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Abstract—We report our experience with SAPFIX: the first
deployment of automated end-to-end fault fixing, from test case
design through to deployed repairs in production code1. We have
used SAPFIX at Facebook to repair 6 production systems, each
consisting of tens of millions of lines of code, and which are
collectively used by hundreds of millions of people worldwide.

INTRODUCTION

Automated program repair seeks to find small changes to

software systems that patch known bugs [1], [2]. One widely

studied approach uses software testing to guide the repair

process, as typified by the GenProg approach to search-based

program repair [3].

Recently, the automated test case design system, Sapienz

[4], has been deployed at scale [5], [6]. The deployment of

Sapienz allows us to find hundreds of crashes per month,

before they even reach our internal human testers. Our software

engineers have found fixes for approximately 75% of Sapienz-

reported crashes [6], indicating a high signal-to-noise ratio [5]

for Sapienz bug reports. Nevertheless, developers’ time and

expertise could undoubtedly be better spent on more creative

programming tasks if we could automate some or all of the

comparatively tedious and time-consuming repair process.

The deployment of Sapienz automated test design means that

automated repair can now also take advantage of automated

software test design to automatically re-test candidate patches.

Therefore, we have started to deploy automated repair, in a

tool called SAPFIX, to tackle some of these crashes. SAPFIX

automates the entire repair life cycle end-to-end with the

help of Sapienz: from designing the test cases that detect

the crash, through to fixing and re-testing, the process is fully

automated and deployed into Facebook’s continuous integration

and deployment system.

The Sapienz deployment at Facebook, with which SapFix

integrates, tests Facebook’s apps using automated search over

the space of test input sequences [7]. This paper focuses on the

deployment of SapFix, which has been used to suggest fixes

for six key Android apps in the Facebook App Family, for

which the Sapienz test input generation infrastructure has also

been deployed. These are Facebook, Messenger, Instagram,

FBLite, Workplace and Workchat. These six Android apps

collectively consist of tens of millions of lines of code and

are used daily by hundreds of millions of users worldwide to

support communication, social media and community building

activities.

1The first author, Alexandru Marginean, undertook the primary SAPFIX

implementation work. The remaining authors contributed to the design,
deployment and development of SAPFIX; remaining author order is alphabetical
and not intended to denote any information about the relative contribution.

In order to deploy such a fully automated end-to-end detect-

and-fix process we naturally needed to combine a number of

different techniques. Nevertheless the SAPFIX core algorithm

is a simple one. Specifically, it combines straightforward

approaches to mutation testing [8], [9], search-based software

testing [6], [10], [11], and fault localisation [12] as well as

existing developer-designed test cases. We also needed to

deploy many practical engineering techniques and develop

new engineering solutions in order to ensure scalability.

SAPFIX combines a mutation-based technique, augmented by

patterns inferred from previous human fixes, with a reversion-as-

last resort strategy for high-firing crashes (that would otherwise

block further testing, if not fixed or removed). This core fixing

technology is combined with Sapienz automated test design,

Infer’s static analysis and the localisation infrastructure built

specifically for Sapienz [6]. SAPFIX is deployed on top of

the Facebook FBLearner Machine Learning infrastructure [13]

into the Phabricator code review system, which supports the

interactions with developers.

Because of its focus on deployment in a continuous in-

tegration environment, SAPFIX makes deliberate choices to

sidestep some of the difficulties pointed out in the existing

literature on automated program repair (see Related Work

section). Since SAPFIX focuses on null-dereference faults

revealed by Sapienz test cases as code is submitted for review

it can re-use the Sapienz fault localisation step [6]. The focus

on null-dereference errors also means that a limited number of

fix patterns suffice. Moreover, these particular patterns do not

require additional fix ingredients (sometimes known as donor

code), and can be applied without expensive exploration.

We report our experience, focusing on the techniques

required to deploy repair at scale into continuous integration

and deployment. We also report on developers’ reactions and

the socio-technical issues raised by automated program repair.

We believe that this experience may inform and guide future

research in automated repair.

The SAPFIX project is a small, but nevertheless distinct

advance, along the path to the realisation of the FiFiVerify

vision [10] of fully automated and verified code improvement.

The primary contributions of the present paper, which reports

on this deployment of SAPFIX are:

1) The first end-to-end deployment of industrial repair;

2) The first combination of automated repair with static and

dynamic analysis for crash identification, localisation and

re-testing;

3) Results from repair applied to 6 multi-million line systems;

4) Results and insights from professional developers’ feed-

back on proposed repairs.



Algorithm 1 trigger create fix, SAPFIX’s trigger fix creation

algorithm.

Input: b rev, the buggy revision

b f ile, the blamed file: the file that contains the crash location

b line, the blamed line: the line of the crash

s trace, the stack trace of the crash

mid, the mid of the crash we are trying to fix

b author, the blamed author: the author of b rev

?buggy expressions, buggy expressions that Infer gives us. When we do not

have Infer data, this argument is null

high f iring t, the high firing threshold

Output: P, a list of revisions that fix the crash under SAPFIX’s testing

1: strategy priority := [template fix,mutation fix,diff revert, partial diff revert]
2: CP := /0 # CP is the list of candidate fixes
3: if is high firing(mid,high firing t) then

4: CP += diff revert(b rev)
5: CP += partial diff revert(b rev,b file,b line)
6: CP += template fix(b rev,b file,b line, buggy expressions)
7: CP += mutation fix(b rev,b file,b line, buggy expressions, s trace)
8: P := /0 # P is the list of patches that fix the bug

9: for all p ∈CP do

10: if ¬repro crash(p,mid) ∧ pass sapienz(p) ∧ ¬sapienz repro mid(p,mid) ∧
pass ci tests(p) then

11: P += p

12: for all s ∈ strategy priority do

13: Ps := filter(P, strategy(p ∈ P) = s)
14: if Ps 6= /0 then

15: ps := select patch(Ps)
16: publish and notify(ps,b author)
17: for all pu ∈ Ps \{ps} do

18: publish and comment(pu, ps)
19: return Ps

20: return null

THE SAPFIX SYSTEM

This section describes the SAPFIX system itself, its algo-

rithms for repair and how it combines the components outlined

in the previous section.

The SAPFIX Algorithmic Workflow

Figure 1 shows the main workflow of SAPFIX. Algorithm 1

is the main algorithm of SAPFIX that drives the automated bug

fixing process. Using Phabricator, Facebook’s continuous inte-

gration system, developers submit changes (called ‘Diffs’) to be

reviewed. Sapienz, Facebook’s continuous search based testing

system, selects test cases to execute on each Diff submitted

for review [6]. When Sapienz triages a crash to a given Diff,

SAPFIX executes Algorithm 1. Line 1 in Algorithm 1 estab-

lishes the priority of fixes according to the strategy that SAPFIX

used to produce them. When multiple fix strategies produce

patches that pass all SAPFIX’s tests, we select fixes only from

the top priority strategy to report to developers. This prioriti-

sation approach avoids polluting developers’ review queues.

The template fix and mutation fix strategies (mentioned at

Line 1 of Algorithm 1) choose between template and mutation-

based fixes, favouring template-based fixes, where all else is

equal, but taking account of results from Infer static analysis

and also from linter reports on candidate fixes. Template fixes

come from another tool, Getafix [14] that generates patches

similar to the ones that human developers produced in the past;

the details will be described in a subsequent publication. For

the purposes of understanding the SAPFIX deployment, it can

be assumed that SAPFIX has available to it, a set of template

fix patterns harvested from previous successful fixes deployed

by developers.

If neither template-based nor mutation-based approach

produces a patch that passes all tests, SAPFIX will attempt

to revert Diffs that result in high-firing crashes. Lines 3–5 in

Algorithm 1 trigger the Diff revert strategies. SAPFIX triggers

these strategies only for high-firing crashes that block Sapienz

and other testing technologies and therefore need to be deleted

from the master build we are testing as soon as possible (even

if they would never ultimately leave the master build and make

it to production deployment). The revert strategies revert the

diffs, which thereby ‘deletes the change’ (made in the diff). In

practice that can mean deletion, addition, or replacement of

code in the current version of the system. For instance, if the

offending diff added code, then it is deleted whereas, if the

diff deleted code, then it is added back. If the Diff added lines

of code then reversion is simply an attempt at side-effect free

deletion. If the Diff removed lines of code, then reversion would

add them back. Either way (and for everything in-between),

conceptually speaking, reversion means to ‘delete the Diff’.

Between the two available Diff reversion strategies, SAPFIX

prefers (full) diff revert, because partial diff revert is ex-

pected to have a higher probability of knock-on adverse

effects due to dependencies between the changes in the Diff

that introduced the crash. However, (full) diff revert might

fail because of merge conflicts with the master revision

(new Diffs land every few seconds, while fix reporting can

take up to 90 minutes (see Figure 3). In those cases we

use partial diff revert. The changes that partial diff revert

produces are smaller and thus less prone to merge conflicts.

The recognition of a crash and the distinction between

different crashes requires a ‘crash hash’; a function that groups

together different crashes according to their likely cause. This

is a non-trivial problem in its own right. Facebook uses a crash

hash called a ‘mid’, the technical details of which are described

elsewhere [6]. For this discussion, the important characteristic

of a ‘mid’ is that it is an approximate (but reasonably accurate)

way of identifying unique crashes. It can be thought of, loosely

speaking, as a crash id. Improving the accuracy of such crash

hashes remains an interesting and important challenge for future

research [6].

Of course, we favour a fix rather than to simply attempt to

delete the offending code, but when the other fix strategies fail

to fix a high firing crash, SAPFIX suggests a Diff revert fix.

is high firing(mid, threshold) identifies high firing crashes: it

returns true if the crash with id mid fires more than threshold

times, and false otherwise. Finding a way to delete the right

code without affecting other subsequent Diffs is also a non-

trivial problem in a large scale and rapidly changing code base,

where new Diffs land every few seconds. This problem may

also benefit from further attention from the research community.

Lines 6–7 in Algorithm 1 trigger the template and mutation

fix strategies. Lines 9–11 look at the candidate fix patches in

CP for the ones that indeed fixed the crash, without introducing

new bugs.

To identify whether a patch fixes a crash, SAPFIX uses

repro crash and sapienz repro mid. repro crash(rev,mid)
tries to reproduce mid in the revision rev using Sapienz’s



Fig. 1. SAPFIX workflow. When Sapienz triages a crash to SAPFIX, trigger create fix triggers the four fix strategies that create fix candidate (unpublished)
diffs. Next, SAPFIX tests the candidate fixes. The fix selection stage uses heuristics to select one diff out of the ones that pass all the tests and further publishes
it to notify the most relevant software engineer and add him or her as reviewer If the reviewer accepts the fix, SAPFIX lands it into the production workflow
of the Phabricator Continuous Integration system. SAPFIX abandons the fix candidate if the developer rejects it or he or she fails to review it within 7 days.

reproduction workflow. We cannot always assume that we have

available tests that reproduce a given crash, due to the well-

known problem of test flakiness [5], [15]. Therefore, SAPFIX

also uses sapienz repro mid(rev,mid) to inspect the results of

regular Sapienz runs over rev to see if any of them found mid.

Infer is also re-executed (automatically) on the patches it has

detected as a sanity check that static analysis also no longer

identifies the issue that SAPFIX seeks to fix.

To identify whether a patch might also introduce new crashes

or other issues, SAPFIX runs Sapienz multiple times over the

candidate fix in pass sapienz(rev). Finally, pass ci tests(rev)
inspects the results of (previously existing) unit, integration,

and end-to-end tests in the Facebook continuous integration

and deployment infrastructure. If all these tests pass, SAPFIX

considers the patch to be a successful candidate to report to

engineers and adds it to P, at Line 11 in Algorithm 1.

Lines 12–19 in Algorithm 1 publish the successful candidate

patches. SAPFIX selects one of the published candidates and

requests a reviewer for this candidate through the Phabricator

code review system. The reviewer is chosen to be the software

engineer who submitted the Diff that SAPFIX attempted to fix.

This is the engineer who most likely has the technical context

to evaluate the patch.

Other relevant engineers are also subscribed to each Diff

published by SAPFIX to oversee the review process, according

to heuristics implemented, as standard for all Diffs, in the

Facebook code review process. Furthermore, some developers

specifically ask to be subscribed to (some or all) fixes, by

opting in with a so-called ‘butterfly’ subscription rule. As a

result, all Diffs proposed by SAPFIX are guaranteed to have

at least one (suitably qualified) human reviewer, but may have

many more, through these other routes to Diff subscription.

The function strategy(p) returns the strategy that SAPFIX

used to produce p. Line 13 selects, in PS, all the successful

patches that the top priority strategy produced. Next, at Line

15, select patch(Ps) selects in ps the top priority patch from Ps.

Currently, select patch(Ps) uses the following heuristics: select

the fix that Sapienz executed the most often; select the fix for

Algorithm 2 mutation fix, SAPFIX mutation fix algorithm.

Input: b rev, the buggy revision that Sapienz blamed

b f ile, the blamed file: the file that contains the crash location

b line, the blamed line: the line of the crash

s trace the stack trace of the crash

?buggy expressions candidate buggy expressions that Infer gives us. When

we do not have Infer data, this argument is null.

Output: P, the list of bug fixing revisions

1: crash category := extract crash category(s trace)
2: if crash category 6= ”NPE” then

3: return /0

4: if buggy expressions 6= /0 then

5: return create rev(add null check(b file,b line, buggy expressions))
6: else

7: Cbuggy := top of s trace(s trace,b file,b line) ?

extract dereferences(b file,b line) : extract args(b file,b line)
8: P := /0

9: for all c ∈Cbuggy do

10: P += create rev(add null check(b file,b line,c))
11: return P

which Sapienz executed the buggy statement the most often;

select the smallest fix. On Line 16, SAPFIX publishes ps and no-

tifies the developer by calling publish and notify(p,b author).
Finally, on Lines 17–18, Algorithm 1 publishes the rest of

the patches from Ps and comments with a preview of them on

ps. publish and comment(p, ps) publishes the candidate fix p

and adds an inline preview of p on the selected candidate fix ps.

Algorithm 2 is the SAPFIX mutation-based fixing algorithm.

Algorithm 2 currently only supports fixing Null Pointer Excep-

tion (NPE) crashes. We are currently in the process of extending

the mutation strategies to cater for other crash categories, but we

have already witnessed considerable success with NPE-specific

patching alone, which is encouraging. On Line 1, Algorithm 2

calls extract crash category to identify the category of crash.

If the category is not “NPE”, Algorithm 2 returns the empty set.

To extract the crash category, extract crash category looks at

the short message on the stack trace.

Lines 4–5 in Algorithm 2 check whether a more precise

cause of the NPE is known: i.e. which expressions in the

buggy statement caused the NPE by taking the value null. This

information can be obtained from Infer, in cases where both

Infer and Sapienz find the same NPE. When that happens

SAPFIX creates a single patch that guards b line with null



checks for the buggy expression. On Line 5, Algorithm 2

creates a revision for this patch. The method add null check

uses eclipse JDT to parse the AST of the buggy file and to

add the null check before the buggy statement.

Lines 7–11 in Algorithm 2 handle the case when we do

not know which expressions are buggy. In this case, SAPFIX

identifies all the expressions in the buggy statement that

can potentially cause an NPE. For each such expression,

Algorithm 2 produces a candidate patch. SAPFIX tries each

of two simple mutations, which either return null or protect

potentially null-valued expressions with a null check. The

surrounding Facebook testing infrastructure will subsequently

tend to reject those patches that do not actually fix the bug

(such as those patches that inadvertently attempt to ‘fix’ the

wrong expression). Therefore, failure to fully localise the buggy

expression tends to affect efficiency but not effectiveness.

Infer helps to localise the likely NPE-raising expression,

but dynamic analysis can also help here, where Infer signal is

unavailable. Specifically, we analyse the position of the blamed

line of code in the stack trace (b line) at Line 7 to obtain Cbuggy,

the set of candidate buggy expressions. If b line is at the top

of the stack trace then top of s trace(s trace,b f ile,b line)
returns true. In this case, SAPFIX need only attempt to

fix expressions that are de-referenced, because the program

execution does not continue after b line. extract dereferences

extracts only the expression de-referenced at b line.

If b line is not at the top of the stack trace, it means that one

of the arguments of a function called at b line is presumed to

have caused the NPE (further up in the stack trace). In this case

SAPFIX need only attempt to fix the arguments of functions in

b line. extract args extracts the function arguments at b line.

Finally, Lines 9–10 in Algorithm 2 produce a patch, for each

candidate buggy expression in Cbuggy. The patch guards b line

with null check for the candidate buggy expression.

Sapienz: SAPFIX uses Sapienz to identify candidate crashes

that require fixing and to (partially) check that fixes pass the

original failing test(s), as well as generating new tests and a

partial approach to detecting some categories of knock-on issues

that the candidate might introduce. Sapienz uses multi-objective

Search Based Software Engineering (SBSE) [16] to automat-

ically design system level test cases for mobile apps [4], for

which it finds 100s of crashes per month, approximately 75% of

which are fixed by developers [6]. Like SAPFIX, Sapienz com-

ments to developers in Phabricator, the backbone Facebook’s

Continuous Integration system2, which is used for code review,

handling more than 100,000 Diffs per week at Facebook [5].

Both Sapienz and SAPFIX are deployed on top of FBLearner,

Facebook’s Machine Learning (ML) platform through which

most of Facebook’s ML work is conducted [13]. There is not

space here to fully explain FBLearner, but the infrastructure

itself is covered in more detail elsewhere [13] and the use of

FBLearner as a substrate on which to deploy search based test-

ing is described in detail in the SSBSE 2018 keynote paper [6].

2http://phabricator.org

Infer: SAPFIX uses Infer to assist with localisation and static

analysis of fixes proposed. Infer is deployed on the majority of

Facebook code and based on Separation Logic and bi-abduction

[17], [18], scaled to tens of millions of lines of code, thereby al-

lowing Infer to find thousands of bugs per year [19]. Infer is also

available as open source [20] and has been used elsewhere, in-

cluding AWS, Mozilla, Spotify. Like Sapienz, Infer is deployed

directly into Facebook’s internal continuous integration system,

where the two tools collaborate to highlight to developers those

bugs on which they agree [6]. At the time of writing such bugs

have a 98% fix rate, largely we believe because developers

have a localisation of both the likely root causing fault (from

Infer) and a consequent failure (from Sapienz). Nevertheless,

even for such highly ‘human fixable’ bugs, engineering effort

and skill could be better spent on other more creative and less

tedious engineering activities, thereby motivating our interest

in automated fault fixing through techniques like SAPFIX.

RESULTS

Table I presents the results of applying SAPFIX over a period

of three months to tackle NPEs detected by Sapienz as they

were submitted for code review. Each row denotes a crash

tackled by SAPFIX. Naturally, we periodically update the pool

of template fixes (something that occurred once during the first

three months of deployment, on the 9th. of August 2018 as

shown in Table I). In total, to tackle the 57 crashes reported to

SAPFIX, 165 patches were constructed, of which roughly half

were constructed using templates and half using mutation-based

repair. Of these 165 patches, 131 correctly built and passed

all tests and were thus fix candidates. Of these 131 candidates,

55 were reported to developers, covering 55 of the 57 crashes

tackled by SAPFIX.

Fig. 2. The number of times mutation-
based fix strategy and templates pro-
duced at least one patch to pass all tests.

Figure 2 reports how

many times the template-

based and mutation-based

strategies produced at least

one candidate fix for each

of the 57 different crashes

from Table I. Although

SAPFIX favours templates

overall, it triggers both

strategies to be able to re-

test all patches produced in

parallel. Triggering both the

fix strategies also allows us to evaluate these two strategies in

isolation. Our results suggest that having both in the pipeline

leads to better overall success: In 55 of the 57 fix attempts,

either the mutation-based fix strategy or the templates produced

at least one fix candidate. Only in two cases did both strategies

fail (one failed to build and one failed re-testing). In 13 cases,

both the fix strategies produced at least one fix candidate. In

isolation, the mutation-based fix strategy produced at least one

fix candidate for 40 cases, while the templates did so in 28

cases. In 27 cases the mutation-based fix strategy alone was

able to produce a fix candidate, while in 15 cases the templates

alone produced a fix candidate.



Initial reactions were strongly positive: On seeing the very

first SAPFIX-proposed patch, the developer reviewing the patch

commented: ‘Definitely felt like a living in the future moment

when it sent me the diff to review. Super cool!’. As can be seen

from Table I, about half the fixes proposed by SAPFIX were

deemed, by developers, to correctly fix the failure. Of those

deemed correct, about half were landed ‘as is’, and half were

modified. Of those that were modified, about half were edited

by the developers, while half were simply reviewed by the

developer only after they had already fixed the bug themselves.

Of the (approximately) half of all proposed fixes that were not

ultimately landed into the code base, about half were deemed

incorrect by developers (would have side effects or failed to

tackle the true causes). For the remaining half that were not

landed, the proposed fix was simply abandoned (after 7 days

with no response from the developer).

During its first three months of deployment, SAPFIX at-

tempted to revert 18 Diffs (14 fully and 4 partially), where

these Diffs contained high firing crashes, that could not be fixed

by the templates or mutation-based fixing approaches. These

Diff revert recommendations were all declined by developers

(and not included in Table I); it seems developers are (perhaps

understandably) unwilling to simply revert their hard work.

Can SAPFIX fix pre-existing crashes?

The standard deployment mode, for which SAPFIX was

designed (and is currently deployed), attempts to fix newly

arising failures (crashes) as they are submitted in Diffs and

detected as buggy by Sapienz. For this use-case, the developer

has recent relevant context on the changes relating to the

fix. Such relevancy has proved pivotal to the successful

deployment (and human fix rates) for both Infer and Sapienz,

as explained elsewhere [5]. Nevertheless, as a stretch goal

we also experimented with targeting SAPFIX at pre-existing

crashes that had reached production partly because Sapienz had

failed to detect them (we are still working on the development

of Sapienz [6], but no testing technology can be expected to

stop every failure).

For pre-existing crashes, the developer reviewing the fixes

proposed by SAPFIX has less context on the code and fix

proposed. We split the results into two broad categories:

long-standing (more than 3 months, the width of the Sapienz

triage window [6]) and recent (first seen in the last 3 months,

so potentially triagable by Sapienz, but missed by it). These

long-standing crashes are also those for which the developer

would be likely to have the least context, so it would be

informative to see how many were landed by developers.

In both cases (recent and long-standing) we cannot use

precise localisation, since we do not have available Sapienz

triage data. SAPFIX’s template fix and mutation fix strategies

rely on a blamed line to produce candidate fixes. However,

for the pre-existing crashes that we target here, we do have

access to multiple stack traces. Therefore, in this mode of

deployment SAPFIX identifies the longest common path across

200 sampled stack traces, starting from the top of the stacks.

The bottom-most line of this common path that is inside our

Fig. 3. SAPFIX runtime: the time that SapFix requires to publish a fix.

codebase (not library or framework code) becomes the blamed

line. Since this blamed line does not correspond to an identified

Diff, SAPFIX instead uses a standard default approach, used

across the company, to identify the developer to whom we

should report the issue detected.

Table II presents the results for these fix candidates. These

results are for a three day deployment window only. After three

days, we switched off this experiment to avoid unnecessarily

spamming our developers with multiple fix candidates from

this comparatively untried-and-tested mode of deployment. In

total, over the three days, SAPFIX constructed 946 candidates,

of which it reported 195 to developers; 117 for recent crashes

and 78 for long-standing crashes.

Had we left the experiment running longer, the proportion of

landed fixes could only have increased, so we were encouraged

that approximately 15% were landed within this three day

period (which included a weekend; typically a quiet period for

developer activity at Facebook [21]). Also, interestingly, we

observed that the proportion of fixes landed was not notably

different between recent crashes and longer-standing crashes.

This observation gave us hope that we may ultimately be able

to deploy this technology to track down and fix longer-standing

crashes that developers tend to find harder to fix.

Timing issues

Figure 3 presents a time-to-fix box plot (from when SAPFIX

is first notified of a need to fix, to the publication of a proposed

fix to a developer). The median time from fault detection to

fix publication to a developer is approximately one hour. More

specifically, as shown in Figure 3, the median is 69 minutes,

with a relatively tight inter-quartile range (65-73 minutes) and

a worst case approximately 1.5 hours, and the fastest fix being

reported to the developer 37 minutes after the crash was first

detected.

As shown in Figure 3, the overall range of observed values

is wide (37..96 minutes). This is because the timing figures

are not only influenced by the computational complexity of

fixing but also by the variations in workloads on the continuous

integration and deployment system. Since SAPFIX is deployed

in a highly parallel, asynchronous environment, the time from

detection to publication can be influenced more by the demand

on the system and the availability of computing resources than

by the fix problem’s inherent computational cost.



TABLE I
NULL POINTER EXCEPTION SAPFIX:“#P” IS THE TOTAL NUMBER OF PATCHES; “#M” IS THE NUMBER OF MUTATION FIX PATCHES; “#G” IS THE NUMBER

OF TEMPLATE PATCHES; “#PASS TESTS” IS THE NUMBER OF PATCHES THAT PASSED ALL OUR TESTS; “#¬ BUILD” IS THE NUMBER OF PATCHES THAT

FAILED TO BUILD; “#¬ SAP” IS THE NUMBER OF PATCHES THAT FAILED SAPIENZ TESTING; “#¬ FIX” IS THE NUMBER OF PATCHES THAT FAILED TO FIX

THE CRASH; “#¬ PR.” IS THE NUMBER OF PATCHES THAT WERE NOT PUBLISHED BECAUSE THE RULE THAT PRODUCED THEM, WAS SUBSUMED BY ONE

WITH A HIGHER PRIORITY; “SAPFIX LAND” SPECIFIES WHETHER SAPFIX LANDED THE PATCH INTO PRODUCTION; “DEVELOPERS’ FEEDBACK” REPORTS

DEVELOPERS’ INSIGHTS. THE TABLE’S TIME FORMAT IS MM.DD/HH:MM. NOTE THAT ON THE 9th. AUGUST 2018 WE UPDATED OUR TEMPLATES WITH

BETTER VERSIONS THAT COVERED MORE TYPES OF NPE FIXES. WE REPORT THE SUMMARIES OF OUR RESULTS FOR BOTH TIME PERIODS AND OVERALL AS

WELL.
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06.26/09:34 Facebook 3 0 3 0 3 0 0 0 No No No No Yes Not reviewed in 7 days.

07.06/09:29 Facebook 6 0 6 0 6 0 0 0 No No No No Yes Not reviewed in 7 days.

07.10/02:30 Facebook 4 0 4 0 4 0 0 0 No No No Yes No Wrong fix: null guard for an expression that cannot be null.

07.11/06:04 Facebook 2 2 0 2 0 0 0 0 No No No Yes No Wrong fix: null guard for an expression that cannot be null.

07.15/11:55 Facebook 2 2 0 2 0 0 0 0 Yes No No No No Fix accepted without comments.

07.16/03:42 Facebook 4 4 0 4 0 0 0 0 Yes No No No No Macro: “superlike”

07.16/09:27 Instagram 1 1 0 1 0 0 0 0 No No No Yes No Not sure about the side effects of the fix.

07.18/12:06 Facebook 4 0 4 0 4 0 0 0 No No No Yes No Wrong fix: null guard for an expression that cannot be null.

07.20/02:39 Facebook 3 2 1 2 1 0 0 0 Yes No No No No Fix accepted without comments.

07.20/03:01 Facebook 1 1 0 1 0 0 0 0 No Yes No No No Correct fix: fixed by the developer before seeing the sapfix.

07.20/03:33 Instagram 2 2 0 2 0 0 0 0 No Yes No No No Correct fix: fixed by the developer before seeing the sapfix.

07.20/05:41 Instagram 1 1 0 1 0 0 0 0 No Yes No No No Correct fix: “Oh this is cool! I didn’t notice this diff until now.

I have addressed the issue in this diff Dxxxxxxx but I wish

I’ve seen this earlier. :-)”

07.20/05:50 Facebook 2 2 0 1 0 1 0 0 No No No No Yes Not reviewed in 7 days.

07.31/04:21 Facebook 7 0 7 0 7 0 0 0 Yes No No No No Fix accepted without comments.

08.02/01:49 Facebook 1 1 0 1 0 0 0 0 No No Yes No No Correct fix, landed by the developer.

08.03/01:32 Facebook 1 1 0 1 0 0 0 0 Yes No No No No Fix accepted without comments.

08.03/01:56 Instagram 3 3 0 3 0 0 0 0 No Yes No No No Correct fix: fixed by the developer before seeing the sapfix.

08.08/00:28 Facebook 2 2 0 2 0 0 0 0 No Yes No No No Correct fix: fixed by the developer before seeing the sapfix.

Mutation Fix Overall 24 - - 23 - 1 0 0 4 5 1 2 1 Fix attempts with at least 1 passing test patch: 13/18

Templates Overall 25 - - - 25 0 0 0 1 0 0 2 2 Fix attempts with at least 1 passing test patch: 6/18

Total NPE Fixes: 18 49 24 25 48 1 0 0 5 5 1 4 3

On 08.09.2018 we updated our templates.

08.20/07:46 Facebook 4 0 4 0 0 4 0 0 No No No No Yes Not reviewed in 7 days.

08.20/07:47 Facebook 3 2 1 1 0 2 0 0 No No No Yes No Wrong fix: null guard for an expression that cannot be null.

08.20/07:47 Facebook 2 1 1 1 1 0 0 0 No No Yes No No Correct fix, landed by developer

08.20/08:56 Facebook 1 0 1 0 1 0 0 0 No No No Yes No “The fix might mask a race condition”

08.20/08:56 Facebook 1 0 1 0 1 0 0 0 No No No No Yes Not reviewed in 7 days.

08.21/02:46 Facebook 4 2 2 2 1 1 0 0 No No No Yes No Fixing the crash, but not a reasonable fix.

08.22/02:51 Facebook 2 2 0 2 0 0 0 0 Yes No No No No Fix accepted without comments.

08.22/02:52 Facebook 2 0 2 0 2 0 0 0 Yes No No No No Fix accepted without comments.

09.05/09:04 Messenger 1 0 1 0 1 0 0 0 No No No Yes No fix at the wrong line (this was a bug in sapfix :( )

09.05/09:04 Messenger 1 0 1 0 1 0 0 0 No No No Yes No Wrongly triaged.

09.05/09:15 Messenger 2 2 0 2 0 0 0 0 No No No No Yes Not reviewed in 7 days.

09.07/09:12 Facebook 4 2 2 2 2 0 0 0 No No No Yes No Wrong fix: null guard for an expression that cannot be null.

09.07/09:12 Instagram 1 0 1 0 1 0 0 0 No No No No Yes Not reviewed in 7 days.

09.07/09:12 Messenger 2 1 1 1 0 1 0 0 No No Yes No No Correct fix, landed by developer.

09.07/09:13 Messenger 3 2 1 1 1 0 0 1 No No No No Yes Not reviewed in 7 days.

09.07/10:20 Instagram 1 1 0 1 0 0 0 0 No No No No Yes Not reviewed in 7 days.

09.08/09:29 Facebook 9 0 9 0 6 3 0 0 Yes No No No No Macro: image with killing bugs

09.08/09:29 Messenger 1 0 1 0 0 1 0 0 No No No No Yes Not reviewed in 7 days.

09.08/09:29 WorkPlace 2 1 1 1 1 0 0 0 Yes No No No No Fix accepted without comments.

09.08/10:07 Facebook 1 1 0 1 0 0 0 0 No No Yes No No Correct fix, landed by developer.

09.08/10:17 Facebook 1 1 0 1 0 0 0 0 No No No No Yes Not reviewed in 7 days.

09.08/10:21 Messenger 2 0 2 0 2 0 0 0 No No No No Yes well this is cool (abandoned b/c not reviewed in time)

09.09/09:12 WorkChat 2 1 1 1 0 1 0 0 No No Yes No No Correct fix, landed by the developer.

09.09/09:12 Facebook 6 2 4 2 3 1 0 0 Yes No No No No Fix accepted without comments.

09.11/01:37 Instagram 4 3 1 0 1 0 3 0 Yes No No No No Macro: “whatatimetobealive3”

09.18/14:12 Facebook 3 3 0 2 0 1 0 0 No No No No Yes Not reviewed in 7 days.

09.18/14:13 Instagram 4 2 2 0 1 1 2 0 No No Yes No No Correct fix, landed by the developer.

09.18/14:14 WorkPlace 3 3 0 1 0 1 1 0 No No No No Yes Not reviewed in 7 days.

09.18/14:14 Instagram 4 4 0 2 0 0 2 0 No No No Yes No “Pretty sure this isn’t the cause of the crash (Which is already fixed)”

09.18/14:14 Facebook 2 1 1 1 0 1 0 0 No No No Yes No Wrongly triaged.

09.18/14:15 Facebook 5 2 3 1 3 0 1 0 No Yes No No No Correct fix: fixed by the developer before seeing the sapfix.

09.18/14:16 Messenger 6 1 5 1 4 1 0 0 No No No No Yes “We do want to crash because we wanna know when it can be null.”

09.18/14:16 Facebook 2 2 0 1 0 0 1 0 No No No Yes No “This isn’t the right fix at all, but it is really cool :)”

09.18/14:15 WorkChat 5 1 4 1 4 0 0 0 No No No Yes No Rejected without comments.

09.18/14:17 Facebook 7 4 3 4 3 0 0 0 Yes No No No No Fix accepted without comments.

09.18/15:16 FBLite 2 1 1 1 1 0 0 0 Yes No No No No “lg2m :o”

09.18/15:46 Facebook 3 3 0 3 0 0 0 0 No No No No Yes Not reviewed in 7 days.

09.19/10:42 WorkPlace 5 2 3 1 2 2 0 0 Yes No No No No “It would be nice if the bot would also add ‘@Nullable‘”

“to ImageOptions. Probably hard to do though :)”

09.19/14:00 Facebook 3 3 0 2 0 0 1 0 No Yes No No No Correct fix: fixed by the developer before seeing the sapfix.

Mutation Fix Overall 56 - - 40 - 4 11 1 5 1 3 6 7 Fix attempts with at least 1 passing test patch: 27/39

Templates Overall 60 - - - 43 17 0 0 4 1 2 4 6 Fix attempts with at least 1 passing test patch: 22/39

Total NPE Fixes: 39 116 56 60 83 21 11 1 9 2 5 10 13

Results for our entire data set.

Mutation Fix Overall 80 - - 63 - 5 11 1 9 6 4 8 8 Fix attempts with at least 1 passing test patch: 40/57

Templates Overall 85 - - - 68 17 0 0 5 1 2 6 8 Fix attempts with at least 1 passing test patch: 28/57

Total NPE Fixes: 57 165 80 85 131 22 11 1 14 7 6 14 16

% 100 49 51 80 13 6 1 25 12 11 24 28

Total Correct Fixes(%) 27/57(48%)



TABLE II
SAPFIX EXPERIMENT RESULTS ON PRE-EXISTING CRASHES WHERE WE

LACK SAPIENZ TRIAGE DATA. “#C” IS THE NUMBER OF CRASHES. THE

OTHER COLUMNS ARE THE SAME AS THOSE IN TABLE I.

Strategy Failed Patches Developer says:

Crash Type #P #M #G #Pass #¬ #¬ #¬ #C SAPFIX Wrong Unkn.

Tests Build Sap Pr. Land

Recent Crashes 547 288 259 213 166 65 103 117 16 35 66

% 100 53 47 39 30 12 19 100 14 29 56

Longstanding Crashes 399 230 169 139 132 39 89 78 13 24 41

% 100 58 42 35 33 10 22 100 17 30 53

Total 946 518 428 352 298 104 192 195 29 59 107

% 100 55 45 37 31 11 21 100 15 29 56

Lessons Learned and Future Work

Our philosophy in deploying automated repair was to focus

on industrial deployment, rather than further research. This

philosophy has strongly influenced all of the decisions we took.

For example, it has been known for some time that random

search over a suitably-constrained (fault localised) search space,

can be surprisingly effective at finding candidate repairs [1].

Indeed, several fixes reported in early work on repair were

found in the very first generation [22].

Our earlier work on Sapienz had fortunately led to scalable

and sufficiently precise fault localisation, which contributed to

the 75% fix rate for human developers, reported on elsewhere

[6]. The existing deployment of Sapienz, together with these

results from the literature gave us confidence that we could

deploy a relatively simple end-to-end repair approach as a

starting point. We also sought to re-use developer-defined patch

templates as a starting point, knowing that the scientific litera-

ture demonstrated that this can work [23], but also in the firm

belief that this would lead to more human-acceptable patches.

Finally, we were also motivated by more recent work on

automated repair that has highlighted issues concerning weak

oracles [24]. To ameliorate this problem, we use a combination

of static and dynamic analysis to check, re-check, localise

and identify the code that needs to change. We also use a

combination of regeneration of search based tests with Sapienz,

and human-written end-to-end tests, to provide a testing envi-

ronment in which to check the repairs constructed by SAPFIX.

Humans still play the role of final gatekeeper with SAPFIX:

no repair is landed into production without human oversight,

so the repair system, although fully automated is, nevertheless,

at this point merely a recommender system. This final human

gatekeeper phase also provides us with insights from real-world

developers’ reactions when presented with automated repair

candidates, on which we report.

We target Null Pointer Exceptions (NPEs) in the first instance

because NPEs are such an important category of fault [25].

NPEs are also a highly prevalent fault category: Coelho

et al. [26] analyze a set of 6000 Android stack traces that they

extracted from more than 600 Android apps. They observe that

more than 50% of the crashes are NPEs. This lower bound of

50% has been replicated for the top 1,000 android apps, using

Sapienz automated testing [27] and we also found, at Facebook,

that NPEs constitute at least 50% of the crashes triaged by

Sapienz to developers. All of this empirical evidence pointed

to NPEs denoting a natural high impact class of faults on

which to direct our initial focus. NPEs also have the advantage,

for automated repair, that fixes tend to be localised and small.

As such, we anticipated a higher probability that mutation

operators, combined with identification of fix patterns may

lead to successful deployment.

Much remains to be done, but we believe our initial deploy-

ment has allowed us to garner some experience, insights and

initial results that may be useful to other researchers and prac-

titioners, which we summarise in the remainder of this section.

End-to-end automated repair can work at scale in indus-

trial practice: We have existential proof that developers do

accept some automated patches; approximately one quarter

of our patches landed into production code and a further

quarter were deemed correct but not landed, either because the

developer tweaked the fix or because they had already fixed

the crash themselves when they first saw the proposed fix. This

is encouraging. Clearly much more research and development

work is needed and we certainly do not underestimate the

challenges that lie ahead. Nevertheless, our results suggest that

the hitherto open question as to whether end-to-end automated

repair could be deployed in industrial practice is now answered,

allowing the community to devote its full energy to tackling

the many (exciting and impactful) open problems.

Developers are a useful final oracle: Automated oracles [28],

and testing and verification will hopefully advance in the

years to come, thereby widening the remit of automated repair.

However, the developers’ role as final gate keeper is likely to

remain important for repair deployment while we await such

further advances. Work on automated oracles can best support

this aspect of the repair agenda by seeking to reduce (rather

than replace) developer effort.

Sometimes deletion (reverting) is useful: high firing crashes

in a master build of the system, even if never ultimately

deployed to customers, will block further testing, so deleting

them can be useful. This is an important use-case where the

previously observed apparent predilection of automated repair

to simply delete code (or to mask a failure, rather than tackling

the root cause) is a behaviour that we seek; it can re-enable

testing in the presence of a high-firing crash. Therefore,

although deletion should be an anti-pattern for automated repair

more generally [29], it is deployable in this specific use-case.

However, more research is needed on the problem of finding

the right code to delete without affecting subsequently-landed

code modifications. Program slicing techniques [30], [31]

might find in this repair-orientated problem, a new application

domain. We also found that developers are resistant to Diff

reversion (perhaps understandably). More work is therefore

required on partial deletion and crash-masking, so that the

effects of a crash can be suppressed while minimally affecting

onward computation, not only nor even necessarily for

end-user release, but also to support further testing.

Sociology: Developers may prefer to clone-and-own proposed

fixes, rather than to simply land them (approximately one

quarter of fixes deemed correct by engineers were, nevertheless,

edited by them prior to landing). More work needs to be done

on the sociology of automated repair; the interfaces between



human and machine in repair.

Automated Explanations: Developers often showed a readi-

ness and interest in communicating with the SAPFIX bot (even

though they knew it to be a bot), as indicated by their comments

and feedback. There is a significant, and as-yet untapped,

potential for dialog between the automated repair tool and

engineer. More work is needed on techniques for repair (and

more generally program improvement [2], [32]) that interact

with the developer to ‘discuss’ proposed changes. Sapienz uses

an automated experimental framework [6] that seeks to scale up

best practice empirical software engineering experimentation.

This could be a starting point for automated experimentation.

Combine static and dynamic analysis: We have found that

both static and dynamic analysis are complementary and

mutually re-enforcing more generally [5], but also here in

the specific case of automated repair. More work is needed to

find blended analyses [33] that target repair.

Root cause analysis: SAPFIX might simply remove the

symptom rather than addressing the root cause; masking the

failure rather than fully fixing it. Although failure masking

remains useful to unblock testing, techniques for identifying

root causes of failures and appropriate (automatable)

remediation remains very pressing problem.

Side Effects: Without fully automated oracles, our ultimate

defence against side effects remains, as it does with human

fixes, the developers and reviewers of Diffs. Much more work

is still needed on automated test design and automation of

(strong) oracles so that we can have greater confidence that

passing all tests makes it unlikely that some knock-on effect

is caused by a patch. Ultimately one would prefer to verify

the absence of side effects; the FiFiVerify vision [10].

RELATED WORK

SAPFIX is grounded in the approach to software engineering

known as Search Based Software Engineering (SBSE) [34],

[35]; the space of potential fixes to a software systems is

considered to be a search space constructed from small modifi-

cations to an existing system under test. In the deployment of

SAPFIX we do not claim any strong novelty in terms of the

core repair algorithm. In fact, SAPFIX does not use any of the

repair approaches from the literature on repair and SBSE, since

their sophistication might have inhibited scalability. Instead

we favoured using more simple approach in which a patch

is simply a higher order mutant [9], [36] and we perform a

single generation search over this space; essentially little more

than random search, with some smart selection. As such, our

results may best be thought of as a base line [37], against

which to measure the advances we hope to see produced by

future research and development.

Automated fault finding

There are a several approaches that generate crashing test

inputs for Android apps. SAPFIX is a general automated bug

fixing technique that can be used in conjunction with any of

these approaches: given a test case that one of these approaches

produces, SAPFIX tries to generate patches for the bug that

the failing test case reveals.

Currently, SAPFIX uses Sapienz [4], [6] and Infer [38], but

could use other test generation techniques, such as AndroidRip-

per [39], an automated test case generation technique based

on GUI ripping [40], ACTEVE [41] or Collider [42], concolic

testing systems for Android [41], A3E [43], a static data flow

test tool, and/or other static analyses.

SAPFIX could also use Dynodroid [44], a feedback directed

random test tool or Android Monkey, which are other popular

Android testing tools. Although Sapienz has previously been

shown to outperform both [4], these earlier results also indicated

that the three techniques are, nevertheless, complementary.

There are also model based test tools such as FSMdroid [45]

and fuzzers such as Fuzzdroid [46] that could be used to

complement our results. It is likely that any or all of the

techniques listed above (and many more that we could not

list for brevity) might find additional faults not found by

Sapienz and could thereby complement our initial deployment

of SAPFIX. More generally, any static or dynamic analysis

tool that scales to tens of millions of lines of code and 100k+

commits per week could be used as either a replacement or a

complement to our use of Sapienz and/or Infer.

Automated fault fixing (repair)

SAPFIX is a simple realisation of Automated Program Repair,

a topic that has been the subject of much research interest for

over a decade [3], [47], [48], [49], [50], partly building on

research on SBSE that has been a topic a research for more

than two decades [34], [35]. In the present paper we do not

seek to make significant novel contributions to the underlying

science of automated repair, but rather to demonstrate, explain

and bear witness to the real world applicability these research

agendas on Automated Repair, Automated Test Case Design

and SBSE.

Much related work exists on the topic of repair alone, so

we cannot hope to do justice to all of it here. In the remainder

of this section, we briefly review recent related work on Auto-

mated Program Repair and its differences and similarities to our

deployment of SAPFIX. A more detailed survey can be found

in the work of Monperrus [51]. According to the classification

of Monperrus, SAPFIX is an offline behavioral repair approach.

Behavioral repair implies changing the source code of the

buggy program. It requires an oracle to identify whether or not

the bug is successfully fixed. Monperrus identifies three types

of such oracle: test suites (the most closely related to SAPFIX),

pre- and post- conditions, and abstract behavioral models [52].

Unlike the (many) other behavioral repair approaches in

the existing literature [3], [48], [53], [54], [55], SAPFIX uses

three different oracles to asses the quality and correctness of a

fix: test cases from Facebook’s CI, crash triggering sequences

of UI events (similar to the work of Tan et al. [56]), and

human reviewers. One novelty of our work derives directly

from our industrial deployment; we are able to rely on expert

engineers to act as the final arbiter of correctness in each case

of a deployed repair.



This is the first time that professional engineers have played

this role in the repair literature. It is also, simultaneously, an

empirical evidence to support the claim that, at least there do

exist automated program repairs that are, ipso facto, acceptable

to expert professional software engineers.

Our SAPFIX approach targets Android NPEs and draws on

templates automatically learned from human testers. Previously,

Tan et al. [56] studied a set of Android crashes from Github

to identify a set of 8 mutation operators that are often used by

Android developers to fix bugs. One of their mutation operators

is ‘Missing Null Check’, which is similar to our NPE mutation

operators in the mutation fix strategy. Cornu et al.. have also

targeted NPEs for repair [23]. NPEFix uses a predefined

template-based approach similar with SAPFIX’s templates.

SemFix [57] uses symbolic execution and code synthesis.

Angelix [53] is an extension of SemFix that improves scalability

and applicability by enhancing the symbolic execution stage.

PAR [55] also uses repair templates to fix common types of

bugs in Java programs. One of their templates is also a “Null

Pointer Checker” that is parameterized by the variable name.

PAR randomly applies the templates and validates the fix.

Nopol [54] is an automated bug fixing tool for two types

of bugs: buggy if conditions and missing preconditions. In

the case of missing preconditions, Nopol adds a guard (if

statement), similar to our mutation fix operator for NPEs. Nopol

synthesizes the fix, using oracles (input-output pairs) to guide

component based patch synthesis [58].

Although SAPFIX represents the first industrial deployment

of end-to-end repair (from automated test design through to fix

deployment), there have been previous deployments of other

forms of automated code change, both in industry, and to

open source development communities. For example, Google’s

Tricorder system is reported to recommend fixes [59]. However,

Tricorder fixes are typically manually specified along with the

analysis check, whereas Sapfixes are detected and checked by

automatically-constructed tests as with SAPFIX. Automated

refactoring has also been widely studied [60] and has found

deployment at scale in industry [61]. However, refactoring seeks

to apply known-to-be semantically safe changes; essentially al-

tering syntax without disrupting semantics. Therefore, although

undoubtedly important, refactoring is less challenging than

repair, which necessarily affects semantics as well as syntax.

The Repairnator system was first deployed in 2017 [62]

to suggest repairs to Github Java projects. Repairnator uses

existing test suites in these open source projects to identify

crashes so, unlike SAPFIX, it does not offer end-to-end test

generation to repair. However, like SAPFIX, Repairnator does

provide for the continuous deployment of repair techniques

at considerable scale.

CONCLUSIONS AND FUTURE WORK

The SAPFIX system is now running in continuous integration

and deployment. This is the first time that automated end-to-end

repair has been deployed into production on industrial software

systems in continuous integration and deployment. Much

remains to be done. Our repairs aim to tackle the most prevalent

(yet arguably also the most simple) bugs, fixable by small

patches, comparatively easily checked by the final human gate-

keeper. As such, our paper tackles few, if any, of the many inter-

esting and exciting open research problems for automated repair.

SapFix patches tend to ameliorate rather than fix root causes,

which remains an open problem. Nevertheless, even masking a

newly-landed failure can be useful to unblock automated testing

of other recent code changes. We share the lessons we learned

from the deployment of SAPFIX in this paper seeking to provide

additional input to the development of this challenging but

important research field from a practical industrial perspective.

We hope thsi contributes to on-going and further research

and development on Automated Program Repair, Automated

Software Testing and Search Based Software Engineering.
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