
Sania: Syntactic and Semantic Analysis for Automated Testing

against SQL Injection

Yuji Kosuga†, Kenji Kono†, Miyuki Hanaoka†

Department of Information and Computer Science
†Keio University

3-14-1 Hiyoshi Kohoku-ku, Yokohama, Japan

{yuji, hanayuki}@sslab.ics.keio.ac.jp, kono@ics.keio.ac.jp

Miho Hishiyama‡, Yu Takahama‡

‡IX Knowledge Inc.

3-22-23 Kaigan Minato-ku, Tokyo, Japan

{miho.hishiyama, takahama}@ikic.co.jp

Abstract

With the recent rapid increase in interactive web appli-

cations that employ back-end database services, an SQL in-

jection attack has become one of the most serious security

threats. The SQL injection attack allows an attacker to ac-

cess the underlying database, execute arbitrary commands

at intent, and receive a dynamically generated output, such

as HTML web pages. In this paper, we present our tech-

nique, Sania, for detecting SQL injection vulnerabilities in

web applications during the development and debugging

phases. Sania intercepts the SQL queries between a web

application and a database, and automatically generates

elaborate attacks according to the syntax and semantics of

the potentially vulnerable spots in the SQL queries. In ad-

dition, Sania compares the parse trees of the intended SQL

query and those resulting after an attack to assess the safety

of these spots. We evaluated our technique using real-world

web applications and found that our solution is efficient in

comparison with a popular web application vulnerabilities

scanner. We also found vulnerability in a product that was

just about to be released.

1 Introduction

The recent surge in the growth of the Internet has re-

sulted in the offering of a wide range of web services, such

as on-line stores, e-commerce, social network services, etc.

However, web applications designed to interact with back-

end databases are threatened by SQL injection attacks. SQL

injection is a technique maliciously used to obtain unre-

stricted access to databases by inserting maliciously crafted

strings to SQL queries via a web application. It allows an

attacker to spoof his identity, expose and tamper with ex-

isting data in databases, and control databases server with

the privileges of its administrator. It is caused by a semantic

gap in the manipulation of user inputs between a database

and a web application. Although a web application han-

dles the user inputs as a simple sequence of characters, a

database handles them as query strings and interprets them

as a meaningfully structured command. According to Ar-

morize Technologies [3], 376 SQL injection vulnerabilities

were reported in 2006, making up 28% of all the reported

vulnerabilities for web applications. The common vulner-

ability and exposures (CVE) hosted by Mitre [20] also re-

ported that it was making up 14% of all those reported.

Sanitizing is a technique that can be used to prevent SQL

injection attacks by escaping potentially harmful characters

in client request messages. Suppose that a database con-

tains name and password fields in the users table, and

a web application contains the following code to authenti-

cate a user’s log in.

sql = “SELECT * FROM users WHERE name = ’”

+ request.getParameter(name)

+ “’ AND password = ’”

+ request.getParameter(password) + “’”;

This code generates a query to obtain the authentication

data from a relational database. If an attacker inputs “’ or

’1’=’1” into the password field, the query becomes:

SELECT * FROM users WHERE

name = ’xxx’ AND password = ’’ or ’1’=’1’

The WHERE clause of this query is always evaluated to be

true, and thus an attacker can bypass the authentication, re-

gardless of the data inputted in the name field. To prevent

this SQL injection, the web application must sanitize every

single quote by replacing it with double quotes. If sanitizing

is done appropriately, the query becomes:

SELECT * FROM users WHERE

name = ’xxx’ AND password = ’" or "1"="1’

where the inputted values are regarded as a string. This

technique prevents an SQL injection from changing the syn-

tax of SQL.

Although sanitizing all the vulnerable spots is a sufficient

measure for preventing SQL injection attacks, it is the plain

truth that vulnerabilities may still remain even if a skilled

and educated programmer writes the sanitation codes. This

is because sanitizing is typically done by hand without any

supporting tools.

Existing automated tools for discovering SQL injection

vulnerabilities are based on a penetration testing that indis-

criminately applies malicious codes to every injectable pa-

rameter. They check the contents returned from a web ap-

plication to determine whether an SQL injection attack is

successful or not. However, they mistakenly judge an at-

tack as successful if the application returns a response dif-

ferent from an innocent one, although the SQL injection it-

self failed. For example, the response pages contents are

always different when a web application inserts some data

from a client into its database, and then the web applica-

tion generates and sends a response page using the data that

has just been inserted into the database. Moreover, these

tools try to inject malicious code in brute force and thus

take longer time to check for vulnerabilities.

Sania is designed to be used in the development and de-

bugging phases. Thus, Sania can investigate HTTP requests

and SQL queries to try to discover SQL injection vulnera-

bilities. By investigating SQL queries, Sania automatically

identifies potentially vulnerable spots in the SQL queries,

generates attack codes to attempt to exploit the vulnerable

spots, and checks whether the web application is vulnera-

ble.

To identify the vulnerable spots, Sania analyzes the SQL

queries issued in response to the HTTP requests, and dis-

covers the vulnerable spots in SQL queries in which an at-

tacker can insert arbitrary strings. Then, Sania generates

attack requests based on the context of the potentially vul-

nerable spots in the SQL queries. Since Sania generates at-

tack requests using the context in which the vulnerable spots

appear, it can also generate context-dependent attacks. For

example, Sania generates an attack request that exploits two

vulnerable spots at the same time if they are adjacent in the

query and their types are both string expressions. To ver-

ify a web application, Sania compares the parse trees of the

SQL queries. If the tree generated from an innocent HTTP

request differs from that generated from an attack request,

Sania determines that there is an SQL injection vulnerabil-

ity. When compared with the existing tools, Sania is ex-

pected to generate fewer but more precise attacks because

it takes the context of the vulnerable spots into consider-

ation, but will detect more vulnerabilities. Existing tools,

which generate attacks using brute force, generate more at-

tacks but cannot cover all the SQL injection possibilities.

In addition, Sania can more precisely detect vulnerabilities

because it checks if an attack has succeeded or not by veri-

fying the parse tree of the issued SQL.

We evaluated Sania using six real-world web applica-

tions. Sania was proved to be efficient, finding 39 vulner-

abilities and causing only 13 false positives. Paros [23], a

popular scanner for web application vulnerabilities, found

only 5 vulnerabilities and caused 67 false positives un-

der the same evaluation conditions. Moreover, we tested

a production-quality web application using Sania. The

tested application was in the final testing phase before be-

ing shipped to the customer. Sania successfully found one

vulnerability in the application.

The remainder of this paper is organized as follows. We

begin the next section by reviewing and discussing related

work. Section 3 presents Sania and Section 4 describes the

implementation. Section 5 presents our experimental re-

sults. Finally, we conclude the paper in Section 6.

2 Related Work

In this section, we list the work closely related to ours

and discuss their pros and cons. The techniques related to

SQL injection are classified and were evaluated by Halfond

et al. [10], and we also made our classifications based on it.

Interested readers can refer to [28] for the formal definition

of SQL injection, and to [1, 2, 19, 25, 26] for the attacking

and preventing techniques.

Framework Support Recent frameworks for web appli-

cations provide a functionality that can be used to prevent

SQL injections. For example, Struts [27] supports a valida-

tor. A validator verifies an input from the user conforms

to the pre-defined format of each parameter. If a validator

prohibits an input from including meta-characters, we can

avoid SQL injections. Since a validator does not transform

the dangerous characters to safe ones, we can not prevent

SQL injections if we want to include meta-characters in the

input.

Prepare Statement SQL provides the prepare state-

ment, which separates the values in a query from the struc-

ture of SQL. The programmer defines a skeleton of an SQL

query and then fills in the holes of the skeleton at runtime.

The prepare statement makes it harder to inject SQL

queries because the SQL structure can not be changed. Hi-

bernate [11] enforces us to use the prepare statement. To

use the prepare statement, we must modify the web ap-

plication entirely; all the legacy web applications must be

re-written to reduce the possibility of SQL injections. Sa-

nia is useful to check if a particular application needs to be

re-written to prevent SQL injections.

Static Analysis Wassermann and Su [30] proposed an ap-

proach that uses a static analysis combined with automated

reasoning. This technique verifies that the SQL queries gen-

erated in the application usually do not contain a tautology.

This technique is effective only for SQL injections that in-

sert a tautology in the SQL queries, but can not detect other

types of SQL injections attacks.

JDBC Checker [8] statically checks the type correct-

ness of dynamically generated SQL queries. JDBC Checker

can detect SQL injection vulnerabilities caused by improper

type checking of the user inputs. However, this technique

would not catch more general forms of SQL injection at-

tacks, because most of these attacks consist of syntactically

correct and type-correct queries.

Dynamic Analysis Paros [23] is a free tool for testing for

web application vulnerabilities without rewriting any scripts

in the web application. This tool automatically scans for

SQL injection vulnerabilities with pre-defined attack codes.

Paros checks the contents of HTTP response messages to

determine whether an SQL injection attack was successful

or not. Paros is used in our evaluation in Section 5 for com-

parison with Sania.

Combined Static and Dynamic Analysis SQLCheck

[28] checks SQL queries at runtime to see if they conform to

a model of expected SQL queries. The model is expressed

as a context-free grammar that only accepts legal queries.

This approach uses a secret key to discover user inputs in

the SQL queries. Thus, the security of the approach re-

lies on attackers not being able to discover the key. Addi-

tionally, this approach requires the application developer to

rewrite code to manually insert the secret keys into dynam-

ically generated SQL queries.

AMNESIA [9] is a model-based technique that combines

the static and dynamic analyses. In the static phase, AMNE-

SIA uses a static analysis to build the models of the SQL

queries that an application legally generates at each point

of access to the database. In the dynamic phase, AMNE-

SIA intercepts all the SQL queries before they are sent to

the database and checks each query against the statically

built models. Queries that violate the model are identified

as SQL injection attacks. The accuracy of AMNESIA de-

pends on that of the static analysis. Unfortunately, certain

types of obfuscation codes and/or query generation tech-

niques make this step less precise and results in both false

positives and negatives.

SQLGuard [5] checks at runtime whether SQL queries

conform to a model of the expected queries. The model is

deduced at runtime by examining the structure of the query

before and after a client’s requests. SQLGuard requires the

application developer to rewrite code to use a special inter-

mediate library.

Machine Learning Approach Valeur et al. [29] pro-

posed the use of an intrusion detection system (IDS) based

on a machine learning technique. IDS is trained using a

set of typical application queries, builds models of the typi-

cal queries, and then monitors the application at runtime to

identify the queries that do not match the model. The over-

all IDS quality depends on the quality of the training set;

a poor training set would result in a large number of false

positives and negatives.

WAVES [12] is also based on a machine learning tech-

nique. WAVES is a web crawler that identifies vulnerable

spots, and then builds attacks that target those spots based

on a list of patterns and attack techniques. WAVES monitors

the response from the application and uses a machine learn-

ing technique to improve the attack methodology. WAVES

is better than traditional penetration testing, because it im-

proves the attack methodology, but it cannot thoroughly

check all the vulnerable spots like the traditional penetra-

tion testing.

Instruction-Set Randomization SQLrand [4] provides a

framework that allows developers to create SQL queries

using randomized keywords instead of the normal SQL

keywords. A proxy between the web application and the

database intercepts SQL queries and de-randomizes the

keywords. The SQL keywords injected by an attacker

would not have been constructed by the randomized key-

words, and thus the injected commands would result in a

syntactically incorrect query. Since SQLrand uses a secret

key to modify keywords, its security relies on attackers not

being able to discover this key. SQLrand requires the appli-

cation developer to rewrite code.

Taint-Based Technique Pietraszek and Berghe [24] mod-

ified a PHP interpreter to track taint information at the char-

acter level. This technique uses a context-sensitive analysis

to reject SQL queries if an untrusted input has been used

to create certain types of SQL tokens. A common draw-

back of this approach is that they require modifications to

the runtime environment, which diminishes the portability.

3 Design of Sania

In this section, we present our technique, Sania, which

automatically tests for SQL injection vulnerabilities. Sania

generates attack requests based on a syntactical analysis of

the SQL queries generated by web applications. The nov-

elty of Sania lies in that it exploits the syntactical knowl-

edge of the SQL queries to generate attack requests.

3.1 Overview of Sania

An interactive web application ordinarily accesses its

back-end database through a restricted private network. Sa-

nia is designed to be used by a web applications developer

during the development and debugging phases, and thus is

able to intercept SQL queries between an application and

the database as well as HTTP requests between a client and

the application. After capturing HTTP requests and SQL

queries, Sania checks for any SQL injection vulnerabilities

using the following three steps.

1. Sania identifies the vulnerable spots in the HTTP re-

quests in which an attacker can embed maliciously

crafted strings that cause SQL injection attacks. To

identify the vulnerable spots, a web application devel-

oper sends innocent HTTP requests to the web applica-

tion. Then, Sania captures the SQL queries generated

from the HTTP requests, analyzes the syntax of the

SQL queries, and identifies the vulnerable spots.

2. Sania generates attack requests that attempt to exploit

the vulnerable spots where SQL injection attacks may

occur. Sania can generate an elaborate attack because

it leverages the knowledge obtained from the first step,

that vulnerable spots appear in what context of the

SQL queries. For example, Sania generates an attack

request that targets two vulnerable spots at the same

time; the special string injected in the former ignites

the malicious code injected in the latter.

3. By sending the attack requests generated from the sec-

ond step, Sania checks if SQL injection vulnerabilities

lie in a web application. It uses the parse tree of SQL

to check for vulnerabilities. If an attack request suc-

cessfully injects malicious strings into an SQL query,

the parse tree of the generated SQL differs from that

generated in the first step when the innocent HTTP re-

quest is sent.

Since Sania generates attack requests based on the syn-

tax of SQL queries, it can assess the safety of every spot

that could potentially be vulnerable. An existing tool such

as Paros [23] generates an attack code without knowledge of

SQL queries. Therefore, Paros cannot generate an elaborate

attack that targets two vulnerable spots at the same time. In

addition, Sania discovers more vulnerabilities with less at-

tack requests. This is because it suppresses the generation

of meaningless attacks.

3.2 Specifying Vulnerable Spots

In SQL injection attacks, an attacker embeds maliciously

crafted strings at certain points, called vulnerable spots, in

HTTP requests whose values may appear in SQL queries.

The vulnerable spots, in other words, have the potential to

be security holes of SQL injection. The vulnerable spots

appear in query strings, cookies, or other strings in HTTP

requests.

Suppose that a HTTP request includes a query

string such as “id=555&cat=book” and the gener-

ated SQL query is “SELECT * FROM users WHERE

user id=555”. In this case, the query string has two sets

of data separated by an ampersand (&), and the equality

sign (=) divides each data set into two elements: parameter

and value. Here, the parameters are id and cat, and the

values are 555 and book. A parameter element is typically

fixed, but an attacker can freely alter a value element. Sania

detects every vulnerable spot by checking whether a value

element appears in a leaf node of the parse trees of the gen-

erated SQL queries. In our example, “555” is a vulnerable

spot because it appears in the SQL query, but “book” is not

because it does not.

3.3 Crafting Attack Requests

Sania automatically generates attack requests by analyz-

ing the parse tree of the SQL query generated from an inno-

cent request. It embeds a maliciously crafted string, called

an attack code, in the attack requests to exploit the vulner-

able spots. It generates two types of attack requests: linear

and combination. In a linear attack, Sania inserts an attack

code to a single vulnerable spot. In a combination attack,

it inserts attack codes in two or more vulnerable spots at

the same time, both strings inserted in the vulnerable spots

change the SQL syntax in concert.

3.3.1 Linear Attack

A vulnerable spot always appears in a leaf (i.e., terminal)

node of a parse tree. The parent node of a leaf represents

the non-terminal from which the terminal is derived. Sa-

nia generates an attack code according to type of the non-

terminal to which a vulnerable spot belongs. In the example

in Section 1, the non-terminals in the name and password

fields both represent a string expression in the SQL gram-

mar. An attack code in the string expression should have at

least one single quote to escape a single quote in the SQL

query. If the non-terminal represents a number expression,

an attack code should not contain a single quote.

In SQL injection, an attack code contains a meta-

character to end the user input (usually a string) in a vul-

nerable spot. A vulnerable spot is divided into two parts

with the insertion of a meta-character. The first part, called

a userInput, contains a normal string that mimics an

input from an ordinary user. The second part, called an

insertedSQL, contains part of the SQL query that an at-

tacker is trying to inject. Since the meta-character inserted

in a vulnerable spot marks the end of a userInput, the

strings in the insertedSQL are interpreted as SQL key-

words.

Suppose that an attacker inserts the attack code “yyy’

or 1=1--” into the password field in the Section 1

example. This attack code contains a single quote (meta-

character) to end the user input and divide the password

field into the userInput and insertedSQL parts.

The userInput corresponds to the yyy and the

insertedSQL corresponds to the “ or 1=1--”. The

userInput contains a normal string yyy as if it were en-

tered by the user. The insertedSQL contains a part of

the finally injected SQL; the inserted meta-character acti-

vates the insertedSQL part.

Sania selects a meta-character, userInput, and

insertedSQL based on the context in which a vulner-

able spot would appear. Sania has a list of attack codes to

test every non-terminal that has children terminals. To make

a list of attack codes, we thoroughly investigated the SQL

injection techniques in [1, 2, 5, 6, 13, 18, 19, 22, 25, 26].

We defined a total of 21 kinds of attack codes for 95 non-

terminals. Since the list of attack codes is defined in XML,

when a new attack code is developed a user can easily add

it to the list.

In addition, Sania extensively uses the context in which

a vulnerable spot appears to refine attack codes. To generate

successful codes, the context in which a vulnerable spot ap-

pears must be more carefully examined, because it may be

deeply set with nested parentheses. An attack code some-

times removes the right parentheses by including them in a

quoted string or by commenting them out. Suppose that a

web application generates the following SQL and Sania is

attempting to inject a malicious string into the name field.

SELECT * FROM users WHERE

(id=999 AND (name=’xxx’))

Sania generates an attack code like “’)) or 1=1--”

instead of “’ or 1=1--” so that the syntax of SQL is not

broken.

The list of attack codes in Sania is described as follows.

Each attack code represented as a four-element tuple:

(userInput, metaCharacter,

parentheses, insertedSQL).

A metaCharacter represents a meta-character that

divides a vulnerable spot and a parentheses deter-

mines whether or not to insert parentheses. For each

non-terminal, we described the possible combinations of

a userInput, a metaCharacter, a parentheses,

and an insertedSQL. For example, if a vulnerable spot

belongs to a string expression, the attack code is (λ | ǫ,

’ | ", true, or ’1’=’1 | or "1"="1 | or

1=1-- | or 1=1;-- | or 1=1/*). This means

the userInput is either the input from the user (λ) or

blank (ǫ), the metaCharacter is either the (’) or ("),

the parentheses are used, and the insertedSQL is (or

’1’=’1), or (or "1"="1), or (or 1=1--), or (or

1=1;--), or (or 1=1/*). For an item expression in the

SELECT statement, the attack code is (λ, ǫ, false,

from yyy-- | from yyy;-- | from yyy/*).

If “SELECT id, xxx from users” is issued by an

application and xxx is a vulnerable spot, Sania inserts

“xxx from yyy--” to the vulnerable spot, which

results in “SELECT id, xxx from yyy--from

users”.

3.3.2 Combination Attack

A combination attack exploits two or more vulnerable spots

at the same time to inject an SQL query. Sania currently

tries to exploit two vulnerable spots at the same time. When

two vulnerable spots, both of which belong to a string ex-

pression in the SQL grammar, are adjacent in the parse tree,

Sania launches a combination attack. In the combination

attack, it inserts a backslash to the former vulnerable spot to

escape a single quote, which indicates the end of the string

expression. Then, Sania inserts an SQL query to the latter

vulnerable spot to cause an SQL injection.

Suppose that a web application issues the follow-

ing SQL query: “SELECT * FROM users WHERE

name=’ø1’ and password=’ø2’” (øi: vulnerable

spot). In this example, Sania inserts a backslash to the for-

mer vulnerable spot (ø1) and a “ or 1=1--” to the lat-

ter (ø2). If a backslash is not sanitized correctly, the re-

sulting SQL becomes “SELECT *FROM users WHERE

name=’\’ and password=’ or 1=1--’”. As a

result, the name parameter is identified as “’ and

password=” because the injected backslash escapes the

single quote. Thus, the where clause is evaluated to be

true because “1=1” is always true and the following single

quote is commented out by “--”.

3.4 Validation

Sania compares the parse tree generated from an attack

request with that generated from an innocent message to

verify whether an attack was successful or not. If the parse

Figure 1. Properly sanitized parse tree

Figure 2. Improperly sanitized parse tree

tree generated from an attack request differs from that gen-

erated from an innocent request, Sania determines the at-

tack was successful. Suppose that a web application is-

sues the SQL query “SELECT * FROM users WHERE

name=’ø’” (ø: vulnerable spot), and the user input to vul-

nerable spot ø is “’ or ’1’=’1”. If the web application

sanitizes the input properly, the parse tree will look like the

one shown in Figure 1. If not properly sanitized, the parse

tree will look like the one in Figure 2, where the structure

of the parse tree is different from Figure 1.

Unfortunately, a web application generates SQL queries

whose structures depend on the user inputs. Suppose

that a web application generates the following SQL query:

“SELECT * FROM users WHERE id=ø” (ø: vulner-

able spot). If the web application allows an arbitrary arith-

metic expression to be inputted in the id field, the SQL

structure depends on the expression in the id field. If the

id field contains a number, the corresponding node in the

tree is a terminal node that represents a number. If the id

field contains the addition of two numbers, the correspond-

ing node has a structure that represents the addition of two

numbers.

This type of SQL query is called a dynamic query. If a

web application issues a dynamic query, Sania sometimes

judges the application vulnerable to SQL injection, because

an attack request that is different from that generated from

an innocent request may result in the parse tree. This is

a false positive if the application properly sanitizes all the

inputs from the user. To avoid this problem, Sania allows

the user to control the matching of parse trees; the user can

specify what kind of subtree comes to a vulnerable spot

Figure 3. Packet capturing mechanism

if necessary. In Sania, the user can associate an attribute,

called a structure-attribute, with a vulnerable spot. Table 1

lists the structure-attributes. For example, the user can as-

sociate an arithmeticExpression attribute with the

id field in the above example. By doing this, the id field

can contain an arbitrary arithmetic expression as well as a

simple number.

4 Implementation

We implemented a version of Sania in Java that had

13,000 lines of code. In addition, it had a list of attack codes

in XML that had 1,800 lines of code. We used JavaCC [16]

and JSqlParser [17] to implement an SQL parser. As shown

in Figure 3, Sania consists of an HTTP proxy, an SQL

proxy, and a core component. The HTTP proxy captures the

HTTP requests and responses, and the SQL proxy captures

the SQL queries. The core component of Sania performs

the tasks described in the previous section.

5 Experiments

This section presents our evaluation of Sania from the

following points of view: efficiency and false positives in

comparison with a public web application scanner.

5.1 Experimental Setup

To evaluate Sania, we selected six subjects. All are in-

teractive web applications that accept HTTP requests from

a client, generate SQL queries, and issue them to the under-

lying database. Table 2 lists the subject programs. Five of

them (Bookstore, Portal, Event, Classifieds and Employee

Directory) are free open source applications from GotoCode

[7]. These were also used for evaluations in other papers

[9, 28], and have been used to provide a service in the real

world. Since GotoCode provides the applications in several

languages, we used the JSP version for every application.

The remaining one, E-learning, is a JSP and Java Servlet

application provided by IX Knowledge Inc. [15]. It was

Table 1. Structure-attributes to widen allowable range of acceptable subelements for branch node
Name Return value type Acceptable expressions

arithmeticExpression number Number/mathematical statements

conditionalExpression boolean Conditional statement such as AND/OR statements

relationalExpression boolean
Relational statement, which returns boolean value, but is not included in condi-

tionalExpression such as LIKE/IS NULL statements

notExpression boolean
A few statements, which can accept NOT expressions, such as BETWEEN, IN,

and LIKE statements

subSelectExpression result set
A few statements, which can accept sub-SELECT expressions, such as JOIN

and FROM statements

Table 2. Subject programs used in our evaluation
Subject Description Language LOC Hotspots

E-learning Online Learning System java(Servlet) & jsp 3682 14 (32)

Bookstore Online Bookstore jsp 11078 70 (116)

Portal Portal for club jsp 10051 96 (134)

Event Event tracking system jsp 4737 29 (50)

Classifieds Online management system for classifieds jsp 6540 35 (62)

Employee Directory Online Employee Directory jsp 3526 24 (38)

practically used in an intranet before, but it is no longer used

after the newer version was released.

Table 2 shows each subject’s name (Subject), a brief de-

scription (Description), the languages in which the appli-

cation is written (Language), the number of lines of code

(LOC), and the number of vulnerable spots (Hotspots) with

the total number of injectable spots in parentheses.

Sania was used to try to discover the SQL injection vul-

nerabilities in these web applications. For comparison, we

used Paros [23] to test these applications. Paros is the web

application scanner that took second place out of the top 10

web vulnerability scanners at Insecure.Org [14]. At the top

of the list was Nikto [21], but it is not designed to check for

SQL injection vulnerabilities. Paros performs penetration

testing that indiscriminately applies an attack code to every

injectable spot. Paros determines that an attack is successful

if the response message contains pre-defined strings that in-

dicate database errors, such as “JDBC.Driver.error”,

because database errors indicate that the attack successfully

changes and breaks the syntax of the SQL queries. Addi-

tionally, it determines that an attack is successful if the re-

sponse after an attack differs from a normal response.

5.2 Results

Table 3 shows the number of resulting warnings reported

by Sania and Paros. For each subject, the table reports the

number of trials (trials), the number of raised warnings (to-

tal warns), the number of total vulnerabilities (vuls.), and

the number of false positives (false positives). We checked

for each warning whether it was truly vulnerable. This table

reveals that Sania found more vulnerabilities for every sub-

Table 4. Details of vulnerabilities
Tool Num. Description

Sania 39
14 linear attacks (successful in E-learning)

25 combination attacks

Paros 5 5 linear attacks (successful in E-learning)

ject and caused less false positives than Paros, using fewer

trials.

5.2.1 Accuracy of Attacks

The details of the vulnerabilities are shown in Table 4. Sa-

nia and Paros found vulnerabilities in E-learning using lin-

ear attacks. Sania discovered 25 vulnerabilities in the Go-

toCode applications using combination attacks, but Paros

could not because it does not support combination attacks.

This result reveals that Sania can:

• Execute precise linear attacks. It could find more vul-

nerabilities (14 vuls.) than Paros (5 vuls.) even when

they both used only linear attacks. This is because it

generates an elaborate pinpoint attack according to the

context in which a vulnerable spot appears.

• Execute powerful combination attacks. It found 25

vulnerabilities using combination attacks. A combi-

nation attack requires knowledge of the points where

vulnerable spots appear in an SQL query. Therefore, it

is hard for Paros to work out a combination attack.

Table 3. Results for Sania and Paros
Sania Paros

Subject
trials

total
vuls.

false
trials

total
vuls.

false

warns positives warns positives

E-learning 18 18 18 0 362 9 5 4

Bookstore 616 7 6 1 4802 8 0 8

Portal 831 16 7 9 5477 15 0 15

Event 250 4 4 0 1698 21 0 21

Classifieds 279 5 3 2 1210 6 0 6

Employee
194 2 1 1 1924 13 0 13

Directory

total 2188 52 39 13 15473 72 5 67

Table 5. Details of false positives
Tool Num. Description

Sania 13

8 Length of attack code was too long

3 Backslash mistakenly broke query

1 Failed to delete inserted SQL query

1 Authentication failed

Paros 67

16
Attack codes are mistakenly injected to

state parameters

15
Contents of response page was changed

after editing

13 These spots were already sanitized

10 Length of attack code was too long

9 Type of code does not match

4 Duplicate warnings are received

5.2.2 False Positives

A false positive occurs when the test returns a positive re-

sult, but there is actually no fault (or error). Table 5 shows

the details of the false positives. In total, Sania and Paros

raised 13 and 67 false positives, respectively.

Length and Type Error If the length of an attack code

is longer than that of its corresponding column defined in

a database or the type of an attack code is improper, the

database returns an error to its host web application. After

catching this error message, the web application returns a

response page to handle the error. If the response page urges

the web application to issue unintended SQL queries, Sania

obtains them and mistakenly raised 8 warnings. Paros found

the unintended contents of the response page, and caused 10

false positives for the length problem and 9 false positives

for the type problem.

Misallocated Backslash A backslash in an attack code

escapes a single quote in the SQL grammar. Sania caused

3 false positives when it mistakenly inserted a backslash

into inappropriate vulnerable spots. For example, a page

of Portal issues an SQL query, which has a vulnerable

spot ø1 and subsequently issues another SQL query that has

two vulnerable spots ø1 and ø2. Sania embeds a backslash

to the vulnerable spot ø1 intending to execute a combination

attack, and breaks the first SQL query. This problem can be

avoided by more carefully annotating the vulnerable spots.

Database Record Conflict The data inserted into the

database should be deleted before the next trial starts, be-

cause it would adversely affect the results of the following

trials. In penetration testing, if a tool has no function to

delete inserted data items, the later trials are always evalu-

ated to be safe. In our evaluation, a page of Classifies

initially checks whether a name specified in an HTTP re-

quest already exists. If the name does not exist in the

database, it inserts the name. Otherwise, it returns an er-

ror page. Sania caused one false positive when it failed to

delete the inserted data items.

Field Data Conflict Sania’s remaining false positive was

caused when an attack code was used in the password

confirmation field. This field is used to confirm that

the two passwords inputted by the user do match. The

subject, Bookstore, has a password confirmation field,

“member password2”, to verify that the entered pass-

word matches “member password” field. Sania inserts

different values to these fields and raises a false alarm be-

cause it does not know that these field should have the same

string.

Attacking Potentially Safe Spots Some query-strings,

called state parameters, are potentially safe because

they never become a part of the SQL queries. A

state parameter controls the page transition to han-

dle the client’s requests dynamically. A query-string,

“FormAction=insert”, is used as a state parameter

in Portal in order to insert new article information.

If an attack code is applied to this state parameter, the

web application makes the client go back to the origi-

nal page with an error, “java.sql.SQLException:

Can not issue empty query”, without handling

any SQL queries from the requested page. Paros recognizes

this as a successful attack, resulting in 16 false positives.

The additional 13 false positives in Paros were caused by

attacking already-sanitized spots. Sania avoids these false

positives by properly selecting vulnerable spots before start-

ing the test.

Mishandling of Dynamic Contents Some web applica-

tions return a dynamically generated page that contains the

values entered by the user. Paros always misjudges this type

of web applications as being vulnerable and caused 15 false

positives. This is because the contents of the response page

changes if the user input changes.

Duplicate Warnings The four remaining Paros’ false

positives are duplicate warnings. They are already classi-

fied into the other categories above.

5.3 Testing a Real Product

After Sania was proven effective in our experiments, we

had a chance to test a production-quality web application

developed by IX Knowledge Inc. [15] on March 28, 2007.

This application, RSS-Dripper, provides RSS information

to the user based on their previous choices. RSS-Dripper

is written in Java Servlet and JSP, developed on Struts [27],

and was in the final step of the development process just

before being shipped when we tested it.

Sania detected one SQL injection vulnerability after

testing 33 attack requests. RSS-Dripper was vulnerable

to a combination attack. We analyzed the source code of

RSS-Dripper to find and modify the security hole. This test

shows there are SQL injection vulnerabilities in production-

quality web applications that have been recently developed,

and Sania is effective in these real applications.

6 Conclusion

We presented our new web application security tech-

nique, Sania, which is designed to check for SQL injection

vulnerabilities in the development and debugging phases.

Sania intercepts SQL queries and automatically generates

elaborate attacks based on the syntax of potentially vulner-

able spots in the SQL queries. Sania assesses the safety

of these spots by comparing the parse trees of the intended

SQL query and that resulting after the attack. By analyzing

the syntax in the parse tree of SQL queries, it is possible to

generate precise pinpoint attack requests. Sania has been

proved effective; it found 39 SQL injection vulnerabilities

and incurred only 13 false positives. Paros, a popular scan-

ner for web application vulnerabilities found 5 vulnerabili-

ties and caused 67 false positives.

References

[1] C. Anley. Advanced SQL Injection In SQL Server Applica-

tions. White Paper, Next Generation Security Software Ltd.,

2002.

[2] C. Anley. (more) Advanced SQL Injection. White Paper,

Next Generation Security Software Ltd., 2002.

[3] Armorize Technologies. http://www.armorize.com/.

[4] S. Boyd and A. Keromytis. SQLrand: Preventing SQL in-

jection attacks. In Proceedings of the Applied Cryptography

and Network Security (ACNS), pages 292–304, 2004.

[5] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using

parse tree validation to prevent SQL injection attacks. In

Proceedings of the 5th International Workshop on Software

Engineering and Middleware SEM, pages 106–113, 2005.

[6] Ferruh.Mavituna. SQL Injection Cheat Sheet. http://

ferruh.mavituna.com/makale/sql-injection-cheatsheet/.

[7] GotoCode. http://www.gotocode.com/.

[8] C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static

Analysis Tool for SQL/JDBC Applications. In Proceedings

of the 26th International Conference on Software Engineer-

ing (ICSE), pages 697–698, 2004.

[9] W. Halfond and A. Orso. AMNESIA: Analysis and Monitor-

ing for NEutralizing SQL-Injection Attacks. In Proceedings

of the 20th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 174–183, 2005.

[10] W. Halfond, J. Viegas, and A. Orso. A Classification of

SQL-Injection Attacks and Countermeasures. Proceedings

of the IEEE International Symposium on Secure Software

Engineering (ISSSE), 2006.

[11] Hibernate. hibernate.org. http://www.hibernate.org/.

[12] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application

Security Assessment by Fault Injection and Behavior Moni-

toring. In Proceedings of the 12th International World Wide

Web Conference (WWW03), pages 148–159, 2003.

[13] iMPERVA. Blind SQL Injection. http://www.imperva.com/

application_defense_center/white_papers/

blind_sql_server_injection.html.

[14] Insecure.Org. http://insecure.org/.

[15] IX Knowledge Inc. http://www.ikic.co.jp/.

[16] JavaCC. https://javacc.dev.java.net/.

[17] JSqlParser. http://jsqlparser.sourceforge.net/.

[18] C. A. Mackay. SQL Injection Attacks and Some Tips on

How to Prevent Them. http://www.codeproject.com/cs/

database/SqlInjectionAttacks.asp.

[19] S. McDonald. SQL Injection Walkthrough. http://

www.securiteam.com/securityreviews/5DP0N1P76E.html,

May 2002.

[20] MITRE. Common Vulnerabilities and Exposures (CVE).

http://cve.mitre.org/.

[21] Nikto. CIRT.net. http://www.cirt.net/code/nikto.shtml.

[22] OWASP. Testing for SQL Injection. http://www.owasp.org/

index.php/Testing for SQL Injection.

[23] Paros. Parosproxy.org. http://www.parosproxy.org/.

[24] T. Pietraszek and C. Vanden Berghe. Defending against

Injection Attacks through Context-Sensitive String Evalua-

tion. In Proceedings of the 8th International Symposium on

Recent Advances in Intrusion Detection (RAID), pages 124–

145, 2005.

[25] K. Spett. SQL Injection: Are your web applications vulner-

able? SPI Labs White Paper, 2004.

[26] Steve Friedl’s Unixwiz.net Tech Tips. SQL Injection At-

tacks by Example. http://www.unixwiz.net/techtips/

sql-injection.html.

[27] Struts. Apache Struts project. http://struts.apache.org/.

[28] Z. Su and G. Wassermann. The Essence of Command In-

jection Attacks in Web Applications. Annual Symposium on

Principles of Programming Languages (POPL), pages 372–

382, 2006.

[29] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Ap-

proach to the Detection of SQL Attacks. In Proceedings of

the Conference on Detection of Intrusions and Malware and

Vulnerability Assessment (DIMVA), pages 123–140, 2005.

[30] G. Wassermann and Z. Su. An Analysis Framework for

Security in Web Applications. In Proceedings of the FSE

Workshop on Specification and Verification of Component-

Based Systems (SAVCBS), pages 70–78, 2004.

