SANET:

A Toolbox for Spatial Analysis on a Network

Version 3.4.1-052009

Atsuyuki Okabe, Kei-ichi Okunuki and Shino Shiode

Center for Spatial Information Science
University of Tokyo

PREFACE

This manual describes how to use SANET: a toolbox for spatial analysis on a network. SANET is part of the results obtained from the six year (1998-2003) project entitled "Spatial Information Science for Human and Social Sciences" funded by the Grant-In-Aid for Special Field Studies B provided by the Ministry of Education and Science, Japan. The leader is A. Okabe. SANET is developed by A. Okabe, K. Okunuki and S. Shiode with Mathematical Systems Inc.

ACKNOWLEDGEMENTS

We express our thanks to Mathematical Systems Inc, in particular, C. Mizuta, K. Okano, M. Saito and T. Ishitomi, for developing computer programs.

NOTICE

The authors distribute SANET only to those who agree on the following points.

1. The user will use SANET for nonprofit purposes only.
2. The authors will not bear responsibility for any trouble that the user may meet in the use of SANET.
3. When the user uses SANET, he/she will report to the authors his/her name, affiliation, address and e-mail address.
4. When the user publishes any results obtained by using SANET, he/she will explicitly state in the paper that he/she used SANET. Also, he/she will send a reprint of the paper to the authors.
5. The user will report to the authors any trouble he/she meets in the use of SANET. (The authors will remove bugs, if any, at their earliest convenience.)

The address of the authors is:

Atsuyuki OKABE
Center for Spatial Information Science c/o Department of Urban Engineering, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
atsu@csis..u-tokyo.ac.jp

TABLE OF CONTENS

1. System and data format requirements 0
2. Installation and uninstallation of SANET 0
3. General notes on SANET tools 1
4. Instructions on how to use SANET 2
4.1 Preprocessing tools 2
4.1.1 Clean polyline shapes 2
4.1.2 Continuous graph 3
4.1.3 Create network index file from a polyline shapefile 4
4.1.4 Insert points to a network 7
4.2 Analytical tools 11
4.2.1 Network Voronoi diagram 11
4.2.2 Huff model 15
4.2.3 Nearest neighbor distance method 20
4.2.4 Conditional nearest neighbor distance method 23
4.2.5 K Function method 26
4.2.6 Cross K function method 29
4.2.7 Interpolation 32
4.2.8 Clumping method 34
4.2.9 M Function method 37
4.3 Other independent tools 39
4.3.1 Random point 39
4.3.2 Polygon centroid 40
4.3.3 Grid 40
4.3.4 Distribute point data to polylines 41
4.3.5 Table arrangement. 44
4.3.6 Create network index file from adjacent node table 45
4.3.7 Edit network index file. 45
5. References 47

1. System and data format requirements

System requirement

OS: MS Windows NT, 2000, XP, Vista
ESRI ArcGIS: Ver.8.x, Ver.9.x

Data format requirement

ESRI shapefiles

2. Installation and uninstallation of SANET

Installation

1. Save SANET3.zip on your computer.
2. Unzip SANET3.zip, then you will find the following five files:

SANET_tools.dll
SANET_AG_8.dll
SANET_AG_9.dll
Uinstall_AG_8.bat
Uinstall_AG_9.bat
3. Place SANET_tools.dll under arcgis¥Bin folder.
4. Place the other files under any folder.
5. Launch ArcMap*.
(*If you are a Windows Vista user, launch ArcMap with run as administrator option. This applies to the first time only. Once SANET component has been registered in your computer, there is no need to use this option.)
6. In the ArcMap menu bar, select "Tools" and proceed to "Customize".
7. Click on "Add from file..." button in "Toolbars" tag, to locate SANET_AG_8.dll or SANET_AG_9.dll**.
(**If you are an ArcGIS Ver. 8 user, load SANET_AG_8.dll.)
(**If you are an ArcGIS Ver. 9 user, load SANET_AG_9.dll.)
8. Double click on it, then you will find "SANET" check box in "Toolbars" menu.
9. Check it, then the SANET menu bar below will appear.

10. Drag and drop it in your menu bar or view button bar on the ArcMap project window.

Uninstallation

If you are ArcGIS Ver. 8 user, click Uinstall_AG_8.bat.
If you are ArcGIS Ver. 9 user, click Uinstall_AG_9.bat.

3. General notes on SANET tools

SANET consists of twenty tools, each of which belongs to one of three groups, ShapeEditor, NetworkIndex, and Analysis, divided by their function.

Analytical tools in "Analysis" group should be executed after applying some preprocessing tools.
When you are going to apply one tool, be sure to apply all the tools located upstream in the illustration below.

Preprocessing and analytical tools

Other independent tools

[^0]
4. Instructions on how to use SANET

4.1 Preprocessing tools

4.1.1 Clean polyline shapes

Polyline shapefiles introduced in SANET have to be free of intermediate or pseudo points.
This tool cuts a polyline into individual line segments or links. Each of them consists of a line and two end points.

(a) A polyline

(b) Individual links

Inputs

1. Add the polyline shapefile on the project window.
2. Select "Clean Polyline Shapes" in ShapeEditor menu.

3. Fill in the dialogue box.
(1) Select the polyline shapefile in the drop down list.
(2) All the attribute fields in the polyline shapefile are listed in this box. If you want to get values in the attribute field(s) to be split proportional to link lengths, select them.

Output

A polyline shapefile named "polyline shapefile _d" will be created in the folder where the input shapefile is located.

Although the entire attribute field(s) in the original network polyline will be attached to the output network polyline, fields you did not select at step (2) will be transferred with no change in values.
In case that a file with the same filename already exists, the newly created file will be saved with a different filename, such as <nework polyline shapefile_d1>, <nework polyline shapefile_d2>.

4.1.2 Continuous graph

Since network polylines in one shapefile should be connected to each other in SANET, all the isolated polylines have to be eliminated before proceeding to the next step.
This tool checks up the connectivity of the network and extract the continuous network.

Inputs

1. Add the polyline shapefile on the project window.
2. Select "Continuous Graph" in ShapeEditor menu.
3. Click and activate a link which belongs to the network that you want to extract.

4. Select the polyline shapefile in the drop down menu.

Note: As a sample dataset, we here use network polyline shapefile named "ROAD_d" consisting of 1367 links and 33km of total length.

Output

A network polyline shapefile of the continuous graph will be created (filename: network index file name _prt).

4.1.3 Create network index file from a polyline shapefile

This tool converts a polyline shapefile into a dataset which consists of the following three files to identify the link-node connectivity.
(1) Polyline point shapefile

A point shapefile created by extracting the entire points that consist a polyline shapefile, which we call "polyline points". The attribute table of the polyline point shapefile has a field with pointer values pointing the record number of the adjacent node table.
(2) Adjacent node table

A DBF format table with the fields of the adjacent node ID, the link length and any other attributes field(s).
(3) Network index file

A text file which holds the filenames of (i) the input network polyline shapefile, (ii) the output polyline point shapefile and (iii) the output adjacent node table.

Polyline parts and polyline points

Attribute table of polyline point shapefile

Inputs

1. Add the polyline shapefile on the project window.

Network polyline shapefile "ROAD_d
2. Select "Create Network Index File from Polyline Shapes" in NetworkIndex menu.
3. Fill in the dialogue box.
(1) Select the polyline shapefile in the drop down menu.
(2) If you want to transfer the attribute field(s) in the network polyline to the adjacent node table, select them.
(3) Specify the filename and the location of the output network index file by clicking \qquad button.
(1)

Outputs

(1) Polyline point shapefile (filename: network index file name).

A point shapefile which consists of the entire polyline points will be created.

Attribute fields of the polyline point shapefile.

FID	Record number.
NodeID	ID number of the polyline point.
head	Pointer to the record number of the adjacent node table, which is stored in the field "OID".
X	X Coordinate.
Y	Y Coordinate.

(2) Adjacent node table (filename: network index file name _atbl.dbf).

OID	Record number.
AdjPoint	ID number of the adjacent node.
Length	Link length between two polyline points, one of which is in the attribute table of the polyline point shapefile and the other is in the adjacent node table.
direc	Direction of the link. 1: forward, -1: backward.
Attribute field(s) selected at step (2).	

Note: We will omit fields "FID" and "OID" for the subsequent text, as they always hold the record numbers.

Note: If the field "LENGTH" and/or "ADJPOINT" existed in the fields you selected at step (2), they will be saved in a different name such as "LENG_1" and "ADJ_1" respectively.

Shapefile "N_Index"
Adjacent node table "N_Index_atbl.dbf"
(3) Network index file (filename: network Index file name .nidx).

4.1.4 Insert points to a network

This tool assigns a point which is not on a network (we call it "an original point") to the nearest point on a network (we call it "an access point").
Applying this tool, polylines are cut at the access points and access points become new polyline points.

Inputs

1. Add the following shapefiles on the project window.
(1) Network polyline shapefile.
(2) Original point shapefile.
2. Select "Insert Points to Network" in NetworkIndex menu.

Polyline shapefile "ROAD_d" and point shapefile "BANK_STORE"
3. Fill in the dialogue box.
(1) Specify the network index file outputted in the previous tool.

Note: By clicking \square icon, you can see the contents of the network index file.
(2) If you want to get values in the attribute field(s) of the polyline to be split proportional to link lengths, select them.
(3) If you want to get values in the attribute field(s) of the adjacent node table to be split proportional to link lengths, select them.
(4) Select the original point shapefile in the drop down menu.
(5) Select the field of the ID number in the original point shapefile.

Note: The ID number will be reflected in "point access table" (see output files in detail) for the correspondence between the original points and the new polyline points.
(6) Specify a new field name for the identification of the access points (The filename should be less than ten characters).
(7) Specify the filename of the network index file.
(8) Specify the filename of the point reference index file.

Outputs

(1) Network polyline shapefile (file name: Network Index file).

All the attribute field(s) in the original polyline shapefile will be attached to the output polyline. Fields you did not select at step (2) will be transferred without any change in values. Field "direc" with the link direction will also be added.
(2) Polyline point shapefile (file name: Network Index file _v).

Point shapefile consisting of the existing polyline points and the access points.

NodeID	ID number of the polyline point.
X	X coordinate.
Y	Y coordinate.
head	Pointer to "the adjacent node table".
rhead	Pointer to "the point reference table".
Number	Number of the assigned original points.
$\mathbf{(6)}$	$1:$ inserted point, $0:$ existing point.

(3) Point access table (file name: $\underline{\text { Point Reference Index file _r.dbf). }}$

File showing the ID correspondence between the original points and the new polyline points.

PointID	ID numbers of the original points stored in the field you selected at step (5).
NodeID	Corresponding polyline point ID in the new polyline point shapefile.

(4) Adjacent node table (filename: network index file .atbl.dbf).

AdjPoint	ID number of the adjacent node.
Length	Link length between two polyline points, one of which is in the attribute table of the polyline point shapefile and the other is in the adjacent node table.
direc	Direction of the link.
	All the attribute fields in the input adjacent node table. Values in the field(s) you selected at step (3) are split proportional to the link length.

Note: If fields "AdjPoint", "Length" or "direc" existed in the field you selected at step (3), they will be saved with the names of "AdjP_1", "leng_1" and "dire_1" respectively. Similarly, if a field "LENG_1" and/or "ADJP_1" were in the fields you selected, they will be saved with the names of "LENG_2" and "ADJP_2" respectively. Since values in those fields are updated in fields "Length" and "Adjpoint" in the new adjacent node table, you do not need to care about values in "LENG_1", "LENG_2", "ADLP_1", "ADJP_2".
(5) Point reference table (filename: point reference index file_ref.dbf).

PointID	Point ID of the original point.
InsDirec	Direction where a point was inserted (1: from the left of the link, 2: from the right, $0:$ on the link).

Original points and access points

Polyline shapefile "PointON" and polyline point shapefile "PointON _v"

As is shown in the figures above, the original point with ID number of 1 has become the new polyline point 1196, which is indicated in the field "NodeID". In the attribute table of polyline point shapefile, polyline point 1196 is pointing the record number 2734 of the adjacent node table, which shows the polyline point 1196 is adjacent to two polyline points, 216 and 240. Polyline point 1196 is also pointing the record number 6 of the point reference table, which shows this point corresponds to the original point with ID number of 1 as shown in the field "PointID".
(6) Network index file (filename: network Index file name .nidx).

兰 PointON.nidx - WordPad			\square
File Edit View Insert Format Help			
pointon.shp pointon_v.shp pointon_atbl.dbf			
For Help, press F1			

(7) Point reference index table (filename: point reference index file .pidx).

A text file with information on the input and the output data set.

芽 Ref_PointON.pidx - WordPad \square	
File Edit View Insert Format Help	
```\|"PFN", "bank_store.shp" "PNT", "pointon.nidx" "PRT","ref_pointon_ref.dbf" "PID", "BA_ST_ID" "RID", "Point \(\overline{I D}\) " "RHD","rhead" "NPV", "New_P" "NPN", "Number"```	
For Help, press F1	

### 4.2 Analytical tools

As all the point features used in each analytical tool have to be on the network, "Insert points to a network" tool should be applied before executing each analytical tool.

### 4.2.1 Network Voronoi diagram

This tool constructs a Voronoi diagram on a network based on a set of points denoted by "generator points" or "generators".

## Inputs

1. Select "Network Voronoi Diagram" in Analysis menu.
2. Fill in the dialogue box.
(1) Specify the network index file.
(2) Select the reference index file.

Note: (1) and (2) has been created as the output of "Insert points to a network" tool.


Network shapefile "ROAD_d" and the generator point shapefile "STORE"
(3) Distance from a generator point to a location on the network can be measured by the physical link length or any other weight (ex. time distance, any kind of cost). Click "Distance" and choose one. If you checked "by values in an attribute field", select an attribute field in the drop down menu.
(4) Specify the filename of the output network index file.
(1)



## Outputs

(1) Polyline point shapefile (filename: Network Index file _v).

NodeID	Point ID.
head	Pointer to the record number of "the adjacent node table".


ghead	Pointer to the record number of＂the nearest path table＂．
gghead	Pointer to the record number of＂the generator point table＂．$-1:$ Pointer to nowhere．
$x$	X coordinate．
$y$	Y coordinate．
C＿Point	$1:$ collision point， $0:$ other point．
BoundPoint	$1:$ boundary point， $0:$ other point．

Note：Collision points and boundary points are added in this file．A collision point is a point which has multiple different routes of the same values of the shortest path distances toward one generator point．Boundary point is a point which has the same values of the shortest path distances to multiple generator points．

囲 Attributes of VORO＿v											
	FID	Shape	NodeID	X	Y	head	ghead	gghead	C＿Point	BoundPoint	$\wedge$
－	0	Point	1	－12366．674805	－37769．699219	0	0	－1	0	0	
	1	Point	2	－12331．625	－37739．175781	3	1	－1	0	0	
	2	Point	3	－12511．349609	－ 37730	4	2	－1	0	0	
	3	Point	4	－12500	－37733．449219	5	3	－1	0	0	
	4	Point	5	－11340．424805	－37761．925781	7	4	－1	0	0	
	5	Point	6	－11330．200195	－37770．699219	9	5	－1	0	0	
		Point	7	－12283．25	－37771．648438	12	6	－1	0	0	
	7	Point	8	－12266	－37753．125	16	7	－1	0	0	
	8	Point	9	－12323．125	－37732．175781	18	8	－1	0	0	
－	9	Point	10	－11580．799805	－37780．75	19	9	－1	0	0	

（2）Network polyline shapefile（filename：network index file）．

NN＿Gene	ID numbers of the nearest generator point．
direc	Direction of the link．
rate	The ratio of the output polyline part length to the original polyline part length．
PartID	ID number of the input polyline．


围 Attributes of VORO							
	FID	Shape	rate	PartID	direc	NN＿Gene	人
－	0	Polyline	1	0	1	1203	
	1	Polyline	1	1	1	1203	
	2	Polyline	1	2	1	1203	
	3	Polyline	1	3	1	1203	
	4	Polyline	0.540345	4	1	1208	
	5	Polyline	0.883027	5	1	1208	
	6	Polyline	0.206097	6	1	1208	
	7	Polyline	0.855073	7	1	1208	
	8	Polyline	0.095302	8	1	1203	

Network polyline shapefile

You can display the polylines in different colors in terms of the nearest generator point．Double click the polyline shapefile in the table of contents，and＂Layer Properties＂box will appear．Click＂Symbology＂tab and double click＂Categories＂in the＂Show＂box．Select＂NN＿Gene＂in the＂Value Field＂dropdown menu．Click＂Add All Values＂，and then click＂Apply＂．


Colored polylines in terms of the nearest generator point
(3) Adjacent node table (filename: network index file .atbl.dbf).

AdjPoint	Adjacent polyline point ID.
Length	Link length.
direc	Direction of the link.
rate	The ratio of the output polyline part length to the original polyline part length.
PartID	ID number of the input polyline.

The figure below illustrates that the polyline point 1 is pointing the record number 0 of the adjacent node table, which indicates three polyline points 2,4 and 50 are adjacent to the polyline point 1 .


Attribute table of polyline point shapefile "VORO_v"
Adjacent node table "VORO.atbl.dbf"
(4) Nearest path table (filename: $\underline{\text { network index file } \quad \text { p.dbf). }}$

NN_Gene	ID number of the nearest generator point.
PathDist	Shortest path distance to the nearest generator point.
PreNode	Predecessor polyline point ID on the way to the nearest generator point.


䁾 Attributes of VORO＿v									䀟 Attributes of VORO＿p				$\square \square$	X
	FID	Shape	NodelD	X	Y	head	ghead	ggh			NM，Gene			
$\square$	0	Point	1	－12366．674805	－37769．699219	0	0				AnNGene	at	renlode－	
	1	Point	2	－12331．625	－37739．175781	3	1			0	1203	419.342010	50	
	2	Point	3	－12511．349609	－37730	4	2			1	1203	465.819000	1	
	3	Point	4	－12500	－37733．449219	5	3			2	1203	569.369019	4	
	4	Point	5	－11340．424805	－37761．925781	7	4			3	1203	557.507019	1	
	5	Point	6	－11330．200195	－37770．699219	9	5			4	1208	291.463989	1517	
	6	Point	7	－12283．25	－37771．648438	12	6			5	1208	277.990997	2264	
	7	Point	8	－12266	－37753．125	16	7			6	1203	315.252991	1851	
	8	Point	9	－12323．125	－37732．175781	18	8			7	1203	294.765991	2301	
	9	Point	10	－11580．799805	－37780．75	19	9			8	1203	371.360992	7	
	10	Point	11	－11565．375	－37770．601563	22	10			9	1210	198.154999	132	
	11	Point	12	－11562．125	－37762．101563	24	11			10	1210	215 rinnm	18	

Attribute table of polyline point shapefile＂VORO＿v＂and the nearest path table＂VORO＿p．dbf＂
（5）Generator point table（filename：Generator point shapefile g．gatb．dbf ）．
A table showing the adjacency among generators．

Adj＿Gene	ID number of the adjacent generator．
SPDist	Shortest path distance between two generators．


囲 Attributes of voro＿v										围 Attributes of VORO＿g．gatb			$\square \square$		
	FID	Shape	NodeID	X	Y	head	ghead	gghead	C＿PA				$x$		
	1192	Point	1193	－11342．099609	－38623．324219	2728	1192	－1			OID	Adj＿Gene		SPDist	$\wedge$
	1193	Point	1194	$-11345.825195$	－38614．050781	2730	1193	－1		－	0	1199	321.946991		
	1194	Point	1195	－11349．575195	－38605．550781	2732	1194	－1			1	1203	196.063995		
－	1195	Point	1196	－11227．218357	－37962．798602	2734	1195	4			2	1205	357.841003		
	1196	Point	1197	－11530．601848	－38516．762187	2736	1196	6			3	1210	590.565002		
	1197	Point	1198	$-11219.383108$	－38509．812911	2738	1197	7			－4	1208	192.160004		
	1198	Point	1199	－12179．953479	－37801．187766	2740	1198	8				1201			
	1199	Point	1200	－11650．882027	－38508．098297	2742	1199	11			5	1201	266.226013		
	1200	Point	1201	－11347．820030	－38130．692484	2744	1200	17			6	1200	231.022003		
	1201	Point	1202	－12167．469750	－38588．494134	2746	1201	22			7	1201	745.010986		
	1202	Point	1203	－12082．132859	－37953．196464	2748	1202	26			8	209	321.946991		
1	1203	Point	1204	－12104．316980	－38613．844560	2750	1203	31			9	1206	11.492200		

Node 1196 is incident to two generators 1208 and 1201，as is seen in the figure above．
（6）Network index file


### 4.2.2 Huff model

This tool estimates the probability that a consumer at any point on the network chooses the supply points and calculates the total amount of demand that the supply points attract.

## Inputs

Note: As the supply points and the demand points should have been assigned to the same network before applying this tool, apply "Insert points to a network" tool twice on the network as shown below.


Step1: Assign the supply points to a network.

Whereas supply points should have an attribute field of attractiveness such as a sales volume and area of each store, demand points should have an attribute field of a demand volume such as the number of family members.


Polyline shapefile "Road_d", supply point shapefile "SUPPLY" and demand point shapefile "DEMAND"


贯 Attributes of DEMAND						$\square \square$	X
	FID	Shape ${ }^{*}$	ID	x	y	Demand	슷
-	0	Point	0	-11803.68255	-38127.99371	1	
	1	Point	1	-11195.59653	-38018.95248	1	
	2	Point	2	-12109.19483	-38531.60730	1	
	3	Point	3	-12208.64792	-37859.29153	1	
	4	Point	4	-11747.25842	-38597.87476	1	
	5	Point	5	-11214.78893	-38246.63367	1	
	6	Point	6	-11164.46922	-37991.59182	1	
	7	Point	7	-12340.68590	$-37788.95450$	1	
	8	Point	8	-12047.59724	$-38165.44340$	1	
	9	Point	9	-12043.73323	-38450.97867	1	
	1	Drint		17ว 1 ALCCl	20n73 arox	1	
	ord:	141		1 -	Show: All Se	cted	con

Attribute tables of the supply point and the demand point shapefiles.

1. Select "Huff Model" in Analysis menu.
2. Fill in the dialogue box.
(1) Specify the network index file.
(2) Select the reference index file of the supply point shapefile.
(3) Select the attractiveness field in the attribute fields of the supply point shapefile.
(4) Select the reference index file of the demand point shapefile.
(5) Select the demand field in the attribute fields of the demand point shapefile.
(6) Input lambda value. (Refer to the probability function below for details).
(7) Distance from a point to another point can be measured by the physical link lengths or any other weight.

Click "Distance" and choose one. If you checked "by values in an attribute field", select an attribute field in the drop down menu.
(8) Specify the filename of "the demand table".
(9) Specify the filename of "the matrix table".
(1)
(2)
(3)
(4)
(5)



Note: Probability $P_{i j}$ that a consumer at a demand point $i$ chooses a supply point $j$ is represented as

$$
P i j=\frac{A j \exp (-\lambda d i j)}{\sum_{j} A j \exp (-\lambda d i j)}
$$

where,
$A_{j}$ : Attractiveness value (amount of supply) of a supply point $j$, $d_{i j}$ : Distance from a consumer $i$ to a supply point $j$.

## Outputs

(1) Network polyline shapefile (filename: network polyline shapefile _nn).

Supply_ID	Supply point ID that the probability of being selected by a consumer located on the link   becomes the largest.
sid	Starting node on the link.
eid	Ending node on the link.



Links colored in terms of "Supply ID"
(2) Polyline point shapefile (filename: network polyline shapefile _nnv).

Point shapefile consisting of polyline points, collision points, demand points and supply points.

NodeID	Point ID.
X	X coordinate.
Y	Y coordinate.
Demand	$0<:$ Demand point, $0:$ other point.
dhead	$-1<:$ Pointer to "the demand table". $-1:$ Pointer to nowhere.
C_Point	$1:$ Collision point, $0:$ other point.

(3) Demand table (filename: demand table .dbf).

NodeID	Supply point ID.
Attract	The amount of attractiveness.
Dom_Demand	Total amount of demand that the supply point has attracted.


	Attrib	tes of	upplyDe	mandON_nnv				- $\square$	$x$				
	FID	Shape*	NodeID	X	Y	Demand	dhead	C_Point	슷				
	1191	Point	1192	-11338.349609	-38632.324219	0	-1	0					
	1192	Point	1193	-11342.099609	-38623.324219	0	-1	0	$=$	囲 Attrib	tes of H	ff_table	- $\square$
	1193	Point	1194	-11345.825195	-38614.050781	0	-1	0					
	1194	Point	1195	-11349.575195	-38605.550781	0		0		OID	NodeID	Attract	Dom_Demand
	1195	Point	1196	-12334.906680	-38378.594983	0	0	0		$\xrightarrow{\longrightarrow} 0$	1196	1000	85
	1196	Point	1197	-11893.460752	-38442.478011	0	1	0		$\rightarrow 1$	1197	3500	99
	1197	Point	1198	-11349.791752	-38409.475375	0	2	0		$\rightarrow 2$	1198	2000	93
	1198	Point	1199	-11806.563005	-38115.824462	0	3	0		3	1199	1500	119
	1199	Point	1200	-12053.906255	-37802.930056	0	4	0		4	1200	4000	104
	1200	Point	1201	-11803.682558	-38127.993713	1	-1	0		Record: 14 1			Show: All
-	1201	Point	1202	-11195.59653	-38018.952487	1	-1	0					

Polyline point shapefile "SupplyDemandON_nnv"
The attribute of the demand table
(4) Marix table (filename: matrix table .dbf).


Matrix table of demand points "Huff_matrix.dbf"
(5) Choice probability table (filename: network polyline shapefile _prob.dbf).


Choice probability table of the polylinepoints "SupplyDemandON_prob"

You can see the probability distribution of the customer on each point selecting the particular supply point by joining the polyline point shapefile and the choice probability table.


### 4.2.3 Nearest neighbor distance method

This tool investigates the locational tendency of one type of points and tests the randomness of that distribution on a network by the nearest neighbor distance method. The tool derives upper and lower 5\% confidence interval by the Monte Carlo simulations.

## Inputs

1. Select "Nearest Neighbor Method" in Analysis menu.
2. Fill in the dialogue box.
(1) Specify the network index file.
(2) Select the reference index file.


Network polyline shapefile "ROAD_d" and point shapefile "BANK"
(3) Put the number of the Monte Carlo simulations.
(4) Distance from a point to the nearest point can be measured by the physical link lengths or any other weight. Click "Distance" and choose one. If you checked "by values in an attribute field", select an attribute field in the drop down menu.
(5) Specify the interval distance to make the output frequency distribution table. Check one of two check boxes. If you checked "regular intervals", specify the interval distance.
(6) Specify the filename of "the nearest neighbor distance table".
(7) Specify the filename of "the pointer table to the nearest neighbor point".
(8) Specify the filename of "the frequency distribution table".
(1)



## Outputs

Tree DBF files will be created.
(1) Pointer table to the nearest neighbor point.

NodeID	Point ID.
head	Pointer to the record number in "the nearest neighbor distance table".

(2) Nearest neighbor distance table.

NodeID	Nearest point ID.
length	Shortest path distance between two points.


囲 Attributes of NNP			$\square \square$	䀟 Attributes of NND		- $\square$
	OID	NodelD	head $\wedge$	OID	NodelD	length
-	0	252	0	$\xrightarrow{\longrightarrow} \longrightarrow$	1200	59.949902
	1	296	1	$\rightarrow 1$	1204	295.080994
	2	667	2	2	1197	58.639198
	3	911	3	3	911	0
	4	911	4	4	911	0
	5	1196	5	5	1228	5.425110
	6	1197	6	6	667	58.639198
	7	1198	7	7	1214	117.390999
	8	1199	8	8	1207	76.609001
	9	1200	8	9	252	59.949902
	10	1201	10	10 11	1226	136.412994
-	11		10 11	11	1207	67.123199
-	11	17 า	11	12	1226	125.657997

Pointer table to the nearest neighbor point "NNP.dbf"
Nearest neighbor distance table "NND.dbf"
(3) Frequency distribution table. (not a complete sentence)

Values which belong to the fields grouped in the expected distribution are derived by the Monte Carlo simulations.

	FromDist	Starting distance of the ("OID" +1 )th interval.
	ToDist	Ending distance of the ("OID" +1 )th interval.
(	Max	Maximum number of points located to each other within the ("OID"+1)th interval.
	Min	Minimum number of points located to each other within the ("OID"+1)th interval.
	Mean	Mean number of points located to each other within the ("OID" +1 )th interval.
	Upper5\%	The number of points at the upper 5\% level among the simulated number of results.
Expected	Lower5\%	The number of points at the lower 5\% level among the simulated number of results.
distribution	CumMax	Cumulative number of "Max".
	CumMin	Cumulative number of "Min".
	CumMean	Cumulative number of "Mean".
	CumU5	Cumulative number of "Upper $5 \%$ ".
	CumL5	Cumulative number of "Lower5\%".
$\text { Observed }\{$	Observed	Observed number of points located within the interval.
distribution	CumObs	Cumulative observed number of points located nearer than "ToDist".


围 Attributes of NNF															CumObs	X
	OID	FromDist	ToDist	Max	Min	Mean	Upper5\%	Lower5\%	CumMax	CumMin	CumMean	CumU5	CumL5	Observed		,
-	0	0	5	4	0	0.525000	2	0	4	0	0.525000	2	0	4	4	
	1	5	10	4	0	0.432500	2	0	6	0	0.957500	4	0	4	8	
	2	10	15	4	0	0.615000	2	0	8	0	1.572500	6	0	0	8	
	3	15	20	6	0	0.582500	4	0	10	0	2.155000	6	0	0	8	
	4	20	25	4	0	0.682500	4	0	11	0	2.837500	6	0	2	10	
-	5	25	30	8	0	0.630000	4	0	13	0	3.467500	8	0	0	10	
-	6	30	35	5	0	0.740000	4	0	13	0	4.207500	10	0	2	12	
-	7	35	40	8	0	0.792500	4	0	14	0	5	11	0	2	14	
-	8	40	45	6	0	0.75	4	0	15	0	5.75	12	2	1	15	

Frequency distribution table "NNF.dbf"

You can make the observed and the expected K function curves by setting "ToDist" as x -axis, and "CumObs", "CumMean", "CumU5" and "CumL5" as y-axis.


Observed and expected nearest neighbor curves

If the observed curve comes to the left of the upper $5 \%$ nearest neighbor curve in the graph, it shows that the observed points significantly locate near to each other. On the other hand, if the observed curve comes to the right of the lower $5 \%$ nearest neighbor curve, it shows that the observed points significantly locate apart to each other.

### 4.2.4 Conditional nearest neighbor distance method

This tool investigates points (of Type A) are independently and randomly distributed with respect to a set of fixed points (of Type B). We call type A points "non-basic points", and type B points "basic points".

Note: The basic points and the non-basic points have to be assigned to the network beforehand by applying "Insert points to a network" tool. (See the first part of "Huff model" section for details.)

## Inputs

1. Select "Conditional Nearest Neighbor Method" in Analysis menu.


Network polyline shapefile "ROAD_d", basic point "STORE" and non-basic point "BANK"
2. Fill in the dialogue box.
(1) Specify the network index file.
(2) Select the reference index file of the basic points.
(3) Select the reference index file of the non-basic points.
(4) Distance from a basic point to the nearest non-basic point can be measured by the physical link lengths or any other weight. Click "Distance" and choose one. If you checked "by values in an attribute field", select an attribute field in the drop down menu.
(5) Specify the interval distance to make the output frequency distribution table. Check one of two check boxes. If you checked "regular intervals", specify an interval distance.
(6) Specify the filename of "the nearest neighbor distance table".
(7) Specify the filename of "the pointer table to nearest neighbor point".
(8) Specify the filename of "the frequency distribution table".


## Outputs

(1) Pointer table to the nearest neighbor point.

NodeID	Point ID of the non-basic points.
head	Pointer to the record number of "the nearest neighbor distance table".

(2) Nearest neighbor distance table.

NodeID	Point ID of the nearest basic point.
length	Shortest path distance between two points.

(3) Frequency distribution table.

FromDist	Starting distance of the ("OID" +1 )th interval.
ToDist	Ending distance of the ("OID" +1 )th interval.
Prob	The ratio of the link length existing within the interval distance to the total polyline length.
CumProb	Cumulative number of "Prob".
Mean	"Cumprob" * "the number of non-basic points".
Upper5\%	The number of points at the upper 5\% level derived by the binomial distribution.
Lower5\%	The number of points at the lower 5\% level derived by the binomial distribution.
CumMean	Cumulative number of "Mean".
CumU5	Cumulative number of "Upper5\%".


CumL5	Cumulative number of "Lower5\%".
Observed	Observed number of points located within the interval distance.
CumObs	Cumulative observed number of "Observed".
Lng	The link length existing within the interval distance.
Cum Lng	Cumulative number of "Lng".
Chi2	Chi squared value of the observed distribution.


囲 Attributes of CNNF																	
	OID	FromDist	ToDist	Prob	CumProb	Mean	Upper5\%	Lower5\%	CumMean	CumU5	CumL5	Observed	CumObs	Ing	Cumlng		
-	0	0	5	0.005213	0.005213	0.20852	1	0	0.208522	1	0	1	1	172.938995	172.938995	3.004180	
	1	5	10	0.005177	0.010390	0.20709	1	0	0.415614	2	0	0	1	171.753006	344.692993	3.211270	
	2	10	15	0.005341	0.015731	0.21363	1	0	0.629253	2	0	0	1	177.184006	521.875977	6.429090	
	3	15	20	0.006012	0.021743	0.24047	1	0	0.869723	3	0	1	2	199.436005	721.312012	15.043500	
	4	20	25	0.006638	0.028381	0.26553	1	0	1.135260	3	0	0	2	220.222000	941.533997	27.953600	
	5	25	30	0.007254	0.035635	0.29015	1	0	1.425410	4	0	0	2	240.638000	1182.170044	55.931801	
	6	30	35	0.008391	0.044026	0.33564	1	0	1.761050	4	0	0	2	278.365997	1460.540039	111.908997	
	7	35	40	0.008742	0.052768	0.34966	1	0	2.110710	5	0	0	2	290	1750.540039	223.832001	
	8	40	45	0.009102	0.061869	0.36406	2	0	2.474780	5	0	0	2	301.940002	2052.479980	447.678986	$v$
	cord: 1	14.1		* Sh	w: ${ }_{\text {All }}$	Selected	Records (0	out of 77 Sel	lected.)	Opti	ions -						

Frequency distribution table "CNNF.dbf"


Distance (m)
Observed and expected conditional nearest neighbor curves

If the observed curve is to the left of the expected curve, then it shows the non-basic points tend to locate near to the basic points. On the other hand, if the observed curve is to the right of the expected curve, it shows the basic points and the non-basic points tend to locate apart to each other.

### 4.2.5 K Function method

This tool investigates the locational tendency of one type of points and tests the randomness of that distribution on a network by the $K$ function method. The tool derives upper and lower $5 \%$ confidence interval by the Monte Carlo simulations.

## Inputs

1. Select " $K$ Function" in Analysis menu.
2. Fill in the dialogue box.
(1) Specify the network index file.
(2) Specify the reference index file.


Network polyline "ROAD_d" and point "BANK"
(3) Distance from a point to the nearest point can be measured by the physical link lengths or any other weight. Click "Distance" and choose one. If you checked "by values in an attribute field", select an attribute field in the drop down menu.

Note: When you selected "by values in an attribute field", the attribute field should not include the value 0 .
(4) Specify the interval distance to make the output table. Check one of two check boxes. If you checked "regular intervals", specify an interval distance.
(5) Put the number of simulations.
(6) Specify the name of the output table.
(1)
(2)
(3)
(5)
(6)


## Outputs

(1) Observed $K$ function table (filename: table file _o.dbf ).

FromDist	Starting distance of the ("OID" +1 )th interval.
ToDist	Ending distance of the ("OID" +1 )th interval.
Observed	The number of points located within the interval distance.
CumObs	Cumulative numbers of "Observed".


囲 Attributes of K_o					- $\square$	$x$
	OID	FromDist	ToDist	Observed	CumObs	А
-	0	0	20	8	8	
	1	20	40	6	14	
	2	40	60	18	32	
	3	60	80	14	46	
	4	80	100	14	60	
	5	100	120	26	86	
	6	120	140	20	106	
	7	140	160	30	136	
	8	160	180	22	158	

Observed K function table
(2) Expected $K$ function table (filename: table file e.dbf).

FromDist	Starting distance of the ("OID" +1 )th interval.
ToDist	Ending distance of the ("OID" +1 )th interval.
Max	Maximum number of points located to each other within the ("OID"+1)th interval.
Min	Minimum number of points located to each other within the ("OID" +1 )th interval.
Mean	Mean number of points located to each other within the ("OID" +1 )th interval.
Upper5\%	The number of points at the upper 5\% level among the simulated number of results.
Lowe5\%	The number of points at the lower 5\% level among the simulated number of results.
CumMax	Cumulative number of "Max".
CumMin	Cumulative number of "Min".
CumMean	Cumulative number of "Mean".
CumU5	Cumulative number of "Upper5\%".
CumL5	Cumulative number of "Lower5\%".
Links	The number of links existing within the interval distance.


買 Attributes of K_e															
	OID	FromDist	ToDist	Max	Min	Mean	Upper5\%	Lower5\%	CumMax	CumMin	CumMean	CumU5	CumL5	Links	$\wedge$
-	0	0	20	8	0	2.300000	6	0	8	0	2.300000	6	0	80	
	1	20	40	8	0	2.580000	6	0	14	0	4.880000	10	2	97	
	2	40	60	18	0	4.5	10	0	30	2	9.380000	18	4	150	
	3	60	80	20	0	5.160000	10	0	50	2	14.540000	22	6	204	
	4	80	100	22	0	6.260000	12	2	60	8	20.799999	32	12	249	
	5	100	120	24	0	7.940000	14	2	76	12	28.740000	46	16	333	
	6	120	140	26	2	10.080000	18	2	82	16	38.820000	60	24	411	
	7	140	160	28	2	10.560000	20	4	88	20	49.380001	74	32	471	
-	8	160	180	22	0	11.840000	20	4	104	26	61.220001	84	44	515	
	9	180	200	30	2	13	24	6	124	44	74.220001	102	54	573	
	10	200	220	46	6	14.960000	26	6	148	56	89.180000	116	64	676	
-	11	220	240	30	4	16.520000	28	6	176	64	105.699997	138	76	732	

Expected $K$ function table


Observed and expected $K$ function curves

### 4.2.6 Cross $\boldsymbol{K}$ function method

This tool detects the locational tendency whether points (of Type A) are independently and randomly distributed with respect to a set of fixed points (of Type B) by the cross $K$ function method. We call type A points "non-basic points", and type B points "basic points".

## Inputs

Note: The basic points and the non-basic points have to be assigned to the network beforehand by applying "Insert points to a network" tool.

1. Select "Cross $K$ function" in Analysis menu.

2. Fill in the dialogue box.
(1) Specify the network index file.
(2) Specify the reference-index file of the basic point shapefile.
(3) Specify the reference-index file of the non-basic point shapefile.
(4) Distance from the basic points to the non-basic points can be measured by the physical link lengths or any other weight. Click "Distance" and choose one. If you checked "by values in an attribute field", select an attribute field in the drop down menu.
Note: When you selected "by values in an attribute field", the attribute field should not include the value 0 .
(5) Specify the interval distance to make the output table. Check one of two check boxes. If you checked "regular intervals", specify an interval distance.
(6) Specify the filename of the output table.


## Outputs

(1) Observed $K$ function table (filename: table file _o.dbf).

FromDist	Starting distance of the ("OID" +1 )th interval.
ToDist	Ending distance of the ("OID" +1 )th interval.
Observed	The number of the non-basic points located within the interval distance from the basic points.
CumObs	The number of cumulative non-basic points located within the "ToDist" distance from the basic   points.


買 Attributes of XK_o					$\square \square$	$\times$
	OID	FromDist	ToDist	Observed	CumObs	$\wedge$
-	0	0	20	2	2	
	1	20	40	0	2	
	2	40	60	1	3	
	3	60	80	0	3	
	4	80	100	2	5	
	5	100	120	3	8	
	6	120	140	5	13	
	7	140	160	1	14	
	8	160	180	5	19	
	9	180	200	5	24	
	10	2 nn	ขาก	$\ldots$	9n	

Observed K function table
(2) Expected $K$ function table (filename: table file_e.dbf)

FromDist	Starting distance of the ("OID"+1)th interval.
ToDist	Ending distance of the ("OID"+1)th interval.
Prob	"TotalLinks"/ (the maximum number of total links).
CumProb	Cumulative number of "Prob".


Mean	Expected mean number of points located within the interval.
Upper5\%	The number of points at the upper 5\% level derived by the binomial distribution.
Lowe5\%	The number of points at the lower 5\% level derived by the binomial distribution.
CumMean	Expected number of mean points located nearer than "ToDist" distance.
CumU5	Cumulative number of "Upper5\%".
CumL5	Cumulative number of "Lower5\%".
Links	The number of links existing within the interval distance.
TotalLinks	Cumulative number of ("Links" * the interval distance).


围 Attributes of XK_e													TotalLinks	$x$
	OID	FromDist	ToDist	Prob	CumProb	Mean	Upper5\%	Lower5\%	CumMean	CumU5	CumL5	Links		슷
-	0	0	20	0	0.001205	0	0	0	0.819422	3	0	34	680	
	1	20	40	0.001559	0.002764	1.060430	3	0	1.879850	4	0	44	1560	
	2	40	60	0.002233	0.004997	1.518340	4	0	3.398190	7	0	63	2820	
	3	60	80	0.003225	0.008223	2.193160	5	0	5.591350	10	1	91	4640	
	4	80	100	0.003686	0.011909	2.506470	5	0	8.097820	13	3	104	6720	
	5	100	120	0.004926	0.016835	3.349990	7	0	11.447800	17	5	139	9500	
	6	120	140	0.005706	0.022541	3.880210	7	0	15.328000	22	8	161	12720	
	7	140	160	0.006911	0.029452	4.699630	8	0	20.027599	28	12	195	16620	
	8	160	180	0.007443	0.036895	5.061140	9	1	25.088800	33	16	210	20820	
	9	180	200	0.008719	0.045614	5.928760	10	1	31.017500	40	21	246	25740	
	10	200	220	0.009605	0.055219	6.531280	11	2	37.548801	48	27	271	31160	
	11	220	240	0.010278	0.065497	6.989190	12	2	44.537998	55	33	290	36960	
I	12	240	260	0.010668	0.076165	7.254300	12	2	51.792301	63	40	301	42980	

Expected K function table


Observed and expected Cross $K$ function curves

### 4.2.7 Interpolation

This tool interpolates an unknown attribute value at a location on a network using observed values at some other points in its vicinity, which are called "sample points", by IDW interpolation method. The shortest-path distances from the sample points to the unknown point are used for selecting the fixed number of nearest sample points.

Note: The sample point shapefile should have a field for the observed value. Also, the sample point shapefile and the interpolated point shapefile have to be assigned to the same network applying "Insert points to a network" tool.

## Inputs

1. Select "Interpolation" in Analysis menu.

2. Fill in the dialogue box.

Observed points (blue points) with their observed
(1) Specify the network index file.
(2) Specify the reference index file of the observed points.
(3) Specify the reference index file of the interpolated points.
(4) Specify the field where the observed values has been stored.
(5) Specify the lambda value, which is the inversed network distance weight.
(6) Specify the number of the sample points.

Network index file name for input

C. \% Shibu*ObsintON.	9

(2)


## Outputs

Interpolated point table (filename: input network index file _z.dbf). (not sure if you need a period at the end)

ID	ID of the interpolated point. The value corresponds to that in "ID field of point shapefile"   specified when "the insert points to a network" tool has been applied.
Z	Interpolated value.



### 4.2.8 Clumping method

This tool statistically detects hierarchical point clusters among the point distribution.

## Inputs



Network polyline shapefile "ROAD_d" and point shapefile "BANK"

1. Select "Clumping" in Analysis menu.
2. Fill in the dialogue box.
(1) Specify the network index file.
(2) Specify the reference index file.
(3) Put the number of the Monte Carlo simulations.
(4) Specify the maximum number of ranks for the cluster detection.
(5) Specify the interval distance to detect the clusters.

## Outputs

Clumping table (filename: input polyine shapefile _clp.dbf ).


Note: The number in \# is the distance category for the cluster detection. For example, in the field "Clp_2", you can see the detected clusters at the $2 * 50 \mathrm{~m}=100 \mathrm{~m}$ distance level (the second interval distance level). It means three sizes of clusters, 2,3 and 8 , have been detected as shown in the figure below, and points which belong to each cluster are located within 100 m to each other.

To see the detected clusters in the project window, join the output table with the access point shapefile.


Extraction the access points from the polyline point shapefile and exporting it to make a new access point shapefile


Clusters detected at the first interval distance, $1 * 50 \mathrm{~m}=50 \mathrm{~m}$ level.

### 4.2.9 M Function method

This tool analyses the spatial relation between two polylines, the observed polylines and the randomly generated polylines, by applying M function method.

$$
\text { M function }(t)=A a(t) \cap A b(t) \cap A s \quad / A s
$$

where,
$t$ : Distance.
$A a(t)$ : Buffer area of the polyline $A a$ under the buffer distance $t$.
$A b(t)$ : Buffer area of the polyline $A b$ under the buffer distance $t$.
As: The area of the study region.

## Inputs

1. Select "M function" in Analysis menu.

Note: No preprocessing tool has to be applied beforehand for this tool.

2. Fill in the dialogue box.
(1) Specify the polygon shapefile in which two polyline shapefiles are located.
(2) Specify the first polyline shapefile.
(3) Specify the second polyline shapefile.
(4) Specify the filename of the output table.
(5) Input "calM.exe" here.
(6) Specify the grid size.
(7) Initial distance for making buffer areas around the polylines.
(8) Incremental distance for making buffer areas around the polylines.
(9) Maximum number of iteration of the random line generation.
(10) Maximum value that the calculation is conducted (The value have to be between 0 and 1 ).
(11) Check if you want to see the result in the graph.
(12) Check if you want to display MS Dos window during the calculation.


## Outputs



The observed and the Expected M function curves

Observed value				Exp	
	OID	Dist	MFunc(0)	MFunc(R)	$\triangle$
-	0	50	0.114031	0.03391	
	1	100	0.233481	0.110838	
	2	150	0.341205	0.205553	
	3	200	0.436417	0.303725	
	4	250	0.516185	0.397624	
	5	300	0.58527	0.483469	
	6	350	0.639436	0.559778	
	7	400	0.681085	0.626373	
	8	450	0.714782	0.683767	
	9	500	0.743319	0.732808	
	10	550	0.768423	0.774459	
	11	600	0.790454	0.80969	
	12	650	0.809498	0.839407	
	13	700	0.826688	0.864429	
	14	750	0.842633	0.885477	
	15	800	0.857442	0.903175	
	16	850	0.871335	0.918056	
	17	900	0.884828	0.930572	
	18	950	0.898022	0.941107	
	19	1000	0.910734	0.949979	
	20	1050	0.921622	0.95746	
	21	1100	0.930654	0.963774	
	22	1150	0.937944	0.969109	
	02	10 mm	n0147E7	กก7260ว	

Note: This tool may not work correctly for a certain type of data. This is under investigation for the moment.

### 4.3 Other independent tools

### 4.3.1 Random point

This tool generates random points on the network according to the Poisson point process (i.e. the probability of a point being placed on a unit line segment on a network is the same regardless of the location of the segment).

## Inputs

1. Add the network polyline shapefile to the project window.

Note: "Clean" and "Continuous Graph" tools have to be applied on the polyline shapefile beforehand.

(1) Select the polyline shapefile.
(2) Put the number of random points to be generated.
(3) Distance on the network can be measured by the physical link length or any other weight. Check one of two check boxes. If you checked in "by values in an attribute field", select an attribute field in the drop down menu.
(4) Specify the filename of the output shapefile.

## Outputs

Random point shapefile will be created.

RandomID	Random point ID.
X	X coordinate.
Y	Y coordinate.



1000 random points on the network

### 4.3.2 Polygon centroid

This tool generates a centroid for a polygon.

## Inputs

1. Add the polygon shapefile on the project window.
2. Select "Polygon Centroid" in ShapeEditor menu.

3. Fill in the dialogue box.
(1) Select the polygon shapefile.
(2) Select ID field of the polygon shapefile. This helps connect the output table and the input polygon shapefile.

## Output

Point shapefile named "polygon shapefile .rep" will be created.

Keycode field selected at step (2)	Polygon ID.
X	X coordinate.
Y	Y coordinate.



### 4.3.3 Grid

This tool divides a polygon into grids of the designated size.

## Inputs

1. Add a polygon shapefile on the project window.
2. Select "Grid" in ShapeEditor menu.

3. Fill in the dialogue box.
(1) Select the polygon shapefile in the drop down list.
(2) Select the keycode field, which help connect the input polygon shapefile and the output polygon shapefile.
(3) Specify the grid size.

## Output

A grid polygon shapefile will be created (filename: input shapefile _grd).

keycode field selected at step (2)	Original polygon ID.
rate	Ratio of the grid area to the original polygon area.



### 4.3.4 Distribute point data to polylines

This tool assigns attribute values of a point shapefile to a polyline and aggregates them in terms of each line segment.

## Inputs

1. Add the following shapefiles to the project window.
(1) Point shapefile.
(2) Network polyline shapefile with a field of ID numbers.
2. Select "Distribute Point Data to Polylines" in ShapeEditor menu.

3. Fill in the dialogue box.
(1) Specify the point shapefile.
(2) Select the attribute field(s) to be assigned to the polygon shapefile.
(3) Specify the polyline shapefile.
(4) Select the ID filed of the polyline shapefile to help connect the output table and the input polyline shapefile.
(5) If you want to assign the point attributes to the link that has the same ID number as the point feature has, even if it is not the nearest link, check in the check box. It means that the point attributes are assigned to the link where both the link and the point feature are located (It is shown in the right figure below). If you do not check in the box, point attributes will be assigned to the nearest links. (It is shown in the left figure below).


Note: Leave boxes (6) and (7) blank if you did not check in the check box at step (5).
(6) Select the field storing the polygon ID in the network polyline shapefile.
(7) Select the field storing the polygon ID in the point shapefile.

Note: Since values in (6) and (7) are used to connect a point and a polyline which have the same polygon ID, both of the polyline shapefile and the point shapefile should have a field of polygon ID where they belong.
You can make these types of files using "intersect" function in the geoprocessing wizard installed in ArcMap.
(8) Specify the filename of the output table.

## Output

A DBF file with the designated filename will be created.

	Keycode field selected at step (4).	Polyline ID.
fields	Attribute field(s) selected at step (2).	Aggretated values.

### 4.3.5 Table arrangement

This tool aggregates a table by the designated field.
In the case of the simple example shown below, this tool aggregates records in "Population" that have the same value in "Area_ID".

Area_ID	Population			
1	500			
1	100			
2	200			
2	50			
3	300			
3	400			
4	1000	$\quad \rightarrow$	Area_ID	Population
:---:	:---:	:---:		
1	600			
2	250	$\quad$$\quad$	700	
:---:				
4				

Input table
Output table

## Inputs

1. Select "Table Arrangement" in ShapeEditor menu.
2. Fill in the dialogue box.
(1) Specify the input file (dbf format).
(2) Select ID field in the drop down list. Records having the same value in this field become one record in the output file.
(3) Select the field(s) to be aggregated. Values in the field(s) are aggregated in terms of the field selected at step (2).
(4) Specify the output file name.
(1)
P) Table Arrangement
(2)
2) 

Table file for input


## Output

A DBF file with the designated filename will be created.

Field selected at step (2)	ID.
$\mathbf{( 2 )} \mathbf{c}$	Count number.
Field selected at step (3)	Aggregated value.

Note: This tool does not work correctly at the present. The bug will be got rid of soon.

### 4.3.6 Create network index file from adjacent node table

This tool constructs a new polyline shapefile from the existing adjacent node table, the point shapefile and the network index file.

## Inputs

1. Select "Create Network Index File from Adjacent Node Table" in NeworkIndex menu.

2. Specify three files below.
(1) Adjacent node table
(2) Point shapefile
(3) Network index file

## Output

A new polyline shapefile and a network index file will be created.

### 4.3.7 Edit network index file

This tool changes the combination of the files stored in the network index file.

## Inputs

1. Select "Edit Network Index File" in NeworkIndex menu.

2. Fill in the dialogue box.
(1) Specify the network index file to be edited.
(2), (3) and (4) are automatically filled with the contents of the network index file.

You can change any of them into a different file.
(5) It is recommended to leave this box checked because it checks up the consistency of the node-link connectivity in the new combination.
(6) If you wish to overwrite the input network index file, check this box.
(7) If you left (6) blank, specify the filename of the new network index file.

## Inputs

A new network index file " $\qquad$ nidx" will be created.

## 5. References

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974) The Design and Analysis of Computer Algorithms, Reading, Massachusetts: Addison-Wesley.
Buxton, T. (1992) GIS Expected to Micromarketing Challenge, GIS World, Vol.5, No.1, pp.70-72.
Kato, T., Sadahiro, U., Shiode, S. and Okabe, A. (2003) Analysis of the spatial distribution of vending machines using GIS, Papers and Proceedings of Geographic Information Systems Association, Vol.12, pp.355-358. (in Japanese)
Morita, M.and Okunuki, K. (2003) A study on the edge effects in analyzing a point pattern on a network, Papers and Proceedings of Geographic Information Systems Association,Vol.12, pp.93-96. (in Japanese)
Morita, M., Okunuki, K. and Okabe, A. (2001) A Market Area Analysis on a Network Using GIS: A Case Study of Retail Stores in Nisshin City, Papers and Proceedings of Geographic Information Systems Association, 10, 45-50. (in Japanese)
Miller, H.J. (1994) Market Area Delineation within Networks using Geographic Information Systems, Geographical Systems, 1(2), 157-173.
Miller, H.J. (1999) Measuring Space-time Accessibility Benefits within Transportation Networks: Basic Theory and Computational Methods, Geographical Analysis, Vol.31, pp.187-212.
Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000) Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, (2 ${ }^{\text {nd }}$ edition), Chichester: John Wiley.
Okabe, A. and Kitamura, M. (1996) A Computational Method for Market Area Analysis on a Network, Geographical Analysis, Vol.28, No.4, pp.330-349.
Okabe, A. and Miki, F. (1984) A Conditional Nearest-Neighbor Spatial Association Measure for the Analysis of Conditional Locational Interdependence, Environment and Planning A, Vol.16, pp.163-171.
Okabe, A. and Okunuki, K. (2001) A computational method for estimating the demand of retail stores on a street network and its implementation in GIS, Transactions in GIS, Vol.5, No.3, pp.209-220.
Okabe, A., Okunuki, K. and Shiode, S. (2005) A Toolbox for Spatial Analysis on a Network, in A. Okabe (ed.), GIS-based Studies in Humanities and Social Sciences, Chapter 20, CRC Press, pp.139-152.
Okabe, A., Okunuki, K. and Shiode, S. (2006) SANET: A toolbox for spatial analysis on a network, Journal of Geographical Analysis, Vol.38, No.1, pp.57-66.
Okabe, A., Okunuki, K. and Shiode, S. (2006) The SANET toolbox: New methods for network spatial analysis, Transactions in GIS, Vol.10, No.4, pp.535-550.
Okabe, A. and Satoh, T. (2006) Uniform network transformation for points pattern analysis on a non-uniform network, Journal of Geographic Systems, 8, 25-37.
Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational implementation, Geographical Analysis, Vol.33, No.3, pp.271-290.
Okabe, A., Yomono, H. and Kitamura, M. (1995) Statistical Analysis of the Distribution of Points on a Network, Geographical Analysis, Vol.27, No. 2, pp.152-175.
Okano, K. and Okabe, A. (2004) A Method for Analyzing the Spatial Relationship between Two Different Distributions of Line Objects and the Implementation of its Software, Theory and Application of GIS, 12(2), 133-143. (in Japanese)
Shiode, S. and Shiode, N. (2009) Detection of hierarchical point agglomerations by the network-based variable clumping method, International Journal of Geographical Information Science (in press).
Shiode, S. and Shiode, N. (2009) Inverse Distance-Weighted Method for Point Interpolation on a Network, in Y. Asami, Y. Sadahiro, and T. Ishikawa (ed.), New Frontiers in Urban Analysis: In Honor of Atsuyuki Okabe, Chapter 16, CRC Press, (in press).
Spooner, P., Lunt, I.D., Okabe, A. and Shiode, S. (2004) Spatial analysis of roadside Acacia populations on a road network using the network K-function, Landscape Ecology, Vol.19, No.5, pp.491-499.
Yamada I and Thill J-C (2004) Comparison of planar and network K-functions in traffic accident analysis, Journal of Transport Geography Vol. 12, pp.149-58.


[^0]:    Random point
    Polygon centroid
    Grid
    Distribute point data to polylines
    Table arrangement
    Create network index file from adjacent node table Edit network index file

