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Abstract

Motivation: Today, we know the function of only a small fraction of all known protein sequences identified.
This problem is even more salient in bacteria as human-centric studies are prioritized in the field and there is
much to uncover in the bacterial genetic repertoire. Conventional approaches to bacterial gene annotation
are especially inadequate for annotating previously unseen proteins in novel species since there are
no proteins with similar sequence in the existing databases. Thus, we need alternative representations of
proteins. Recently, there has been an uptick in interest in adopting natural language processing methods to
solve challenging bioinformatics tasks; in particular using transformer-based language models to represent
proteins has proven successful in tackling various challenges. However, there are still limited applications
of such representations in bacteria.
Results: We developed SAP, a novel synteny-aware gene function prediction tool based on protein
embeddings, to annotate bacterial species. SAP distinguishes itself from existing methods for annotating
bacteria in two ways: (i) it uses embedding vectors extracted from state-of-the-art protein language models
and (ii) it incorporates conserved synteny across the entire bacterial kingdom using a novel operon-
based approach proposed in our work. SAP outperformed conventional annotation methods on a range of
representative bacteria, for various gene prediction tasks including distant homolog detection where the
sequence similarity between training and test proteins was 40% at its lowest. SAP also achieved annotation
coverage on par with conventional structure-based predictors in a real-life application on Enterococcus
genes of unknown function.
Availability: https://github.com/AbeelLab/sap
Contact: t.abeel@tudelft.nl
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Proteins are the fundamental functioning units of all living life: ranging
from providing structural support, and catalyzing reactions to regulating
processes. Despite their importance, we know the function of only a
small fraction of all the proteins identified. With the increasing amount
of genetic data available due to development of next generation high-
throughput sequencing technologies, there is an even greater need to
uncover the function of biological sequences. It is very costly to determine

gene function experimentally and manually annotate proteins; hence many
people resort to computational approaches instead. Unfortunately, our
understanding of protein function has not been able to keep up with the
advances in DNA sequencing technology.

The Gene Ontology (GO) knowledgebase, was developed to describe
the function of biological sequences for both practical uses as well as
computational applications (Ashburner et al., 2000). The ontology itself
is a hierarchical representation of protein function in three categories:
Biological Process Ontology (BPO), Molecular Function Ontology (MFO)
and Cellular Component Ontology (CCO). Thus, understanding protein
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function becomes a computational task: to figure out which of these GO
terms can be assigned to a protein sequence.

Conventional approaches to predicting protein function rely on
sequence homology; it is assumed that proteins with similar sequences
should also have similar functions. Initial methods employed sequence
search tools such as BLAST or DIAMOND to query a database of known
protein sequences and their functions (Altschul et al., 1990; Buchfink
et al., 2021). The major downside is that these methods are limited by
their databases; there could be annotation errors, and it is often difficult to
determine a proper threshold to transfer protein function, resulting in low
sensitivity and specificity (Zhou et al., 2019).

The increased amount of data available has allowed researchers to
explore data-driven, machine learning techniques. Initial work in function
prediction used features derived from the sequence of interest in supervised
machine learning models such as neural networks (NNs) and support vector
machines (SVMs), or k-nearest neighbor (knn) algorithms (Jensen et al.,
2003; Törönen et al., 2018). For instance, FFPred, one of the most popular
methods, uses features such as the amino acid composition, localization
information, molecular weight, charge etc. as input to predict gene function
(Lobley et al., 2007).

More recently, deep learning gained increased attention in the field
of gene function prediction. A promising line of work emerged when
researchers started to employ ideas from natural language processing
(NLP), in particular the use of word embeddings and language models,
to protein function prediction by developing protein language models
(pLM) (Heinzinger et al., 2019; Elnaggar et al., 2020; Rives et al.,
2021). Analogous to the earlier models based on features calculated from
sequence data, word embeddings construct feature vectors of protein
sequences. These feature vectors can then be used as input to various
machine learning models to predict GO terms. Contextualized word
embeddings have already been demonstrated to be successful for predicting
GO terms as well as the structure and localization prediction, and refining
protein family clusters (Elnaggar et al., 2020; Littmann et al., 2021a;
van den Bent et al., 2021; Weißenow et al., 2022).

Despite the evident progress and the growing interest in using
deep learning for function prediction, the field is still dominated by
human-centric studies, or developments focusing on model species
(Odrzywolek et al., 2022). The Critical Assessment of Functional
Annotation (CAFA), established to evaluate the state-of-the-art in function
prediction, has separate tracks for eukaryotic and prokaryotic species, and
their prokaryotic track is heavily biased towards one model organism:
E. coli (Zhou et al., 2019). Their benchmarks have also revealed that
performance in the prokaryotic track is consistently worse than the
eukaryotic counterpart. We presume that we have much to uncover in
the bacterial generic repertoire by not only discovering novel genes but
also developing new techniques to advance gene function prediction in
bacterial genomes. Compared to eukaryotes and the human genome in
particular, remote homology detection, i.e. predicting gene function in the
absence of known proteins with sequence homology, is a larger issue in
the bacterial kingdom due to genetic diversity.

By definition, predicting gene function is the same problem regardless
of the organism. However, there are certain characteristics unique to
bacterial genomes. An example of a such trait that plays a central role in
our work is the idea of an operon, where a group of genes is co-localized
on the same strand within the same contig, and this particular collection
of genes as well as their order are preserved since they function in the
same metabolic pathway, and they are co-regulated and co-transcribed.
These conserved neighborhoods of genes, if they are used properly, can
provide valuable information to infer the function of constituent genes.
We hypothesize that contribution from conserved synteny is orthogonal to
both the amino-acid sequence and the embeddings-based representation

of a gene, especially in the biological process GO category which includes
pathways, and it is the ontology least correlated with the protein sequence.

In this work, we develop SAP, a novel synteny-aware approach to
bacterial gene function prediction based on protein embeddings. SAP
has two notable features that, to our knowledge, render it unique
among the existing tools for annotating bacteria: (i) it uses embedding
vectors extracted from state-of-the-art protein language models and (ii)
it incorporates conserved synteny across the entire bacterial kingdom by
making use of the bacterial operon database we built based on a purely
computational, bottom-up approach.

We designed two different experiments to evaluate SAP: the first
experiment is based on the SwissProt database and makes use of
experimentally determined ground truth labels to make robust, quantitative
assessments. Whereas in the second experiment, we used a set of
unlabeled Enterococcus genes and we compared SAP’s performance
qualitatively against conventional bacterial genome annotation tools. We
demonstrate that conserved synteny and protein embeddings both provide
useful information for predicting the protein function; SAP outperforms
conventional sequence-based bacterial genome annotation pipelines and
its performance is on par with structure-based approaches.

2 Materials and methods

2.1 SwissProt data set

To build the experiments, we retrieved all the manually reviewed entries
from the SwissProt Database (release 2021-04, retrieval date 10 November
2021) (The UniProt Consortium, 2018), which was filtered down to include
proteins of sequence length [40,1000] and with at least one experimental
GO annotation. We selected the evidence codes: EXP, IDA, IPI, IMP, IGI,
IEP, HTP, HDA, HMP, HGI, HEP, IBA, IBD, IKR, IRD, IC, TAS. To reduce
the redundancy, we clustered the proteins using CD-HIT (Li and Godzik,
2006) at 95% sequence similarity. The final dataset comprised 107,818
proteins in total.

To evaluate the performance of our method on bacterial gene function
prediction, we created five separate train/test splits for the most represented
bacterial organisms in our final dataset. For each organism, we created
five additional training sets (subset of the largest training set) where the
sequence similarity (calculated using BLASTp (Altschul et al., 1990)) of
test proteins was at most 40%, 50%, 60%, 70% and 80% to the training
proteins. In the end, we have 30 train/test splits. Table 1 shows the number
of proteins in each train/test set pair we generated as subsets from the
SwissProt dataset.

2.2 Unlabeled Enterococcus gene data set

While the SwissProt database is made up of protein sequences labeled
with the ground truth, our final experiment was performed on a set of
4380 genes with no experimental annotations, extracted from four different
Enterococcus species (E. moraviensis, E. hirae, E. gilvus, E. columbae),
representing four Enterococcus clades present (Lebreton et al., 2017) (see
Supplementary Table S1 for the assembly statistics and genome metadata).
These genes were selected because they were labeled as hypothetical
protein by prokka (v 1.14.6) (Seemann, 2014), i.e. they could not be
annotated with the most commonly used bacterial gene annotation pipeline.

2.3 Building a bacterial operon database

In this work, we opted for a bottom-up, computational approach to build
the most comprehensive bacterial operon database possible. We start at
level of the gene, and move up within the constraints of our operon model
to obtain a collection of bacterial operons of varying lengths, and sizes.
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SAP: Synteny-aware gene function prediction for bacteria using protein embeddings 3

Table 1. Total number of proteins in the train/test set pairs generated from the SwissProt dataset to evaluate function prediction tools on bacterial organisms. For
each organism, the test set remains constant whereas the training set is restricted according to the maximum sequence similarity allowed.

Organism name
Test set
size

Training set size
40 50 60 70 80 Full

Escherichia coli (ET) 3454 87014 96471 100445 102262 103229 104377
Mycobacterium tuberculosis (MT) 1666 95367 102531 105158 105917 106114 106152
Bacillus subtilis (BS) 1636 93363 101112 104325 105609 106015 106182
Pseudomonas aeruginosa (PA) 1014 94679 101338 104644 106186 106680 106804
Salmonella typhimurium (ST) 774 100928 104164 105384 105980 106340 107044

First, we downloaded the entire Genome Taxonomy Database (GTDB
Release 202, retrieved on 31/03/2022) (Parks et al., 2021), which is
a collection of all the bacterial representative genomes. The database
contained 258,406 genomes in total, 45,555 of which were representative
assemblies. We extracted all the protein sequences from the standardized
annotations GTDB provides for these representative assemblies, and
clustered them using CD-HIT (Li and Godzik, 2006) at 95% sequence
identity with default parameters. CD-HIT output was filtered to keep only
the clusters that contained at least 10 genes. This step resulted in 372,308
clusters of bacterial genes in total.

Next, we formed the initial operon database by grouping together
clusters if at least one of the cluster members is located on the same
contig and same strand within 2000 bp distance (subdiagram A. in Fig.
1). This yielded 1,488,249 such non-singleton candidate operons. As a
final step, we iterated over the operons to either remove those with an
intergenic distance larger than 300 bp, or split into multiple operons if
possible (subdiagram B. in Fig. 1). We chose to restrict the intergenic
distance within operons to 300 bp. The threshold values used when building
our operon database, such as the maximum operon length in bp, number
of genes in an operon, and maximum intergenic distance allowed, were
determined based on our general expectations from a bacterial operon as
well as experimentally determined operons collected in ODB (version 4)
(Okuda and Yoshizawa, 2010).

We downloaded both the known and conserved operon databases from
ODB on 31/03/2022. We identified operons belonging to E. coli and B.
subtillis, as (i) these two organisms form the basis of a large part of the
experiments in this work, (ii) we could easily cross-reference the protein
IDs in ODB to the locus tags in the respective genome assemblies and
(iii) they are two of the most well-represented organisms in ODB. The
conserved operon database contained 8235 unique operons in total, and
we used this database to extract descriptive statistics and common patterns
found across several operons conserved among bacterial organisms. The
known operon database, on the other hand, was used to model features of
operons within a genome, such as an operon length in bp and the intergenic
distance between two adjacent genes in an operon. At the end of this
procedure, our operon database consists of 406,293 unique non-singleton
operons, and the largest operon is 25 genes long.

To summarize each operon, we extracted the protein embedding
vectors for the representative protein sequence of clusters found in that
operon, and we took the average of these embeddings (subdiagram C. in
Fig. 1). Here, we used ESM-1b, a transformer-based protein language
model developed by Rives et al., 2021, to extract the embeddings.

Then, we labeled the operons by assigning GO terms, if possible. Since
there are no experimental annotations for the proteins that form the basis of
our operon database, we labeled the operons based on sequence similarity.
We used BLASTp (Altschul et al., 1990) to calculate pairwise sequence
similarity to the entire dataset we have made for evaluating SAP, i.e. the

non-redundant SwissProt database with experimentally determined GO
terms (all 107,818 entries). We transferred GO terms found in significant
hits using the frequency of each GO term among these hits as the predicted
scores. In this step, a significant hit has an e-value less than 1e-6 and a
bitscore greater than 50. With this approach, we could assign at least one
GO term to 295,446 of the clusters (out of 372,308), which in turn yield
388,377 non-singleton operons (out of 406,293) annotated with at least
one GO term.

In order to be consistent with our experimental set-up based on
the SwissProt database, we restricted our operon database for the low-
similarity experiments as well. We followed the same procedure as we
did to generate subsets of the SwissProt training sets: we used BLAST to
calculate the pairwise sequence identity of each query point to the protein
clusters that form our main operon database. We removed clusters if they
were more than 40%, 50%, 60%, 70%, 80% and 95% similar to at least one
of the query points in the test set. Since this operation altered the content
of operons (unless they were removed completely), we re-calculated the
intergenic distance for the remaining clusters and we split the operons
where the intergenic distance exceeded our threshold, 300 bp. This final
step is exactly the same as we did when we created the main operon
database (subdiagrams B and C. in Fig. 1).

2.4 Baseline gene function prediction methods

As the first baseline for gene function prediction, we picked a BLAST
(v. 2.12.0) (Altschul et al., 1990) and an HMM-based approach. For the
BLAST baseline, we transferred GO terms from significant BLAST hits
(e-value < 1e-3) of a query protein with a predicted score of the maximum
sequence identity. As an alternative, we also tried the GO term frequency-
based approach suggested by (van den Bent et al., 2021) and (Zhou et al.,
2019), but we found the maximum sequence identity to perform better
in our experiments. We used the same training set for both the BLAST
queries and the nearest neighbor predictors.

Our second baseline is an HMM-based approach. We ran HMMER
(Eddy, 2011) against the Pfam database and we applied the frequency-
based approach instead, i.e. we transferred GO terms from all significant
hmm hits (e-value < 1e-3) to the query protein, using the frequency of a GO
term (number of instances a term was observed among the significant hits)
as the predicted score. To compare Pfam outputs quantitatively with the rest
of the methods, we used the mapping tables provided by GO consortium to
obtain GO terms corresponding to each Pfam ID (Ashburner et al., 2000).
Since the Pfam database is independent of the train/test pairs we generated
for our experiments, we report the same numerical results for all pairs.

2.5 Nearest neighbor predictor based on protein
embeddings

For the nearest neighbor predictor, we chose the ProtT5-XL-U50 (T5 in
short) (Elnaggar et al., 2020) and ESM-1b (ESM in short) (Rives et al.,
2021) protein language models to represent protein sequences. To extract
amino-acid level embedding vectors, we used bio_embeddings (v 0.2.2)
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Fig. 1: Schematic diagram of our operon building algorithm: striped rectangles are amino-acid sequences, and solid-filled rectangles are numerical
embedding vectors. A. 2000 bp-long gene neighborhoods are extracted from all genomes, gray-filled, striped rectangles are genes represented by amino-
acid sequences. B. We replace the genes with the clusters they belong to and their amino-acid sequences with those of the representative gene of each
cluster (orange striped rectangles); hence forming a set of potential operons. Then, we iterate over the potential operons and edit them to ensure all the
intergenic distances are below 300 bp (ex. the bottom orange gene cluster is removed). C. Once the final operon structures are determined, we extract
numerical embedding vectors for all clusters and we create a new representation for each operon out of these vectors: this representation consists of the
average embedding vector and a set of GO terms, paired with their corresponding frequency among the clusters that make up the operon (blue rectangles,
different shades mean GO terms are found in different frequencies). The final operon database is a collection of such representative embedding vectors
and GO term frequency vectors.

(v 0.2.2) (Dallago et al., 2021) with default settings. Then, we obtained
protein-level embeddings (1024 dimensional vectors for T5 and 1280
for ESM) by taking the average over individual aminoacid embeddings
to obtain embedding representation vectors. Since in our preliminary
experiments, we found that the embeddings extracted from the ESM model
performed better, we use only the ESM model throughout this work as well.

The nearest neighbor predictor (named knn throughout this work) was
designed in a similar manner to goPredSim (Littmann et al., 2021b). For
each query protein, we find its nearest neighbors in the training set based
on the similarity of their embedding vectors. The nearest neighbors of a
query protein are defined as those with similarity larger than the threshold,
which we calculate separately for each query as the xth percentile among
all pairwise similarity values, where x parameter is set to 99 percentile.
We transfer GO terms from the nearest neighbors with a score equal to
their cosine similarity to the query point. As the final prediction, we keep
only the maximum score for each GO term transferred from the nearest
neighbors. Throughout this work, we use cosine similarity to determine
the similarity between any two embedding vectors e⃗1 and e⃗2.

sim(e⃗1, e⃗2) =
e⃗1 · e⃗2

||e⃗1|| · ||e⃗2||
, (1)

where e⃗1 and e⃗2 are both real-valued vectors, e⃗1 · e⃗2 represents the dot
product between e⃗1 and e⃗2, and ||e⃗i|| is the Euclidean norm of vector e⃗i,
where i = 1, 2.

2.6 SAP: Synteny-aware function prediction using protein
embeddings

Our novel function prediction tool SAP uses protein embeddings to
represent amino-acid sequences and exploits conserved synteny among
bacterial operons for function prediction. SAP consists of two main
components: (i) assigning operons to a query point from the pre-computed
bacterial operon database (subdiagram A. in 2) and (ii) transferring GO
terms from the operons to the query point (subdiagram B. in Fig. 2).

For each query point, we identify the most suitable operons in our
database following the same procedure as we did for the nearest neighbor
predictors based on protein embeddings. In short, we calculate the pairwise
cosine similarity between the query point and the average embedding
vectors representing operons in the database. We assign an operon to the
query point if the pairwise similarity between the operon embeddings and
the query embeddings is greater than a threshold, where the threshold is
calculated for each query point as the 99th percentile among all pairwise

Fig. 2: Overview of SAP algorithm: predicting GO terms of a query protein.
A. SAP assigns an operon (or multiple operons) to the query protein (red
filled rectangle on the left) represented using embeddings from ESM-1b
LM, based on cosine similarity. Consistent with Fig. 1, green rectangles
show operons paired with the corresponding GO term frequencies (blue
rectangles). In this example, three operons that passed the threshold are
assigned to the query, and their GO term frequencies are weighed down by
multiplying with the cosine similarity. B. All GO terms from the assigned
operons are transferred to the query, where the final predicted score of a
GO term is the maximum of all the multiplied values for the term.

similarity values. In our current implementation, we do not have any
restrictions on operons assigned to a query point: given that the most
suitable operons are picked among the same set of operons used to calculate
the threshold, at least one operon is assigned to each query point.

For all such operons assigned to the query point, we also retrieve the
GO term frequencies. We transfer all the GO terms found in the assigned
operons using the frequency of the terms multiplied by the cosine similarity
of the query point to the operon as the predicted score. For each GO term.
the predicted score is the maximum of these values. As the final step,
we normalize the predicted scores separately within three GO classes.
In this work, SAP uses the operon database we created according to the
procedure described in subsection 2.3 and illustrated in Fig. 1. Fig. 2
shows an overview of the SAP algorithm excluding the final step where
the predicted scores are normalized.

In addition to using SAP on its own as we propose, we also tested
running SAP using only the operon database (titled SAP-operon), i.e. we
removed all singleton entries from the database and relied only on those that
were at least two genes long. Evaluating SAP-operon along with SAP and
knn, it is possible to assess the contribution of using our operon database
on SAP’s performance.
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2.7 Annotation of unlabeled Enterococcus genes

For the unlabeled Enterococcus genes experiment, we evaluated four
different approaches in bacterial gene annotation: (i) using the prokka

annotation pipeline (v. 1.14.6) (Seemann, 2014), which runs multiple
sequence homology-based function prediction tools under the hood (ii)
running HMMER (v 3.3.2) (Eddy, 2011) against the Pfam database (release
32.0) (Paysan-Lafosse et al., 2023), (iii) running eggNOG mapper (v
2.1.10) (Huerta-Cepas et al., 2018; Cantalapiedra et al., 2021) and (iv)
running Phyre2 web-server (v 2.0) (Kelley et al., 2015), a structure-based
function prediction tool. All tools were run using the default parameter
settings; for both HMMER and eggNOG mapper, a significant hit is defined
as those with an evalue less than 1e-3, while for Phyre2, a significant hit
has a confidence value greater than 95%.

2.8 Evaluation

In our experiments on the SwissProt dataset, we evaluate 6 methods in
total: two baselines (BLAST and Pfam), a nearest neighbor predictor based
on protein embeddings extracted using the ESM-1b model (knn), SAP
and its variant SAP-operon, where only the operon component of SAP is
retained, and DeepGOPlus. As a final step, we propagated the predicted
GO term scores based on the GO hierarchy because DeepGOPlus by
default propagates the predicted scores. We followed the same procedure
as described by Kulmanov and Hoehndorf (Kulmanov and Hoehndorf,
2019); for each GO term, we assigned the highest predicted score among
all its children. This additional post-processing step was implemented
only in our SwissProt experiments so as to compare SAP’s performance
to DeepGOPlus, and not in the Enterococcus experiments.

We evaluated these predictors using the maximum F1-score (Fmax),
minimum semantic distance (Smin) as described in (Radivojac et al., 2013),
consistent with the CAFA challenges. We also report the coverage, the
number of test proteins annotated with at least one GO term at the threshold
which maximizes the F1-score.

In the unlabeled Enterococcus genes experiments, we compare
different approaches to annotation based on their coverage, i.e. number of
genes annotated. In this case, a gene is annotated if a meaningful functional
label was assigned, hence, genes labeled with the function "domain of
unknown function (DUF)" and "hypothetical protein" are not counted as
annotated.

3 Results and discussion

3.1 The universal bacterial operon database

We demonstrate the validity of our bottom-up, purely computational
approach to building a database of bacterial operons by comparing it to
known, experimentally determined operons found in ODB. The underlying
hypothesis in constructing our own database was that given enough data, it
is possible to model the landscape of bacterial operons accurately enough
to improve the bacterial function prediction.

ODB was among the sources we utilized when designing our operon
prediction pipeline, in particular, their conserved operon database. The
conserved operon database from ODB is essentially an expansion on
their known operons where the additional operons were determined
from orthologous genes found in multiple genomes that are located
consecutively on the same strand of the contig. Our goal in designing
our operon prediction pipeline was to achieve an end product similar to
the conserved ODB database, but more extensive - representing a broader
range of diversity within the bacterial kingdom - and more up-to-date.

Since the conserved ODB was the final product goal of our operon
prediction pipeline, our operon database is, on an aggregate level,
quantitatively similar to it. Fig 3 shows the distribution of the number of
genes in an operon. We emphasize that our operon database was not derived

from ODB but was built from scratch; we used the CDS of representative
bacterial genome assemblies in the GTDB database as the starting point,
and we predicted putative operons based on known heuristics, whereas
ODB is a curated list of experimentally determined operons obtained from
the literature.
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Fig. 3: The procedure we propose for building a representative
operon database predicts operons that are quantitatively similar to the
experimentally determined operons found in the conserved ODB. The
distribution of the number of genes in a predicted operon (operon length)
in our database (subplot B.) is in agreement with the experimentally
determined operons in the conserved ODB (subplot A.). Only non-
singleton operons are shown.

In addition to being in agreement with known operons at a high level,
with our approach, we can predict existing bacterial operons accurately
either partially or completely. We extracted known operons from ODB
which contained E. coli and B. subtillis since these are not only one of
the two most well-studied bacterial organisms in the SwissProt database,
but we can identify and cross-reference their genes with the operon entries
on ODB because ODB maintains the gene locus tags from the SwissProt
database for these organisms. However, for the remainder of the organisms
in our operon database, it was not feasible to cross-reference the genes on
ODB in a reliable manner.

We found 2845 operons on ODB that contains at least one E. coli gene,
1071 of which are non-singleton. In our operon database, we predict 15968
operons with at least one E. coli gene, where 15618 of the predictions are
non-singleton. 13610 of our non-singleton operons (87% of non-singleton
E. coli operons) partially or fully overlap with the known non-singleton
operons, i.e. they share at least one gene in common. Our operon database
is inherently redundant where a single experimentally known operon from
ODB would often be split into multiple predicted operons since we do not
attempt to merge the partial operons.

While it is not feasible to cross-check each individual operon in our
database, here we picked a few of the predictions showcasing the accuracy
of our prediction at different values in Table 3 below. On the right-hand-
side of Table 3 we listed the known operon IDs, names and definitions
from ODB, consistent with their nomenclature. And the left-hand-side of
Table 3 contains the operon ID and the relevant metadata extracted from
our operon database. Our operon database is accompanied by extensive
taxonomic metadata from the GTDB database, hence it is a valuable tool to
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Table 2. Annotation statistics and information content (IC) of operons in our
operon database. GO terms in MFO category are more likely to be transferred
when using sequence homology for annotation transfer.

Annotation statistic BPO MFO CCO
# of annotated operons 268,773 311,424 268,359
Range of # of GO terms [1, 41] [1, 17] [1, 20]
Average # of GO terms
per gene in an annotated operon

0.556 0.543 0.456

Average IC of GO terms
in an annotated operon

10.73 8.786 6.022

Average IC of GO terms
per gone in an annotated operon

3.345 2.711 1.762

Total # of GO terms in the
SwissProt database

16281 6308 2565

explore the bacterial operon landscape. We can observe which species and
lineages an operon is found in (species column in Table 3). In addition,
our operon database can capture the wider context of an operon. The
relBEF toxin-antitoxin system (bottom row in Table 3) is one example
of such case where we observed that the individual functional unit of the
operon, consisting of genes b1562, b1563 and b1564, is often found in
multiple entries in our database. Some of these entries were larger than the
operon itself, and they contained two IS3 family transposase genes located
upstream of the actual operon itself. Thus, with our operon database it is
possible to extract and analyze the surrounding genomic structures of an
operon.

In the interest of creating the most comprehensive collection of
bacterial operons and conserved gene context, we used genomic data with
no experimental annotations. In the absence of ground truth, we assigned
function to our operons by transferring GO terms from similar protein
sequences in the SwissProt database, using medium-level strict thresholds
on both the pairwise identity and significance.

We aim to achieve a middle ground between minimizing false positives
and retaining as many annotations as possible when transferring GO terms
to the operons. However, this approach could potentially yield a training set
that is too sparsely annotated to be for predicting gene function. In our full
SwissProt dataset experiments, we have 388,377 non-singleton operons
(out of 406,293) that are annotated with at least one GO term. Consistent
with findings in the literature, when sequence homology is used as the
basis for transferring annotation, GO terms in the MFO category are more
likely to be transferred. In previous studies, it has been shown that, unlike
BPO and CCO, MFO can be modeled using the primary sequence or,
features derived from it (Zhou et al., 2019). We presume this aspect of the
GO database affects our findings as well because we also report that the
number of operons annotated with at least one GO term is the largest for
the MFO category even though the total number of MFO terms available
in the SwissProt dataset is significantly smaller than that of BPO (Table
2).

3.2 SAP achieves the highest Fmax across multiple
bacteria in the SwissProt database

To assess the performance of SAP, we first observe the prediction results in
the full SwissProt dataset. The train/test pairs we have generated here for
this experiment represent the ideal scenario where the task is to annotate
a new assembly of a known species; it is likely that we have experimental
annotations for genes that belong to different species, but are still closely
related to the new assembly.

Among several protein language models published in the literature,
we tested some of the most recent models based on a transformer
architecture, ProtT5-XL-U50 and ESM-1b, as well as the LSTM-based

SeqVec (Littmann et al., 2021b; Rives et al., 2021; Heinzinger et al., 2019)
in the preliminary stage of our work. As suggested by Littmann et al. we
extracted the protein embeddings from the pre-trained language models to
represent the proteins, and consequently, we used pairwise similarity in the
embedding space to transfer GO terms within a simplified knn framework.
This pared-down method for transferring the GO terms has allowed us to
gauge which language model performs the best on bacteria initially, and
thus would be better suited to form the basis of our proposed method in the
subsequent steps of our work. We found the ProtT5-XL-U50 and ESM-1b
models to yield better results than SeqVec in general, ESM-1b being the top
performer consistently (not shown in the current manuscript). Heinzinger
et al. also reported that embeddings from transformer-based models are
superior to those from LSTM-based models for unsupervised annotation
transfer. In the end, the final implementation of knn predictor in our work
differs from that of Littmann et al.’s in the choice of language model we
use, and the knn model parameter we adjust to define the neighbors.

In parallel with recent studies, here in our work we also observe that
embeddings provide a better representation of protein sequence compared
to the amino-acid sequence itself (BLAST baseline) as well as HMM
profiles (Pfam baseline) to transfer GO terms accurately in terms of
the Fmax score. This finding is valid across different bacteria, and in
three GO categories with a few exceptions as we report in Table 4
(Smin and prediction coverage are reported in Supplementary Tables S2
and S3, respectively). Except for the Salmonella data set (ST|), SAP
consistently achieved the highest Fmax; the operon information used in
conjunction with the embeddings-based representation of proteins is the
top-performing model.

Among the three GO categories, the differences in prediction
performance are the most pronounced in BPO and MFO. We expect to
achieve the largest gains in prediction accuracy for BPO using SAP, also,
the conventional BLAST method still appears to be a strong contender in
MFO in the most recent CAFA challenge, thereby rendering this category
crucial to investigate in detail as well (Zhou et al., 2019). We presume this
is because different protein functions within this category can be identified
based on changes in the aminoacid sequence; results from the CAFA
challenges have shown that auxiliary features derived from the aminoacid
sequence, or the sequence itself are the best predictor in MFO (Jiang et al.,
2016). Thus, hereafter, we will focus on these two categories in this text
to assess prediction performance.

3.3 Embeddings and synteny improve remote homolog
annotation

Our main motivation in developing SAP was to annotate new, previously
unseen proteins found in novel bacterial species, or known but less-
studied organisms. In both cases, gene function prediction becomes
especially challenging because there are no proteins with similar amino-
acid sequences in the existing sequence databases, and it is not possible to
transfer annotations based on primary sequence similarity. To emulate
gene function prediction in such low homology instances, we have
designed additional experiments where the train/test pairs were generated
by stratifying the full SwissProt dataset based on the maximum sequence
similarity allowed between protein sequences in the training and the test
set. To be consistent with the new design, and avoid any information leak,
we also modified our operon database to remove clusters homologous to
any test sequence and rebuild the database from scratch for each pair.

We have experimented with 5 incremental levels of sequence
similarity: 40%, 50%, 60%, 70%, and 80%. Thus, there are 6 different
train/test pairs (including the full version) generated independently for
5 bacteria as subsets from the SwissProt database. Essentially, the
experiments where the training sequences are less than 40% similar to any
test protein are the most challenging ones in this work. To summarize the
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prediction performance, we report the average Fmax values and standard
deviation across all five of the bacteria in our SwissProt experiments, we
do not observe any significant differences between the five.

To start with, we demonstrate that embeddings-based methods far
outperform both of the conventional predictors, BLAST and Pfam, in
all of SwissProt experiments. In terms of the average Fmax, SAP is the
top-performing method and the difference in prediction performance is
more salient as the sequence similarity between the test and the training
sequences (as well as the clusters in the operon database) increases. Fig.
4 displays the Fmax values in BPO averaged over bacteria for different
experiments where moving from left to right, maximum shared homology
between the train/test sequences increases (except for the Pfam baseline
which uses a separate training set of its own, hence all bars for Pfam are
identical).

For all GO categories, we observed that the knn predictor, despite being
trivial in its design, performed better than the BLAST baseline in terms of
several metrics (See Supplementary material for Fmax, Smin, prediction
coverage and average ROCAUC scores). Even in MFO, where BLAST
was known to be difficult to beat, we found that ESM-1b embeddings
provide a far superior representation of protein sequences.

In addition, the results from our SwissProt experiments reveal two
contrasting trends in the performance of baseline BLAST and the
embeddings-based methods: BLAST shows a surprisingly consistent
performance over different levels of shared homology between the training
and test sets. This trend holds for not only the average Fmax in the
remaining two ontologies, but also for each bacteria individually (see
Supplementary Fig.s S1 and S2 for Fmax values in GO categories MFO
and CCO, respectively). This could be interpreted in two ways: either
BLAST is exceptionally robust to changes in homology levels, and/or using
embeddings representation of proteins, we can exploit the information
contained in the training sequences more effectively to infer the function
of test sequences. We assert that this is a particularly compelling idea that
warrants further investigation in future work.

3.4 Highest annotation coverage for knn models

Following on from studying the predictive performance of each method
in terms of their maximum F1-score (Fmax), here we investigate their
coverage at the prediction threshold at which they reach this maximum.
Again, we capture the expected performance by taking the average over all

the bacteria in our SwissProt experiments and report these average values
along with the corresponding standard deviation to assess the robustness.

Although SAP emerged as the all-around top-performing method when
precision/recall is considered, its prediction coverage is less than that
of embeddings-based knn model in a large fraction of our experiments.
Table 5 shows the average in % of test sequences predicted, and the
standard deviation of coverage values are displayed in parentheses (see
Supplementary Table S4 for the results on MFO and CCO). Furthermore,
knn appears to be robust in this aspect, since the standard deviation across
different bacteria is considerably low in the remote homology experiments,
and it decreases significantly as the train/test sequences share higher
sequence homology to yield the lowest deviation in coverage among all
the methods in the full SwissProt dataset.

Coverage of baseline BLAST, on the other hand, is on par with the knn
models in some cases, in contrast to Pfam, the second baseline model in our
experiments, Here, both Pfam and SAP suffer from the same issue; both
methods are based on a sparsely labeled training set. In order to compare
the descriptive, textual Pfam output, we used the mapping tables provided
by the GO consortium to obtain the GO terms associated with predicted
Pfam IDs. Similar to our operon labeling procedure, mapping Pfam Ids to
GO terms introduces an additional step into the prediction pipeline which,
in essence, dilutes the final predictions because both steps are extremely
conservative in labeling training instances.

In addition, as the train/test homology decreases, we observe that the
standard deviation of coverage also decreases for only SAP. This also
supports the hypothesis that our conservative operon labeling procedure
has put SAP at a disadvantage where because its training set is sparsely
labeled; the number of GO terms available for SAP to transfer is
significantly smaller than other methods, and this difference becomes more
pronounced when the training set is restricted to have low homology to the
test set. Since the Pfam method uses a different training set for predictions,
it is not possible to compare the change in the coverage across different
train/test pairs to SAP.

3.5 SAP performs on par with conventional
structure-based tools in remote homolog annotation of
Enterococcus species

SAP has been developed with the main goal of annotating unseen proteins
in novel bacterial species, in particular those associated with antimicrobial
resistance, virulence, and toxicity. We presume that making use of known

Table 3. Our predicted operon database can reproduce experimentally known operons in E. coli. Three example operons from our operon database and the
corresponding experimental operons from ODB are shown

Our operon database ODB
Operon ID Species E.coli gene Annotation Operon ID Name Definition

62671
Escherichia , Shigella,

Citrobacter

b4460
L-arabinose transport system

permease protein AraH
KO03244 araFGH

High-affinity
L-arabinose transport

b1900
Arabinose import ATP-binding

protein AraG (EC 7.5.2.12)

b1901
L-arabinose-binding

periplasmic protein (ABP)

62674
Escherichia , Shigella,

Bacillus
b1879

Flagellar biosynthetic
protein FlhB KO03228 flhAB

Flagellar
biosynthesis

b1880
Flagellar biosynthesis

protein FlhA

62755
Citrobacter, Enterobacter,

Klebsiella, Leclercia, Escherichia,

- IS3 family transposase - -
- IS3 family transposase - -

b1562 Toxic protein HokD
KO03197 relBEF

toxin-antitoxin
system

b1563 mRNA interferase toxin RelE
b1564 Antitoxin RelB
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Table 4. SAP achieves the highest Fmax scores across all bacteria for all three
GO categories on the full SwissProt experiment set, except for S. typhimurium
where DeepGOPlus performs in BPO and MFO. Fmax scores on the full
SwissProt experiment set are tabulated in three parts for separate GO categories,
BPO, MFO and CCO respectively, and each column is a different bacteria found
in our SwissProt experiments

Method EC MT BS PA ST
Biological process

BLAST 0.570 0.543 0.639 0.683 0.852
Pfam 0.610 0.513 0.582 0.579 0.579
knn 0.646 0.636 0.828 0.797 0.880
SAP-operon 0.872 0.837 0.915 0.928 0.903
SAP 0.876 0.838 0.915 0.929 0.902
DeepGOPlus 0.648 0.669 0.857 0.824 0.928

Molecular function
BLAST 0.613 0.593 0.625 0.699 0.814
Pfam 0.650 0.549 0.571 0.534 0.559
knn 0.675 0.723 0.814 0.854 0.837
SAP-operon 0.880 0.869 0.893 0.938 0.878
SAP 0.885 0.869 0.893 0.938 0.877
DeepGOPlus 0.686 0.755 0.841 0.883 0.911

Cellular component
BLAST 0.569 0.397 0.638 0.700 0.871
Pfam 0.625 0.541 0.608 0.560 0.616
knn 0.731 0.500 0.898 0.900 0.917
SAP-operon 0.920 0.847 0.943 0.945 0.918
SAP 0.922 0.847 0.943 0.945 0.917
DeepGOPlus 0.745 0.567 0.885 0.887 0.936

bacterial operons and conserved syntenic regions in bacterial genomes
would be especially beneficial for such remote homology annotation
tasks. Hence, we investigate SAP’s performance on a set of proteins of
unknown function found in four genomes, each of which was identified

as different Enterococcus species spanning the diversity of the genus (see
Supplementary Table S1 for assembly statistics, as well as the GenBank
accesion IDs).

In total, prokka failed to annotate 4380 genes. Next, we ran the
baselines BLAST and HMM search against the Pfam database, and
these two provided annotations for an additional 767 and 2512 proteins,
respectively. Overall, we obtained meaningful functional labels (i.e. a
significant hit with label that is not a DUF or hypothetical protein) using
sequence-based annotation tools for 2535 proteins out of the initial 4380.
As a final step, we ran Phyre2, a structure-based predictor, on the remaining
unannotated genes, we got high-confidence predictions (confidence level
greater than 95%) for 267 more of the proteins. Thus, combining
both sequence-based and structure-based conventional predictors, 2802
proteins (out of 4380) were annotated successfully.

To compare, we ran our method, SAP out of the box, keeping the
parameters and the operon database unchanged. We could label all 4380
genes with an operon in our database, meaning that, while these genes.
Although we had operon labels for all the genes, SAP assigned GO
terms to 2841 of them. The conventional annotation pipeline had failed
to annotate 657 of these genes. However, we also note that SAP could
not transfer any GO term to 618 of the genes the conventional approach
assigned a function. Thus, SAP, achieves annotation coverage on par with
conventional pipelines, even those that utilize the protein structure at a
fraction of the computation cost and time, in terms of the total number
of proteins it could assign a function. However, it is not possible to do
a direct comparison here since the set of proteins successfully annotated
by the two approaches differ in their content, albeit overlap largely: 2184
proteins in total were annotated by both.

4 Conclusion
In this work, we proposed SAP, a novel synteny-aware function prediction
tool based on protein embeddings, to annotate bacterial species. SAP
is distinguished from the existing tools for annotating bacteria in two
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Fig. 4: SAP outperforms the conventional approaches to function prediction in five different bacteria, across varying levels of prediction difficulties. We
report the average Fmax values in BPO over 5 bacteria in our experimental setup, and the error bars show the corresponding standard deviation of each
method, across five species. Note that bar plots for the Pfam baseline are identical for all 6 experiment sets because Pfam uses a different training set,
independent of our experimental design.
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ways: (i) it uses embedding vectors extracted from state-of-the-art protein
language models and (ii) it incorporates conserved synteny across the entire
bacterial kingdom by making use of the bacterial operon database we built
based on a purely computational, bottom-up approach.

Researchers in the field of bacterial genomics regularly make use of
synteny as part of their genome annotation pipeline, albeit manually.
In an attempt to formulate this practice computationally, we designed
a computational, unbiased approach to predict bacterial operons and
conserved synteny. To our knowledge, SAP is the only bacterial gene
function prediction tool with these two features. While there have been
several successful applications of protein language models on eukaryotes,
they are very rarely used in bacterial organisms. Hence, our work is
among the first to propose combining these two ideas to improve gene
function prediction, especially for remote homology detection where
we designed a systematic, rigorous experimental framework to evaluate
function predictors based on the SwissProt database.

We used embedding vectors exclusively in our method as we
were motivated by the recent work showing significant improvements
in function prediction by replacing features derived from amino-acid
sequences with embedding vectors extracted from protein language
models, Consequently, we show that protein embeddings, even if they
are used in an unsupervised model, surpass the conventional sequence
homology-based tools on different bacteria, and different levels of
difficulty in prediction in our SwissProt experiments (Fig. 4).

We demonstrated that conserved synteny and protein embeddings
both provide useful information for predicting the protein function, the
information is orthogonal to one another in the sense that they complement
each other. Using operons alone, the prediction performance significantly
deteriorates (not shown here) and we consistently achieved the best
performance when operons were used in conjunction with the nearest
neighbors within the SAP framework. Compared to a post-prediction
ensemble, extending the operon database to include gene clusters not only
eliminates additional steps in the prediction pipeline, but also yields overall
more accurate predictions.

The biggest limitation of SAP is the lack of experimentally annotated
bacterial operons. In the absence of ground truth, we opted for
computational alternatives to assign functions to operons in our database,
hence we are restricted by the scope and content of the existing databases.
To minimize the false positive operon labels, we adopt a conservative
approach which in turn resulted in a sparsely annotated training set,
significantly lowering the prediction coverage of SAP 5. The most
straightforward way to alleviate this problem would be to routinely pick
unlabeled operons from our database to perform experiments and identify
their functions. Each time an operon is labeled successfully based on
experimental results, additional operons can be labeled more liberally
using the new experimental evidence. We expect this iterative approach to
rapidly increase the number of labeled operons available in the database.

In addition, our operon database, at its current state, is overly general;
it represents conserved synteny across the entire bacterial kingdom. In

this work, we developed an all-purpose bacterial gene annotation tool
and hence we deliberately designed our operon database to be inclusive
and to cover as many conserved syntenic regions as possible. Thus, we
removed structural patterns associated with rare traits in bacteria. For niche
applications, in particular, when investigating a specific biological pathway
or, variants of a known operon unique to certain bacterial species, should
be expanded. Future work on our database will be to develop new modules
and extensions to both expand our operon database and build additional,
external databases, if desired.

Here, we used a systematic, unbiased experimental design to evaluate
our novel method, SAP, although we did not investigate the effect
of different parameter settings on the prediction performance of our
models. In the current implementation of SAP, we opt for a moderately
conservative approach to labeling operon functions so as to circumvent
the need to put any restrictions when assigning an operon to a query
point. Within the scope of this work, this allowed SAP to outperform
its competitors, however, as we develop our operon database into a well-
annotated representative one, it will be necessary to filter and refine operon
assignments to query points. Currently, we are developing experiments
where we can tune our model parameters, and evaluate the final models
using cross-validation on both the SwissProt dataset and the operon
database without any information leak. Once parameter tuning is possible,
the unsupervised nearest-neighbor approach can also be replaced with
a more complex, supervised model, such as an MLP, or a deep neural
network to further improve the prediction accuracy. These additions will
be particularly useful for applications where SAP is used to annotate low
quality genome assemblies, with fragmented genes.
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