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Abstract 

Neuronal signals generally represent activation of the neuronal networks and give insights into brain functionali-

ties. They are considered as fingerprints of actions and their processing across different structures of the brain. These 

recordings generate a large volume of data that are susceptible to noise and artifacts. Therefore, the review of these 

data to ensure high quality by automatically detecting and removing the artifacts is imperative. Toward this aim, this 

work proposes a custom-developed automatic artifact removal toolbox named, SANTIA (SigMate Advanced: a Novel 

Tool for Identification of Artifacts in Neuronal Signals). Developed in Matlab, SANTIA is an open-source toolbox that 

applies neural network-based machine learning techniques to label and train models to detect artifacts from the 

invasive neuronal signals known as local field potentials.
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1 Introduction

Neural recordings give insight into the brain’s structures 

and functions. �e recording systems aim to capture the 

electrical activity of the biological structures; however, 

these are not isolated systems and activities from other 

sources are also recorded. Besides, faulty equipment han-

dling, electrical stimulation, or movements of electrodes 

can cause distortions in the recordings. As part of the 

recording process, the recordings must be reviewed to 

identify corrupted segments and address them, as they 

are detrimental for any posterior analysis. �is includes 

artifact removal (e.g., filtering, template subtraction, or 

advanced computational techniques) or discarding the 

segment.

Each neural recording session produces a huge volume 

of data, especially if it is obtained over a long period of 

time and the experiment requires repetition. �e amount 

of data gets multiplied by the number of recording sites. 

�e post-experimental reviewing process consisting 

of annotating long recordings for evoked responses or 

unusual activities, which may happen in a much smaller 

time scale (e.g., 0.1 s in an hour), is a tedious and tire-

some task. By automating this task, the researcher can 

focus on the interpretation task for diagnosis or an appli-

cation. Employing machine learning (ML) algorithms, 

which have the ability to learn from patterns to predict 

unseen data, has been successful in the literature. How-

ever, a computational background is required to apply 

them successfully as there are intricacies such as defining 

hyper-parameters.

Research groups in the neuroscience community have 

developed and shared toolboxes for analyzing neural 

recordings [1–3]. Given the wide arrange of neuronal 

signals, data formats, analysis techniques, and purposes, 

each one has advocated their efforts into specific ele-

ments. Table 1 lists the available open toolboxes and their 

functions in regard to aiding noise detection and removal 
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in local field potential signals (LFP). An in-depth analysis 

of these toolboxes is reported in [4]. Hence, the descrip-

tion below will be dedicated to elaborate on the reported 

toolboxes.

Brainstorm [5] is an open-source application dedicated 

to neuronal data visualization and processing, with an 

emphasis on cortical source estimation techniques and 

their integration with anatomical magnetic resonance 

imaging data. It offers an intuitive interface, power-

ful visualization tools, and the structure of its database 

allows the user to work at a higher level. BSMART [6] 

is a toolbox intended for spectral analysis of continuous 

neural time series data recorded simultaneously from 

multiple sensors. It is composed mainly of tools for auto-

regressive model estimation, spectral quantity analysis, 

and network analysis. All functionality has been inte-

grated into a graphical user interface (GUI) environment 

designed for easy accessibility.

Chronux [7] is an open-source Matlab software project 

for the analysis of neural signals via signal specialized 

modules for spectral analysis, spike sorting, local regres-

sion, audio segmentation, and other tasks. Similarly, 

Elephant [8] is a Python library for the analysis of electro-

physiological data, such as LFP or intracellular voltages. 

It offers a broad range of functions for analyzing multi-

scale data of brain dynamics from experiments and brain 

simulations, such as signal-based analysis, spike-based 

analysis, and methods combining both signal types.

FieldTrip [9] is an open-source software package devel-

oped for the analysis of electrophysiological data. It sup-

ports reading data from a large number of different file 

formats and includes algorithms for data preprocessing, 

event-related field/response analysis, parametric and 

non-parametric spectral analysis, forward and inverse 

source modeling, connectivity analysis, classification, 

real-time data processing, and statistical inference. Klus-

ters, NeuroScope, and NDManager [10] are a free soft-

ware suite for neurophysiological data processing and 

visualization. NeuroScope is an advanced viewer for elec-

trophysiological and behavioral data with limited editing 

capabilities, Klusters a graphical cluster cutting applica-

tion for manual and semi-automatic spike sorting, and 

NDManager an experimental parameter and data pro-

cessing manager.

Neo [11] is a tool whose purpose is to handle electro-

physiological data in multiple formats. Due to its unique 

property of being able to read or write the data from or to 

a variety of commonly used file formats, it is included in 

the list. NeuroChaT [12] is an Python open-source tool-

box created to standardized open-source analysis tools 

available for the analysis of neuronal signals recorded 

in vivo in the freely behaving animals.

Spycode [13] is a smart tool for multi-channel data 

processing which possesses a vast compendium of algo-

rithms for extracting information both at a single channel 

in addition to at the whole network level, and the capa-

bility of autonomously repeating the same set of com-

putational operations to multiple recording streams, all 

without manual intervention.

Out of the aforementioned toolboxes, the only one that 

allows for artifact detection is Brainstorm. It allows for 

manual inspection and automatic detection of artifacts, 

mainly of muscular and movement origin, by filtering the 

signals in frequency bands (ocular 1.5–15  Hz; for ECG: 

10–40 Hz; for muscle noise and some sensor artifacts: 

40–240 Hz and subject movement, eye movements, and 

dental work 1–7 Hz) and classifying the absolute value of 

signal with a standard deviation threshold. However, arti-

facts can span a large bandwidth and studies show that 

they can overlap with those of the neural signals [14]. As 

Table 1 Open-source toolboxes and noise detection and removal functionalities

Data visualization, stimulation artifact removal and �le operations (i.e., �le splitting, concatenation, column rearranging)

Artifact 
detection

Digital 
�ltering

Data visual. Spectral 
analysis

Stim. art. 
removal

File oper. Multiple 
formats

Brainstorm [5] � � � � X X �

BSMART [6] X X � � X X �

Chronux [7] X X � � X X X

Elephant [8] X X � � X X �

Fieldtrip [9] X � � � X X �

Klusters, NeuroScope, 
NDManager [10]

X � � � X � �

Neo [11] X X � X X � �

NeuroChaT [12] X X � � X X �

Spycode [13] X � � � X X �

SANTIA � � � � � � �
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an example, the alpha band (8–12 Hz) can have oscil-

lations of high amplitude and be falsely detected as an 

artifact.

�ere is one other toolbox that deals with LFP artifact 

detection. �is is SigMate [15–17], a Matlab-based tool 

that incorporates standard methods to analyze spikes 

and electroencephalography (EEG) signals, and in-house 

solutions for LFP analysis. �e functionality provided 

by SigMate include: artifact removal, both fast [18] and 

slow [14], angular tuning detection [19], noise charac-

terization [20], cortical layer activation order detection, 

and network decoding [21–24], sorting of single trial LFP 

[25–28], etc. It deals with slow stimulus artifact removal 

through an algorithm that subtracts an estimation of the 

signal by averaging the peaks and valleys detected in it, 

eliminating the offset. In addition, it allows for visualiza-

tion of the spectrogram using short-time Fourier trans-

form of the recording to allocate artifactual frequency 

bands and allow their filtering, among many other analy-

sis functionalities.

To offer a more competitive toolbox, it has been 

expanded with new functionalities, reported in Table  2. 

�ese include state-of-the-art modules for artifact detec-

tion, or the analysis of any number of channels unlike 

SigMate which is limited to 5. �us, in this paper, we pre-

sent the SANTIA toolbox (SigMate Advanced: a Novel 

Tool for Identification of Artifacts in Neuronal Signals), 

a friendly user interface that aids the offline identification 

of artifacts process by simplifying the steps to train pow-

erful computational algorithms with the minimum input 

of the user. For a wider adoption by the community, the 

toolbox is freely available online at https:// github. com/ 

Ignac ioFab ietti/ SANTI Atool box.

�e recording of neuronal data, especially when using 

multi-electrode arrays, can lead to electronic files of 

notable size. Figure  1 illustrates a conducted survey of 

the formats of invasive neural recordings in open data-

sets [29]. �e data show that ‘.mat’ is the preferred exten-

sion for storage by a substantial margin. �is emphasizes 

the necessity to develop tools which address the datasets 

available in ‘.mat’ format. �erefore, SANTIA was imple-

mented in Matlab and works with single files contain-

ing multi-channel data files in a variety of formats. �e 

toolbox only depends on the Deep Learning Toolbox and 

the basic version of Matlab 2020a and above, therefore 

can function in any operating system. SANTIA has been 

developed with the latest app development environment 

of Matlab, which allows it to be supported for longer and 

be improved with new modules, such as GUI improve-

ments which are planned for the next update.

�e remainder of the paper is composed of 5 sec-

tions: Sect. 2 describes the local field potentials; Sect. 3 

describes the methods followed by the testing results 

presented in Sect.  4. Finally, in Sect.  5, discussion and 

conclusion are presented.

2  Local �eld potentials

Local field potentials are invasive neuronal recordings, 

which are equal to the sum of the activity of a neuronal 

population, that has been low-pass-filtered under 300 

Hz, and whose amplitude ranges from a few micro-volts 

to hundreds of micro-volts or more depending on the 

studied structure [30]. �ey can be recorded by single or 

multi-channel micro-electrodes (glass micro-pipettes, 

metal, or silicon electrodes), during in  vitro or in  vivo 

Table 2 Advancements of SANTIA over SigMate

SAD state-of-the-art artifact detection, UNoC unlimited number of channels, SE supported environment, Up updates, DF digital �ltering, DV data visualization, SA 

spectral analysis, SAR stimulation artifact removal, FO �le operations, MF multiple formats

Toolbox SAD UNoC SE Up DF DV SA SAR FO MF

SigMate [15] X X X X � � � � � �

SANTIA � � � � � � � � � �

Fig. 1 Distribution of formats of local field potential signals in open 

datasets, extracted from [29]

https://github.com/IgnacioFabietti/SANTIAtoolbox
https://github.com/IgnacioFabietti/SANTIAtoolbox
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experiments to gain insight into the behavior of brain 

structures, and diagnosis, and are used in application 

such as brain–machine interfaces. Figure 2 illustrates the 

concept.

As with all neuronal signals, their recording process 

can be influenced by internal and external factors, caus-

ing artifacts. Within an organism, electric potentials 

are also generated mainly from ocular, muscle, or heart 

Fig. 2 Recording of extracellular neuronal signals from behaving rodents using linear implantable neural probe (shown in gray). Representative 

local field potential signals with and without movement artifacts are shown from two datasets. The blue traces denote signals without artifacts and 

the red traces show examples of movement artifacts present in the signals
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activity, i.e., electrooculogram, electromyogram, and 

electrocardiogram, respectively. Examples of external 

sources include transmission lines, cellphone signals, and 

faulty experimental setup. Local field potentials in par-

ticular can be affected by spike bleed-through [31], light 

stimulation [32], respiration-coupled oscillations [33], 

and deep brain stimulation artifacts [34].

�e consequences of the presence of artifacts can be 

detrimental, such as misdiagnosis, disturbance of the 

study of the brain activity, or causing a brain–machine 

interface device to be mistakenly operated. Looking 

at the case of another neuronal signal, EEG signals, the 

presence of abnormalities raised the median review time 

from 8.3 to 20.7 min [35]. To make use of these record-

ing successfully, these artifacts must be first identified 

and then dealt with. �e use of computational techniques 

which are able to learn from complex data patterns has 

yielded promising results in the field. In the next section, 

they will be described.

3  Methods

3.1  Artifact detection

While there are many contributions on artifact detec-

tion in neuronal signals, specially non-invasive ones like 

EEG, the same cannot be said about LFP. For the latter, 

the main approach has been the application of ML algo-

rithms in the form of artificial neural networks.

Artificial intelligence has been used for analysis of pat-

terns and classification in diverse fields such as, anomaly 

detection [29, 36–44], biological data mining [45, 46], 

disease detection [47–58], monitoring of human [59–62], 

financial forecasting [63], image analysis [64, 65], and 

natural language processing [66–68]. Most of the time, 

these algorithms are composed of multiple layers of neu-

rons for processing of non-linear information and were 

inspired by how the human brain works. Each neuron 

calculates an inner product of its inputs ( xi ) and their 

respective weights ( wi ), and then, the bias (b) is added 

and, finally, the non-linear activation function is applied, 

which in most cases is a sigmoid function, tan hyper-

bolic, or rectified linear unit. �us, the output of a neu-

ron ( zi ) can be expressed as detailed in Eq. 1

To propagate the information and train the network, the 

output of a layer is fed as input to the subsequent unit in 

the next layer. �e result of the final output layer is used 

as the solution for the problem.

�ere are many variations of the neural network archi-

tecture based on their principles in determining their 

rules. For example, authors in [69] trained a multi-layered 

(1)zi = f

(

n
∑

i=1

xiwi + b

)

.

perceptron (MLP) to identify slow-waves in LFP. An MLP 

is composed of three sections: an input layer, a hidden 

layer, and an output layer, where the units of the latter 

two use the non-linear activation defined in Eq.  1. �e 

modeling complex of non-linear relations improves when 

it contains multiple numbers of hidden layers, compared 

to a shallow architecture [70].

In our earlier publications [37], an MLP is employed 

to identify artifacts in LFP along with two other archi-

tectures: long short-term memory (LSTM) networks 

and one dimensional convolutional neural network (1D-

CNN) [71, 72]. �e diagrams of the main components 

of these architectures are depicted in Fig.  3. �e LSTM 

architecture is a type of recurrent network spanning 

adjacent time steps in a manner that at every point the 

neurons take the current data input as well as the values 

of the hidden neurons that collect the information of the 

previous time steps. On the other hand, convolutional 

networks are a specific form of neural network that is 

well suited to computer vision applications due to their 

capacity to hierarchically abstract representations of spa-

tial operations. A variation of it, designed for problems 

where the input is a time sequence, is named 1D-CNN.

A comparison of the results obtained can be seen in 

Table 3. Unlike other machine learning techniques where 

expertise is required to extract significant features from 

the signals and which may cause bias in itself, these 

results indicate that neural networks have the capacity 

to do it automatically. In addition, it is done in a compu-

tationally efficient way: 1-min LFP sampled at 1017 Hz 

analyzed in 2.27 s equal 26,881 data points analyzed per 

second. As a negative, the training of the neural network 

is the step where most time and computational power are 

consumed.

Having described the classification algorithm that will 

be used in the toolbox, we proceed to detail its use in the 

next section.

3.2  Operation

�e toolbox can be directly downloaded from the Github 

repository (https:// github. com/ Ignac ioFab ietti/ SANTI 

Atool box). Once the toolbox is launched, the GUI pro-

vides easy access to all modules. It is important to high-

light that SANTIA is a generic environment structured 

around one single interface in which specific functions 

were implemented, not a library of functions on top of 

which a GUI has been added to simplify access.

It is structured in three main modules, designed to per-

form various processing and analysis on the neuronal sig-

nal files. �e main functionalities of the first one include: 

data loading, scaling, reshaping, channel selection, labe-

ling, saving, and 2D display. �e second module is com-

posed of: data loading and splitting, hyper-parameter 

https://github.com/IgnacioFabietti/SANTIAtoolbox
https://github.com/IgnacioFabietti/SANTIAtoolbox


Page 6 of 19Fabietti et al. Brain Inf.            (2021) 8:14 

setting, network load or design, network train, test set 

classification, and threshold setting and saving. Finally, 

the third one comprehends: data and network loading, 

classification, and 2D data display and saving.

�e GUI allows for user interaction via the selection of 

functions, parameters, and keyboard inputs, which are 

processed in the back end. A verification routine executes 

before running any function to ensure the user has not 

skipped a step or has not completed the necessary inputs 

or parameter selection. �is minimizes the possible 

human errors and time expenditure. In case of doubt of 

the purpose of an element of the GUI, tool tips appear 

when hovering the cursor over it with a brief explanation.

�e functions to display warning messages, generate 

figures, and compute the labeling, training, or classifica-

tion are allocated in the back end. �ese developed fea-

tures were tested with a dataset recorded from a 4-shank, 

A B

C

Fig. 3 Architectures of different neural network models: multi-layer perceptron (A), long short-term memory (B), and one-dimension convolutional 

neural network (C). Each circle represents a neuron, multiple rectangles a layer’s depth, and the arrows how the information is propagated 

throughout each network

Table 3 Performance comparison, extracted from [72]

Network Accuracy Parameters Computational 
time (s)

1D-CNN [72] 95.1 561218 2.27 ± 0.13

MLP [37] 93.2 1532 2.57 ± 0.06

LSTM [71] 87.1 4418 3.47 ± 0.04
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Fig. 4 Screenshots of the SANTIA toolbox graphical user interface: Data Labeling (A), Neural Network Training (B), and Classify New Unlabeled Data 

(C)
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16-contact site electrode from anesthetized rats. At 

the end of each module, the respective outputs can be 

exported to a ‘.mat’ file, which can easily be utilized in 

other applications due to the accessibility of the format.

�e following sections describe the individual modules 

in greater detail. As a visual aid, Fig. 4 shows the screen-

shots of the software package, Fig. 5 illustrates the func-

tion block diagram, and finally, Fig. 6 shows the workflow 

diagram.

3.2.1  Data labeling

In the first module, the process begins with the ‘Load 

Signals’ button, which opens the import wizard to load 

the neural recordings as an m × n matrix, where m is the 

number of channels and n are the data points of each 

channel signal. �e compatible formats include ASCII-

based text (.txt, .dat, .out, .csv), spreadsheets files (.xls, 

.xlsx, .xlsm), and Matab files (.set, .mat), which corre-

spond to 93% of the surveyed data in Fig. 1. �e user is 

required to input the sampling frequency in Hz and the 

window length in seconds that they wish to analyze. In 

addition, the unit of the recording and the opportunity to 

scale is presented, as lots of errors happen due to incor-

rect annotations of magnitudes.

Once all of these parameters have been filled, ‘Generate 

Analysis Matrix’ will structure the data for posterior 

analysis. �is means that given a window length w, and 

sampling frequency f, the m × n matrix becomes a new 

Fig. 5 Functional block diagram of the Toolbox.Arrows in black correspond to the “Data Labeling” module , in red to the “Neural Network Training” 

module, in dark blue to the “Classify New Unlabeled Data” module, and the purple arrows indicate the progress output
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p × q
 one, where p =

m×n
w×f  and q = w × f  . �is is incor-

porated into a table that has row names that follow the 

format ‘file_id+_channel_+i+_window_j’ where file_id is 

the name of the LFP data file, i the number of channels 

where i = 1, . . . ,m and j the corresponding window. In 

addition, its columns are named: first “window_power” 

followed by the values of the signal 
tk

 where k = 1, . . . , q . 

As this process involves the creation of p amount of row 

names and window’s power, a memory check is done to 

read available memory and alert if the usage of more than 

80% of the available memory would be needed.

�e option to save these data for posterior classifica-

tion is presented as ‘Save Unlabeled Data’. Otherwise, 

the user continues by selecting a channel in the drop-

down menu or clicking on a table cell and the ‘�reshold 

Selection Table’ process. �is opens a new window with 

the structured data table, and by clicking on a row, the 

options to plot the selected window or to define its power 

as a threshold value appear. As a visual aid, windows with 

same or higher power are colored red and those with less 

green, i.e., artifactual and normal, respectively.

In another manner, the user can manually input thresh-

old values in the main app’s table, and once he has com-

pleted it for all channels, the data can be labeled and 

saved as a standardized struct, which contains the orig-

inal filename, the structured data with its labels, the 

sampling frequency, window length, the scale, and the 

threshold values. �is information allows researchers to 

quickly identify different matrices they create and wish to 

compare. An aid in form of text in the ‘Progress’ banner 

allows the users to know when each step has been com-

pleted, and it is replicated throughout each module.

�e user can also structure the data for SigMate analy-

sis. �e toolbox expects a datapoints(n) × channels(m) 

format, with the first column as timestamp and each of 

the channel’s signal in the following columns. In addition, 

Fig. 6 Workflow of the SANTIA toolbox, where the “Data Labeling” modules are colored yellow, the “Neural Network Training” modules in green, and 

“Classify New Unlabeled Data” modules in blue
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Table 4 Guide to determine best channels and epochs to use of baseline walk and rest recordings in medial prefrontal cortex (mPFC) 

and the mediodorsal (MD) thalamus, as mentioned in the file named “Coherence Phase Plot Guide”

The �rst column is the rat identi�cation, column 2 and 3 the selected two best channels of the mPFC recordings, and 4 and 5 of the MD recordings. Finally, column 6 

shows the range of artifact-free epochs during walking and column 7 during resting, respectively [74]

Rat mPFC chan1 mPFC chan2 MD chan1 MD chan2 Walk epoch Rest epoch

KF9 5 6 3 7 960–1160 3780–3820

KF10 3 4 3 8 670–860 1260–1390

KF14 2 6 5 7 740–940 3350–3550

KF15 3 4 5 7 450–640 1600–1700

KF25 2 6 2 5 1480–1680 1700–1800

KF26 1 6 1 6 1180–1380 1050–1150

KF27 2 4 5 8 480–680 2160–2250
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as it only handles five channels at a time, m/5 files have 

to be generated. �us, SANTIA transposes the input 

matrix, generates the timestamp based on the declared 

sampling frequency, and generates the files. Afterward, it 

asks the user to select a directory to save them.

3.2.2  Neural network training

�e second module starts with loading structured data 

from the previous module. �e user is asked to set the 

values for training, validation, and test splitting. �is is 

common practice to avoid over- and under-fitting results. 

As artifacts are rare events, the datasets usually present 

strong imbalance which can cause bias in the training; 

a tick box for balancing the data is present next to the 

‘Split’ button. Clicking it generates three datasets with 

non-repetitive randomized elements from the original 

matrix.

�is is followed by choosing the network, where the 

options are MLP, LSTM, 1D-CNN, or for the user to 

load his/her custom set of layers. �is is done by choos-

ing a Matlab file which has a Layer-type variable, i.e., 

layers that define the architecture of neural networks 

for deep learning, without the pre-trained weights. 

�ese can be modified via console or the Deep Network 

Designer Toolbox, and for more information, we direct 

the reader to the mathworks page1. While employing dif-

ferent architectures might yield better results, it is also 

possible that they might not be structured properly and 

lead to under-fitting, over-fitting, or fail to learn at all. 

�erefore, a limitation of employing custom networks 

is the time consumption that takes getting the correct 

combination of layers, as well as setting parameters such 

as filter size or activation function. Optionally, the user 

can customize the training hyper-parameters such as 

the solver, initial learning rate, and execution environ-

ment, among others. �ese intentionally mirror the ones 

included in the Deep Network Designer to facilitate its 

usage to those familiarized with it. �ese are removed 

for the MLP option, as it uses a different toolbox (i.e., 

patternnet of Deep Learning Toolbox [73]), which thus 

does not allow the same configurations. Clicking the 

‘Create Network” button loads the training options and 

sets the input layer to match the window size.

�e ‘Train Network’ button runs the train net-

work function, which inherits the training options 

and network previously defined. For the 1D-CNN, as 

the deep learning toolbox is intended for images, the 

2D matrices are resized to a 4D vector: 1 × window 

length × 1  × number of windows, originally intended 

to be: width × height × channels × number of examples. 

A display of the training process automatically appears, 

unless the user decides not to, which enables monitor-

ing the process and early stopping.

Having completed the training, the user can select 

whether the ‘Classify Test Set’ displays the confusion 

matrix, the area under the receiver-operating charac-

teristic (AUROC) curve, or opens up a new window 

where the accuracy, F1 score, and confusion matrix 

appear along with the possibility to modify the classi-

fication threshold (set at 0.5 by default). Finally, ‘Save 

Results’ creates a struct with data’s filename, the trained 

network, the training information, the test set’s classifi-

cation threshold, AUROC, accuracy, F1 score, and con-

fusion matrix.

3.2.3  Classify new unlabeled data

�e last module begins with loading a trained net along 

with its classification threshold and unlabeled structured 

data. After its classification, the options to plot each of 

the windows with the corresponding color-coded label 

appear. Finally, users can save the labels as a table with 

the corresponding window name. Having described the 

toolbox’s methods, components, and its functions, we 

proceed to a test case with real recorded LFP.

4  Results

In this section, we describe the datasets used to test the 

app, and the results obtained from them. �e artifact 

detection task carried out by SANTIA toolbox was tested 

on a daily usage grade Acer TravelMate P278-MGlaptop 

consisting of 8 gigabyte of RAM and Intel®Core™i7-

6500U CPU @ 2.50 GHz processor.

Table 5 First dataset’s results for different architectures and 

sequence length: training loss, validation accuracy, testing 

accuracy, and testing AUROC

Values pertaining to model’s best performance are highlighted in bold

Network Sequence 
length 
(ms)

Training 
loss

Val. Acc. Test Acc. Test AUROC

MLP 50 0.20 0.92 0.92 0.98

100 0.41 0.82 0.81 0.90

150 0.39 0.83 0.83 0.90

200 0.24 0.91 0.91 0.97

1D-CNN 50 0.10 0.96 0.97 0.99

100 0.39 0.84 0.84 0.89

150 0.37 0.83 0.83 0.91

200 0.36 0.83 0.83 0.91

LSTM 50 0.16 0.93 0.94 0.99

100 0.26 0.90 0.91 0.97

150 0.25 0.89 0.90 0.97

200 0.25 0.91 0.90 0.97

1 https:// uk. mathw orks. com/ help/ deepl earni ng/ ref/ nnet. cnn. layer. layer. html

https://uk.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.layer.html
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4.1  Dataset 1

A publicly available dataset [74] was used to test the 

toolbox. �orough details of the recording and experi-

ment are explained in the article linked to the dataset 

[75]. Male Long Evans rats (Charles River, Frederick, MD, 

USA) weighing from 280 to 300 g were trained to walk on 

a circular treadmill. �e recorded LFP were sampled at 

2 kHz, and after low-pass filtering, they were amplified 

times a thousand and band-pass filtered (0.7–150 Hz).

For the purpose of testing the toolbox, only the base-

line recordings (prior to ketamine injection) were used. 

Baseline recordings were composed of at least two 5-min 

counter-clockwise walking cycles on a slow-moving 

treadmill and two 40-s rest periods without artifacts. 

Visual evaluation and videotaped motor activity were 

used to classify artifact-free periods of 100 s in treadmill-

on epochs and 40 to 100 second periods in treadmill-off 

epochs, which are detailed in Table 4. �ese labeled arti-

fact-free epochs were used to extract the threshold power 

Fig. 8 Training plots for models trained with the second dataset
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value for each channel. It was chosen as the maximum 

power of the windows in those intervals, for each respec-

tive window size.

To understand the effect of window size on the artifact 

detection process, different windows of 0.05, 0.1, 0.15, 

and 0.2 s were taken and fed to the model. �e number 

of examples obtained after downsampling to balance the 

classes was on average 275, 687 per window size. For the 

1D-CNN and LSTM, the optimization algorithm used 

was Adam, with an initial learning rate of 0.001, the 

momentum of 0.9, and a batch size of 1280. On the other 

hand, the MLP was optimized via a scaled conjugate gra-

dient function. �e performance of the models during 

training is shown in Fig. 7. As they originate from differ-

ent toolboxes, the MLP does not generate the accuracy 

throughout the training, and thus, it is not shown.

�ese results are consistent with previously obtained 

ones. �ey indicate that since the filters from the 

1D-CNN learn from regions of the signal, instead of the 

individual values, they are able to learn more robust fea-

tures of the signals and lead to better classification. Per-

formance on the test sets is similar to that obtained in the 

validation set, as shown in Table 5. �e best test set clas-

sification results were achieved by the 50 ms 1D-CNN, 

an accuracy of 96.5% , and an AUROC of 0.993, indicating 

that the network has been able to learn successfully.

4.2  Dataset 2

�e toolbox was tested using LFP recorded from rats as 

previously described in [37, 76]. �e LFP were downsam-

pled to 1017.3 Hz and low-pass filtered (with a 0–500 Hz 

cut-off frequency). 294,  592 zero-mean examples were 

used in this task which were divided into training (80%), 

validation (10%), and testing (10%) sets, and used to train 

the models with the same hyper-parameter configuration 

used with the previous dataset.

Figure  8 displays the performance of the training and 

validation set of the different sequence lengths for the 

two architectures, while the results are compiled in 

Table  6. Overall, the 1D-CNN outperforms the MLP 

and LSTM across window sizes. Models with input size 

of 150 ms have the lowest losses and highest accuracies, 

meaning that it is the best trade-off between information 

fed the model and its performance, among the chosen 

window sizes for this dataset. As shown, different data-

sets are probable to have different optimal trade-offs 

between window size and accuracy, due to factors such as 

sampling rate and artifact frequency.

�e results are on par with the previous dataset, indi-

cating that the method is robust and possesses generaliz-

ability. �e 1D-CNN model has shown to obtain the best 

scores in both cases, establishing it as the better architec-

ture for this type of data.

4.3  Outputs

Figures  9, 10, 11 and 12 show output windows of the 

toolbox generated during its operation. Figure 9 displays 

output windows generated after the data file is loaded. 

�ey include the selection of threshold, as shown in 

Fig.  9A, where green lines show windows representing 

data above the threshold and red lines show below it, and 

two representative figures of normal (in Fig. 9B) and arti-

factual windows (in Fig. 9C). Figure 10 shows the output 

windows for the neural network training process which 

currently support MLP, LSTM, and 1D-CNN. As the net-

works come from different Matlab-toolboxes, their indi-

vidual configurations require separate processes which 

are represented in Fig.  10A, B for MLP and 1D-CNN/

LSTM, respectively. After having completed the training, 

the different plots of the test set results of the first dataset 

for the 50 ms window that were generated are shown in 

Fig. 11. As a part of allowing the user to evaluate the per-

formance of the models, these figures show the confusion 

matrix (see Fig. 11A), AUROC curve (see Fig. 11B), and 

accuracy and F1 score for given classification thresholds 

(see Fig. 11C, D). Finally, Fig. 12 illustrates the contents 

of output files generated in each module. �ese files are 

saved in Matlab format (.mat) and contain key values for 

the user to quickly access them, as well as the processed 

variables needed for any posterior predictions.

Table 6 Second dataset’s results for different architectures 

and sequence length: training loss, validation accuracy, testing 

accuracy, and testing AUROC

Values pertaining to model’s best performance are highlighted in bold

Network Sequence 
length 
(ms)

Training 
loss

Val. Acc. Test Acc. Test AUROC

MLP 50 0.24 0.78 0.78 0.857

100 0.27 0.89 0.86 0.94

150 0.15 0.94 0.95 0.99

200 0.16 0.94 0.96 0.98

1D-CNN 50 0.18 0.92 0.91 0.97

100 0.15 0.94 0.96 0.97

150 0.01 0.99 0.99 0.99

200 0.08 0.98 0.97 0.99

LSTM 50 0.25 0.86 0.86 0.94

100 0.26 0.89 0.89 0.96

150 0.02 0.97 0.97 0.99

200 0.07 0.96 0.96 0.99
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5  Discussion and conclusion

We developed the SANTIA toolbox to facilitate and 

standardize the labeling of artifacts in recorded LFP. 

�e simple three-module GUI is designed for research-

ers without a programming background, and the built-in 

methodology will allow them to quickly scan and detect 

the artifacts in their data. It is a project under constant 

development, and the current version provides an envi-

ronment where new features can quickly be implemented 

and adapted to the toolbox. Examples of future develop-

ments include:

Online processing �e tool currently allows for offline 

labeling, but we wish to expand it a allow the analysis 

Fig. 9 Screenshots of the toolbox’s threshold selection outputs: threshold selection table (A), a window of a non-artifactual signal (B), and a 

window of an artifactual signal (C)
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of signals as they are being recorded, to optimize the 

process.

Expand format compatibility �ere are different librar-

ies for deep learning such as the TensorFlow-Keras, 

Caffe, and the ONNX (Open Neural Network Exchange) 

model formats for neural network layers [46]. We wish to 

add the possibility to read those formats, and in addition 

the options to import from and save to HDF5 files for the 

neuronal data under the epHDF standard [77].

Fig. 10 Screenshots of the toolbox’s network training outputs: multi-layer perceptron training process (A) and one dimensional convolutional 

neural network training process (B)
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Fig. 11 Screenshots of the toolbox’s network test set results outputs: confusion matrix (A), AUROC curve (B), threshold selection window with 

default (C), and custom values (D)
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User experience As this app is adopted by the commu-

nity, with the feedback, we will improve its shortcom-

ings. �e inclusion of testing data, a video tutorial and 

upgrades of the threshold selection to facilitate its use 

via graphic elements is also planned. �e optimization of 

some routines via parallelism is also a feature we wish to 

include, due to the possible large sizes of data files.

Multi-modality �e incorporation of another source 

of information (e.g., sensor signal or video) can facili-

tate and improve the detection of artifacts [78]. A new 

module would allow the incorporation of such data to 

facilitate the labeling process or as part of a classification 

model’s input.

Artifact removal Future work will pursue this aspect of 

artifact analysis as well, with state-of-the-art techniques 

such as denoising autoencoders [79, 80].

Portability As a long-term goal, we consider the imple-

mentation in a portable device, e.g., FPGA or Arduino 

board, to expand the practicality of its usage.

To conclude, SANTIA now represents an option for 

researchers looking to label artifacts in LFP recordings 

automatically. �is is a work in progress, and some fea-

tures are yet to be developed; however, the tests with a 

public and custom dataset have shown promising results. 

We hope that the neuroscience community adopts this 

tool, and with their feedback together with our future 

plans, an improved toolbox is achieved.
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