge bases, and that
the knowledge base is indexed based on the problem features,
then the problem solving time is again linear in the number of
problem features.

VI. EXPERIMENTS

This section describes the experiments we have conducted
and discusses the experimental results. We have done two series
of experiments. One is for testing the performance of SANet’s
agent assignment algorithm, and the other is for testing the
problem-type learning for the broker.

A. Cable-TV Call Center Example

We have applied SANet to a simulated call-center environ-
ment of a local cable-TV company. In this application, a soft-
ware service agent is a case-based reasoning (CBR) system [9]
that can solve customer’s cable-TV problems automatically by
retrieving similar cases in a case base. A live agent is a staff in
the call center with an assistant CBR system. At this point, the
system can solve 16 types of problems. Each problem type has
one to ten cases in one or more case bases. To input a problem,
the user has to answer some questions. The question list is as
follows.

What’s the problem type?
Which channels have the problems?
Is the account an active cable account?
Is the problem affecting more than 1 outlet?
What does the picture on the screen look like?
Is the customer in an affected area?

These questions are optional to answer. If the user answered
question 1, which means the user knows the problem type, then
the broker just passes this problem to the corresponding sub-
broker. Otherwise, the broker has to decide the problem type.
In other words, the user has two choices—let the problem type
be decided by himself or the broker. For instance, the user may
have answered questions 1, 2, and 3. Then the formalizer creates
a problem package such as the following.

The set of q/a pairs is as follows

If the problem is sent to a live agent, the solution part may
be filled by a staff who solved this problem. If it is routed to a
CBR agent, a CBR system will then solve this problem and the

TABLE IV
SETTINGS OFAGENTS FOR ASUBSET OFPROBLEM-TYPE SETK

solution part is filled by the most similar case in the case base.
In this case, when the problem returns to the user, the solution
part looks like the following.

Also, the agent/time list will be filled. This list provides all
agents who have worked on this problem and the corresponding
problem-solving time. The quality of solution can then be pro-
vided by the end customer based on his or her satisfaction with
the solution. This feedback value is used to update the capa-
bility function for each agent. According to the solution quality,
the end customer can also provide an evaluation value of the
problem-type decision to the broker to adjust the learning result
of the problem types.

This application system was developed for simulation by
using the Java JDK 1.1.6 and ASDK V 1.0.3 (IBM’s aglets
software development kit) on an P200 NT Server.

B. Experiments for the Performance of SANet

We have conducted experiments to verify the performance of
SANet’s agent-assignment algorithm. Our expectation is that
using the agent-assignment algorithm will keep the benefit of
the network much higher than not using the algorithm (which
corresponds to a static network of agents). This expectation is
tested through a comparison of the network performance under
the two situations. The application domain of the experiment is
the call center of a cable-TV company, as described above.

In our experiment, we have a set of three problem types
. For each

subset is not empty, we have four kinds of CBR
agents who can solve the problems of the types in. Table IV
shows the solving time, quality and costs associated with the
four types of CBR agent.

Because the number of subset is 6, we have
kinds of agents that are possible to be added to the network.
We assume that there are enough agents for each kind at our
disposal, and study the effect of assigning or removing them
to and from the network. For every kind of agent, we choose
one agent from , and respectively to initialize SANet.
Then there are problem-solving agents on SANet at
the beginning. The time interval of agent assignment, which is

YANG et al.: SANet: SERVICE-AGENT NETWORK FOR CALL-CENTER SCHEDULING 403

Fig. 5. Experiment 1— Incoming problem patterns.

denoted by , is set to one hour, i.e., the agent assignment is
done once every one hour.

1) Experiment 1:During each , the total number of ran-
domly created problems for each problem-type is based on the
following incoming problem pattern:

where denotes theth agent assignment.
and for problem-type 1, 2, 3, respectively. The
sending pattern determines the number and type of incoming
problems to the call center, as a function of time. In the cable-TV
call-center domain, this assumption on the incoming problem
pattern is reasonable because the problems usually arrive in a
nonuniform way. The number of incoming problems is a func-
tion of time. For example, during a sporting event, there are usu-
ally a larger number of calls regarding how to tape a certain
sports channel using the VCR. Likewise, when a certain region
experiences an outage, a larger number of calls will pour in in a
big wave.

Fig. 5 shows the graph of incoming problem patterns for each
type. Those problems are divided into parts on average and sent
to SANet every five min during the period fromth to th
agent assignment. For example, during the period from the first
to the second periods, the number of problems for the type 1, 2,
and 3 are 150, 25, and 12, respectively.

For each problem, we calculate the problem solution time
which begins at the time it is sent to SANet and ends at with
the time when it is returned with the solution. When a problem
is solved, we get the quality of the agent which solved this
problem. For each problem-type, we calculate the average
problem solution time and the average quality
of all problems during each . Then we calculate the value of
the benefit function . The experiment was done twice
with the same setting and incoming problem patterns to com-
pare agent assignment with no agent assignment. Fig. 6 shows
the result.

We can see that the value of the benefit function increases
in situations where there is agent assignment as compared to
no agent assignment. The statistical mean for the differences
between agent assignment and no agent assignment is 0.13, with
a 95% confidence, the p-value is 0.039.

Note that the agent assignment is based on the information
gathered exactly one time-period before the current period, and

Fig. 6. Experiment 1—Benefit values.

Fig. 7. Experiment 1—Degree of stability.

the number of problems during the next period is always dif-
ferent from the past with our incoming problem patterns. Hence,
the result of our agent assignment may provide the best estimate
for the current situation and the benefit we get varies depends on
how different the incoming problem patterns are. This variation
is also clear from the test results.

To make this concept clear, we define and calculate thedegree
of stability for the problems from the current agent-assignment
period to the next one. Let be the number of problems with
type during the th agent-assignment period. Let be the
degree of stability for the problems with typefrom the th
to the th agent-assignment period. We define

For example, the number of problems for type 2 during the
second and the third agent-assignment period are 75 and 100, re-
spectively. Let be the type 2, we get

.
The degree of stability for the all problems from the
th to the th agent-assignment period is denoted byand is

defined as the average degree of stability for all problem types
during these two periods.

From the incoming problem patterns, we calculatefor each
. Fig. 7 shows the result.

Higher stability means that between the two adjacent
agent-assignment periods, the difference is small. Higher

404 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 3, MAY 2003

Fig. 8. Experiment 2—Incoming problem patterns.

Fig. 9. Experiment 2—Degree of stability.

Fig. 10. Experiment 2—Benefit values.

stability implies a better benefit result. We can see this clearly
by comparing Fig. 7 to Fig. 6.

2) Experiment 2: In Experiment 2, we shorten the length of
time periods and perform more sampling. This is expected to
increase the stability of the network and provide higher benefit
due to more accurate estimate of the incoming problem types
and size.

The incoming problem pattern is shown as follows:

number of problems

Where denotes theth agent assignment.
and for problem-type 1, 2, 3, respectively.

Fig. 8 shows the graph of incoming problem patterns for each
type.

Fig. 9 shows the stability. We can see that these rates are
greater than that in Experiment 1.

Except the incoming problem pattern, the other settings in
Experiment 2 are the same as in Experiment 1.

Fig. 10 shows the benefits for both agent assignment and no
agent assignment.

Fig. 11. Error convergence chart for 100 queries.

The statistical mean for the difference between agent assign-
ment and no agent assignment is 0.27, with a 95% confidence,
the p-value is 0.035. The t-test value is , implying
a large difference between the two populations shown in the
figure. Comparing to Experiment 1, it is clear that the benefits
are higher with the increasing degree of stability.

However, the benefits vary with time. There are at least two
reasons for this. First, when making agent assignment, we are
only performing local search. Thus, the agent set we get from
agent assignment may not be the best one. Second, our agent
assignment is based on the estimated benefit and hence there is
a difference between the real benefit and the estimated one.

C. Experiment for the Problem-Type Learning

We introduced a learning model into our broker agent with
the intention that it would automatically choose the most appro-
priate problem type on behalf of the user. In the following we
demonstrate our experiments with the learning model.

The learning process is offline and mainly occurs in the
broker agent. We create 20 problem types with each type being
associated maximally with 20 attributes. In the experiment, on
average each attribute can have two to five values. Accordingly,
we also create a set of 100 user queries or problems represented
by attribute/value pairs. The ranking of a problem type is
between 0.0 and 1.0.

We feed these queries one by one into the learning model in
the broker agent. The learning model then computes the rank-
ings for the problem types and compares them with the desired
ones specified by the queries. If there is a discrepancy between
the computed ranking and desired ranking of a problem type,
the learning process will be triggered and the corresponding
weights will be updated. In the experiment, the learning process
takes five rounds. Therefore, there is a total of 500 sample data
points.

In Fig. 11, we show the error convergence chart for all the 100
queries after five learning rounds, where the X-axis represents
the learning process that is composed of 500 learning data points
while the Y-axis represents the error which is defined as the
absolute distance between the computed ranking and desired
ranking of a problem type in individual queries.

As can be seen from the figure, after five learning rounds,
most of the queries have an error of the problem type falling
within an acceptable range. In the experiment, we set this range
to be 0.02 (which is the difference between desired and actual

YANG et al.: SANet: SERVICE-AGENT NETWORK FOR CALL-CENTER SCHEDULING 405

Fig. 12. Average error convergence chart.

Fig. 13. Average running time for each learning round.

rankings, where the rankings are within zero and one range).
However, we also observe that, due to the interactions among
different queries, some problem types in the queries oscillate in
their desired rankings, forming periodic waves, as shown in the
figure.

In order to better understand Fig. 11, in Fig. 12, we plot the
average error of problem types in individual queries, after the
system is trained with 100 sample problems. In the figure, the
two axes have the same meaning as before. However, the error
is now averaged among the 100 problem types in all the queries
after each learning data point is learned. There is still a total of
500 learning points along the X-axis. It can be seen that along
the learning process, the average error for all the problem types
tends to zero and will be stabilized at learning rounds 4 and
5. We also see that because of the interactions among different
queries, the learning error could not be zero no matter how long
the learning process undertakes.

We plot in Fig. 13 the average running time for each learning
round. The X-axis represents the learning process while the
Y-axis represents the average running time in CPU s for
individual learning data points in a learning round. As shown in
the figure, the running time decreases along with the learning
process. This can be better explained that the more the learning
model learns, the smaller the average error will be and the
shorter the learning time it will take.

After learning the model has reached its optimal state, i.e.,
it satisfies almost all the queries. If the capabilities and avail-
ability of the distributed agents change, the queries should be
changed accordingly. Therefore, the optimal state will be de-
stroyed; another learning will be necessarily triggered to cap-

ture these changes. Therefore, every time when given an input
problem, the learning model in the broker will try to select the
most suitable problem type and send it to the corresponding sub-
broker.

VII. RELATED WORK

Several research areas are related to ours in the SANet frame-
work. First, our work is closely related to the scheduling prob-
lems in artificial intelligence (AI) and operations research (OR)
literature. In the past, scheduling has been widely studied by re-
searchers from both AI [3], [7], [11], [14], [17] , and OR [6]. In
OR, the resource assignment problem has been studied in depth.
A typical example is the transportation problem, where given

sources, destinations and demand, supply as well as cost
functions, the goal is to find an optimal assignment of sources
to destinations such that the total cost function is minimized.
Solutions to this problem and its variations can be found in the
OR literature; for example, see [5] and [6, ch. 7]. Compared
with the problem studied in the SANet framework, we observe
that the transportation problem assumes that all inputs are given.
The sources and destinations are both well mapped out. How-
ever, in SANet, there is a problem of “guessing” which problem
type an incoming problem should belong to, a problem that is
addressed by classification methods in machine learning. In ad-
dition, in SANet, the parameters such as capability of agents and
agent costs are adaptively acquired as opposed to being given as
part of the input. Finally, in the transportation problem, there is
a fixed number of sources and destinations, whereas in SANet,
the number is dynamically changing. In the latter the broker has
to intelligently make its decisions in real time. Despite these
differences, there is also a lot in common between the problems
studied in OR and in SANet. In particular, SANet can employ
the optimization techniques to solve the agent-assignment prob-
lems optimally. In fact, similar to some OR literature for dynam-
ically changing problems [13], the solution adopted in SANet is
a local-search method. This method has the advantage of being
able to cope with dynamically expanding nodes in the search
tree.

Another related work is multiagent research. In this field,
Wellman [15] proposed a quantitative market model for a well-
defined class of distributed configuration design problems. The
model defines a computational economy to allocate basic re-
sources to agents participating in the design. This idea is similar
to our definition of the benefit function to maintain a balance be-
tween the service quality and cost. However, Wellman’s method
assumes that the agents participating in the design are fixed and
try to get a optimal design result by allocating basic resources
to the agents. In contrast, our method assumes that agents in the
network are not fixed and try to get a optimal solving result by
adding/deleting appropriate agents.

The broker in SANet is closely related toinformation broker
research. The basic idea of an information broker is to gather in-
formation and find solutions from heterogeneous resources on
a network of resources. An example of information-gathering
agent systems is the BIG system [10], which integrates many
AI techniques in one system in a scalable manner. Many infor-
mation-gathering systems employ brokers as their central com-

406 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 3, MAY 2003

ponents. For example, brokers are used in InfoSleuth [12] and
SIMS [1], [2]. These systems take a user query and translate
it into subqueries that can be executed by various information
agents attached to information sources. Most of these systems
mainly focus on the integration of different knowledge repre-
sentations. Therefore, they do not focus on the scheduling prob-
lems, at least for now, as their main features. In our application
domain, the agent-scheduling issue is critical because a good so-
lution can ensure that a call center provides high quality service
with low service cost.

VIII. C ONCLUSION AND FUTURE WORK

This paper described SANet—a service agent network for
call-center scheduling which is capable of providing services to
customers by selecting the most appropriate agents according to
the availability and capabilities of the agents in the network, as
well as environmental conditions. Our main contribution is an
agent-assignment algorithm that allows agents to be added and
deleted on demand in real time, based on the tradeoff between
quality and cost. Our scheduling algorithm takes into account
the agent availability, capability and cost when assigning prob-
lems to agents. The mapping between problems and agents can
be learned through classification training.

The system is fully developed as a Java-based simulation
system for call-center design. Currently we are engaged in re-
search collaborations with a local cable-TV company to put the
system on field trial.

In the future, we plan to incorporate other efficient
task-scheduling methods and compare with our own. We also
plan to study how to decompose a large problem into smaller
sub-problems and then integrate the solutions that are returned
by agents.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
comments.

REFERENCES

[1] Y. Arens, C. Y. Chee, C.-N. Hsu, and C. A. Knoblock, “Retrieving and
integrating data from multiple information sources,”Int. J. Intell. Coop.
Inform. Syst., vol. 2, no. 2, pp. 127–158, 1993.

[2] Y. Arens, C. A. Knoblock, and C.-N. Hsu, “Query processing in the
sims information mediator,” inAdvanced Planning Technology, A. Tate,
Ed. Menlo Park, CA: AAAI, 1996.

[3] J. Dey, J. Kurose, and D. Towsley, “On-line processor scheduling for a
class of iris real-time tasks,”IEEE Trans. Comput., vol. 45, no. 7, July
1996.

[4] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communication
language,” inSoftware Agents, J. Bradshaw, Ed. Cambridge, MA: MIT
Press, 1997.

[5] G. N. Frederickson, “A note on the complexity of a simple transportation
problem,”SIAM J. Comput., vol. 22, no. 1, pp. 57–61, 1993.

[6] F. S. Hiller and G. J. Lieberman,Introduction to Operations Re-
search. New York: McGraw-Hill, 1990.

[7] J. Jonsson and J. Vasell, “Evaluation and Comparison of Task Alloca-
tion and Scheduling Methods for Distributed Real-Time Systems,” Dept.
Comput. Eng., Comput. Arch. Lab. (CAL), MicroMultiProcessor Group
(MMP), 1996. Tech. Rep., CTH.

[8] D. B. Lange and M. Oshima,Programming and Deploying Java Mobile
Agents with Aglets. Reading, MA: Addison-Wesley, 1998.

[9] D. B. Leake, “Cbr in context: The present and future,” inCase-Based
Reasoning, Experiences, Lessons & Future Directions, D. B. Leake,
Ed. Menlo Park, CA: AAAI, 1996, pp. 1–30.

[10] V. R. Lesser, B. Horling, F. Klassner, A. Raja, T. A. Wagner, and S. X.
Zhang, “Big: A resource-bounded information gathering agent,” inProc.
15th National Conf. Artificial Intelligence, Jan. 1998.

[11] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Solving large
scale constraint satisfaction and scheduling problems using a heuristic
repair method,” inProc. 8th Nat. Conf. Artificial Intelligence, MA, 1990,
pp. 17–24.

[12] M. Nodine, B. Perry, and A. Unruh, “Experience with the infosleuth
agent architecture,” inProc. Workshop Software Tools Developing
Agents, 1998.

[13] O. Martin, S. W. Otto, and E. W. Felten, “Large-step Markov chains for
the TSP incorporating local search heuristics,”Oper. Res. Lett., vol. 11,
pp. 219–224, 1992.

[14] P. Sparaggis and D. Towsley, “Optimal routing and scheduling of cus-
tomers with deadlines,”Prob. Eng. Inform. Sci., vol. 8, no. 1, Jan. 1994.

[15] M. P. Wellman, “A computational market model for distributed config-
uration design,” inReading in Agents, M. N. Huhns and M. P. Singh,
Eds. San Francisco, CA: Morgan Kaufmann, 1998, ch. 4.

[16] Z. Zhang and Q. Yang, “Toward lifetime maintenance of case based
indexes for continual case based reasoning,” inArtificial Intelligence:
Methodology, Systems, and Applications. 8th International Conference,
AIMSA’98. Sozopol, Bulgaria, September 1998. Proceeedings, Lecture
Notes in Artificial Intelligence, F. Giunchiglia, Ed. New York:
Springer, 1998, vol. 1480, pp. 489–500.

[17] Y. C. Zhuang, C. K. Shieh, and T. Y. Liang, “Centralized load balance on
distributed shared memory systems,” inProc. 4rth Workshop Compiler
Techniques High-Performance Computing, Mar. 1998, pp. 166–174.

[18] J. M. Zurada,Introduction to Artificial Neural Systems. St. Paul, MN:
West, 1992.

Qiang Yang (M’03) received the Ph.D. degree from University of Maryland,
College Park, in 1989.

He is Associate Professor, Department of Computer Science, Hong Kong
University of Science and Technology, Hong Kong. His research interests are
planning, case based reasoning, and data mining. He had been a Faculty Member
at University of Waterloo, Waterloo, ON, Canada, and Simon Fraser University,
Burnaby, BC, Canada.

Yong Wangreceived the B.Sc. degree in mathematics from Hunan Normal Uni-
versity, China, the M.Sc. and Ph.D. degrees in electrical and computer engi-
neering from Nagoya Institute of Technology, Nayoya, Japan, in 1983, 1995,
and 1998, repectively.

He worked as a Postdoctoral Researcher at Simon Fraser University,
Burnaby, BC, Canada, from August 1998 to July 1999. His research interests
include case-based reasoning, genetic algorithms, planning and information
agent. Since 1999, he has worked for several software companies and is
currently a software consultant.

Zhong Zhang received the M.Sc. degree in artificial intelligence from the
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada,
in 1988. He is currently pursuing the Ph.D. degree at the same university.

Mr. Zhang’s research interests include artificial intelligence, data mining, and
computational geometry. He has published papers in several international con-
ferences and journals.

