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ABSTRACT 

 

Phytophthora cinnamomi has been recognised as a key threatening process to Australia’s 

biodiversity by the Commonwealth’s Environment Protection and Biodiversity 

Conservation Act 1999.  Despite over 80 years of extensive research, its exact mode of 

survival is still poorly understood.  It is widely accepted that thin- and thick-walled 

chlamydospores are the main survival propagules while oospores are assumed to play no 

role in the survival of the pathogen in the Australian environment, yet evidence is limited.  

The saprophytic ability of the pathogen is still unresolved despite the important role this 

could play in the ability of the pathogen to survive in the absence of susceptible hosts.  This 

thesis aimed to investigate chlamydospores, oospores and the saprophytic ability of P. 

cinnamomi to determine their contribution to survival.        

 

Phytophthora cinnamomi did not show saprophytic ability in non-sterile soils.  The 

production of thick-walled chlamydospores and selfed oospores of P. cinnamomi in vitro 

was documented.  Thick-walled chlamydospores were sporadically formed under sterile 

and non-sterile conditions in vitro but exact conditions for stimulating their formation could 

not be determined.  The formation of thick-walled chlamydospores emerging from 

mycelium of similar wall thickness was observed, challenging the current knowledge of 

chlamydospore formation.   

 

Selfed oospores were abundant in vitro on modified Ribeiro’s minimal medium in one 

isolate.  Three other isolates tested also produced oospores but not in large numbers.  

Although the selfed oospores did not germinate on a range of media, at least 16 % were 
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found to be viable using Thiozolyl Blue Tetrazolium Bromide staining and staining of the 

nuclei with 4´, 6-diamidino-2-phenylindole.2HCl (DAPI).  This indicated the potential of 

selfed oospores as survival structures and their ability to exist dormantly.   

 

The ability of phosphite to kill chlamydospores and selfed oospores was studied in vitro.  

Results challenged the efficacy of this chemical and revealed the necessity for further study 

of its effect on survival propagules of P. cinnamomi in the natural environment.  Phosphite 

was shown to induce dormancy in thin-walled chlamydospores if present during their 

formation in vitro.  Interestingly, dormancy was only induced by phosphite in isolates 

previously reported as sensitive to phosphite and not those reported as tolerant.   

 

Chlamydospores were produced uniformly across the radius of the colony on control 

modified Ribeiro’s minimal medium but on medium containing phosphite (40 or 100 µg 

ml
-1

), chlamydospore production was initially inhibited before being stimulated during the 

log phase of growth.  This corresponded to a point in the colony morphology where 

mycelial density changed from tightly packed mycelium to sparse on medium containing 

phosphite.  This change in morphology did not occur when the pathogen was grown on 

liquid media refreshed every four days, and chlamydospores were evenly distributed across 

the radius of these colonies.  This trend was not observed in selfed oospores produced in 

the presence of phosphite.  Selfed oospore production was found to be inhibited by 

phosphite at the same concentrations that stimulated chlamydospore production.   

   

Isolates of P. cinnamomi were transformed using a protoplast/ polyethylene glycol method 

to contain the Green Fluorescent Protein and geneticin resistance genes to aid in future 

studies on survival properties of the organism.  Although time constraints meant the 
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stability of the transgene could not be determined, it was effective in differentiating 

propagules of the transformed P. cinnamomi from spores of other microrganisms in a non-

sterile environment.  Two different sized chlamydospores (approximately 30 µm diameter 

and < 20 µm diameter) were observed in preliminary trials of transformed P. cinnamomi 

inoculated lupin roots floated in non-sterile soil extracts and these were easily distinguished 

from microbial propagules of other species.  The growth and pathogenicity was reduced in 

two putative transformants and their ability to fluoresce declined over ten subcultures but 

they still remained resistant to geneticin.   

 

This study has improved our knowledge on the survival abilities of P. cinnamomi in vitro 

and has provided a useful tool for studying these abilities under more natural glasshouse 

conditions.  Important implications of phosphite as a control have been raised. 
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CHAPTER 1 

General Introduction 

 

Oomycetes are part of a branch of eukaryotic plant pathogens and saprophytic species 

(Kamoun 2001).  They are grouped amongst the Stramenopiles that also include heterokont 

algae (Hardham 2005). The Oomycetes include the genus Phytophthora which holds many 

notorious plant pathogens, including the causes of potato late blight, cocoa black pod, 

dieback diseases of dry sclerophyll forests in southern Australia and sudden death of oaks 

in northern America (Garbelotto, 2001; Kamoun 2001).  Natural ecosystems, pastoral, 

horticultural, ornamental and forestry industries may all be threatened by Phytophthora 

species (Table 1.1) which may cause major economical losses.  The most important and 

widespread Phytophthora species in Australia is Phytophthora cinnamomi Rands (1922) 

(Weste and Marks 1987; Erwin and Ribeiro 1996; Colquhoun and Hardy 2000).   

 

This review focuses on the lifecycle of P. cinnamomi, identifying the gaps in our 

knowledge on exactly what contribution the propagules sporangia, zoospores, 

chlamydospores and oospores have in the survival of this pathogen.  The current control 

technique, phosphite and new molecular technologies that aid in the study of the biology of 

this pathogen are introduced.  



CHAPTER 1: GENERAL INTRODUCTION 

 2

Table 1.1:  Some Phytophthora species found in Australia and their hosts (Summarised from Irwin 

et al. 1995). 
Phytophthora spp. Plant species or group affected State where recorded 

P. cactorum  Horticultural and Eucalyptus spp. Victoria (Vic), South 

Australia (SA), Western 

Australia (WA), Tasmania 

(Tas) 

P. cambivora  Horticultural Vic, SA, New South Wales 

(NSW) 

P. cinnamomi Natural ecosystems, Eucalyptus spp., 

Horticultural and Ornamental  

All states 

P. citricola  Natural ecosystems, Forestry, 

Horticultural and Ornamental 

SA, WA, NSW, 

Queensland (Qld), Tas 

P. citrophthora Citrus spp. Vic, WA, Qld, NSW 

P. clandestina  Subterranean clover Vic, NSW, WA 

P. cryptogea  Natural ecosystems, forestry, 

Horticultural and Ornamental 

All states 

P. drechsleri Natural ecosystems and Forestry WA, Qld 

P. erythroseptica Potato Vic, Tas 

P. fragariae Strawberries SA 

P. infestans  Potato Vic, Tas 

P. macrochlamydospora Soybean Qld, NSW 

P. medicaginis Chickpea and lucerne Qld, NSW 

P. megasperma  Natural ecosystems, Forestry, 

almond, white clover and Brassicas 

Vic, SA, WA 

P. nicotianae  Natural ecosystems, Forestry, 

Horticultural and Ornamental 

WA, Qld 

P. nicotianae var. nicotianae Horticultural and Ornamental WA, Northern Territory, 

Qld 

P. nicotianae var. parasitica Horticultural WA, Qld 

P. palmivora  Horticultural and Ornamental Qld 

P. parasitica  Horticultural and Ornamental Vic, SA, Qld, NSW, WA 

P. porri Onion NSW 

P. sojae Soybean Vic, Qld, NSW 

P. vignae Cowpea Qld, NSW 
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Phytophthora cinnamomi is a soil-borne pathogen and was first described by Rands in 1922 

when the pathogen was isolated from cinnamon trees (Cinnamomum burmannii) suffering 

from stripe canker in Sumatra (Rands 1922; Zentmyer 1983; Erwin and Ribeiro 1996). 

 

The A2 mating type of the pathogen has a worldwide distribution (Zentmyer 1980) whereas 

the A1 mating type has an extremely limited distribution (Zentmyer 1983).  In 1949, Fraser 

first associated the pathogen with disease of Australian native plants when he isolated it 

from dead species (Woollsia pungens, Epacris purpurascens, Xanthosia tridentata, 

Actinotus helianthi, Trachymene linearis, Dodenaea triquetra, Petrophila pulchella and 

Pultenaea spp.) in eucalypt woodland in Sydney (Fraser 1956).  The pathogen was not 

isolated from vegetation in Western Australia until 1964 by Zentmyer (Podger et al. 1965).  

In Australian forests, the impact of P. cinnamomi is mainly confined to the understorey 

with the exception of the tree species Eucalyptus marginata (jarrah) and E. sieberi 

(Davison and Shearer 1989).  Affected plants include many species within the families 

Proteaceae, Epacridaceae, Dilleniaceae, Myrtaceae and Papilionaceae that are so species 

rich in Australia (Titze and Palzer 1969; Zentmyer 1980; Shearer and Tippett 1989; Shearer 

1994).  The greatest impact of the pathogen occurs in south-western Australia, mainly in 

the jarrah forest, but also in the Bassendean Dune system and Pinjarra Plain, west of the 

Darling Scarp, due to suitable environmental conditions (cool, wet winters and hot, dry 

summers) and human activity (Shearer and Tippett 1989; Shearer 1992; Shearer 1994).   

 

Typical symptoms of plants infected by P. cinnamomi include root rot, lesions on roots and 

lower stems, leaf chlorosis and rapid dieback (Shearer and Smith 2000).  Some infected 

plants suddenly collapse but others, particularly in cool, damp climates, may survive for 

several years (Erwin and Ribeiro 1996).  Phytophthora cinnamomi can be recovered from 
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large roots and the collar regions of susceptible plants (Shea 1979; Blowes et al. 1982; 

Schild 1995). 

 

Quarantine and hygienic practices are effective in controlling the dispersal of P. cinnamomi 

but once the organism invades an area, its impact on native vegetation can be disastrous.  

Application of fungicides and other control methods, effective on small areas or 

horticultural situations, have only limited capabilities in controlling the disease on a large 

scale in a natural ecosystem.  For this reason, study of the pathogen’s life cycle and 

physiology is important to discover ways to manipulate the environment to discourage its 

growth and survival (Shearer and Tippett 1989; Schild 1995).  Currently, phosphite is the 

main control/ prevention method in use in Australia (Hardy et al. 2001) but the effects of 

this chemical on the environment and how it actually works on the pathogen are still largely 

unknown (Section 1.4). 

 

1.1 Biology of Phytophthora cinnamomi 

Infection by P. cinnamomi requires a temperature range between 15 and 34 °C while 

temperatures outside this range may limit infection (Hepting 1963).  It tends to grow and 

sporulate better at soil temperatures higher (between 2 ºC and 21 ºC) than other 

Phytophthora species (Zentmyer 1983; Shearer and Tippett 1989).  Optimum mycelial 

growth has been shown to occur in vitro within the range of 25 – 30 °C (Shearer et al. 

1987) whereas optimal sporangial formation occurs between 22 and 28 °C (Chee and 

Newhook 1965a, b). 
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Soil moisture levels below field capacity can reduce infection, while soils that remain at 

wilting point for lengthy periods tend to reduce the survival chances of the pathogen 

outside host roots (Shea 1977).  However, the ability to recover P. cinnamomi from sites 

varies with season suggesting it may be periodically dormant.  Shearer and Shea (1987) 

found that the pathogen could not be recovered from surface soil during the dry summer 

months in jarrah forests and that recovery was greatest during the winter months when 

rainfall was highest and temperature lowest.    

 

Growth of P. cinnamomi has been found to be suppressed by soils with high fertility 

including high organic matter levels, pH, nitrogen, cellulose and lignin content (Zentmyer 

and Bingham 1956; Zentmyer 1963; Gilpatrick 1969; Broadbent and Baker 1974; Nesbitt et 

al. 1979; Tsao and Zentmyer 1979; Tsao and Oster 1981; Malajczuk et al. 1983; Hoitink 

and Fahy 1986; You and Sivasithamparam 1994).  High potassium levels have also been 

shown to suppress P. cinnamomi (Schmitthenner and Canaday 1983).  Phytophthora 

species have an absolute growth requirement for thiamine (Vitamin B1) (Erwin and Ribeiro 

1996). 

 

Sterols are required for production of sporangia and chlamydospores (Hendrix 1965; 

Ponchet et al. 1999).  However, Hendrix (1967) did observe that sporangia of P. palmivora, 

P. capsici and P. parasitica formed on media containing no sterols but these did not 

liberate zoospores.  Sporulation in P. cactorum, P. capsici, P. cinnamomi, P. citrophthora, 

P. palmivora and P. parasitica, decreases with decreasing oxygen and increasing carbon 

dioxide (Mitchell and Zentmyer 1971). 
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For soils with low organic matter such as the lateritic soils of Western Australia, the 

pathogen may survive for years in dead host tissue as long as sufficient moisture is 

available (Weste and Ruppin 1977; Weste 1983a).  These soils with lower organic matter 

have fewer soil microorganisms, low soil nitrogen and poor water-holding capacity (Weste 

and Vithanage 1978a) and therefore fewer antagonists.     

 

1.2 Lifecycle of Phytophthora cinnamomi 

Phytophthora can be moved into new areas in soil, water or infected root material.  

Chlamydospores have been observed to be the most persistent propagules, followed by 

sporangia and then zoospores in moist, artificially infested non-sterile soil (Hwang and Ko 

1978). 

 

1.2.1 Sporangia and Zoospores 

Sporangiophores form under suitable conditions (warm, moist, aerated soils) and produce 

sporangia as temperatures rise above 12 °C (Zentmyer 1980).  Sporangia production is 

influenced mostly by the water potential of the soil, many being produced when humidity 

approaches 100 % or water potential approaches 0 kPa (Ribeiro 1983).  Many sporangia 

have been observed to form at -10 kPa but few at -300 kPa (Sneh and McIntosh 1974; 

Duniway 1975).  Moisture, soil type, pH, percentage organic matter, oxygen, light and 

temperature have been identified as the most important factors affecting the production of 

sporangia (Waterhouse 1931; Reeves 1975; Malajczuk and Theodorou 1979).  On liquid 

media, sporangia are usually more abundant on the surface indicating the necessity of 

oxygen for their production (Zentmyer and Erwin 1970). 
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Sporangia either germinate directly (Zentmyer and Erwin 1970) or, if a small drop in 

temperature occurs, they release zoospores that move by their flagella through water and 

apart from subsurface water flow, are the only way the pathogen can move through soil 

(Zentmyer 1980).  Zoospore production is capable of intensifying the disease potential of 

the pathogen in a relatively short period of time (Zentmyer and Erwin 1970).  The 

zoospores are attracted to soft tissues (chemotaxis) in the zone of root elongation where 

they attach and lose their flagella, forming cysts (Hardham 1987; Shearer and Tippett 1989; 

O’Gara et al. 1996).  The cysts produce germ tubes that penetrate the root cells. Once 

inside the host cells, the germ tube branches forming mycelium that, unhindered, grows 

throughout the plant tissues, killing the plant through damage to the vascular tissues 

(Hardham 1987; Shearer and Tippett 1989). 

 

Zoospores, the primary inoculum, have a short life that lasts not much longer than a few 

hours, requiring free water (Weste 1979).  However, zoospore cysts of P. cinnamomi have 

been observed to survive up to 3 weeks under moist conditions at water potentials ≤-100 

kPa and up to 10 weeks at -700 kPa under laboratory and natural environmental conditions 

(Hwang and Ko 1978; MacDonald and Duniway 1979).  In soil extracts, 7 % of zoospore 

cysts survived 43 days in both suppressive and conducive soils (Malajczuk et al. 1983).   

 

1.2.2 Chlamydospores  

Chlamydospores of P. cinnamomi, were first described in 1922 (Rands 1922) and are 

frequently referred to as asexual reproductive survival structures (Zentmyer 1980).  Since 

the A1 mating type of P. cinnamomi is uncommon in Australia, Weste and Vithanage 

(1979) concluded that chlamydospores are an important form of survival and the major 

inoculum source.  The evidence for this widely accepted assumption is examined and 
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whether or not both thick and thin-walled chlamydospores are produced in nature or only in 

laboratory culture.  

 

Chlamydospores of Phytophthora  

Chlamydospores of Phytophthora are globose structures, 7 to 90 µm in diameter, separated 

from the mycelium by a basal septum (Blackwell 1949; Waterhouse et al. 1983; Erwin and 

Ribeiro 1996).  Not all Phytophthora species produce chlamydospores and in some species, 

only certain isolates form them (Waterhouse et al. 1983; Stamps et al. 1990; Erwin and 

Ribeiro 1996).  It is thought that asexual and sexual reproduction of Phytophthora is 

triggered by mycelium starvation (Bartnicki-Garcia and Wang 1983).  Chlamydospores are 

considered more resistant structures than zoospores and sporangia as they have thicker 

walls and in older chlamydospores, vacuoles with lipids and dense inclusions similar to 

other resistant spores such as oospores (Hemmes and Wong 1975; Hemmes 1983).   

 

Morphology and wall formation of chlamydospores 

In vitro, chlamydospores of P. cinnamomi form in terminal or intercalary clusters of three 

to ten (Hemmes and Wong 1975; Gerrettson-Cornell 1983; Erwin and Ribeiro 1996).  They 

form by expansion of the hyphal wall and cytoplasm flows into the structure (Hemmes and 

Wong 1975).  Small chains of two chlamydospores may also form (Gerrettson-Cornell 

1983).  In vitro, initially the chlamydospore wall is thin (approximately 0.2 µm, similar to 

the hyphae), becoming thicker (0.5 µm – 0.6 µm) in 2-week-old spores after formation of 

the basal septum (Hemmes and Wong 1975).  No equivalent measurements have been made 
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on chlamydospores in plant tissues, or when they have formed under the influence of 

antagonistic microbes. 

 

Walls of chlamydospores of other Phytophthora species may be up to 5 µm thick (Erwin 

and Ribeiro 1996).  The walls are comprised of β-linked glucose polymers (80 – 90 %), 

protein, lipids and other polysaccharides (observations based on in vitro cultures) 

(Bartnicki-Garcia and Wang 1983).  They are similar to walls of oogonia and differ from 

sporangial walls (Hegnauer and Hohl 1978). It is curious that the outermost layers of 

chlamydospore walls are much thicker than the layers of the hyphal wall from which they 

develop (Hegnauer and Hohl 1978) although Hunsley (1973) observed that in hyphal tip 

growth, the outer layer also thickens with time.  However, there is very limited information 

in the literature on exactly how chlamydospore walls thicken. 

 

Production of thin-walled chlamydospores in soil 

Evidence that chlamydospores are an important propagule for survival in Australia is 

limited, particularly for survival of chlamydospores not in plant material which would 

buffer them from some of the more extreme soil conditions.  The evidence that 

chlamydospores may be produced in soil is sparse; the problem being that, when 

experimenting with non-sterile conditions, the observation of ‘spores’ is insufficient and the 

structures must be germinated to identify the species.  For example, in experiments on 

mycelial lysis, chlamydospores were observed on colonised nylon discs in different soils 

within 5 to 15 days and persisted under different moisture regimes for up to 18 months 

(Kuhlman 1964; Mircetich and Zentmyer 1967; Reeves 1975).  However, the viability and 

identity of these spores was not confirmed by germination.   
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The best evidence of thin-walled chlamydospore formation and short-term survival in non-

sterile soil conditions comes from Weste (1983b).  She buried mesh colonised by P. 

cinnamomi in a range of soil types and observed that under a constant temperature (22 °C) 

and moisture contents between -60 kPa to -1960 kPa, chlamydospore numbers increased for 

up to 28 days in the absence of a host or added food source.  The colonisation of the mesh 

by P. cinnamomi also increased from 50 % after 10 days to almost 100 % after 28 days.  

The identity of the spores as P. cinnamomi was confirmed by use of a fluorescent 

brightener in the buried mycelium and germination of chlamydospores to indicate their 

viability.  The chlamydospores germinated after 28 days.  It would be interesting to know if 

there were any non-germinated chlamydospores that were viable and dormant, whether all 

chlamydospores were thin-walled and if they could survive for longer than the experimental 

period.   

 

Production of thin-walled chlamydospores in plant roots 

It has been stated that under both sterile and non-sterile conditions, chlamydospores form 

inter- or intra-cellularly in the root cortex (Mircetich and Zentmyer 1966, 1967; Reeves 

1975; Weste 1983a), however evidence for non-sterile conditions is limited.  The 

importance of this lies in the role root tissue could play in buffering the chlamydospores 

from unfavourable environmental conditions (Mircetich and Zentmyer 1967; Gilpatrick 

1969; Weste 1983b; Schild 1995). 

 

Chlamydospores have been reported in roots of susceptible plants such as Eucalyptus 

sieberi (Mackay et al. 1985; Cahill et al. 1989), E. marginata, Acacia melanoxylon, 
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Xanthorrhoea australis and X. resinosa (Cahill et al. 1989) and in field resistant species 

including Corymbia calophylla (syn. E, calophylla), Corymbia maculata (syn. E. maculata) 

(Malajczuk et al. 1977; Mackay et al. 1985; Cahill et al. 1989), Juncus bufonius, Gahnia 

radula and Themeda australis (Cahill et al. 1989).  In contrast, P. cinnamomi did not 

produce chlamydospores in the roots of the resistant species Acacia pulchella, Zea mays 

and Triticum aestivum (Cahill et al. 1989).  However, in all these cases (apart from Mackay 

et al. 1985), the observations were made under sterile conditions and it is important to 

know whether chlamydospore formation, wall thickness and dormancy would be the same 

under non-sterile field conditions.  In contrast, chlamydospores were rare in forest 

inoculated stems and roots of E. marginata, over a 12 month period (Tippett et al. 1983).  

‘Relatively’ thin-walled chlamydospores formed in Pseudotsuga menziesii roots buried in 

inoculated non-sterile soil in glasshouse experiments (Kuhlman 1964) but identification of 

chlamydospores was by microscopic examination only and not by the germination of 

spores.  Further investigations are required to determine whether chlamydospores form in 

roots of a wide range of Australian species under non-sterile native community 

environments.   

 

Production of thin-walled chlamydospores on root surfaces and within organic matter 

Chlamydospores have been recorded to form in large numbers on the outer surface of 

infected plant roots under non-sterile and sterile conditions (Reynolds et al. 1985; Robinson 

and Cahill 2003).  Further work is required in this area to discover the ability of 

chlamydospores to survive outside the buffered internal root environment.   
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Whether thin-walled chlamydospores are formed in dead organic matter is similarly not 

clear since it has not been proven that P. cinnamomi can survive as a saprophyte (Kuhlman 

1964; Zentmyer and Mircetich 1966; Nesbitt et al. 1979).  Experiments have shown that 

chlamydospores can be produced and survive in organic matter (Hwang and Ko 1978; 

Nesbitt et al. 1979; Weste 1983b) but these results have been obtained only from material 

that has been inoculated in vitro or infested whilst the host was still alive.  It is surprising 

that for such an important pathogen, it is still unknown whether it can colonise dead organic 

matter and produce chlamydospores, thereby building up survival inoculum.  Currently 

there is little evidence that chlamydospores are produced in non-sterile conditions in soil or 

in dead organic matter.   

 

Thick walled chlamydospores of Phytophthora cinnamomi 

It is often stated that P. cinnamomi chlamydospores may be thin or thick-walled (Royle and 

Hickman 1964; Marks et al. 1975; Weste and Vithanage 1979; Erwin and Ribeiro 1996). It 

is thus interesting that most literature concerns thin-walled chlamydospores. There is little 

evidence for the existence of thick-walled chlamydospores (walls greater than 1 µm thick) 

and this may be due to the difficulty of germinating the thick-walled structures. 

 

Thick-walled chlamydospores occur in vitro for P. cactorum (1 – 1.5 µm thick),                 

P. macrochlamydospora (1.5 – 4 µm thick), P. palmivora (>1.5 µm thick) (Kadooka and 

Ko 1973; Darmono and Parke 1990; Erwin and Ribeiro 1996; Irwin and Mackie 2000).  

When P. palmivora and P. drechsleri were tested under non-sterile conditions, both 

produced numerous thick-walled chlamydospores (>1.5 µm thick and 1 – 1.5 µm thick, 

respectively).  Proof of the origin of these propagules was obtained by germination of the 
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thick-walled chlamydospores on a range of agar media (Cother and Griffin 1973; Kadooka 

and Ko 1973).   

 

Thick-walled chlamydospores of P. cinnamomi have been observed in susceptible avocado 

roots in non-sterile soil (Mircetich and Zentmyer 1967).  Actual wall thickness or spore 

diameter was not reported and spores were not germinated to prove identity.  

Chlamydospores formed within non-sterile avocado roots on cornmeal agar were not thick 

walled.  This leads to the suggestion that adverse environments induce formation of thick-

walls (Mircetich and Zentmyer 1967).  

 

Cother and Griffin (1973) gave the most convincing evidence that thick-walled 

chlamydospores of P. cinnamomi are formed in plant roots in a soil environment.  They 

observed spores 5.2 – 14.4 µm in diameter with walls 1.0 – 1.5 µm thick in Lupinus 

augustifolius L. roots buried in moist field soil.  Identification of P. cinnamomi was 

confirmed by germinating chlamydospores first on water agar and then transferring the 

germinating spores to Phytophthora selective agar.  Shew and Benson (1982), using a soil 

sieving technique, found thick-walled P. cinnamomi chlamydospores (walls 1.0 – 2.6 µm) 

in naturally infested soil and germinated the spores on selective medium to confirm their 

identity.  The spores may have formed in soil but were more likely to have been in plant 

material broken down during the soil sieving.   

 

Thicker-walled ‘chlamydospores’ (no mention of wall thickness) were also reported in E. 

sieberi colonised by P. cinnamomi in different soils (Old et al. 1984).  The spores ranged 

from 12 – 20 µm in diameter, slightly larger than those reported by Cother and Griffin 

(1973).  However, these structures were also found in roots of control plants and attempts 
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to germinate them using the methods of Cother and Griffin (1973) were unsuccessful so 

they may have been an invading fungus and not P. cinnamomi.   

 

The lack of a reliable method for producing thick-walled chlamydospores in large numbers 

either in vitro or in vivo hampers research on these structures. It is important to produce real 

evidence of where and under what conditions thick-walled chlamydospores are produced. 

Without this knowledge we cannot quantify their importance in the life cycle of the 

pathogen or study aspects such as dormancy, survival and germination. 

 

Dormancy and survival of chlamydospores 

There is a conceptual link between thick-walled spores, dormancy and survival.  It has been 

stated that a thick wall helps reduce the possibility of destruction of a dormant spore by soil 

microbes (Malajczuk 1983) although Hemmes and Wong (1975) point out that ‘there is no 

available evidence that wall thickness alone is the primary factor in resistance against 

desiccation and antagonistic microorganisms’.  It appears that although it is widely stated 

that P. cinnamomi may survive as dormant structures in soil (Blackwell 1949; Zentmyer 

and Erwin 1970; Erwin and Ribeiro 1996), there is little evidence for chlamydospore 

dormancy and interpretation of field studies conducted using chlamydospores produced in 

vitro has clear limitations.   

 

There are several studies of survival of P. cinnamomi in plant tissues or organic matter 

where it has not been possible to identify chlamydospores as the survival structures.  Shea 

et al. (1980) and Old et al. (1984) have observed P. cinnamomi surviving in organic matter 

in jarrah forest soil as well as E. sieberi seedlings.  Neither study determined whether 
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mycelium, sporangia or chlamydospores contributed to survival.  Similarly, Schild (1995), 

whilst studying the persistence mechanisms of P. cinnamomi in soil, was unable to 

determine the exact mode of survival as there was very little mycelium present and putative 

chlamydospores were only occasionally seen.  False negative results have been obtained in 

detection of the pathogen from tissue sections plated onto selective agar (Hüberli et al. 

2000).  However, detection can improve if the tissues undergo wetting and drying cycles. 

This indicates that the pathogen is potentially surviving in a dormant state (Hüberli et al. 

2000), but does not prove chlamydospores are involved. 

 

The best evidence of chlamydospore dormancy is from Weste and Vithanage (1978b) who 

collected chlamydospores from naturally infested soil over a 2 year period by sieving and 

germinated them for identification.  Chlamydospore numbers increased to a maximum in 

summer and autumn; few were detected in winter. This leads to the suggestion that the 

spores may have been present in winter but dormant and thus washed off the isolation 

plates and were not identified.    

 

Mircetich and Zentmyer (1966) observed abundant chlamydospores (they did not record the 

wall thickness) surviving for up to 6 years in dead feeder roots of naturally infected 

avocado trees under field conditions.  The pathogen was not recovered from the 

surrounding soil until the inoculated root material had disintegrated (Mircetich and 

Zentmyer 1967).  The identity of these propagules could not be confirmed as they did not 

germinate on selective agar or after re-moistening the soil and baiting with a susceptible 

host.  Zentmyer and Mircetich (1966) and Mircetich and Zentmyer (1967) therefore 

suggested that chlamydospores may not be important for survival under extreme drought 

conditions.  This conclusion may need to be reassessed if the spores that have been 
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observed were dormant P. cinnamomi chlamydospores that required specific environmental 

conditions to germinate.  Further experiments remain to be done to demonstrate the 

presence and survival time of dormant chlamydospores in soil and in plant material – this is 

particularly necessary in the case of thick-walled chlamydospores. 

 

Chlamydospore germination 

Due to difficulties in producing thick-walled chlamydospores, germination studies have 

only been carried out on thin-walled ones.  In vitro, these germinate with germ tube walls 

linked to the layer immediately under the chlamydospore wall (Hemmes and Wong 1975).  

In order to germinate, chlamydospores require a source of exogenous nutrients such as 

amino acids, organic acids, casein hydrolysate and citric acid (Mircetich et al. 1968; 

Mircetich and Zentmyer 1969; Malajczuk and McComb 1977).  Simple sugars alone are 

ineffective (Mircetich et al. 1968; Malajczuk and McComb 1977).  Germination is 

relatively unaffected by pH between 3 and 9 (Mircetich et al. 1968) and root exudates may 

stimulate germination (Malajczuk and McComb 1977).  However, all these experiments 

used artificially produced chlamydospores and tested them in mostly aseptic conditions.   

 

Soil moisture affects germination.  More chlamydospores germinated in non-sterile sand 

and clay soil at matric potentials between 0 and –10 kPa than at –25 kPa (Sterne et al. 

1977).  Similarly, Hwang and Ko (1978) found that in saturated soil, 23 % of 

chlamydospores germinated to produce sporangia on tips of germ tubes after 1 month of 

incubation, whereas only 18 % of chlamydospores in moist soil germinated.   
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Chlamydospore germination may differ under sterile and non-sterile conditions as the level 

of microbial competition may influence germination (Lockwood 1977).  The only report on 

thick-walled chlamydospores is from Cother and Griffin (1973) who germinated these 

spores on water agar.  Sterile water will not induce germination of thin-walled 

chlamydospores (Mircetich et al. 1968) suggesting that thick-walled and thin-walled 

chlamydospores germinate under different conditions. 

 

In contrast to the results for P. cinnamomi thick-walled P. palmivora chlamydospores 

germinated poorly in distilled water, V8 agar and water agar whereas thin-walled ones 

showed 100 % germination (Kadooka and Ko 1973).  They also showed thick-walled 

chlamydospores of P. palmivora were more tolerant to high temperatures (up to 46 °C) 

compared to thin-walled ones (Kadooka and Ko 1973).   Comparisons between the two 

types have not been possible in P. cinnamomi due to the difficulty in producing large 

numbers of thick-walled spores.  

 

Current status of knowledge on the role of chlamydospores 

Despite over 80 years of work on P. cinnamomi, there is a surprising lack of recent research 

on P. cinnamomi chlamydospores, particularly from situations where we can be confident 

that the spores observed in experiments are formed by this pathogen.  Of particular concern 

is the low number of studies on thick-walled chlamydospores.  Despite this, P. cinnamomi 

is widely regarded as having the ability to produce both thick and thin-walled 

chlamydospores.  The lack of research on thick-walled chlamydospores could limit the 

effectiveness of current control techniques and reduce our ability to detect the pathogen 

using existing isolation methods.  Thick-walled chlamydospores may also have different 
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nutritional requirements or other environmental stimuli for germination than thin-walled 

ones (Kadooka and Ko 1973).  Isolation techniques may also be inappropriate when the 

pathogen is in a state of dormancy and our knowledge regarding survival and dormancy is 

inadequate. 

 

Other concerns regarding our knowledge of chlamydospore biology are that many studies 

have been performed in aseptic environments and the relevance to the natural environment 

must be treated with caution.  At present, identification of species in a non-sterile 

environment requires loading the initial mycelium with fluorescent dyes or germination of 

the spores.  Monoclonal and polyclonal fluorescent antibody techniques (Eren and Pramer 

1966; Malajczuk et al. 1975; Malajczuk et al. 1978; MacDonald and Duniway 1979; 

Hardham 1986; Hardham 1989; Ferraris et al. 2004) or transformation of Phytophthora to 

incorporate fluorescent genes (Bailey et al. 1991, 1993; Bottin et al 1999; Si-Ammour et al. 

2003; Vijn and Govers 2003) would aid in identification.  The role of chlamydospores in 

the survival of P. cinnamomi requires considerably more research if we wish to control the 

pathogen effectively.   

 

1.2.3 Oospores  

Phytophthora species may be heterothallic or homothallic (Shepherd 1978; Ko 1980).  

Phytophthora cinnamomi is mostly heterothallic, requiring the presence of opposite mating 

types (A1 and A2) (Galindo and Zentmyer 1964; Reeves and Jackson 1972; Zentmyer 

1980).  In vitro, sexual recombination has been observed to occur between A1 and A2 

mating types of P. cinnamomi (Linde et al. 2001; Dobrowolski et al. 2002) but no evidence 

for sexual reproduction has been found in the Australian natural environment even though 

both mating types have been found in the same area (Dobrowolski et al. 2003).  The mating 
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types are unrelated to gender and until recently, the species was thought to be solely 

amphigynous with mating occurring as the antheridium of one isolate penetrates the 

oogonium of another isolate (Savage et al. 1968; Stamps et al. 1990).  However, Hüberli et 

al. (1997) showed the development of both amphigynous and paragynous antheridia in A1 

and A2 paired cultures of P. cinnamomi.  This was an unusual finding for a Phytophthora 

sp. as most heterothallic species of Phytophthora form amphigynous antheridia only while 

homothallic species tend to form paragynous and amphigynous antheridia when selfing 

(Savage et al. 1968; Stamps et al. 1990).   

 

Selfed oospores 

Oospores are mainly observed when both mating types are present in P. cinnamomi 

(Zentmyer 1980; Weste 1983a).  Oospore production may be induced without physical 

proximity of opposite mating types due to isolate signals received during the exchange of 

volatiles (Zentmyer, 1979) or the presence of Trichoderma species (Brasier 1971; Reeves 

and Jackson 1972; Reeves 1975; Brasier 1978).  The stimulation of oospores in P. 

cinnamomi by Trichoderma species is limited to the A2 mating type (Brasier 1978).  The 

selfing response in P. cinnamomi to volatile compounds from T. koningii coincided with a 

decrease in mycelial growth rate, increased mycelial branching and increased hyphal 

density (O’Brien 1991).  Mechanical or chemical damage to mycelium by Trichoderma 

viride or other microbes in the environment could potentially trigger oospore production in 

P. cinnamomi (Reeves and Jackson 1974).  It has been suggested that selfing may be a 

response due to the accumulation of substances involved in sexual reproduction as a result 

of the activity or suppression of metabolic pathways during dormancy (Brasier 1972).  

However, although Brasier and Sansome (1975) showed there was regular meiosis in selfed 
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gametangia of P. cinnamomi, in all experiments where oospores have been observed in the 

absence of the opposite mating type, viability of the spore has not been determined by 

staining or germination (Table 1.2).  For this reason, the ecological importance of the 

selfing response in P. cinnamomi is not known.  

 

 

Table 1.2: Previous research regarding conditions required for production of selfed oospores of 

Phytophthora cinnamomi. 
Stimulus Sterile? Oospores 

produced 

Viability 

tested? 

Reference 

  A1 A2   

 

Avocado root extracts 

 

 
 

 

Not given 

 

X 

 

Zentmyer 1952 

45 day old cultures in V8 broth 

 

 Not given X Mircetich and Zentmyer 1967 

In soil on colonised fibreglass  

 

X Not given X Mircetich and Zentmyer 1967 

Trichoderma viride 

 

 X  X Brasier 1971 

Mechanical damage to mycelium 

(scalpel, addition of H2O2 or diethyl 

ether) 

 

 X  X Reeves and Jackson 1974 

T. viride – only if this organism was 

present were oospores observed in 

root pieces of Castanea sativa 

buried in soil  

 

X Not 

tested 

X Reeves 1975 

A1 and A2 isolates grown on top of 

each other, separated by 

impenetrable membrane filter 

 

  X X Ko 1978 

Avocado root extracts 

 

 X  X Zentmyer 1979 

Oatmeal agar after 4 – 5 months 

 

  X X Ho et al. 1983 

V8 agar or oatmeal agar after 5 – 8 

days * 

 Not given X Ho et al. 1983 

* Isolate was identified as P. cinnamomi but differences in this isolate compared to other P. cinnamomi 

isolates was recognised as it lacked the ability to produce large, botryose chlamydospores typical of P. 

cinnamomi.  Molecular techniques are required to confirm this organism’s identity.  Using this culture, Zheng 

and Ko (1996) were able to germinate 85% of oospores produced on V8 agar within 12 days of incubation on 

S+L medium (Ruben et al. 1980), indicating the viability of these selfed oospores.  = Yes; X = No. 

 



CHAPTER 1: GENERAL INTRODUCTION 

 21

Oospore germination 

Germination percentages of both selfed and crossed oospores are always low (Pittis and 

Shattock 1994; Groves and Ristaino 2000).  Maturity of oospores in Phytophthora spp. 

appears to be a determining factor in ability to germinate (Duncan 1985a; Jiang et al. 1989; 

Jiang and Erwin 1990).  It has been reported that mature oospores occurred after the fusion 

of nuclei, after which germination percentages rose with age of the culture and therefore 

oospores (Ann and Ko 1988; Jiang et al. 1989; Jiang and Erwin 1990).  Attempts by 

Stamps (1953) to germinate oospores produced in mixed cultures of P. cryptogea and P. 

cinnamomi were not successful and it was suggested that this might be due to oospore age, 

dormancy or failure of nuclear fusion.    

 

There is a complex interaction between light and oospore maturation and germination.  If 

oospores had been devoid of cool white fluorescent light in their maturation stage, 

germination decreased from 95 to 44 % and reduced to 15 % when light was omitted during 

germination (Ann and Ko 1988).  When no light was provided at any stage, oospores did 

not germinate (Ann and Ko 1988).  Interestingly, continual incubation in the dark while 

producing and germinating oospores from the mating of P. cinnamomi occurred on 1.5 % 

water agar after 3 days (Linde et al. 2001).  This is in contrast to Ann and Ko’s (1988) 

experiment as germination of oospores did not occur in distilled water but did in nutrient 

agar.   However, comparisons between this experiment and Ann and Ko’s (1988) is difficult 

as Linde et al. (2001) did not determine percentage of oospores germinating.  
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Oospore as survival structures  

Oospores are considered the most resistant structures for survival of P. cinnamomi but their 

contribution to survival is limited in Australia due to the absence, in most cases, of the A1 

mating type (Weste and Vithanage 1979; Zentmyer 1980; Weste 1983a).   

 

Oospores have a huge potential as survival structures with their thick walls providing 

protection against antagonistic microorganisms in the environment.  Oospores of P. 

infestans (heterothallic) have been reported to survive temperatures from 35 ºC down to -

80ºC for 48 hours in non-sterile soil pot and field trials (Drenth et al. 1995).  For oospores 

of P. infestans stored in sterile soil and water at temperatures between 0 and 20 ºC, the 

percentage viability (determined by plasmolysis) and germinability was highest for those 

stored at 20 ºC (21 % viability, 18 – 20 % germination) (Pittis and Shattock 1994).  

Oospores remained viable for 7 months but oospores stored at 0 ºC were unable to 

germinate after 5 months while only a few were viable and none germinated after 10 

months storage in non-sterile soil (from an initial viability of 17 – 22 %) (Pittis and 

Shattock 1994).  Germination percentage of the oospores was low throughout the 

experiment (maximum 7.8 %), suggesting that oospores have endogenous dormancy.  

Similar studies are necessary for selfed and crossed oospores of P. cinnamomi to determine 

the potential contribution each may have to survival of the organism. 

 

1.3 Saprophytic Ability of P. cinnamomi 

To be termed a saprophyte of ecological significance, an organism has to be able to 

colonise and live on dead organic matter in the presence of other competing 

microorganisms (Garrett 1956).  Pathogens have an initial advantage over saprophytic soil 
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microorganisms as they colonise the plant tissue before the host dies (Garrett 1970).  Many 

Phytophthora species have little competitive saprophytic ability (Garrett 1956; Glenn et al. 

1988).  Whether P. cinnamomi is a saprophyte is still a source of debate.  

 

Phytophthora cinnamomi invaded wheat straw and dead avocado roots in both sterile and 

non-sterile soil up to 3cm from the food base when the water content was maintained close 

to saturation (Zentmyer and Mircetich 1966).  This was considered saprophytic ability but it 

is possible that the ‘movement’ observed was due to zoospores.  Hwang and Ko (1978), 

looking at the biology of chlamydospores, sporangia and zoospores of P. cinnamomi in 

soil, found that hyphae originating from chlamydospores or zoospores had the ability to 

colonise dead plant tissue in non-sterile soil.  Reeves (1975) observed rapid colonisation by 

P. cinnamomi of organic matter and root pieces in non-sterile soils.  However, in the 

experiment Castanea sativa root pieces were placed on P. cinnamomi colonised nylon 

mesh in soil.  This, therefore, does not necessarily indicate saprophytic ability as the initial 

inoculum source was large and the pathogen could directly colonise these root pieces 

without growing through the soil, reducing competition from other microorganisms.  No 

indication of distances the pathogen moved through the soil was given.   

 

Both Kuhlman (1964) and Lacey (1965) observed that mycelium of P. cinnamomi and P. 

infestans was quickly lysed by microbial antagonists in non-sterile soil and concluded 

neither organism was capable of surviving saprophytically.  Shea (1979) found that the 

survival of the fungus was low in trees that had been dead for more than one year which 

was probably due to saprophytic microorganisms that colonised the lignified tissue and 

competed with the pathogen.  Phytophthora cinnamomi was never observed to colonise 

wood plugs infected by P. citricola (Bunny 1996).  However, Bunny (1996) considered that 



CHAPTER 1: GENERAL INTRODUCTION 

 24

P. citricola showed saprophytic ability as it colonised wood plugs in soil infected with P. 

cinnamomi.   

 

Studies by DeBruyn (1922) have given examples of P. syringae, P. erythroseptica and P. 

infestans surviving as saprophytes in sterile soil.  However, this cannot be extrapolated to 

natural soil due to competition and other factors that cannot be reproduced in a sterile 

system.  P. erythroseptica grew a limited distance (6mm) in non-sterile moist soil but only 

when it was added as a colonised malt agar bait (Vujicic and Park 1964).  When non-sterile 

soil containing inoculum of P. erythroseptica was used, no colonisation of dead plant 

material was observed and only potato tubers in direct contact with the inoculum developed 

pink rot, not tubers that were only 2mm away (Vujicic and Park 1964).   

 

1.4 Phosphite Control of P. cinnamomi 

Phosphite is a systemic fungicide used for controlling plant diseases including Oomycete 

diseases (Guest and Grant 1991).  In the literature, it is often referred to as Fosetyl-Al, 

phosphorus acid, phosphonic acid, phosphonate and phosphite.  However, all are derived 

from phosphorous acid [(OH)3P] which, in aqueous solution, becomes phosphonic acid 

[HPO(OH)2] (Guest and Grant 1991).  According to IUPAC nomenclature, both 

phosphonate and phosphite (the term used in this thesis) are acceptable to refer to the 

partially neutralised salt of phosphonic acid used to minimise phytotoxicity in its 

application as a fungicide (Roos et al. 1999).    

 

Phosphite can be translocated in both the xylem and phloem (Ouimette and Coffey 1990) 

but plants do not appear to be capable of metabolising phosphite, thus the compound 
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persists in plants until it is diluted as a result of plant growth, leaf fall or fruit harvest 

(Guest and Grant 1991).  The chemical is used to both prevent invasion and also cure plant 

diseases as it inhibits pathogen growth and stimulates the host defence response (Guest and 

Grant 1991; Daniel et al. 2005).   

 

As mentioned above, the mode of action of phosphite is both direct and indirect but exact 

mechanisms are still unclear.  Phosphite can act directly on the pathogen, inhibiting growth 

and enhancing elicitor levels in the cell walls (Fenn and Coffey 1984; Khan et al. 1986; 

Perez et al. 1995).  The elicitors stimulate plant defence mechanisms so that the compound 

also indirectly effects pathogen growth (Khan et al. 1986; Perez et al. 1995).  Plant defence 

against pathogens is a combination of the accumulation of phytoalexins, soluble phenolics 

and increased activity of host defence enzymes (Guest 1984; Khan et al. 1986; Saindrenan 

et al. 1988; Afek and Sztejnberg 1989; Nemestothy and Guest 1990; Jackson et al. 2000).  

In this way, phosphite induces susceptible hosts to respond to pathogen invasion in a 

similar way to naturally resistant plants (Guest 1984; Khan et al. 1986; Nemestothy and 

Guest 1990).  

 

Applications for Phytophthora 

Morphological and metabolic changes (eg. respiration rates, increased production of 

elicitors and poly- and pyro-phosphates) occur in Phytophthora cultures treated with 

phosphite in vitro (Fenn and Coffey 1984; Fenn and Coffey 1985; Khan et al. 1986; Niere 

et al. 1990; Barchietto et al. 1992; Niere et al. 1994; Perez et al. 1995).  The effect that 

phosphite has on P. cinnamomi survival propagules will be considered further in Chapters 4 

and 5. 



CHAPTER 1: GENERAL INTRODUCTION 

 26

Phosphite and phosphate compete for the same transporter binding sites (Barchietto et al. 

1989; Guest and Grant 1991; Darakis et al. 1997).  However, mM levels of phosphite are 

required to inhibit phosphate uptake, whereas µM levels of phosphate inhibit phosphite 

uptake (Griffith et al. 1989).  For this reason, the effective levels of phosphite may differ in 

soils with different phosphate levels and the phosphite concentrations found to be 

inhibitory in vitro may differ in planta depending on soil type (Guest and Grant 1991). 

 

Under low phosphate (~0.1 mM) in vitro, the dry weight of mycelium of P. palmivora and 

P. cinnamomi  was reduced in the presence of phosphite (~1 mM) (Fenn and Coffey 1984; 

Niere et al. 1990).  Mycelia growing on media with high phosphate (~10 mM) produced no 

significant changes in mycelial dry weight (Fenn and Coffey 1984; Niere et al. 1990).  In 

contrast, under low phosphate (~0.1 mM) in vitro, the dry weight of mycelium of P. 

palmivora and P. cinnamomi  was reduced in the presence of phosphite (~1 mM) (Fenn and 

Coffey 1984; Niere et al. 1990).  Even at high concentrations (1-10 mM) phosphite is 

fungistatic rather than fungitoxic (Coffey and Joseph 1985; Guest and Grant 1991).   

 

There have been some biochemical studies on the mode of action of phosphite on 

Phytophthora.  Of interest is the accumulation of pyrophosphate and polyphosphate after 

phosphite treatment (0.1 mM) in vitro in mycelia of Phytophthora spp. (P. citricola, P. 

infestans, P. melonis, P. mirabilis, P. nicotianae and P. palmivora) (Niere et al. 1994).  

Those authors suggested that metabolism of pyrophosphate was the primary cause of 

phosphite inhibition in Phytophthora spp.  These results were supported by similar results 

from studies on the effect of phosphite on Saccharomyces cerevisiae (McDonald et al. 

2001). 
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Phosphite and the Environment in Western Australia  

Phosphite is environmentally benign, with low phytotoxicity and mammal toxicity (Guest 

and Grant 1991).  Foliar application rates between 1 – 10 g phosphite L
-1 

sprayed to run-off 

have been observed not to affect natural soil microorganisms (Wongwathanarat and 

Sivasithamparam 1991).   

 

To control Phytophthora diseases in Western Australia, phosphite is currently applied as a 

foliar spray (5 g L
-1

), aerial mist (400 g L
-1

) or trunk injection (50 - 200 g L
-1

) during 

autumn and spring, no more than once every two years or four years if trunk injecting 

(Hardy et al. 2001).  Phosphite has been shown to remain effective after one trunk injection 

of Banksia species and E. marginata for at least four years (Shearer and Fairman 1997).  

However, the efficiency and longevity of the effect of phosphite varies depending on the 

interaction between plant species and Phytophthora isolate (Guest and Grant 1991; 

Wilkinson et al. 2001a).  For example, foliar application rates of 5 – 10 g phosphite L
-1

, 

inhibited the growth of P. cinnamomi for less than 6 months for Hibbertia commutata and 

less than 12 months for Dampiera linearis but at least 12 months in Dryandra sessilis, 18 

months for Banksia grandis and B. hookeriana (Wilkinson et al.  2001a).  Phosphite is 

most effective when it is used as a preventative rather than curative measure (Davis 1989). 

 

Fairbanks et al. (2002) found that phosphite (2.5 – 10 g L
-1

), applied by foliar spraying to 

run-off, reduced pollen fertility in many species found in the jarrah forest and sandplain of 

Western Australia.  These included perennial species from families Proteaceae, 

Rhamnaceae, Sterculiaceae, Papilionaceae, Euphorbiaceae, Rutaceae, Dilleniaceae, 

Myrtaceae, Polygalaceae and Goodeniaceae.  However, due to the longevity of these 
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species, this would only impact on long-term reproductive success if phosphite spraying 

regimes were increased to more than once a year (Fairbanks et al. 2002).   

 

Phytophthora cinnamomi has shown no resistance to phosphite in the natural environment.  

However, Duvenhage (1994) found that isolates of P. cinnamomi taken from an avocado 

orchard in which trees had been injected annually for the past 13 years, had reduced 

sensitivity to phosphite in vitro.  Reduced sensitivity of P. capsici and P. parasitica var. 

nicotianae has also been induced in the laboratory by chemical mutagenesis (Bower and 

Coffey 1985; Fenn and Coffey 1989).   Thus, although no real resistance has been observed 

to phosphite in the field to date, continual monitoring of isolate response to phosphite is 

important, particularly in orchards or natural environments treated repeatedly with 

phosphite (Duvenhage 1994; Hardy et al. 2001).   

 

1.5 Transformation of Phytophthora 

Difficulties in differentiating propagules of P. cinnamomi from those of other 

microorganisms complicate studies of chlamydospore production and survival in P. 

cinnamomi or other propagules in a non-sterile environment.  Direct plating onto selective 

media can allow identification of the pathogen but this is not appropriate for dormant 

propagules (Blackwell 1949; Zentmyer and Erwin 1970; Erwin and Ribeiro 1996) for 

which germination conditions are not always known (Shew and Benson 1982).  For 

example, previous research has suggested that the pathogen produces thick-walled spores 

(Mircetich and Zentmyer 1967; Cother and Griffin 1973; Old et al. 1984) but difficulties in 

germination of these structures has limited research in this area and it is still unclear as to 

whether these are actually propagules of P. cinnamomi.   

 



CHAPTER 1: GENERAL INTRODUCTION 

 29

A method where the pathogen and its propagules can be readily distinguished through 

colour would be invaluable for following its survival and growth in complex environments 

such as non-sterile soil.  One approach that has been used successfully for biological 

studies of Phytophthora spp. is transformation of the organisms with a GUS (β-

glucuronidase) or GFP (Green Fluorescent Protein) gene as detectable markers (Chalfie et 

al. 1994; Jefferson et al. 1986).  

  

This technique incorporates the Green Fluorescent Protein (GFP), originally isolated from 

the bioluminescent jellyfish (Aequorea victoria) (Chalfie et al. 1994), and the β-

glucuronidase from Escherichia coli into the fungal chromosomal DNA (Jefferson et al. 

1986).  The GFP allows visualisation of the propagules of the organism containing this 

gene as it fluoresces under blue light (UV) excitation (480nm) (Chalfie et al. 1994; Lee et 

al. 2002; Si-Ammour et al. 2003).  The GUS gene produces a blue product in the presence 

of X-Gluc (5-bromo-4-chloro-3-indolyl β-D-glucuronic acid) (Oliver et al. 1993).  Both the 

GFP and GUS proteins have been shown to function in Phytophthora (Bailey et al. 1993; 

van West et al. 1999; Bottin et al. 1999; Cvitanich and Judelson 2003; Si-Ammour et al. 

2003; Vijn and Govers 2003).   

 

Transformation techniques 

Many techniques such as biolistics, electroporation, polyethylene glycol (PEG) and 

Agrobacterium tumefaciens, have been used to transform fungi and oomycetes to include a 

gene of interest.  Transformation has been shown to be successful with a number of 

Phytophthora spp. including P. cinnamomi (Table 1.3). 
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Table 1.3:  Transformation of Phytophthora species using biolistics, PEG and Agrobacterium-

mediated systems. * PEG =  polyethylene glycol transformation 
Technique Organism 

transformed 

Gene integrated Stability of 

integration 

Reference 

 

Biolistics 

 

 

P. capsici,  

P. cinnamomi, 

P. citricola,  

P. citrophthora 

 

pCM54 & pBI426 

containing GUS with 

Cauliflower mosaic virus 

35 S promoter  

 

pCM54 not stable 

but pBI426 stable 

 

 

Bailey et al, 

1993 

 

Biolistics 

 

P. infestans 

 

GUS, neomycin 

phosphotransferase (npt) 

with ham34 & hsp70 

promoter of Bremia 

lactucae 

Stable  Cvitanich and 

Judelson et al. 

2003 

 

PEG* P. capsici, 

P. parasitica 

Hygromycin B 

phosphotransferase gene 

(hph) with hsp70 

promoters from Ustilago 

maydis (pCM54) 

Transient 

expression.  25% 

less transformants 

in Phytophthora 

than in U. maydis 

Bailey et al. 

1991 

PEG P. infestans Hph fused to ham34 

promoter of B. lactucae 

(pTH210 & pHAMT34H) 

 

Stable  Judelson et al. 

1991 

 

PEG P. megasperma 

f.sp. glycinea 

Compared pCM54 to 

pTH210 & pHAMT34H 

Not stable with 

pCM54 but stable 

with hph from 

other plasmids 

Judelson et al. 

1993 

 

PEG P. parasitica var. 

nicotianae 

Hph & GFP using hsp70 

promoter and ham34 

terminator from B. 

lactucae 

 

Stable  Bottin et al. 

1999 

PEG P. infestans GUSand nptII fused to 

ipiO1 promoter 

Stable van West et 

al.  1998 

PEG P. palmivora 

 

GUS (ham34 promoter 

from B. lactucae), nptII 

(hsp70 promoter from B. 

lactucae) & GFP (ham34 

promoter from B. 

lactucae)  

 

Stable  van West et 

al. 1999 

PEG P. brassicae 

(formerly P. porri),  

P. infestans 

Vector p34GFN (nptII) & 

GFP with ham34 

promoter from B. 

lactucae)  

Stable  

 

Si-Ammour et 

al. 2003 

 

Agrobacterium-

mediated 

transformation 

P. infestans, 

P. palmivora 

GUS & npt fused to 

promoter hsp70 from B. 

lactucae 

Stable  Vijn and 

Govers 2003 
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Biolistics 

Biolistics transformation involves the bombardment of a cell with microprojectiles (eg. 

gold) covered with the DNA to be integrated (Cvitanich and Judelson 2003).  This 

technique can penetrate cell walls so protoplasts (which have low survival after treatment) 

are not needed (Judelson et al. 1991).  Sporangia of P. infestans were successfully 

transformed using this procedure (Cvitanich and Judelson 2003).  However, biolistics 

requires specialised equipment and produces heterokaryons (more than one type of 

nucleus), therefore requiring an added step to generate single zoospore cultures to obtain 

pure lines (Vijn and Govers 2003).  

 

Electroporation 

Electroporation involves the application of strong electrical fields to protoplasts to 

rearrange the cell membrane temporarily, developing pores to allow DNA to enter (Weaver 

1995).  Although electroporation appears to have a higher transformation efficiency than 

the PEG-mediated transformation system, it does require expensive, specialised equipment 

(Bailey et al. 1993; Latijnhouwers and Govers 2003; Weiland 2003; Vijn and Govers 

2003).   

 

Polyethylene glycol (PEG) 

PEG transformation makes conditions more favourable to the fusion of introduced DNA to 

chromosomal DNA by reducing the medium volume, clumping protoplasts together to trap 

DNA as well as increasing membrane permeability (Fincham 1989; Kuhn 1991; Hood and 

Stachow 1992).  A particular disadvantage of the PEG method is that polyethylene glycol is 



CHAPTER 1: GENERAL INTRODUCTION 

 32

highly toxic to Phytophthora and fungi and greatly reduces protoplast regeneration after 

transformation (
1
/10

4
 to 

10
/10

4
 protoplasts regenerate after PEG transformation compared to 

1000
/10

4
 in the case of electroporation) (Prell et al. 1991). 

 

Many factors in protoplast transformation have to be optimised as these vary between 

species (Fincham 1989; Peberdy 1991).  In particular, lytic enzymes, enzyme digestion 

time, temperature, pH, age and concentration of fungal material and type of osmotic 

stabiliser can influence protoplast release and subsequent regeneration (Fincham 1989).  

Phytophthora species differ from higher fungi in having cellulosic cell walls instead of 

chitin.   Thus the cell walls of Phytophthora spp. are digested by cellulases that are 

normally used for plant protoplast production, allowing protoplasts to be released into an 

osmoticum (Kuhn 1991).  Rupturing of the protoplast which lacks a cell wall is prevented 

due to the presence of the osmoticum (Kuhn 1991).   

 

The PEG system only requires the gene of interest to be in cloned DNA fragments, so a 

binary vector is unnecessary (Vijn and Govers 2003).  If all genes of interest are integrated 

on the same vector, then transformation has been observed to be 3 times more efficient (Si-

Ammour et al. 2003). 

 

Agrobacterium-mediated transformation 

Agrobacterium tumefaciens is a soil bacterium that causes crown gall tumours in 

dicotyledonous plants at wound sites (Zambryski 1992).  As A. tumefaciens infects plant 

tissues, it transfers a DNA segment (T-DNA) into the plant cell that can be incorporated 

into the plant genome, initiating plant cell proliferation and the subsequent formation of a 
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tumour (Bundock et al. 1995).  Necessary for the process of T-DNA transfer are the 

virulence gene sequences (vir) also located on the Ti plasmid.  The expression of these is 

stimulated by chemicals (eg. acetosyringone) secreted by the wounded plant cells (de 

Groot, 1998).  For artificial transformation, genes with desired characteristics can replace 

the T-DNA as the virulence genes will still allow entry into the plant cells and integration 

of the genes into the genome.  Artificial transformation can occur through the co-cultivation 

of Agrobacterium (containing the desired genes) and the oomycete or fungus to be 

transformed, in the presence of the chemical acetosyringone (de Groot et al, 1998).  This 

method has previously been used to transform P. infestans and P. palmivora (Table 1.3). 

 

The required DNA must be transformed into a binary vector (eg. pBINHL1; Figure 6.4) 

(Vijn and Govers 2003).  Without this protection, DNA introduced into a recipient cell is 

likely to be lost as the plasmid needs to be able to independently replicate and also provide 

protection for the gene of interest as plasmids stop exonucleases attacking unprotected 

DNA.   The Agrobacterium-mediated transformation system is less laborious than the PEG 

system (Vijn and Govers 2003).   Agrobacterium-mediated transformation allows plasmids 

with the gene of interest to be transformed directly from A. tumefaciens into fungal fruiting 

bodies (Chen et al, 2000), spores or hyphal tissue (de Groot et al. 1998).   
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1.6 Thesis Aims 

The survival of P. cinnamomi in Australian ecosystems is poorly understood.  It is 

generally agreed that the main mode of survival for this devastating pathogen is through 

chlamydospores rather than through saprophyte survival or oospores but more evidence to 

support this is required.  The overall aim of this thesis was to increase our understanding of 

P. cinnnamomi survival as chlamydospores, oospores or as a saprophyte. This was 

addressed by:  

• determining whether P. cinnamomi is capable of surviving as a saprophyte (Chapter 

2), 

• studying the effects of environmental conditions on chlamydospore production in 

vitro and under non-sterile conditions and on the production of thick-walled 

chlamydospores (Chapter 3), 

• determining the effect of phosphite on chlamydospore production, viability and 

germination, in vitro and in planta (Chapter 4), 

• examining in vitro,  the production, viability and germination of oospores produced 

by an A2 isolate of P. cinnamomi in the absence of the A1 mating type (Chapter 5), 

• developing a transformed isolate of P. cinnamomi that incorporates the Green 

Fluorescent Protein (GFP) into its genome to allow any propagules of the pathogen to be 

distinguished from other organisms in a non-sterile environment (Chapter 6), and 

• testing the stability of the GFP gene in transformed isolates of P. cinnamomi and the 

fitness of transformants (Chapter 7). 
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CHAPTER 2 

Phytophthora cinnamomi as a Saprophyte 

2.1 Introduction 

Some soilborne pathogenic microorganisms may persist in soil without a living host plant, 

living as saprophytes or as dormant propagules.  A saprophyte must be able to colonise 

new, independent pieces of dead plant tissue to survive, whereas dormant propagules 

survive by having an extremely low, or no metabolism or respiration (Griffin, 1972).  

Knowledge of the saprophytic ability of a pathogen is important in disease control as the 

organic matter in which it lives may act as a source of inoculum as well as increase the 

ability of the pathogen to survive unfavourable conditions (Weste 1983b; Keane et al. 

2000).   

 

Phytophthora cinnamomi has been previously classified as a ‘saprophytic soil survivor’ as 

it may survive in dead host tissue that was colonised when the plant was still alive (Griffin 

1972; Marks et al. 1975).  It is generally believed Phytophthora species are unable to 

compete and grow in soil with other microorganisms and are never secondary invaders 

(Erwin and Ribeiro 1996).  However, there have been reports that contradict this and a 

critical review of the literature suggested that the question has not been satisfactorily 

resolved (Chapter 1.4).   

 

It is important to resolve the question of the ability of P. cinnamomi to survive as a 

saprophyte in soil for effective management techniques to be developed.  This study aimed 

to discover whether P. cinnamomi is capable of surviving as a saprophyte in soil and 

whether soil type, soil microbes and soil moisture influence this ability.  
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2.2 Materials and Methods 

Experimental Design 

Soils 

Four different substrates were used, including conducive jarrah forest soil (a mixture of 

Havel soil types taken from the jarrah forest and stockpiled), conducive potting mix, 

suppressive red loam (Havel classified ‘Q’ jarrah vegetation type [Havel 1975; CALM 

1990]) and conducive Bassendean sand (Shearer and Hill 1989) (Appendix 1).  The jarrah 

forest soil was collected from Alcoa’s Huntly mine site, approximately 75 km south east of 

Perth.  Potting mix was pine bark : coarse river sand : coco peat in the ratio 2: 2: 1 (Richgro 

Garden Products, Western Australia), the jarrah vegetation Q red loam was collected from 

the top layer of soil at sites near Gleneagle, Western Australia (Map 50; 424107E, 

6432155N) and the Bassendean sand was collected from the Banksia woodland at Murdoch 

University (Map 50; 389928E, 6450659N). 

 

Substrates that required sterilisation were autoclaved at 121 °C for 30 minutes in 

approximately 1 kg lots on three consecutive days.  To confirm that autoclaving was not 

detrimental to the soil, a lupin seedling bioassay showed there was no difference in 

germination, seedling development and health, between autoclaved and non-autoclaved 

soil.   

 

Moisture content of each substrate was determined prior to all experiments by drying a 

known weight of each (approximately 100 g) in a 60 °C oven before again determining the 

mass.  To determine maximum moisture holding capacity of each substrate, soils were 
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brought to container capacity (soil was flooded with water and allowed to freely drain for 

24 hours) and their mass and dry mass were determined. 

 

A moisture characteristic curve was determined for jarrah forest Q red loam and 

Bassendean sand using the method developed by Fawcett and Collis-George (1967) and 

Hamblin (1981).  Soils were brought to container capacity and 100 g of each substrate was 

then weighed into 90 mm Petri dishes containing drainage holes, using a replication of 30 

for each soil.  Whatman No. 2 filter paper (Springfield Mill, UK) was cut into strips 

measuring 60 x 10 mm, then three strips were weighed and buried into each dish containing 

substrate.  Over a 5 day period, the filter paper strips were removed and weighed along with 

each soil.  Paper and soil was dried in a 45 °C oven for at least 12 hours and reweighed.  

Matric potential was determined using the calculations of Hamblin (1981) and Fawcett and 

Collis-George (1967) and graphed against moisture content of the soil to create a moisture 

characteristic curve for each soil type (Figure 2.1).   
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Figure 2.1:  Moisture characteristic curves of jarrah vegetation Q red loam (A) and Bassendean 

sand (B). Vertical and horizontal scales differ on A and B. 
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Determination of Phytophthora – free status 

A baiting technique was used to check that the substrates were free of P. cinnamomi.  To a 

20 % (w/v) solution of each substrate, petals of a Hibbertia sp. were floated on the surface.  

After 3 days, petals were removed, blotted onto paper tissues to remove excess water and 

plated onto NARPH agar (Appendix 2).  Plates were incubated at 20 °C for 3 days and then 

observed for any Phytophthora growth.  Soils were found to be free from P. cinnamomi. 

 

Soil Microbial Activity 

The FDA (fluorescein diacetate – Sigma Chemical Co., USA) hydrolysis technique of 

Schnurer and Rosswall (1982) was used to determine soil microbial activity.  To a 

McCartney bottle, 5 g of substrate and 10 ml of filter sterilised 60 mM potassium 

phosphate buffer (40 mM K2HPO4, 10 mM KH2PO4) was added.  400 µg of FDA was 

introduced to three replicates to begin the reaction, none being added to a 4
th

 replicate 

which was a blank control.  Bottles were shaken at 1.5 g at 28 °C for 20 minutes, then, 10 

ml acetone was added to stop the reaction.  The liquid was collected by filtration through 

Whatman No. 1 filter paper (Springfield Mill, UK) and the fluorescein concentration was 

subsequently determined by spectrophotometer (Heλiosα Thermo Spectronic; Australia) at 

wavelength 490 nm and compared to a standard curve.  The blanks were used to correct for 

background absorbance. 

 

To prepare standard curves, the method described by Chen et al. (1988) was used.  This 

involved adding either 0, 80, 160, 240, 320 or 400 µg FDA to 5 ml of filter sterilised 60 

mM potassium phosphate buffer in triplicate.  The FDA was hydrolysed by heating in 
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boiling water for 60 minutes (Schnurer and Rosswall 1982).  Approximately, 5 g of soil 

was added to the solution along with a further 5 ml of phosphate buffer, the bottles shaken 

at 1.5 g at 28 ºC for 20 minutes.  10 ml acetone was added and the liquid filtered and 

absorbance measured as described above.   

 

Inoculum 

Phytophthora cinnamomi isolates used included MP103 (A2 mating type isolated from 

Corymbia calophylla in Huntly, Western Australia, 1993), MP127 (A2 mating type isolated 

from Eucalyptus marginata in Jarrahdale, Western Australia, 1993) and MP94-15 (A2 

mating type isolated from E. marginata in Willowdale, Western Australia).  The P. 

citricola isolate used (MU1A) was isolated from Pinus radiata in Baudin plantation (1981).  

All isolates were passaged through sterile lupin roots prior to experimentation. 

 

Perlite inoculum of Phytophthora, used for the soil sampling and soil baiting experiments, 

was produced using a similar method to that of Duncan and Keane (1996).  This involved 

adding approximately 100 ml of pea broth (Appendix 2) to 250 ml conical flasks containing 

15 g of perlite and sterilised through autoclaving (20 minutes; 121 ºC) on three consecutive 

days.  Perlite was inoculated with three small blocks of pea agar (Appendix 2) colonised by 

a 3-day-old culture of either P. cinnamomi or P. citricola.   The flasks were incubated for a 

minimum of 2 weeks at 25 °C, loosening the perlite every 3 days with shaking, before the 

colonisation of perlite was tested by plating on pea agar plates. 

 

For the Miracloth colonisation experiment, lupin (Lupinus angustifolius) seeds were surface 

sterilised by immersion in 6 % (w/v) bleach for 30 minutes, followed by three washes for 
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two minutes in sterile water.  Seeds were placed on moist filter paper in 90 mm Petri dishes 

and incubated for four days at 25 ºC.  Lupin inoculum was developed by placing 1 cm 

excised sterile lupin roots, on a 3-day-old culture of P. cinnamomi and incubating for a 

week. 

 

Experiments 

Three techniques were used to assess saprophytic growth of P. cinnamomi.  Growth 

through soil in a Petri dish from inoculum on one side was assessed by sampling the soil 

and comparing growth to a suspected saprophytic Oomycete (P. citricola) (Bunny 1996).  

Growth through soil in plastic containers (150 x 90 x 60 mm) was assessed from baiting the 

soil with lupin roots.  Finally, growth from a central inoculum on Miracloth (Calbiochem, 

Australia) through soil in a Petri dish was measured by plating the Miracloth on NARPH 

medium.  Variables of soil type, organic matter, water potential and the presence of soil 

microbes were investigated. 

 

Effect of soil microorganisms and organic matter on growth of P. cinnamomi and P. 

citricola through soil at container capacity as assessed by soil sampling.  

Petri dishes (140 mm) were set up with 250 g of either sterile or non-sterile jarrah forest 

soil that had previously been brought to container capacity with sterile water (Figure 2.2).  

To one side of the plate, 4 g of perlite inoculated with P. cinnamomi (isolate MP127) or P. 

citricola (isolate MU1A) was placed, separated by a sterile cardboard barrier while being 

set up. Additional organic matter was buried in half the plates (Table 2.1).  Additional 

organic matter added was in the form of approximately 100 pieces of sterile Banksia 
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grandis leaves and branches measuring no more than 2 cm in length or width.  There were 

three replicates of each treatment. 

 

To encourage the growth of P. cinnamomi, leachates from Banksia grandis were added to 

the plates.  Leachates were collected by saturating pots containing 1-year-old B. grandis 

plants overnight, then collecting the leachates.  The leachates were sterilised by twice 

filtering through two layers of Whatman No. 1 filter paper in a Büchner Funnel before 

passing the filtered extracts through a sterile 0.22 μm Millipore filter (Schleicher and 

Schuell, Australia).  Ten ml of sterile exudates were added evenly to each Petri dish.  The 

divider was removed, lids were replaced, then plates sealed with plastic (Gladwrap, 

Australia).  All plates were incubated at 20 °C on a slight angle so that the inoculum was at 

the lower edge of the slant to reduce the speed and therefore distance the zoospores could 

travel during the experiment. 

 

Every seven days for three weeks, approximately 5 g of jarrah forest soil was taken from a 

position approximately 1 cm from the source of inoculum and replaced with sterile jarrah 

forest soil.  The sample was sprinkled over a NARPH agar plate and a pea agar plate and 

incubated at 20 °C for 3 days before the plates were observed for growth of Phytophthora.  

If results were positive for Phytophthora, the following week samples would be taken from 

a further 1 cm from the inoculum source. 
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Figure 2.2:  Diagrammatic presentation of experimental design to analyse the distance 

Phytophthora cinnamomi can grow through jarrah forest soil in a Petri dish. 

 

 

The effect of different soil moisture conditions on the saprophytic ability of P. cinnamomi in 

sterile and non-sterile jarrah forest soil and potting mix as assessed by soil baiting 

Plastic containers (150 x 90 x 60 mm) were filled with either sterile or non-sterile jarrah 

forest soil or potting mix.  The amount of sterile water required to bring each substrate to 

the required percentage of container capacity was added (Table 2.1).  Three replicate 

containers were inoculated with P. cinnamomi (isolate MP127) and one was not inoculated 

for each moisture level. 

 

Miracloth bags containing approximately 10 g perlite inoculum of P. cinnamomi were 

buried in the substrate at the end of the inoculated container (Figure 2.3).  Miracloth bags 

containing non-inoculated perlite were buried in control containers.     
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Containers were incubated in dark at 20 °C on a slight angle so the Miracloth bags were at 

the bottom of the slope to slow zoospore movement and therefore distance travelled by 

these propagules during the course of the experiment.  Excised roots from 5-day-old sterile 

lupins were placed in rows 1 cm apart.  After six days, the lupin roots from each row were 

removed and plated on NARPH.  The lupin roots were replaced with fresh sterile lupin 

roots as described previously and the containers incubated for a further 6 days in the dark at 

20 ºC and the lupin roots again removed, plated on NARPH and replaced in the soil.  This 

process was repeated for 11 harvests. 

 

NARPH plates were incubated at 20 °C and observed after 3 days for any growth of P. 

cinnamomi.  This process of removal and replacement of lupin roots and scoring for P. 

cinnamomi was continued for the 11 weeks of the experiment.  The Miracloth bags of 

inoculum were removed 2 weeks into the experiment and replaced with either jarrah forest 

soil or potting mix.  Microbial activity of each sterile and non-sterile soil was tested prior to 

experimentation. 

 

Table 2.1:  Treatments and soil moisture capacities used in the experiment 

Soil type Sterile/ Non-sterile 
Moisture Content (% of 

container capacity) * 

Jarrah forest soil Non-sterile 100 

  85 

      50** 

 Sterile 100 

  85 

Potting mix  Non-sterile 100 

  85 

      67** 

 Sterile 100 

  85 

      72** 
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    *NB. 100% container capacity ~ 0 kPa 

    **These figures were the moisture content of the original soil and no adjustments were made 

 

Figure 2.3:  Experimental design to determine the distance Phytophthora cinnamomi could grow 

through soil and colonise fresh organic matter. 

 

Effect of soil microbes and soil type on saprophytic ability of P. cinnamomi as assessed by 
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seen on surface in a 1cm 

grid 
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After the incubation period, Miracloth sheets were removed, placed on NARPH medium 

and further incubated at 20 ºC in the dark for 3 days.  Miracloth sheets were removed from 

plates and NARPH medium was examined for P. cinnamomi.  Distance of observable 

growth from the original inoculum of P. cinnamomi was traced and measured.  To 

eliminate the measurement of growth from zoospores, only growth related to the initial 

point of inoculation was recorded.  During the 3 days incubation on NARPH, the pathogen 

would have grown further than the distance it grew on the dishes of soil.  To account for 

this, plates were returned to the incubator for a further 3 days to enable estimation of the 

distance covered during the time on NARPH.  Growth of the pathogen over this time 

(approximately 3 mm) was then subtracted from the original measurement.  Soil microbial 

activity was tested prior to experimentation and after completion using FDA hydrolysis.   

 

 

Figure 2.4: Experimental design.  A & D.  Petri dishes were filled halfway with soil; B & E. A 

sheet of Miracloth was placed on the soil.  Lupin (with or without Phytophthora cinnamomi 

colonisation) inoculum was added to the centre (arrows); C & F. Miracloth was covered and the 

dish filled to the top with corresponding soil type.  A, B & C = jarrah vegetation Q red loam; D, E 

& F = Bassendean sand.  Bar = 45 mm. 
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Statistical Analysis of Data 

To analyse the data from the first two experiments, a repeated measures ANOVA in 

Statistica (Statsoft, Oklahoma) was used.  To test the effect of soil sterility, organic matter 

and the difference in behaviour between P. cinnamomi and P. citricola, factors included 

sterility of soil (sterile or non-sterile), species (P. cinnamomi or P. citricola), organic matter 

(extra added or not) and weeks (three harvests).  To test the effect of sterility, different 

moisture contents and soil types on behaviour of P. cinnamomi,  factors of soil type (jarrah 

forest soil and potting mix), sterility (sterile or non-sterile) and weeks (11 levels) with 

moisture as a covariate were used.  The significance of the covariate was tested using a 

multivariate regression analysis.  Using the appropriate Greenhouse-Geisser epsilon, 

degrees of freedom for main effects and interactions involving weeks were adjusted for 

each experiment to account for possible violation of the sphericity assumption.  

 

To test the effect of sterility and soil type on the saprophytic ability of P. cinnamomi after 3 

weeks incubation, square root transformation of data was necessary to satisfy Bartlett’s test 

for equal variances.  Data were then analysed using Minitab’s (Minitab Release 13) General 

Linear Model and 2 sample t-test. 

 

Microbial activity was compared within experiments using Minitab’s 2-sample t-test.  
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2.3 Results 

Effect of soil microorganisms and organic matter on growth of P. cinnamomi and P. 

citricola through soil at container capacity as assessed by soil sampling.  

No P. cinnamomi or P. citricola were found in the control plates.  After one week, bacteria 

were found in samples from all plates that were initially considered as ‘sterile’. 

 

Sterility of the soil had a significant (P < 0.05) effect on Phytophthora growth.  In the 

sterile soil, regardless of whether or not additional organic matter had been added, both P. 

cinnamomi and P. citricola were detected 40 – 50 mm from the inoculation point after 3 

weeks (Figure 2.5).  Under non-sterile conditions for both Phytophthora species, the 

addition of organic matter affected (P < 0.05) their growth, the organisms only growing if 

organic matter had been added.  The average growth was 17 mm (Figure 2.5).  No 

significant (P > 0.05) difference was found between the behaviour of P. citricola compared 

to P. cinnamomi in either sterile or non-sterile soil.   
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Figure 2.5: Growth of Phytophthora cinnamomi (A) and Phytophthora citricola (B) from an 

inoculum source through sterile or non-sterile jarrah forest soil, with or without additional organic 

matter.  Pathogen detected by soil sampling. (Δ) Sterile soil, no organic matter added; (□) Sterile 

soil, organic matter added; (▲) Non-sterile soil, no organic matter added; (■) Non-sterile soil, 

organic matter added.  Bars represent positive standard error of the means.   

 

The effect of different soil moisture conditions on the saprophytic ability of P. cinnamomi in 

sterile and non-sterile jarrah forest soil and potting mix as assessed by soil baiting 

Soil moisture levels between 50 and 100 % of container capacity had no effect on the 

saprophytic ability of P. cinnamomi (Table 2.2).  Growth was also similar in potting mix 

and jarrah forest soil (Table 2.2), so data were combined for further analysis.  However, in 

sterile soil, P. cinnamomi was detected up to 40 mm away from the inoculum source by 

week 11 while it was only detected up to 10 mm from the inoculum source in non-sterile 

soil at week 1 and by week 6, it was non-detectable (Figure 2.6).  No P. cinnamomi was 

found in the control containers.   

 

Incubation time (weeks) 

   A                       B
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The initial microbial activity of sterile jarrah forest soil and potting mix was 7.15 (±0.09) 

and 7.96 (±0.11) µg FDA hydrolysed g
-1

 soil, respectively.  Initial microbial activity of 

non-sterile jarrah forest soil and potting mix was 29.79 (±0.44) and 31.63 (±0.84) µg FDA 

hydrolysed g
-1

 soil, respectively.  Although ‘sterile’ substrates were not completely sterile 

prior to experimentation, they were significantly (P < 0.05) lower in microbial activity than 

the non-sterile soils.  
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Table 2.2: ANOVA of data using repeated measures to determine the significance of soil type 

(jarrah forest soil and potting mix) and soil sterility over time (weeks) with moisture as a covariate 

on the saprophytic growth of Phytophthora cinnamomi.   The covariate was found to be 

insignificant (P > 0.05) as tested using a multivariate regression analysis.  Significant values are 

given in bold.  

 
Effect MS(degrees of freedom, error degrees of freedom) 

Soil type 7.74 (1, 47) 

Sterility 228.68 (1, 47) 

Weeks 0.62 (10, 480) 

Soil type x sterility 24.48 (1, 47) 

Soil type x weeks 0.79 (10. 480) * 

Sterility x weeks 2.97 (10, 480) * 

Soil type x sterility x weeks 0.25 (10, 480) 

* Degrees of freedom for main effects and interactions involving weeks that showed significance in original 

ANOVA were corrected using the Greenhouse-Geisser epsilon to account for possible violation of the 

sphericity assumption. 
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Figure 2.6:  Growth of Phytophthora cinnamomi from an inoculum source through jarrah forest 

soil and potting mix (data combined).  Sterile substrate (■) and non-sterile substrate (▲).  Pathogen 

detected by soil baiting.  Bars represent positive standard error of the means. 
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Effect of soil microbes and soil type on saprophytic ability of P. cinnamomi as assessed by 

colonisation of Miracloth 

No P. cinnamomi was found in control plates.  No significant difference was found between 

the original and the repeat experiments (P > 0.05) or the isolates used (P > 0.05) so data 

were bulked for further analysis.  Phytophthora cinnamomi grew significantly (P < 0.05) 

further if soil was sterilised prior to inoculation (Figure 2.7).  No significant (P > 0.05) 

difference was found between the soil types (Bassendean sand or jarrah vegetation Q red 

loam) on their own but a significant interaction (P < 0.05) was found between sterility of 

the soil and soil type.  A 2-sample t-test comparing the two soil types under sterile and then 

non-sterile conditions found that P. cinnamomi was capable of growing significantly (P < 

0.05) further in non-sterile sand compared to the non-sterile jarrah vegetation Q red loam 

but in sterile soils, there was no significant (P > 0.05) difference.   

 

In sterile soils containing lupin inoculum of P. cinnamomi, mycelium observed growing 

across the surface and through each soil was traced back to the original inoculation point at 

the end of the incubation period (Figure 2.8).  When measuring the maximum distance that 

mycelium could be microscopically observed from the initial inoculation site, it was found 

that this value always closely corresponded to the maximum distance as recorded on 

NARPH plates.  No mycelium was observed in non-sterile soils at the end of the 

experimental period.   

 

The presence of separately growing colonies with no obvious link to the initial inoculum 

were assumed to be from zoospores.  These colonies were then eliminated from the 
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measurements on saprophytic growth when determining the distance of growth of P. 

cinnamomi through soil. 

 

Two-sampled T-tests showed microbial activity of each soil at time 0 was not significantly 

(P > 0.05) different to that at Week 11 (Table 2.4).  Microbial activity of sterile soils was 

significantly (P < 0.05) lower than that of non-sterile soil throughout the experiment (Table 

2.4).  
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Figure 2.7: Growth of Phytophthora cinnamomi from original inoculated lupins after 3 weeks 

incubation at 20ºC in the dark in Bassendean sand and jarrah vegetation Q red loam.  Black 

columns indicate sterilised soils and grey columns are non-sterile soils.  Bars represent positive 

standard error of the means. 

 

 

 

     Bassendean Sand               Q red loam 
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Figure 2.8:  Growth of mycelium from lupin inoculum (lu) of Phytophthora cinnamomi through 

sterile soil. A. Bassendean sand, B, C & D. Jarrah vegetation Q red loam.  Arrows indicate mycelial 

growth.  Bars are 2 mm unless otherwise indicated. 

 

 

 

Table 2.4: Microbial activity of Bassendean sand and jarrah vegetation Q red loam as measured by 

Fluorescein Diacetate hydrolysis.  Microbial activity was measured prior (Week 0) and at the 

completion (Week 11) of experiments. 
        Week 0       Week 11       Average Substrate 

FDA hydrolysed (µg FDA hydrolysed per gram of soil) 

 

 

Sand 

 

Sterile 

 

0.222 (± 0.047) A 
 

0.745 (± 0.240) A 
 

0.484 (± 0.160) A 

 Non-sterile 10.065 (± 0.530) B 7.974 (± 2.152) B 9.020 (± 1.096) B 

Q red loam Sterile 0.405 (± 0.210) A 1.032 (± 0.190) A 0.719 (± 0.189) A 

 Non-sterile 6.928 (± 0.780) B 8.000 (± 2.276) B 7.464 (±1.105) B 

NB. Values followed by the same letter do not significantly (P>0.05) differ from each other. 

 



CHAPTER 2: SAPROPHYTIC ABILITY 

 55

2.4 Discussion 

When colonisation of Miracloth was used to detect saprophytic growth, P. cinnamomi was 

not able to grow as a saprophyte in non-sterile soils.  An exception was the Bassendean 

sand in which it grew approximately 3 mm from the initial inoculum source.  However, 

when a soil baiting technique was used, P. cinnamomi moved further in jarrah forest soil 

and potting mix (up to 40 mm in sterile soils and 10 mm in non-sterile soils).  It is probable 

that the presence of added organic matter (lupin roots) in the soil baiting technique may 

have contributed to this extra growth.  The experiment in which soils were amended by the 

addition of extra organic material (sterilised B. grandis roots and branches) showed that P. 

cinnamomi could move further through the soils with additional organic material (17 mm 

compared to no growth).  This may indicate that the lupin root material acted as an organic 

matter source, eliminating any differences that may have otherwise been observed between 

the growth of the pathogen in potting mix compared to jarrah forest soil.   

 

It appears that P. cinnamomi was growing towards organic matter in both the soil baiting 

and soil sampling techniques, an indication of saprophytic growth.  However, the organic 

matter was sterilised prior to incorporation, therefore P. cinnamomi would have had limited 

competition when colonising this material.  The organic matter component of the potting 

mix, jarrah vegetation Q red loam and Bassendean sand was not determined but it would be 

interesting to find whether P. cinnamomi grew further through Bassendean sand than jarrah 

vegetation Q red loam due to differences in the organic matter component.   

 

Interestingly, P. cinnamomi was not detected in soil after 6 weeks in the soil baiting 

experiment.  The pathogen was not able to colonise the new lupin baits placed in the soil, 

indicating that it had either died or had converted to a survival state.  Using a transformed 
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isolate of P. cinnamomi containing the Green Fluorescent Protein would aid future studies 

to determine whether the pathogen was still present in the soil and if so, in which form.  

 

Under sterile conditions P. cinnamomi grew equally well on each soil type.  Microbial 

activity of non-sterile jarrah forest soil was similar to non-sterile potting mix.  Likewise, 

microbial activity in non-sterile jarrah vegetation Q red loam and Bassendean sand was 

similar.  Phytophthora cinnamomi grew equally (although poorly) through the non-sterile 

jarrah forest soil and the potting mix.  However, it grew significantly further in non-sterile 

Bassendean sand than it did in jarrah vegetation Q red loam (3.26 mm and 0.44 mm, 

respectively).  This would suggest that the ability of P. cinnamomi to grow through soil 

saprophytically is a result of microbial composition rather than activity.  Other soil 

physiological/ chemical characteristics may also play a role.   

 

Natural soils are known to differ in their microbial composition as well as in nutrient 

availability (Malajczuk 1983).  Specific isolates of Bacillus, Streptomyces, pseudomonads 

and others have been implicated in the suppression of P. cinnamomi (Malajczuk 1983; 

Murray et al. 1985) and it is possible that certain microbes were present in the Q type jarrah 

forest soil that were not present in the other soils tested.  Sterilisation through autoclaving 

of the jarrah vegetation Q red loam would have diminished the microbial population 

(Broadbent and Baker 1974; Halsall 1978; Malajczuk et al. 1977b) and lead to the soil 

being conducive for growth of P. cinnamomi.  Future work could look at isolating the 

organisms from each soil and screening in vitro for antagonism to P. cinnamomi. 

 

No difference was found between the movements of P. citricola and P. cinnamomi through 

jarrah forest soil, sterile or non-sterile.  Bunny (1996) suggested that P. citricola had 
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saprophytic ability as it was capable of colonising wood plugs previously colonised by P. 

cinnamomi.  In non-sterile jarrah forest soil at container capacity, neither pathogen grew 

through the soil.   This could indicate that this soil type is never favourable to saprophytic 

growth of either species.  Further studies on different soil types and the use of more isolates 

are required. 

 

The growth of P. cinnamomi through soil as a saprophyte could be more easily studied 

through the use of fluorescently labelled antibodies (Malajczuk et al. 1975) or through the 

use of a transgenically altered Phytophthora culture containing a green fluorescent protein 

allowing the visualization of its growth using a fluorescent microscope (eg. Si-Ammour et 

al. 2003).  In combination with this, the effect of organic matter (and the original organic 

component of the soils used) and more extremes in matric potential need to be tested for 

their effect on the growth of the pathogen as a saprophyte.  Investigation is also needed into 

the effect of a stimulus (eg. root exudates) on the organism’s movement and to further our 

understanding of the impact of different microbes on the ability of P. cinnamomi to grow 

through soil.  These laboratory studies then need to be applied to the natural environmental 

conditions. 

 

Shearer and Smith (2000) believed that saprophytism in P. cinnamomi probably only 

occurs when microbial activity in soil is low.  They deduced this from observations of 

colonies of P. cinnamomi growing from organic matter in E. marginata forest soils (Shea et 

al. 1980) which typically have low microbial activity (Podger 1972).  The current 

experiments support this conclusion and have shown a reduction in microbial activity 

(‘sterilisation’ of soils) increases the ability of the pathogen to grow through soil.  
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However, results have shown that microbial composition is probably equally important as 

soil nutrients in suppression of growth of P. cinnamomi through soil.   

 

The results open the question of whether an organism can be defined as a saprophyte if it 

can only live saprophytically in the absence of competition from other microorganisms.  It 

seems that physiologically, P. cinnamomi may be able to grow as a saprophyte, but 

ecologically, its saprophytic ability is extremely limited, except possibly on soils of very 

low microbial activity. 
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CHAPTER 3 

Production of Thick-walled Chlamydospores of Phytophthora cinnamomi 

 

3.1 Introduction 

Although it is often mentioned that Phytophthora cinnamomi is capable of producing thick-

walled chlamydospores (Royle and Hickman 1964; Marks et al. 1975; Weste and 

Vithanage 1979; Erwin and Ribeiro 1996), there is little evidence to support this.  In 

addition, little is known on how these spores form, what stimulates their production and 

how long they survive in the field.  As discussed in Chapter 1.2.2, almost all experiments 

on the role of chlamydospores in the survival of P. cinnamomi have used thin-walled 

chlamydospores usually produced in vitro.  

 

Since the demonstration of Cother and Griffin (1973) and Shew and Benson (1982) that P. 

cinnamomi was capable of producing thick-walled chlamydospores, there has been little 

research in this area.   It is thought that the presence of a thick-wall around a 

chlamydospore would reduce its destruction by soil microbes or desiccation, thus allowing 

survival over extended periods (Malajczuk 1983).  

 

Further investigations into these structures requires a reliable method for producing thick-

walled chlamydospores in large numbers either in vitro or in vivo.  This experiment aimed 

to produce thick-walled chlamydospores of P. cinnamomi and to determine the triggers for 

their production. Nutrients, matric potential, temperature, aeration, host tissues, root/ soil 

exudates and microbial competition were studied as potential factors that might stimulate 

production of thick-walled chlamydospores.    
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3.2 Materials and Methods 

Experimental Design 

Phytophthora cinnamomi isolates MP 97-8 (isolated from Eucalyptus marginata in 

Jarrahdale, Western Australia), MP 127 (Chapter 2), MP103 (Chapter 2) and MP 94-15 

(Chapter 2) were used in all experiments.  All isolates were passaged through sterile lupin 

roots and then grown for 3 days on pea agar (Appendix 2) prior to experiments.  Five-mm
2
 

agar blocks were taken from the colony edge for subculturing into experimental conditions.  

Each experimental treatment was replicated four times in a completely randomised design 

and each experiment was repeated at least once.  Unless otherwise stated, incubation of all 

cultures was at 25 ºC under cool white fluorescent light.  Cellophane (Hallmark, Australia) 

was prepared by boiling 8 cm diameter circles in 1 L water for 2 hours with 0.5 g 

ethylenediaminetetra-acetic acid (EDTA) (AJAX, Australia) before rinsing and boiling for 

a further 2 hours in water.  Cellophane was autoclaved for three consecutive days at 121 ºC 

for 20 minutes.  Chlamydospores formed were observed under 200 – 400x magnification 

and chlamydospores were recorded as thick-walled if two layers were visible (Figure 3.1). 

 

Figure 3.1: Chlamydospores of Phytophthora cinnamomi.  A & B. Thick-walled: showing two 

distinct layers; C. Thin-walled: showing wall of a single layer.  Bar = 15µm. 
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Experiments 

The effect of nutrient deprivation 

The four isolates of P. cinnamomi were grown at 20 ºC or 25 ºC on top of sterile cellophane 

on pea agar for seven days.  To induce a sudden drop in nutrients, the cellophane containing 

the actively growing P. cinnamomi culture was then removed, its underside washed with 

sterile distilled water to remove nutrients and transferred to fresh, water-agar plates (1.5 % 

(w/v) agar (BBL)).  Plates were incubated for a further week before the mycelium was 

examined for the presence of thick-walled chlamydospores. 

 

In another experiment, cultures were exposed to a more gradual depletion of nutrients.  This 

was done by subculturing isolates onto modified Ribeiro’s minimal medium (Appendix 2) 

and incubating for 4 weeks.  Cultures were then examined and wall thickness of 

chlamydospores observed (Figure 3.1).  

 

The effect of osmotic potential 

The four P. cinnamomi isolates were grown on cellophane on pea agar for 1 week.  

Cellophane was washed with sterile distilled water and transferred to fresh pea agar plates 

containing different amounts of agar (10, 15, 20, 25 g L
-1

) to vary the osmotic potential.  

Plates were incubated for a further week before the wall thickness of the chlamydospores 

was observed.  
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The effect of temperature in the formation of thick-walled chlamydospores 

The four isolates of P. cinnamomi were grown on pea agar at temperatures 20, 25, 30 and 

37 ºC for two weeks in darkness before examination for the presence of thick-walled 

chlamydospores.  

 

The effect of liquid cultures 

In comparison to solid cultures, mycelium growing in liquid cultures were exposed to 

agitation.  The four isolates of P. cinnamomi were grown in 250 ml conical flasks 

containing 100 ml pea broth.  These were shaken (100 rpm) for 2 weeks at 25 ºC under cool 

white fluorescent light before mycelium was examined.  

 

The effect of a host plant  

Lupin (Lupinus angustifolius) seeds were surface sterilised (Chapter 2.2.1) and grown on 

sterile, moist filter paper in 90 mm Petri dishes for approximately one week before the roots 

were aseptically excised and placed on a pea agar plate with an actively growing culture of 

each isolate of P. cinnamomi.  These were incubated at 25 ºC for one week before the roots 

were squashed under a coverslip on a microscope slide and chlamydospores observed in 

five roots for each replicate of each isolate.  
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The effect of sterile root leachates from susceptible and resistant hosts  

Acacia pulchella (resistant host (Cahill et al. 1989) and Banksia grandis (susceptible host 

(Shearer and Hill 1989)) were grown in free draining pots (150 mm diameter free-draining 

polyeurythane pots) filled with potting mix (pine bark : coarse river sand : coco peat in the 

ratio 2: 2: 1) in the glasshouse for 10 months.  To collect leachates surrounding the roots of 

the two hosts, the pots were flooded with tap water and then allowed to drain for 24 hours.  

The leachates (approx 500 ml) were collected and filtered through Whatman No. 1 filter 

paper (Springfield Mill, UK), followed by a 0.22 µm Millipore filter (Schleicher and 

Schuell, Australia).  1 ml of each of the sterile suspensions was spread onto separate pea 

agar plates.  For each P. cinnamomi isolate, a cellophane disc with a 7-day-old culture 

grown on pea agar was placed on each plate.  The plates were incubated for one week at 

either 20 or 25 ºC.  Chlamydospore wall thickness was then observed (Figure 3.1).   

 

The effect of microbial competition in soil leachates from susceptible and resistant plants 

Exudates surrounding resistant A. pulchella and susceptible B. grandis roots were collected 

in the same way as described in the previous section but not filter sterilised.  A 10 mm 

diameter hole was cut from the centre of pea agar plate and 1 ml of the exudates were 

added to fill the hole.  Sterile water was used in place of exudates to act as a control.  Plates 

were incubated for 48 hours before a 48-hour-old culture of each P. cinnamomi isolate 

growing on an 80 mm diameter cellophane disc on pea agar was transferred to cover the 

centre hole.  Plates were incubated at 20 or 25 ºC for one week before chlamydospores 

were observed for wall thickness (Figure 3.1).   
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The effect of a combination of liquid culture, microbial activity and different root leachates  

Three agar blocks from P. cinnamomi (isolate MP97-8) were transferred to 20 ml of sterile 

pea broth in a 100 ml conical flask.  Leachates of A. pulchella, B. grandis and potting mix 

were collected as described earlier and filtered through Whatman No. 1 filter paper.   

 

Approximately 1 ml of each filtered extract was added to each flask at time 0, day 3 and 7.  

One ml of filtered tap water was the control.  Flasks were shaken (1oo rpm) at 25 °C under 

light for two weeks.   

 

A small mycelial sample was then aseptically removed from each flask, and examined for 

chlamydospore wall thickness.  The experiment was repeated 5 times for isolate MP97-8 

and once for the three other isolates. 

 

Chlamydospore formation in lupin roots and the effect of the soil environment  

Leachates from conducive Bassendean sand (Shearer and Hill 1989) and suppressive jarrah 

vegetation Havel classified ‘Q’ red loam (Havel 1975; CALM 1990) (Appendix 1) were 

collected as described earlier and filtered through Whatman No. 1 filter paper.  Ten ml of 

each leachate was added to separate 45 mm Petri dishes, using sterile water for control 

plates.  Sterile lupin roots were inoculated with P. cinnamomi isolates MP103 and MP127 

by wounding and then placing an agar block of P. cinnamomi on the wound site.  

Inoculated lupins were incubated for a further week.  Roots were aseptically excised into 10 

mm lengths and one was placed in each Petri dish containing leachates.  Non-inoculated 

lupin roots were used as controls in the experiment.  Plates were incubated for 4 weeks in 

the dark at 20 ºC.  Roots were removed from plates, squashed on a microscope slide and 
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observed microscopically for chlamydospore wall thickness.  Any squashed roots 

containing suspected thick-walled chlamydospores were transferred to NARPH medium 

and incubated for 1 week at 25 ºC.  Germinating spores were assessed for mycelium 

characteristic of P. cinnamomi.   Data were tested for equal variances and analysed using 

Minitab’s General Linear Model (Minitab Release 13). 

 

The experiment was repeated using Green Fluorescent Protein (GFP) transformed P. 

cinnamomi isolates MP103 (1/44) and MP127 (17/27) produced in Chapter 6 as a 

preliminary trial.   Spores observed were firstly viewed under white light and then under 

blue excitation (490 nm) at 1000x magnification.  Spores could be distinguished as P. 

cinnamomi by the production of a green fluorescence.    

 

3.3 Results 

Thin-walled chlamydospores were seen in all experiments both in vitro and in planta, the 

only exception being the aseptic inoculation of lupin roots where only mycelium and no 

chlamydospores were observed (Table 3.1).  Thick-walled chlamydospores were seen in 

three out of ten different experiments (Table 3.1). 

 

Thick-walled chlamydospores were observed in all isolates when mycelium was exposed to 

gradually depleted nutrients on modified Ribeiro’s minimal medium over 4 weeks (Figure 

3.2) but not when cultures of P. cinnamomi were transferred from a rich medium (pea agar) 

to water agar.  However, thick-walled chlamydospore production was sporadic, not being 

present on all plates.  Thick-walled chlamydospores for all isolates were always associated 

with mycelium of similar wall thickness (Figure 3.2).  Chlamydospores appeared to begin 

as swellings on the hyphae into which cytoplasm flowed before a septum was laid (Figure 
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3.2).  The width of walls for the thick-walled chlamydospores corresponded with the 

thickness of the hyphal wall and ranged from 1 – 5 µm. 

 

Soil leachates from A. pulchella, B. grandis or potting mix also induced production of 

thick-walled chlamydospores and thick-walled mycelium (Figure 3.3) but this was only 

observed when these leachates had been added to isolate MP97-8 cultured in pea broth and 

incubated on a shaker (Table 3.1).  This was not observed when these leachates were placed 

in the centre of a pea agar plate without shaking.  Thick-walled chlamydospores were not 

observed in water controls.  Thick-walled chlamydospores were not observed in repeat 

experiments or in other isolates. 

 

Many thick-walled chlamydospores produced in leachates of A. pulchella, B. grandis and 

potting mix appeared devoid of cytoplasm (Figure 3.3).  In thick-walled chlamydospores 

with cytoplasm, the cytoplasm often appeared quite granulated.  This was in contrast to 

those thick-walled chlamydospores produced on modified Ribeiro’s minimal medium 

which were mostly intact and with full cytoplasmic contents (Figure 3.2). 
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Table 3.1: Chlamydospore formation of Phytophthora cinnamomi under different experimental 

conditions.  = Yes; X = No 
Chlamydospores present? 

 

Experimental Condition 

Thin-walled Thick-walled 

Nutrient deprivation :    

 Pea agar – water agar  X 

 Ribeiro’s minimal medium for four weeks 
 

  

Osmotic potential 
 

 X 

Temperature (20 – 37ºC) 
 

 X 

Liquid culture 
 

 X 

A. pulchella and B. grandis sterile leachates 
 

 X 

Microbial competition from A. pulchella and B. grandis leachates 
 

 X 

Microbial competition from A. pulchella and B. grandis leachates 

in liquid culture 
 

  

Within aseptic roots (L. angustifolius) 
 

X X 

Within L. angustifolius roots in presence of soil leachate 
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Figure 3.2:  Thick-walled chlamydospores of isolates of Phytophthora cinnamomi produced after 4 

weeks on modified Ribeiro’s minimal medium.  A. Thick-walled chlamydospore (c) forming from 

thick-walled mycelium (th).  B.  Higher magnification of A showing the cell lumen filling with 

cytoplasm and a septum (se) being laid to complete chlamydospore.  C, D, E & F. Fully formed 

thick-walled chlamydospores, D attached to thick-walled mycelium (th).  (Bar = 30 µm).  
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Figure 3.3: Thick-walled chlamydospores of Phytophthora cinnamomi produced in the presence of 

exudates from Acacia pulchella.  A, B & C. Appear to be devoid of cytoplasm. D. Cytoplasm 

present but granulated. Note presence of thick-walled hyphae (th) (Bar = 30 µm).   
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Chlamydospore formation in lupin roots and the effect of the soil environment  

Thick-walled chlamydospores were observed in the excised lupin roots floated in non-

sterile soil extract or sterile water for both isolates (Figure 3.4).  Many ‘thick-walled’ 

chlamydospores appeared to be lysing (Figure 3.4).  Many chlamydospores were smaller 

than 30 µm in diameter.  

 

The total number of chlamydospores within the lupin roots after 5 weeks incubation in 

leachates from the two different soil types (jarrah vegetation Q red loam and Bassendean 

sand)  did not differ (P > 0.05) and were similar to the number observed in sterile roots (a 

mean of 93 (± 21)).  The percentage of total chlamydospores that were thick-walled 

significantly (P < 0.05) differed depending on the interaction between isolate and substrate 

(Figure 3.5).  Few were thick-walled in solution for jarrah vegetation Q red loam and sterile 

water stimulated an equal proportion of thick-walled chlamydospores as did Bassendean 

sand for isolate MP103.  However, isolate MP127 produced 100 % thick-walled 

chlamydospores on Bassendean sand leachate. 

 

Positive identification of thick-walled chlamydospores of P. cinnamomi within a non-sterile 

environment was difficult as spores from other microorganisms might be mis-identified as 

P. cinnamomi.  Spores of a similar appearance were often observed in non-inoculated 

controls.  Attempts to germinate spores on NARPH were unsuccessful. 

 

A preliminary repeat of the experiment was performed using GFP-transformed cultures of 

P. cinnamomi.  Fluorescing spores differed in appearance, some producing many patches of 

green fluorescence in the one spore whereas others produced only one patch of 
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fluorescence and these tended to be smaller in size (Figure 3.6).  Spores that had been 

classified in the previous experiment as thick-walled were never observed to fluoresce 

(Figure 3.6). 
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Figure 3.4:  Chlamydospores of Phytophthora cinnamomi within inoculated lupin roots in jarrah 

vegetation Q red loam and potting mix leachates.  A. Mycelium (m) with forming thin-walled 

chlamydospores (c); B & C. Thin-walled mycelium within lupin roots; D. Germinating thin-walled 

chlamydospores within root cell; E. Mycelium and thick-walled chlamydospore; F. Mycelium and 

forming thick-walled chlamydospores, septa (se) being laid; G - M. Thin-walled chlamydospores; 

N & O. Could be thick-walled chlamydospore or lysing chlamydospore; P. Lysing thin-walled 

chlamydospore; Q. Chlamydospore-like spores (sm) and chlamydospore.  Bars = 30 µm. 
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Figure 3.5:  Percentage of thick-walled chlamydospores in lupin roots infected with Phytophthora 

cinnamomi isolates MP103 (black columns) and MP127 (grey columns) and floated on soil 

leachates from Bassendean sand, jarrah vegetation Q red loam and water.  Bars represent the 

standard error of the means. 
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Figure 3.6:  Spores formed in lupin roots under non-sterile conditions viewed under white light (A, 

B, C, D) could be confirmed as Phytophthora cinnamomi or of other fungal origin by the presence 

or absence of a green fluorescence under blue excitation (E, F, G, H).  A & E. Thin-walled 

chlamydospore of Phytophthora cinnamomi;  B & F. Thick-walled spore with non-fluorescing 

cytoplasm.  Possibly not from Phytophthora cinnamomi; C & G, D & H. Many spores present in 

root material of which some small spores are confirmed as Phytophthora cinnamomi by single 

fluorescent areas in the cells.  Bars = 30 µm. 
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3.4 Discussion 

Thick-walled chlamydospores can be produced in vitro on culture medium (Ribeiro’s) or in 

plant material (lupin roots).  Thick-walled chlamydospores were sporadically produced by 

P. cinnamomi on Ribeiro’s medium possibly due to nutrient depletion in older cultures and 

this requires further investigation.   

 

The developmental sequence of the thick-walled chlamydospores differed from previous 

reports in the literature.  Hemmes and Wong (1975) found that, in vitro, the chlamydospore 

wall is thin (approximately 0.2 µm) becoming thicker (0.5 µm – 0.6 µm) with time (2 

weeks) after the basal septum has been formed (Hemmes and Wong 1975).  Hegnauer and 

Hohl (1978) also presented similar findings that the outermost layers of chlamydospore 

walls are much thicker than the layers of hyphal wall from which they develop.  In the 

experiment using modified Ribeiro’s minimal medium, the thickness of the chlamydospore 

walls appeared to be related to the thickness of the hyphae from which they developed.  

This has not been shown previously and further work is required on their formation. 

 

Thick-walled chlamydospores of P. cinnamomi, often attached to thick-walled mycelium, 

were also seen on mycelium growing in pea agar with the addition of potting mix, A. 

pulchella and B. grandis leachates.  The result was not repeatable so the factor that 

triggered this response could not be determined.  However, imposition of conditions that 

were considered adverse to the growth of the pathogen such as a reduction in medium 

osmotic potential, temperature variations, a drop in medium nutrients (pea agar to water 

agar) and liquid culture did not contribute to the production of thick-walled 

chlamydospores under sterile conditions in vitro.  It is thought that a sudden change in 

environment induced by the introduction of different biological or chemical compounds 
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may have resulted in production of thick-walled chlamydospores.  This has been considered 

a response to adverse environmental factors (Mircetich and Zentmyer 1967) but further 

work is required to understand the environmental factors influencing thick-walled 

chlamydospore production.   

 

Chlamydospores with thickened walls were abundant in lupin roots in Bassendean sand 

leachate but not in lupin roots in jarrah vegetation Q red loam.  This could be due to 

microbial and chemical differences between the soils.  Thick-walled spores could not be 

germinated on NARPH for identification.  Subsequent use of the GFP-transformed isolates 

could not confirm that the chlamydospores recorded as ‘thick-walled’ were P. cinnamomi.  

It is possible that they were from P. cinnamomi but the Green Fluorescent Protein was not 

synthesised due to these thick-walled chlamydospores being lysed; alternatively, these 

spores may have been from another fungal species.   

 

The production of two types of chlamydospores with different fluorescent patterns has not 

been previously recorded.  Larger spores (around 30 µm in diameter) had numerous 

fluorescent patches whereas smaller spores (less than 20 µm in diameter) had only one 

fluorescent area.  Further work is needed to investigate these different spores and how they 

contribute to survival of the pathogen.  It is possible that the fluorescent patches observed 

were storage vacuoles (Hemmes 1983), chlamydospore size affecting the number present.  

Thin-sectioning is required to investigate whether the patches were storage vacuoles.  

Although the GFP-transformed isolate did not highlight any thick-walled chlamydospores 

of P. cinnamomi, their presence in the soil environment cannot be ruled out as this was only 
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a preliminary experiment into the search for solid evidence of thick-walled chlamydospores 

of P. cinnamomi in nature.    

 

This study suggests that the environment has a major influence on the thickness of 

chlamydospore walls and spore diameter.  It appeared soil type rather than the presence of 

leachates from a susceptible (B. grandis (Shearer and Hill 1989)) or a resistant host (A. 

pulchella (Cahill et al. 1989)) influenced chlamydospore wall thickness.  However, these 

results should be treated with caution as spores were not germinated for confirmation of 

identity.  Further work needs to be conducted in this area to determine the effect of 

microbial composition or nutrient availability of different soil types and how this relates to 

the suppressive/ conducive nature of a soil as natural soils are known to vary widely with 

these characteristics (Malajczuk 1983).   

 

Previous experiments observing thick-walled chlamydospores have shown their presence in 

roots of inoculated plants or soil under non-sterile conditions (Mircetich and Zentmyer 

1967; Cother and Griffin 1973).  This is the first report of thick-walled chlamydospores 

being produced under laboratory conditions in the absence of plant roots and soil.  The 

current study also contradicts what has previously been reported regarding the development 

of thick-walled chlamydospores from thick-walled hyphae.  The best prospects for 

producing thick-walled chlamydospores under native conditions appear to be dependent on 

soil type.  Viability and dormancy of such thick-walled chlamydospores needs to be 

determined to assess their actual contribution to survival of the pathogen.  
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CHAPTER 4 

In vitro Influence of Phosphite on Chlamydospore Production and 

Viability of Phytophthora cinnamomi 

 

4.1 Introduction 

Phosphite is an effective fungicide for the control of Phytophthora spp. (Guest and Grant 

1991).  However, different Phytophthora species vary in sensitivity to phosphite and within 

a species there is a range of sensitivity amongst isolates (Coffey and Bower 1984; Niere et 

al. 1994).  For example, Coffey and Bower (1984) showed the ED50 for mycelial growth of 

nine different Phytophthora species to range between 5.2 to 224.4 µg ml
-1

.  The 

Phytophthora species that have been found to be most sensitive to phosphite in vitro 

include P. clandestina, P. cinnamomi and P. citricola (Coffey and Bower 1984).  Variation 

in phosphite sensitivity as assessed by ED50 values ranges from 1.7 to 148 µg ml
-1

 on 

modified Ribeiro’s medium within P. cinnamomi isolates (Coffey and Joseph 1985; 

Wilkinson et al. 2001b), with A1 mating-type isolates more tolerant than A2 mating-type 

isolates (Wilkinson et al. 2001b).  

 

Phosphite has been shown to inhibit sporangia production (Coffey and Joseph 1985; 

Wilkinson et al. 2001c), zoospore release (Coffey and Joseph 1985; Wilkinson et al. 

2001c), oospore (Coffey and Joseph 1985) and chlamydospore (Coffey and Joseph 1985; 

Aberton et al. 1999) production in Phytophthora.  The fungicide inhibits sporulation of P. 

cinnamomi and P. citricola at levels (< 10 µg ml
-1

) too low to affect mycelial growth 

(Coffey and Joseph 1985; Aberton et al. 1999).  In vitro, less than 3 μg phosphite ml
-1

 was 

required for 50 % inhibition of sporangial production while 6 μg phosphite ml
-1

 was
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necessary to inhibit zoospore release by 50 % of sporangia (produced in the absence of 

phosphite) (Coffey and Joseph 1985).  Wilkinson et al. (2001a) observed a significant 

reduction in zoospore production from infected Banksia grandis and Eucalyptus marginata 

seedlings after treatment with 5 – 10 g phosphite L
-1

.   

 

Chlamydospore production by P. cinnamomi was reduced to 50 % with 15 – 44 μg 

phosphite ml
-1

 (Coffey and Joseph 1985).  However, chlamydospores of P. cinnamomi and 

P. parasitica produced in the absence of phosphite were remarkably resistant to phosphite 

as germination was only reduced by 20 % in 1000 μg phosphite ml
-1

 (Coffey and Joseph 

1985).  Not known was whether chlamydospores produced during phosphite treatment were 

viable and whether such chlamydospores were able to germinate on media containing 

phosphite. 

 

In the current study, preliminary experiments on the effect of phosphite on numbers of 

chlamydospores in vitro gave varying results (data not shown).  In these experiments, the 

number of chlamydospores was assessed by examining mycelium about half way between 

the inoculation point and the edge of the 90 mm Petri dish as this was where unusual 

mycelial growth in plates occurred at higher phosphite concentrations.  Colony 

morphology, rather than being uniformly tightly packed across the plate, changed to sparse 

growth on plates with phosphite.  The change over was closer to the inoculation point in 

plates with higher levels of phosphite (Figure 4.1).  Variability in chlamydospore numbers 

was found to be due to a high number of spores in this sparse growth of mycelium.  The 

reason for an increase in chlamydospore numbers across the plate and a change in mycelial 

density was hypothesised to be due to a change in the medium and its relative phosphite 

concentration due to the aging of the medium at 25 ºC.   
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Understanding the efficacy of control using phosphite requires knowledge of how the 

reproductive propagules of the fungus respond to phosphite.  Experiments in this chapter 

test the hypothesis that chlamydospores produced on a medium with and without phosphite 

have the same level of viability and percentage germination.  It also reports the peak of 

chlamydospore production at approximately 15 – 25 mm from the inoculation point in a 90 

mm Petri dish and tests the further hypotheses that: 

 Chlamydospore production is a function of distance of mycelial growth from the 

inoculum.  In this case, the location of the chlamydospores should be the same whether 

cultures are grown in a 90 mm or 140 mm culture dishes. 

 Chlamydospore production is a result of the aging of medium.  In this case:  

i) Mycelium cultured on medium kept at 25 ºC for 32 days before 

inoculation should develop chlamydospores evenly across the plate 

rather than concentrated in a band,  

ii) Cultures grown in liquid medium which is changed frequently should 

develop chlamydospores distributed evenly through the mycelium.  
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Figure 4.1:  Growth of isolates of Phytophthora cinnamomi on Ribeiro’s medium with 0 – 100 µg 

phosphite ml-1 after 2 weeks growth.  Inoculation point is plate centre; arrows indicate where 

mycelium becomes sparse. Bar = 90 mm 

 

4.2 Materials and Methods 

Experimental Design 

Phytophthora cinnamomi isolates sensitive (MP94-15, MP127) or tolerant (MP103, 

MP128) to phosphite (Wilkinson et al. 2001b) were used.  All were A2 mating type and 

had been isolated from Western Australia with MP127 and MP94-15 from Eucalyptus 

marginata located in Jarrahdale and Willowdale, respectively.  MP128 had previously been 

isolated from Xanthorrhoea preisii in Jarrahdale and MP103 from Corymbia calophylla in 

Huntly.  All isolates were passaged through sterile lupin roots and then grown for 2 weeks 

on modified Ribeiro’s minimal medium (Appendix 2) prior to experiments.  Phosphite in 

the experiments was added to the medium prior to inoculation using Fosject 600 (600 g 

phosphite L
-1

 present as mono-di-potassium phosphite, Unitec Group, Australia) filter 
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sterilised through a 0.22 µm Millipore filter.  Phosphite concentrations used were 0 – 100 

µg ml
-1

 after examining results of Wilkinson et al. (2001b) who showed the EC50 for 11 

isolates of P. cinnamomi to be 5 – 50 µg ml
-1

 phosphite with almost 100 % inhibition 

occurring at 160 µg ml
-1

 phosphite.  Plates were sealed with plastic (Gladwrap, Australia) 

for the incubation period.  Incubation conditions were 25 ºC in darkness.  Preliminary 

experiments showed no significant (P > 0.05) difference between cultures incubated in dark 

and light for four weeks (data not shown).  Chlamydospores were observed under the light 

microscope at 200x magnification.   

 

Experiments 

Germination of chlamydospores produced in the presence of phosphite 

Chlamydospores produced on modified Ribeiro’s minimal medium with 0 and 100 µg 

phosphite ml
-1 

from isolates MP103, MP128, MP94-15 and MP127 were used for 

germination studies.  Once formed, chlamydospores were collected by adding sterile water 

to cover the mycelium before using a scalpel and glass rod to loosen and break up the 

mycelium to release chlamydospores.  The solution was filtered through sterile cheesecloth 

to remove most of the mycelium.  Additional sterile water was used to wash through any 

remaining chlamydospores.  To concentrate the chlamydospores, the solutions were 

collected in 50 ml Falcon tubes (TPP; Switzerland) and centrifuged at 3800 g for 8 minutes.  

All but approximately 300 µl of the supernatant was discarded and the chlamydospores 

resuspended in the residual.  Chlamydospore concentration was determined by counting 

chlamydospores in a 5 µl sample of the suspension.   

 

To test the germination of the chlamydospores, three separate 100 µl aliquots of modified 

Ribeiro’s minimal medium containing 0, 100 or 160 µg phosphite ml
-1

 were placed on 
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microscope slides and approximately 50 chlamydospores from each suspension added.  

There were three replicates for each isolate for each concentration of phosphite.  A 

preliminary experiment determined that chlamydospore germination percentages can be 

accurately measured between 10 – 20 hours after incubation at 25 ºC.   The experiment was 

repeated three times using incubation times of 12, 16 and 18 hours. 

 

On the third repeat of the experiment, after determining numbers of germinating and non-

germinating chlamydospores, spores were stained with Thiozolyl Blue Tetrazolium 

Bromide (MTT) (Sigma, Germany).  A 0.1% solution of MTT was added to cover the 

chlamydospores and incubated at 37 ºC for 24 hours in a moist chamber.  Control, dead 

chlamydospores were obtained by autoclaving at 121 ºC for 20 minutes and included.   

Non-germinated chlamydospores were assessed as viable (black/ blue stained) and dead 

(magenta or clear).   

 

Distribution of chlamydospore production on the colony   

To determine the number of chlamydospores produced in different areas of cultured 

mycelium, a 5 mm
2
 colonised agar block of P. cinnamomi was placed in the centre of 12 ml 

solid modified Ribeiro’s minimal medium agar in 90 mm Petri dishes containing either 0, 

40 or 100 µg phosphite ml
-1

 of medium; 5 replicate plates were used for each isolate and 

phosphite concentration.  Incubation was 3 weeks at 25 ºC in the dark.  To record 

chlamydospore numbers over the radius of the culture, a strip of agar approximately 5 x 45 

mm from the point of inoculation to the edge of the 9 cm Petri dish was removed and 

placed on a microscope slide.  The agar was compressed under a coverslip and the strip was 

divided into 8 segments (approximately 4 mm wide), noting which end had been closest to 
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the inoculum source (Figure 4.2).  Chlamydospore numbers were counted in each segment 

twice by scanning along the width of the segment in a straight line before taking an 

average.  In this way, the chlamydospore numbers across the culture radius could be 

determined.  The experiment was repeated twice. 

 

Figure 4.2:  Sampling for chlamydospore distribution across a growing culture of Phytophthora 

cinnamomi.  Bar = 30 mm.  

 

Effect of medium age on chlamydospore production 

Plates of modified Ribeiro’s minimal medium with 0, 40 or 100 µg phosphite ml
-1

 were 

stored for 4 weeks in dark at 25 ºC to create ‘aged’ medium.  Aged plates, along with fresh 

medium plates, were inoculated and incubated for a further 3 weeks under the same growth 

conditions.  Chlamydospore numbers across the radius were counted as described 

previously and compared to chlamydospore numbers on plates that had not been aged.  The 

experiment was repeated twice.   

 

Colony growth rate  

To determine if the growth rate of P. cinnamomi was uniformly affected over the 

incubation period, colony diameters were recorded over time.  A 5 mm
2
 cube of mycelium 
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of P. cinnamomi isolate number MP94-15 or MP103 was placed in the centre of a 140 mm 

Petri dish containing 30 ml of either 0 µg or 100 µg phosphite ml
-1

 modified Ribeiro’s 

minimal medium.  Colony diameter was measured every few days until colonies had 

reached the edge of the plate.  Five replicate plates per phosphite concentration and isolate 

were used. 

 

At the end of the experiment a section of agar, representing the radial length of the colony, 

was removed from the plate and chlamydospore numbers in different regions of the culture 

radius was determined as described above.  The experiment was repeated. 

 

A comparison of liquid and solid media 

To determine if changes in the medium over the period of culture affected chlamydospore 

numbers, MP103 and MP94-15 were grown on 15 ml of liquid modified Ribeiro’s minimal 

medium with 0 or 100 µg phosphite ml
-1

 without shaking and solid modified Ribeiro’s 

minimal medium with 0 or 100 µg phosphite ml
-1

 in 90 mm Petri dishes and incubated for 4 

weeks.  Every four days, the liquid from some of the Ribeiro’s plates (five for each 

phosphite concentration and isolate) was removed under aseptic conditions and replaced 

with 15 ml of fresh modified Ribeiro’s minimal medium.  The remaining liquid plates and 

all solid plates were used as controls in the experiment.  At the end of the experiment, 

chlamydospore numbers were counted across the radius of the colonies using a 5 x 45 mm 

wide strip of mycelium.  pH across each of the solid media was determined by removing a 

10 mm
2
 agar block at 10, 20, 30 and 40 mm distances from the point of inoculation, 

centrifuging each for 10 minutes at 10600 g and adding a 0.1 ml drop of pH Indicator 
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(range 6.0 – 7.6) (Aquasonic, Australia).  This was also performed for non-inoculated 

control plates.  pH of liquid media was also tested as described above. 

Statistical Analysis  

Germination percentages obtained for each treatment were converted by arcsine 

transformation into degrees and analysed using Minitab’s General Linear Model (Minitab 

Release 13).   

 

Other data were analysed using Minitab’s MANOVA (Multivariate Analysis of Variance) 

function.  Prior to analysis, data were transformed where necessary by square root to satisfy 

Levene’s test for equal variances to determine significance between individual points.  

 

4.3. Results 

Germination of chlamydospores produced in the presence of phosphite 

Chlamydospores produced in the presence of 100 µg ml
-1 

phosphite in Ribeiro’s medium 

and placed on fresh modified Ribeiro’s minimal medium containing 0, 100 or 160 µg 

phosphite ml
-1

, showed significantly (P < 0.05) lower percentages of germination than 

control chlamydospores from medium without phosphite (Figure 4.3).   

 

The extent of the response varied between repeat experiments (P < 0.05), therefore each 

experiment was statistically analysed separately (Table 4.1).  For isolates MP94-15 and 

MP127 (all experiments), MP103 (experiment 1 and 3) and MP128 (experiment 2), 

statistical analysis of the data revealed that phosphite concentration in the germination 

medium had no affect on the ability of chlamydospores to germinate (Table 4.1).  However, 

the reduction in germination of chlamydospores that had been produced on medium 
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containing 100 µg phosphite ml
-1

, compared to those produced in the absence of phosphite, 

was significant at P < 0.05 (Table 4.1).  
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Figure 4.3: Germination of chlamydospores of Phytophthora cinnamomi produced on modified 

Ribeiro’s minimal medium with no phosphite (black columns) or 100 µg phosphite ml-1 (grey 

columns) and then exposed to different (0, 100 or 160 µg phosphite ml-1) phosphite concentrations 

for germination. (A) MP94-15, (B) MP103, (C) MP128, (D) MP127.  Data are the means of three 

experiments.  Bars represent positive standard error of the mean. 
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Table 4.1: ANOVA comparing the effect of phosphite concentration in modified Ribeiro’s minimal 

medium containing 0, 100 or 160 μg phosphite ml-1 used to germinate chlamydospores of 

Phytophthora cinnamomi (Germination).  Phosphite concentration in germination medium did not 

affect chlamydospore germination so data was bulked to identify the effect on germination if 100 μg 

phosphite ml-1 had been added to modified Ribeiro’s minimal medium when producing 

chlamydospores (Production).  Adjusted Mean Square values are given; degrees of freedom in 

brackets.  Significant values are in bold.  
 Experiment 1 Experiment 2 Experiment 3 

Isolate Germination Production Germination Production Germination Production 

 

MP94-15 

 

MS(1,12) = 
10849.4 

 

 

MS(2,12) = 

270.8 

 

MS(1,12) = 

4582.2 

 

MS(2,12) = 

18.26  

 

MS(1,12) = 

629.9 

 

MS(2,12) = 

41.7  

 

MP103 MS(1,12) = 

3965.6 

 

MS(2,12) = 

45.1 

 

* 

 

* 

 

MS(1,12) = 

418.3 

 

MS(2,12) = 

28.0 

 

MP128 * 

 

* 

 

MS(1,12) = 

858.9 

 

MS(2,12) = 

11.8 

 

MS(1,12) = 

63.6 

 

MS(2,12) = 

28.3 

 

MP127 MS(1,12) = 

7494.0 

 

MS(2,12) = 

153.7 

 

MS(1,12) = 

1936.3 

 

MS(2,12) = 

33.7 

 

MS(1,12) = 

772.6 

 

MS(2,12) = 

26.1 

 

* A significant (P < 0.05) interaction between produced and germinated found. 

 

Viability of chlamydospores produced on medium containing phosphite 

Autoclaved control chlamydospores which were presumed dead, did not stain or rarely 

stained magenta/ pink (Figure 4.4A).  Spores that had already germinated always stained 

black, often with a trace of blue (Figure 4.4H).  Occasionally, germinated chlamydospores 

stained magenta/ pink while their mycelium was black (Figure 4.4E & I).  Spores that had 

degenerating cytoplasm always stained magenta or pink (Figure 4.4C & F).  From these 

observations, it was concluded that chlamydospores that appeared intact and full of 

cytoplasmic contents but stained magenta were non-viable.  Non-germinated 

chlamydospores were thus categorised as either viable (black or blue) or non-viable (clear, 

pink or magenta) (Figure 4.4).   

 

As 70 – 95 % of chlamydospores produced on the control medium germinated, there were 

few non-germinated spores remaining from which viability was assessed.  For two isolates 
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(MP103 and MP128), there was no significant (P > 0.05) difference in viability of non-

germinated spores from media with or without phosphite (Figure 4.5), but from isolates 

MP94-15 and MP127, there was a much higher (P < 0.05) percentage of viable non-

germinated spores amongst those produced on phosphite medium (Figure 4.5).   
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Figure 4.4: Spores and hyphae of Phytophthora cinnamomi stained with Thiozolyl Blue 

Tetrazolium Bromide (MTT).  A. Autoclaved control, no stain uptake (arrows); B. Intact 

chlamydospore with full cytoplasmic contents stained magenta; C & F. Collapsing chlamydospores 

stained magenta/ pink; D & G. Pink, non-viable chlamydospore (ma) and black viable hyphae (bl); 

E & I. Black stained viable hyphae (bl) with magenta stained chlamydospore (ma); H. Black 

stained germinated chlamydospore; J. Black non-germinated chlamydospore next to germinated, 

black chlamydospore; K. Black, non-germinated chlamydospores; L & M. Blue, non-germinated 

chlamydospores.  Bar = 40µm.  
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Figure 4.5:  Percentage of viable chlamydospores amongst non-germinated chlamydospores of 

Phytophthora cinnamomi on modified Ribeiro’s minimal medium with 0, 100 and 160 µg phosphite 

ml-1 as assessed by Thiozolyl Blue Tetrazolium Bromide (MTT) staining.  Phosphite concentration 

(0, 100 or 160 µg ml-1) of the germination medium had no significant (P > 0.05) effect so data were 

bulked to compare only viability of non-germinated spores that had been produced on no phosphite 

(black columns) to viability of non-germinated spores that had been produced on 100 μg phosphite 

ml-1 (grey columns). Bars represent the standard error of the mean. 

 

Distribution of chlamydospore production on the mycelium and the effect of medium age 

Control 90 mm diameter plates (with no phosphite) had an even distribution of 

chlamydospores across the radius of their growth, and no significant (P > 0.05) difference 

in chlamydospore numbers was found at any point across the radial length of the colony. 

 

Phosphite initially inhibited chlamydospore production.  There was a significant (P < 0.05) 

reduction for isolates MP94-15 and MP103 but although the trend was evident, the 

reduction was not significantly (P > 0.05) different for isolates MP127 and MP128.    

However, where the mycelium changed its growth morphology from tightly packed 

mycelia to sparse (approximately 20 mm; Figure 4.1), chlamydospore numbers 

  MP94-15               MP103            MP127       MP128 
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significantly (P < 0.05) increased on both concentrations of phosphite until the edge of the 

colony where numbers in most isolates dropped.  Chlamydospore numbers increased closer 

to the initial inoculum source on 100 µg phosphite ml
-1

 than on 40 µg phosphite ml
-1 

(Figure 4.6).  Media containing phosphite and stored for 4 weeks prior to use produced a 

significantly (P < 0.05) higher number of chlamydospores across the plate for all phosphite 

treatments compared to the media inoculated immediately after it was made (Figure 4.6).  

However, there was no consistent difference from fresh plates in the distance from the 

inoculum to the region of high chlamydospore production. 
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Figure 4.6: Mean chlamydospore numbers of Phytophthora cinnamomi across the radius of 

cultures grown on 0 (x); 40 (□) and 100 (Δ) µg phosphite ml-1. Isolate MP94-15 (A-B), MP103 (C-

D), MP127 (E-F), MP128 (G-H).  A, C, E, G. Fresh media; B, D, F, H. Stored media (Vertical 

scales differ between graphs for fresh and stored media). Bars represent the positive standard error 

of the mean.   
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Large numbers of oospores were consistently produced by isolate MP128 on no phopshite 

under the conditions of the experiment but were rare in the other isolates.  Oospore 

production is discussed further in Chapter 5. 

 

On 140mm Petri dishes, the production of chlamydospores on 100 µg phosphite ml
-1

 

showed a similar pattern to that seen in the smaller 90 mm plates with a peak 52 – 56 mm 

from the inoculum (Figure 4.7).  The MP94-15 control also showed a slight increase in 

chlamydospore numbers at 56 mm but the increase was not significant (P > 0.05) compared 

to the increase seen in plates containing phosphite.  The distance from the inoculum at 

which a significant (P < 0.05) increase in chlamydospore numbers was observed was 

greater on the larger plates, with isolate MP103 responding at a greater distance than isolate 

MP94-15.   

 

The growth rate of the two isolates in response to phosphite was the same in the two repeat 

experiments (P > 0.05) so the data were combined for further analysis.  Growth of P. 

cinnamomi on 100 µg phosphite ml
-1

 was slower than on the no phosphite medium (Figure 

4.8).  Cultures on the medium with phosphite grew slowly until day 2 or 3 when the growth 

rate began to accelerate until approximately day 30 or 32 when the mycelium reached the 

edge of the plate and growth rate stopped (Figure 4.8).  Colony morphology was similar to 

that shown in Figure 4.1 for 0 and 100 µg phosphite ml
-1

.   
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Figure 4.7: Effect of 0 and 100 µg phosphite ml-1 on average chlamydospore numbers of 

Phytophthora cinnamomi across the radius of cultures on 140 mm plates of modified Ribeiro's 

minimal medium.  (▲) MP94-15 Control; (Δ) MP94-15 100 µg phosphite ml-1; (■) MP103 Control; 

(□) MP103 100 µg phosphite ml-1.  Bars represent positive standard error of the mean.  
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Figure 4.8: The effect of 0 and 100 µg phosphite ml-1 on colony growth of Phytophthora 

cinnamomi over time. (▲) MP94-15 Control; (Δ) MP94-15 100 µg phosphite ml-1; (■) MP103 

Control; (□) MP103 100 µg phosphite ml-1.  Bars represent positive standard error of the mean. 
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A comparison of liquid and solid media 

Chlamydospore numbers for cultures that were incubated on modified Ribeiro’s minimal 

liquid or solid medium without replacement differed across the radius of the plate 

depending whether 0 or 100 µg phosphite ml
-1

 was used (Figure 4.9; Table 4.2).  The trends 

observed were similar to those described earlier. Briefly, from approximately 20 mm from 

the initial inoculation point, chlamydospore numbers on modified Ribeiro’s minimal 

medium containing 100 µg phosphite ml
-1

 increased rapidly to numbers higher than plates 

containing no phosphite.  This point corresponded to a change in colony morphology for 

cultures on the medium containing 100 µg phosphite ml
-1

. 

 

When the liquid medium was changed every 4 days, no significant (P > 0.05) difference 

between chlamydospore numbers at 0 and 100 µg phosphite ml
-1

 was found at any point of 

the radius of the culture at the end of 4 weeks incubation for both MP94-15 and MP103.  

Numbers of chlamydospores remained similar across the radius of each culture (Figure 

4.9).    Plates which received new medium every 4 days had continuous dense mycelium in 

plates with 100 µg ml
-1

 phosphite.  pH of the medium was between 6.4 and 7.0 for all 

plates, irrespective of the presence of 100 µg phosphite ml
-1

. 
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Table 4.2: MANOVA of control (non-replenished) medium for Figure 4.9.  Differences are 

compared between chlamydospore numbers of Phytophthora cinnamomi produced on 0 and 100 µg 

phosphite ml-1, liquid and solid Ribeiro’s medium. (A) MP94-15 and (B) MP103.  Adjusted Mean 

Square values given, treatment and error degrees of freedom in brackets.  Significant values are in 

bold.  
Distance from 

inoculum (mm) 

MP94-15: Solid 

media. Comparing 

0 and 100 µg 

phosphite ml-1  

 

MP94-15: Liquid 

media. Comparing 

0 and 100 µg 

phosphite ml-1 

MP103: Solid 

media. Comparing 

0 and 100 µg 

phosphite ml-1 

MP103: Liquid 

media. Comparing 0 

and 100 µg 

phosphite ml-1 

4 MS(1,5) = 73.31 MS(1,5) = 2.37 MS(1,7) = 3.45 MS(1,6) = 15.66 

8 MS(1,5) = 82.52 MS(1,5) = 38.78 MS(1,7) = 0.00 MS(1,6) = 40.67 

12 MS(1,5) = 37.13 MS(1,5) = 1.75 MS(1,7) = 0.67 MS(1,6) = 57.44 

16 MS(1,5) = 91.01 MS(1,5) = 7.71 MS(1,7) = 0.27 MS(1,6) = 27.03 

20 MS(1,5) = 7.14 MS(1,5)= 48.09 MS(1,7) = 8.35 MS(1,6)= 7.02 

24 MS(1,5) = 110.35 MS(1,5) = 63.19 MS(1,7) = 16.30 MS(1,6) = 8.87 

28 MS(1,5) = 180.37 MS(1,5) = 63.45 MS(1,7) = 34.66 MS(1,6) = 17.83 

32 MS(1,5) = 27.46 MS(1,5) = 137.61 MS(1,7) = 11.53 MS(1,6) = 155.82 
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Figure 4.9: The effect of medium age and phosphite on the position of chlamydospore production 

on Phytophthora cinnamomi mycelium.  A & C. No phosphite; B & D. 100 µg phosphite ml-1.        

A & B. Isolate MP94-15; C & D. Isolate MP103. (○ – Liquid medium replaced with fresh medium 

every 4 days, ● – Liquid medium control, x – Solid medium control). NB. Vertical scales differ.  

Bars represent the standard error of the mean. 
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4.4 Discussion 

The presence of phosphite in the germination medium had no affect on the percentage 

germination of chlamydospores as has been reported by Coffey and Joseph (1985).  

However, on germination medium amongst non-germinated chlamydospores that had 

previously been produced on medium containing phosphite, there was a high level of 

viability indicating that phosphite induces dormancy in chlamydospores.  A wider range of 

isolates need to be screened to determine the frequency of isolates in which this occurs.  

Management of P. cinnamomi in diseased areas by use of phosphite must consider the 

possibility of induction of dormant chlamydospores.   

 

Phosphite was found to cause significant dormancy in chlamydospores for isolates 

previously reported as sensitive to phosphite (MP94-15 and MP127; Wilkinson et al. 

2001b) and not those reported as tolerant (MP128 and MP103; Wilkinson et al. 2001b).  

The induction of dormancy could be due to the accumulation of pyrophosphate and 

polyphosphate which has previously been found to be contributing to the inhibition of 

mycelial growth of Phytophthora spp. in the presence of phosphite (Niere et al. 1994).  

This growth inhibition may vary across isolates depending on their sensitivity to phosphite.  

Further investigations should determine the relationship between phosphite sensitivity and 

the induction of chlamydospore dormancy.  The growth rate of mycelium from 

chlamydospores germinating on the medium containing phosphite was not determined and 

future studies should assess this and whether chlamydospores produced in the presence of 

phosphite, produce mycelium less inhibited by phosphite.  

 

Phytophthora cinnamomi chlamydospores were not produced evenly over the mycelial mat 

in vitro.  Chlamydospore development was initially inhibited by the presence of 40 or 100 
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µg phosphite ml
-1

 but numbers were significantly higher than on the control medium 

without phosphite at about the point when the mycelia changed in density from tightly 

packed to sparse.  This point was approximately 20 – 24 mm from the initial site of 

inoculation for isolates on the medium with 40 µg phosphite ml
-1 

and 8 – 20 mm for 

isolates on the medium with 100 µg phosphite ml
-1

 in 90 mm Petri dishes containing 12 ml 

medium.  On 140 mm Petri dishes that contained 30 ml medium and 100 µg phosphite ml
-1

, 

chlamydospore production was stimulated at approximately 28 - 32 mm from the initial 

inoculation point.  This indicated that the increase in chlamydospore number was not a 

function of length of growth from the initial inoculum and that it only occurred in the 

medium containing phosphite.  There have been previous reports of inhibition of 

chlamydospore production in the presence of phosphite (Coffey and Joseph 1985; Aberton 

et al. 1999) but the stimulation of chlamydospore production by phosphite has not been 

previously observed.  It is possible that with time, phosphite is stressing the pathogen 

which then enters a survival mode (chlamydospores). 

 

The inhibitive effect of phosphite on mycelial growth is clearly indicated by the 

comparison of growth curves for cultures with and without phosphite and has been 

recorded previously (Coffey and Bower 1984; Coffey and Joseph 1985; Niere 1994; 

Komorek et al. 1997; Wilkinson et al. 2001b).  Stimulation of chlamydospore production 

was observed to occur during the log phase where growth was accelerating.  The decline in 

chlamydospore production towards the outer edge of the plate could be due to the media 

staling where particular nutrients necessary for chlamydospore production become limiting 

or waste products have accumulated (Griffin 1994).  High concentrations of staling 

products have been observed to result in cessation of activity and autolysis, reducing 

mycelium density in Fusarium oxysporum (Park 1961) and this might explain why mycelial 
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density of P. cinnamomi on plates with phosphite dropped towards the outer part of the 

colony.   

 

The typical growth curve observed indicates that phosphite was not breaking down over 

time. This observation was supported by the fact that when plates with phosphite were 

stored for 4 weeks at 25 ˚C in the dark prior to inoculating the agar with the pathogen, the 

distribution of chlamydospores was similar to that recorded on ‘fresh’ plates.  The higher 

chlamydospore production that was observed occurring on old media versus fresh was 

probably due to a reduction in water content of the medium resulting in an increased 

phosphite concentration.   

 

Although pH affects the utilisation of some compounds (Griffin 1994), the pH range of the 

medium did not vary greatly across the agar plate (6.4 – 7.0) and so it is unlikely this 

contributed to the variation in chlamydospore production across the colony. 

 

Phosphite is known to induce the production of elicitins in Phytophthora spp. (Fenn and 

Coffey 1984; Khan et al. 1986; Perez et al. 1995).  Elicitins are ‘small hydrophilic cysteine-

rich proteins’ that are able to carry sterols (Ponchet et al. 1999).  Many biological activities 

of oomycetes rely on the ability of the proteins to bind sterols (Ponchet et al. 1999).  Sterols 

are important in asexual reproduction of Phytophthora spp. (Hendrix 1965; Ponchet et al. 

1999).  It is possible that at the point where the mycelium becomes sparse, there is 

increased elicitin production, trapping available sterols in the medium resulting in a stress 

on the culture leading to sparse mycelium and increased chlamydospore production.  This 

could be tested by growth of cultures in liquid medium for a period followed by a change in 

medium to one lacking sterols.   
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Although phosphite has been shown in these experiments to stimulate chlamydospore 

production in vitro, it only occurred when the medium containing phosphite was allowed to 

‘stale’.  When the medium was refreshed every four days, chlamydospore production was 

inhibited.  In applying this to the natural environment, it is most likely that chlamydospore 

production would be inhibited by phosphite in situations where leaching and recycling in 

the soil environment prevents the build-up of staling products and the replacement of 

nutrients.  However, in phosphite treated plants, phosphite accumulates in root tips 

(Seymour et al. 1994; Carswell et al. 1996; Fairbanks et al. 2000; Jackson et al. 2000) and 

the invading Phytophthora may be surrounded by metabolic products that may stimulate 

chlamydospore production.  For example, lowered availability of sterols due to elicitin 

production may trigger chlamydospore production.   

 

Chlamydospore production, germination and dormancy in planta as a response to phosphite 

needs to be checked against these in vitro observations.  The concern is that if dormant 

spores are induced, they may provide a large inoculum source.  When conditions become 

favourable for pathogen growth, or when phosphite is depleted in the host, they may 

provide the means for a disease outbreak under warm and wet conditions known to be 

optimal for P. cinnamomi.  However, the ability of the dormant spores to withstand 

desiccation and attack from other soil microorganisms and how dormancy of these spores is 

broken needs to be determined.   
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CHAPTER 5 

Production and Viability of Selfed Oospores by Phytophthora cinnamomi 

 

5.1 Introduction 

Phytophthora cinnamomi is generally thought to be heterothallic, requiring both mating 

types for sexual reproduction (Galindo and Zentmyer 1964; Reeves and Jackson 1972; 

Zentmyer 1980; Weste 1983).  Single isolate cultures of P. cinnamomi have been observed 

to produce selfed oospores in vitro (Zentmyer 1952; Stamps 1953; Brasier 1971; Reeves 

and Jackson 1972; Reeves and Jackson 1974; Brasier 1978; Ko 1978) and in non-sterile 

situations (Mircetich and Zentmyer 1967; Reeves 1975; Zentmyer 1979).  However, in all 

these cases, viability of the oospores was not determined; so their contribution to survival 

of P. cinnamomi remains unknown.  Selfing may be a reason for the variation observed in 

pathogenicity, morphology and physiology in A2 isolates as a result of the rarity of the A1 

type in Australia (Reeves and Jackson 1972; Hüberli et al. 1997).   

 

Fungicides including Ridomil 2E (metalaxyl; phenylamide), Ridomil Gold EC 

(mefenoxam; phenylamide), Maneb (maneb; dithiocarbamate), Manzate (mancozeb; 

dithiocarbamate), Curzate (cymoxanil + mancozeb; acetimide/ dithiocarbamate) and 

Acrobat Mz (dimethomorph + mancozeb; morpholine/ dithiocarbamate) have been 

observed to induce oospores in single-isolate cultures of the normally heterothallic P. 

infestans, with viability percentages ranging between 4.9 – 52.3 % (Groves and Ristaino 

2000).  Strawberry roots containing oospores of P. fragariae were exposed to 1000 µg ml
-1

 

solutions of fungicides including captafol, dichlofluanid, phosphite and metalaxyl for 60 

days (Duncan 1985b).   Only phosphite killed oospores (14.4 %) within roots. In addition, 
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reduced oospore germination on agar was observed amongst oospores from phosphite and 

metalaxyl treated roots (Duncan 1985b).  Phytophthora fragariae oospores were clearly 

capable of surviving fungicidal treatment in nursery stock and the residue of the fungicides 

on roots tested for infection could suppress oospore germination resulting in false negative 

results (Duncan 1985b). 

 

In vitro, almost complete inhibition (89 – 97 %) of oospore production (produced using 

opposite mating types) was observed for P. citricola in as little as 1 μg phosphite ml
-1

 

whereas P. cinnamomi tolerated 50 μg ml
-1

 before similar inhibition in oospore 

development occurred (Coffey and Joseph 1985; Bunny 1996).  Since phosphite is a widely 

used control technique for P. cinnamomi in Australia (Hardy et al. 2001), it is important to 

determine the effect of this fungicide on selfed oospores.   

 

During phosphite trials (Chapter 4), selfed oospores were observed in single isolate cultures 

of P. cinnamomi on modified Ribeiro’s minimal medium.  Experiments were then set up to 

study the effect of light and dark, liquid versus solid media and phosphite on selfed oospore 

production and viability of P. cinnamomi.   
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5.2 Materials and Methods 

Experimental Design 

Oospore formation was observed in single isolate cultures of P. cinnamomi (MP103, 

MP94-15 and MP128) on modified Ribeiro’s minimal medium (Chapter 4).  Oospores were 

consistently produced in high numbers for isolate MP128 and this was used for further 

study.  Before use, the culture was passaged through sterile lupin roots.  Sterile lupins were 

prepared as described in Chapter 2.2.  To inoculate seven-day-old lupins, a small cut was 

made in the root tip on which a 5 mm
2
 cube of mycelium from a one-week-old culture of P. 

cinnamomi growing on modified Ribeiro’s minimal medium (Appendix 2) was placed.  

After one week incubation at 25 ºC under cool white fluorescent light, the edge of the 

lesion that had formed was excised and placed on a NARPH plate (Appendix 2) before 

transferring to a fresh modified Ribeiro’s minimal medium plate after 3 days.  The isolate 

was confirmed as P. cinnamomi by PCR and sequencing (data not shown).  Cultures were 

always incubated at 25 ºC.  General observations of oospores were made at 400x 

magnification, including number and type of antheridia. 

 

Experiments 

Light and dark influences on selfed oospore production 

Modified Ribeiro’s minimal medium agar plates were inoculated with MP128 and 

incubated in darkness or under cool white fluorescent light for 3 and 6 weeks using a 

replication of 5 for each treatment in a completely randomised design.  The methods 

described in Chapter 4 were used to record the differences in oospore numbers across the 

radius of the plate.  Numbers were bulked for each plate. Oospore diameters were also 

recorded.  The experiment was repeated twice. 
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Liquid versus solid media on selfed oospore numbers 

Phytophthora cinnamomi (MP128) was grown on either liquid or solid modified Ribeiro’s 

minimal medium in the dark for 6 weeks using a replication of 5.  Oospore numbers were 

counted as described previously along the radius of the culture.  To collect mycelium from 

liquid cultures, a 5 mm wide strip of mycelium was excised along the length of the radius.  

The experiment was repeated once. 

 

Phosphite effect on selfed oospore numbers 

P. cinnamomi isolates (MP94-15, MP128, MP127 and MP103) were grown on solid 

modified Ribeiro’s minimal medium containing 0, 20, 40, 60, 80 and 100 µg phosphite ml
-1

 

and incubated in darkness for 4 weeks, using 5 replicate plates for each isolate and 

phosphite concentration.  Oospore numbers were counted as described in the previous 

section.  The experiment was repeated. 

 

Determining viability of selfed oospores 

Selfed oospores of P. cinnamomi were produced on solid modified Ribeiro’s minimal 

medium that had been incubated in darkness for 6 weeks.  An agar square (approximately 

15 mm
2
) was removed from cultures growing on modified Ribeiro’s minimal medium with 

0, 60 or 100 µg phosphite ml
-1

, approximately 5 mm away from the original inoculation 

site.  Four replicate plates were used for each isolate and phosphite concentration.  The agar 

square was squashed on a microscope slide and covered by a 0.1 % solution of Thiozolyl 

Blue Tetrazolium Bromide (MTT) (Sigma, Germany) combined with 2.8 mM CoCl (Meier 

and Charvat 1993).  Oospores were incubated at 37 ºC for 48 hours in a moist chamber.  
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The control consisted of dead oospores that were obtained by autoclaving at 121 ˚C for 20 

minutes.  Oospores were assessed as alive (magenta), dead (black or clear without a visible 

ooplast) or indeterminate (clear with a visible ooplast).   

 

Germination of selfed oospores 

Nuclei numbers in each oospore were assessed using the fluorescent stain 4´, 6-diamidino-

2-phenylindole.2HCl (DAPI) (product number D9542, Sigma, Australia) dissolved in 

McIlvane’s buffer (0.1M citric acid, 0.2M dibasic sodium phosphate, pH 5.5) (Crane et al. 

2000).  Stained material was then observed for nuclei using a fluorescence microscope 

(Olympus BX51; Olympus, Australia) at excitation wavelength 350 nm.  If nuclear fusion 

had occurred, oospores were considered ready to germinate (Ann and Ko 1988; Jiang et al. 

1989; Jiang and Erwin 1990). 

 

Oospores were collected from cultures 28, 84 and 91 days old on modified Ribeiro’s 

medium by grinding the mycelium and agar in a sterile mortar and pestle with 

approximately 5 ml sterile water.  The mixture was filtered through sterile cheesecloth and 

washed with a further 5 ml of sterile water.  The filtrate was centrifuged at 2700 g for 5 

minutes, the supernatant discarded and the oospores resuspended in 200 µl sterile water.  

Four replicates were used for each culture age.  Oospores and mycelia were stained for 30 

minutes with several drops of a 0.2 µg DAPI ml
-1

 as above.   

 

To assess whether oospores were capable of germinating on different media, oospores not 

used in the DAPI staining nuclei test were used.  The solution was frozen at -20 ºC for 45 

minutes to kill any mycelial fragments or chlamydospores remaining in the suspension 
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which has previously been shown not to kill oospores (Cohen 1984).  The solution was 

brought back to room temperature and oospore number determined in 1 µl of solution under 

light microscopy.  Approximately 100 oospores were spread across plates containing either 

NARPH (Appendix 2), Malt Extract agar (2 % Malt extract [Bacto, Australia], 1.5 % [w/v] 

agar [BBL, Australia]), ½ Potato Dextrose agar (1.95 % [w/v] Potato dextrose agar [BBL, 

Australia], 0.75 % [w/v] agar [BBL, Australia]), clarified V8 agar (Appendix 2), modified 

Ribeiro’s minimal medium (Appendix 2), water agar (1.5 % [w/v] agar [BBL]) or S+L 

medium (Ruben et al. 1980) (Appendix 2).  In a repeat experiment, prior to placement of 

oospores on S+L medium, oospores were treated with 0.2 % (w/v) KMnO4 for 15 minutes 

in an attempt to stimulate germination (Ann and Ko 1988).  Before treatment with KMnO4, 

oospores undergoing this treatment were checked for nuclear fusion using DAPI staining.  

Numbers of nuclei using DAPI staining were counted after KMnO4 treatment to assess 

nuclear fusion.  All plates were incubated under cool white fluorescent light for 60 days and 

oospores assessed weekly for germination.   

 

Statistical Analysis of Data 

Minitab’s (Minitab Release 13) 2-sampled t-test was run to compare separately, the effect 

of incubation time and light and dark on oospore production.  To compare the effect of 

phosphite concentration, an ANOVA was run for all isolates before 2-sampled t-tests were 

used to determine individual significance.  To determine the significance of percentage of 

viable oospores at different phosphite concentrations, data were arcsine transformed and an 

ANOVA was run to compare between experiments. 

 

A binary logistic regression was run to determine whether any difference was observed 

between nuclei present in differently aged cultures.  An ANOVA (general linear model) 
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was conducted to compare the differences in number of nuclei present in oospores before 

and after treatment with KMnO4. 

 

5.3 Results 

General oospore morphology 

All oospores had amphigynous antheridia (Figure 5.1).  Paragynous as well as 

amphigynous antheridia were present on 0.05 % of oospores (Figure 5.1).   
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Figure 5.1: Oospores of Phytophthora cinnamomi produced in single culture in vitro.  A, 

Amphigynous antheridium; F, Fertilisation tube; Oo, Ooplast; P, Paragynous antheridium.  1 - 5. 

Oospores with amphigynous antheridium; 6. Developing viable oospore (magenta stained with 

MTT), amphigynous and paragynous antheridia present. Note fertilisation tube from paragynous 

antheridium; 7 - 8. Same oospore, different focus. At least 5 paragynous antheridia present with 

amphigynous antheridium. Bar = 20µm. 
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Light and dark influences on selfed oospore production 

No significant (P > 0.05) difference was found in oospore numbers when the three isolates 

were incubated for 3 weeks compared to 6 weeks under light in modified Ribeiro’s minimal 

medium.  However, when cultures were incubated in the dark, there was a significant (P < 

0.05) increase in oospore numbers between 3 and 6 weeks (Mean 7.6 (± 2.3) and 35.5       

(± 7.7) oospores cm
-2

, respectively).  It was found that cultures incubated in darkness for 6 

weeks, produced significantly (P < 0.05) more oospore numbers than those incubated under 

light (Mean 35.5 (± 7.7) and 2.1 (± 0.9) oospores cm
-2

, respectively).  No significant (P > 

0.05) difference was found between diameter size of oospores incubated in darkness 

compared to those cultures incubated under light.  Oospore diameter ranged between 28 – 

52 µm, mean oospore diameter being 41.0 µm (± 0.2).    

  

Liquid versus solid media on selfed oospore numbers 

No oospores were observed on liquid modified Ribeiro’s minimal medium in either 

experiment.  An average of 43.8 oospores cm
-2

 (± 5.2) was observed on plates containing 

solid media. 

 

Phosphite effect on selfed oospore numbers 

Selfed oospore numbers were low on the medium at all phosphite concentrations for 

isolates MP94-15, MP127 and MP103.  No significant (P > 0.05) difference was found 

between numbers of oospores formed at different phosphite concentrations, the average 

number being 0.15 oospores cm
-2

 (± 0.08).  Selfed oospores were produced on all phosphite 

concentrations for MP128.  Low levels of phosphites (20 and 40 µg ml
-1

) appeared to result 
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in a small increase in the number of oospores while production was inhibited at higher 

levels (Figure 5.2).   However, these differences were not statistically significant except for 

the inhibition at 100 µg phosphite ml
-1

 (P < 0.05). 

 

The distribution of oospores across the radius of the colony did not significantly (P > 0.05) 

differ for each phosphite concentration except for 100 µg phosphite ml
-1 

(Table 5.1).  The 

average number of oospores cm
-2

 was initially high (approximately 5 – 22 cm
-2

) at the point 

of inoculation for all phosphite concentrations (except 100 µg ml
-1

), but fell with increasing 

distance from the inoculum and there were none found at 2.8 cm or further (Figure 5.3). 
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Figure 5.2: Average oospore production on modified Ribeiro’s minimal medium containing 

different concentrations of phosphite by Phytophthora cinnamomi isolate, MP128.  Bars represent 

positive standard error of the mean. 
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Table 5.1:  MANOVA to compare oospore numbers across the colony radius of Phytophthora 

cinnamomi isolate, MP128, growing on Ribeiro’s media with varying phosphite concentrations (0, 

20, 40, 60, 80, 100 µg phosphite ml-1).   Analysis was performed on data with and without the 

inclusion of data from 100 µg phosphite ml-1.  Mean Square (MS) values are given (with degrees of 

freedom for the effect and error in brackets.  Significant values are in bold.  

 
Distance from 

inoculum (cm) 

Phosphite concentration effect 

when 100 µg ml-1 included 

Phosphite concentration effect 

when 100 µg ml-1 not included 

 

0.4 
 

MS(5, 23) = 18.81  
 

MS(4,20) = 7.71 

0.8 MS(5, 23) = 10.73 MS(4,20) = 2.98 

1.2 MS(5, 23) = 13.79 MS(4,20) = 2.64 

1.6 MS(5, 23) = 12.78 MS(4,20) = 5.41 

2.0 MS(5, 23) = 8.06 MS(4,20) = 2.52 

2.4 MS(5, 23) = 2.44 MS(4,20) = 1.88 

2.8 MS(5, 23) = 0.65; P = 0.362 MS(4,20) = 0.62 

3.2 All values 0, no analysis made All values 0, no analysis made 

 

 

 

0

5

10

15

20

25

30

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2
 

Figure 5.3:  Effect of phosphite concentration (○ 0 µg ml-1; ■ 20 µg ml-1; ▲40 µg ml-1;                  

● 60 µg ml-1; x 80 µg ml-1; Δ100 µg ml-1) on mean oospore numbers cm-2 across the radius of 

Phytophthora cinnamomi (isolate MP128) on modified Ribeiro’s minimal medium. Bars represent 

positive standard error of the mean.   
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Determining viability of selfed oospores 

Autoclaved oospores (presumed ‘killed’) lacked a visible ooplast and when stained with 

Thiozolyl Blue Tetrazolium Bromide (MTT), the cell contents were black or remained clear 

(Figure 5.4).  Non-autoclaved oospores stained magenta or black or remained clear (Figure 

5.4).  Non-autoclaved oospores lacking a visible ooplast did not stain magenta.  For these 

reasons, oospores stained magenta were considered viable.  When MTT was used without 

adding 2.8mM CoCl, staining was non-specific with the cytoplasm of autoclaved controls 

also producing a pink or magenta colouration. 

 

Phosphite in the medium at concentrations 0, 60 or 100 µg phosphite ml
-1

, did not affect 

oospore viability (Table 5.2).  The percentage of non-viable oospores did not significantly 

(P > 0.05; Table 5.2) differ across the two experiments so the data were bulked showing 

that the percentage of definitely non-viable oospores (as assessed by MTT staining) was 

32.3 % (± 3.9 %).  The percentage of viable oospores differed (Table 5.2) across the two 

experiments, 27.3 % (± 4.7 %) and 47.4 % (± 5.4 %) for experiment 1 and 2, respectively.  

The percentage of oospores for which viability could not be determined (ie they did not 

stain but had a visible ooplast) also differed being 45.7 % (± 4.2 %) and 15.5 % (± 2.7 %) 

for experiments 1 and 2, respectively. 

 

Table 5.2:  ANOVA of data.  Percentage of oospores of Phytophthora cinnamomi staining magenta 

(Viable), staining black or clear without a nucleus (Non-viable) and clear with a visible nucleus 

(Unclear) is analysed by comparing phosphite concentration across the repeat experiments.  

Adjusted Mean Squares (MS) are given with degrees of freedom for the effect and error in brackets.  

Significant values are in bold. 
 

Effect 
 

% Viable 
 

% Non-viable 
 

% Unclear* 
 

Phosphite Conc.  
 

MS(2, 17) = 311.6 
 

MS(2, 17) = 15.2 
  

 

MS(2, 17) = 89.1 

Experiment No. MS(1, 17) = 917.4 MS(1, 17) = 476.6 
  

MS(1, 17) = 2497.0 

P. Conc. x Exp. No. 
  

MS(2, 17) = 99.7 MS(2, 17) = 345.0 MS(2, 17) = 129.5 

* Oospores that did not stain could not be classified as viable or non-viable as staining could be affected by 

wall thickness and/ or dormancy of the spore. 
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Figure 5.4:  1 – 4. Magenta/ pink stained oospores with ooplast (Oo), classified as viable; 5. Clear, 

unstained oospore with ooplast (Oo) classified as non-viable; 6. Clear, unstained oospore with no 

ooplast; 7 - 9. Black stained oospore – non-viable; 10 – 12. Pink stained oospores with no ooplast 

found in autoclaved controls without the addition of CoCl.  Bar = 20 µm. 
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Germination of selfed oospores 

Culture age (28, 84 and 91 days) had no effect (P > 0.05) on whether nuclei were present or 

absent in oospores as analysed by a binary logistic regression.  No significant (P>0.05) 

difference was found in number of nuclei present in oospores from aged cultures compared 

to oospores from younger cultures.  Treatment of oospores with KMnO4 did not enhance 

nuclear fusion and cause a drop in nuclei number in the hour after treatment as DAPI 

staining revealed that the nuclei number of oospores did not significantly (P > 0.05) differ 

with or without treatment.  Approximately, 16 % of oospores contained nuclei and of those, 

an average of 4 (± 0.3) nuclei was found per oospore (Range 1 - 17) (Figure 5.5). 

 

Oospores, after freezing, did not clearly germinate on any medium tested (NARPH, V8 

agar, Malt Extract agar, ½ Potato Dextrose agar, modified Ribeiro’s minimal medium and 

Water agar).  Occasionally, oospores were observed to have what appeared to be new 

mycelial growth that appeared to originate from either the oospore wall or amphigynous 

antheridium (Figure 5.6).  However, observations of the same oospores after further 

incubation for 2 weeks under light at 25 ºC did not show any further growth.  On S + L 

medium, with or without treatment with KMnO4, oospores did not germinate. 
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Figure 5.5: 4´, 6-diamidino-2-phenylindole.2HCl (DAPI) stained oospores of Phytophthora 

cinnamomi showing nuclei under white light (1) and at wavelength 350 nm (2).  A & B.  Three 

nuclei; C. Five nuclei; D. Six nuclei; E. Seven nuclei; F. Eleven nuclei.  Bar = 20 µm. 
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Figure 5.6:  Possible germination of selfed oospores of Phytophthora cinnamomi on NARPH 

medium. A, Amphigynous antheridium; N, New mycelial growth.  1 - 3.  New mycelial growth may 

be from oospore wall; 4 & 5. Oospores may be germinating through amphigynous antheridium.   

Bar = 40 µm. 
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5.4 Discussion 

Four isolates of P. cinnamomi demonstrated homothallic responses in vitro, producing 

selfed oospores on modified Ribeiro’s minimal medium.  The frequency of oospore 

production ranged from 0.15 oospores cm
-2

 (MP127, MP94-15 and MP103) to 36 oospores 

cm
-2

 (MP 128).  Oospore diameters (28 – 52 µm) were similar to those observed by Ho and 

Zentmyer (1977) who found selfed oospores of P. cinnamomi induced in the presence of 

avocado extracts were 28 – 44 µm (average 35.7 µm) in diameter.  More isolates and media 

need to be screened to determine if oospore production in vitro is restricted to only some 

isolates and only one medium type. 

 

An amphigynous antheridium was always involved in the formation of an oogonium.  The 

presence of paragynous antheridia was seen on two separate occasions, once with only one 

paragynous antheridium present, the second with at least five present.  This is consistent 

with previous research of homothallic cultures of Phytophthora spp. where either 

amphigynous or paragynous antheridia predominate with both rarely seen in the same 

culture (Savage et al. 1968; Stamps et al. 1990).  It has been shown for P. boehmeriae that 

medium nutrient conditions influence whether amphigynous or paragynous antheridia will 

predominate (Gao et al. 1998).  However, paragynous antheridia in oospores of P. 

cinnamomi produced in selfed cultures, have not been observed (Ho and Zentmyer 1977).  

Hüberli et al. (1997) and Daniel et al. (2003) showed the presence of both paragynous and 

amphigynous antheridia in P. cinnamomi A1 x A2 pairings although proportions of 

oospores with paragynous antheridia were mostly low (0.2 – 10 %).  This may have been 

due to the use of a high nutrient medium which has been found to favour amphigynous 

antheridia in P. boehmeriae (Gao et al. 1998).  The rare paragynous antheridia in the 
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current study were also associated with amphigynous antheridia as observed in the mating 

study of Hüberli et al. (1997) for P. cinnamomi.   

 

Length of incubation and presence of light were significant influences in oospore 

production with a longer incubation period in darkness producing more selfed oospores.  

The use of solid Ribeiro’s medium was also important as no oospores were obtained when 

liquid Ribeiro’s medium was used.  Liquid media have previously been found unsuitable 

for oospore production of several pairs of P. infestans isolates (Fabritius et al. 2002).   

 

Phosphite only inhibited oospore production at high levels (100 µg phosphite ml
-1

).  

Oospore production across the radius of the culture was similar for phosphite 

concentrations between 0 and 80 µg ml
-1

, with most oospores being produced close to the 

inoculation site, numbers dropping as the outer colony edge was reached, perhaps a factor 

of incubation time.  80 μg ml
-1

 phosphite is a higher concentration than that observed by 

Coffey and Joseph (1985) for oospores of P. cinnamomi produced by mating but this 

difference could be due to isolate variation. 

 

Phosphite concentration in the medium on which oospores were produced had no effect on 

their viability as assessed by Thiozolyl Blue Tetrazolium Bromide staining.  At least 27 % 

of oospores produced with or without phosphite present, were found to be viable using 

Thiozolyl Blue Tetrazolium Bromide staining.  Staining of the nuclei of oospores with 4´, 

6-diamidino-2-phenylindole.2HCl (DAPI) showed that approximately 16 % of oospores 

contained nuclei.  An average of 4 nuclei were found in each of these oospores which is 

similar to previous studies on the homothallic species P. megasperma f. sp. medicaginis, P. 

megasperma f. sp. glycinea and P. cactorum (Jiang et al. 1989).  No drop in nuclei number 
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occurred in the hour after treatment with KMnO4 suggesting nuclei fusion did not occur 

within this timeframe and germination of oospores on S + L medium did not occur after 

this treatment.  This is in contrast to studies by Ann and Ko (1988) who found that 

germination of oospores produced by mating P. parasitica improved to 90 % by treatment 

with KMnO4 and plating on S+L medium.  V8 agar, potato dextrose agar and water agar 

only resulted in the germination of 28 – 46 % oospores (Ann and Ko 1988) and in the 

current experiment, no obvious germination of P. cinnamomi oospores occurred on these 

media either.   

 

It appeared that a few oospores germinated on NARPH, producing a germ tube from the 

oospore wall or amphigynous antheridium.  No further mycelial growth occurred in these 

‘germinating’ oospores.  This could indicate that these selfed oospores of P. cinnamomi 

germinated into ‘unfit’ cultures, not capable of further growth.  Viability of oospores of P. 

infestans has previously been shown by the tetrazolium bromide assay to range between 4.9 

– 52.3 % viability with less than 5 % of these germinating and not all of those germinating 

resulting in viable progeny (Groves and Ristaino 2000).  

 

Oospore germination of P. cinnamomi has always been difficult (Stamps 1953; Duncan 

1985a; Jiang et al.1989; Jiang and Erwin 1990).  Oospore age, dormancy or failure of 

nuclear fusion are suggested reasons for these difficulties (Stamps 1953; Ann and Ko 1988; 

Jiang et al. 1989; Pittis and Shattock 1994; Groves and Ristaino 2000).  Different light 

regimes have been found to influence germination ability of oospores of P. parasitica, 

germination dropping from 95 % to 44 % if cool white fluorescent light was not provided 

during the maturation stage (Ann and Ko 1988). Varying light availability during oospore 
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production and length of freezing the oospore suspension needs to be further investigated to 

determine if this plays a role in germination of selfed oospores of P. cinnamomi. 

 

Brasier and Sansome (1975) found oospores forming in single cultures of 12 isolates of the 

normally heterothallic culture of P. palmivora.  This was observed in 50 % of cultures 

taken from an oil stock for the first three subcultures, but oospore numbers decreased with 

subculturing (Brasier 1972).  It was suggested that this phenomena was due to the 

accumulation of substances involved in sexual reproduction as a result of the activity or 

suppression of metabolic pathways during dormancy (Brasier 1972).  This is not the case in 

the current study as all isolates were passaged through lupins prior to experimentation and 

repeat experiments showed similar oospore production. 

 

Whether these A2 isolates of P. cinnamomi are capable of producing selfed oospores in 

nature is yet to be determined.  Previously, selfed oospores have been observed in naturally 

infected avocado roots and on colonised fibreglass or nylon mesh that had been buried in 

soil (Mircetich and Zentmyer 1967; Reeves and Jackson 1974).  Identity was not confirmed 

nor was viability of the spores.  The ability to produce oospores in the A2 mating type 

provides an efficient survival mechanism (Zentmyer 1979).  However, it is necessary to 

determine the pathogenicity and fitness of cultures arising from these selfed oospores and 

compare these to other propagules of P. cinnamomi.  Oospores from the mating of P. 

cinnamomi (A1 and A2) cultures have been shown to be less aggressive colonisers of E. 

smithii than their parents (Linde et al. 2001).  Also, oospores from the interspecific cross 

between P. sojae and P. vignae showed less aggressiveness than their parents (May et al. 

2003). 
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Although the viability of these selfed oospores produced in vitro is low, they still have the 

potential to contribute to survival inoculum.  A simple, repeatable in vitro technique has 

been described to produce selfed oospores from several isolates of P. cinnamomi.  From 

this, future research will be able to investigate factors affecting oospore dormancy and 

germination to allow better application of isolation techniques when assessing areas for 

infestations of the pathogen.  By understanding dormancy, recovery of the pathogen from 

infested sites will be improved, reducing false negative results.   
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CHAPTER 6 

Transformation of Phytophthora cinnamomi 

 

6.1 Introduction 

A particular disadvantage of studying microorganisms in a non-sterile system has always 

been the difficulty in distinguishing the organism of interest from other organisms present 

in the system.  For fungi, mycelium and spores can be particularly difficult to identify.  

Traditional methods using morphology or isolating and growing propagules are time 

consuming, require knowledge of fungal taxonomy and may not always be possible due to 

contamination or dormancy preventing growth.   

 

Hyphal staining (Newall et al. 1987) and the analysis of the distribution of ergosterol 

(Bruzzese and Hasan 1983) have been used to detect fungal propagules.  Molecular 

techniques such as DNA hybridisation or Polymerase Chain Reaction (PCR) have been 

used to detect P. cinnamomi (Dobrowolski and O’Brien 1993) but these methods only 

allow the detection of the presence of the organism and do not allow the visualisation of the 

propagules or distinguish live from dead P. cinnamomi propagules.  All these methods tend 

to be time consuming and require special equipment (Oliver et al. 1993).  An 

immunofluorescence technique to detect P. cinnamomi using rabbit antibodies to the 

pathogen was not completely species specific (Malajczuk et al. 1975; MacDonald and 

Duniway 1979).  ‘Calcofluor White M2R’ (disodium salt of 4,4’-bis(4-anilino-6-

diethylamino-s-triazin-2-ylamino)-2,2’-stilbene-difulfonic acid) has been used as an 

effective vital stain in distinguishing propagules of Phytophthora spp. in soils, but 

propagules lose fluorescence over time due to dilution of the stain as the organism grows 
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(Tsao 1970).  Transformation of the organism to express a distinctive trait is another 

possibility for identification.  Ideal traits for this purpose are the green fluorescent protein 

(GFP) or β-glucuronidase (GUS) gene (Chapter 1.5).  

 

The GFP gene has many advantages over the GUS gene.  In particular, no addition of 

chemicals are required to visualise the fluorescence produced under UV light for GFP.  

However, GUS can be observed macroscopically, a key advantage over GFP (van West et 

al. 1999).  However, the addition of X-Gluc (5-bromo-4-chloro-3-indolyl β-D-glucuronic 

acid) required to produce the blue product by the GUS gene is inappropriate for fragile 

tissues such as zoospores as these may collapse during staining and in hyphae and spores, 

the blue crystals are only located in particular areas of the cell (van West et al. 1999).   

 

The GUS gene has been successfully incorporated into many Phytophthora species such as 

P. capsici, P. cinnamomi, P. citricola, P. citrophthora, P. infestans, P. megasperma f. sp. 

glycinea and P. palmivora (Judelson et al. 1992, 1993; Bailey et al. 1993; van West et al. 

1999; Vijn and Govers 2003).  GFP has been integrated into P. brassicae, P. infestans, P. 

palmivora and P. parasitica var. nicotianae (Bottin et al. 1999; van West et al. 1999; Si-

Ammour et al. 2003).  Transformation methods have been further discussed in Chapter 1.5. 

 

The aim of the following experiments was to transform P. cinnamomi with GFP and GUS.  

For comparison, other Phytophthora species, P. cambivora, P. citricola, P. cryptogea, P. 

drechsleri, P. megasperma and P. palmivora, were used.  Different methods such as the use 

of Agrobacterium tumefaciens and protoplast transformation with plasmid DNA were 

compared.   
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6.2 Materials and Methods 

6.2.1 Plasmid Preparation 

Plasmids 

For Agrobacterium-mediated transformation, a plasmid containing the hygromycin 

resistance gene (hph) with either the Green Fluorescent Protein (GFP) gene or β-

glucuronidase (GUS) gene was developed.  Plasmid pVW2 (van West et al. 1999; Figure 

6.1) and plasmid pVBK1 (O’Brien and Kelly unpublished; Figure 6.2) provided two 

different sources of the GFP gene.  Plasmid pHAMT35G (van West et al. 1999) provided 

the GUS gene (Figure 6.3).  Plasmids pVW2 and pHAMT35G were constructed in the 

vector pUC19, which contains an ampicillin resistance gene while pVBK1 was constructed 

in the vector pBIN19 which contains a kanamycin resistance gene.  The binary plasmid 

pBINHL1 containing a selectable hygromycin resistance gene was also used for 

Agrobacterium transformation (Wu 2004; Figure 6.4). 

 

The construct used for protoplast transformation was kindly supplied from F. Mauch’s 

laboratory in Switzerland and was developed by Si-Ammour et al. (2003).  This plasmid, 

p34GFN  (Figure 6.5), contained the Geneticin (G418) resistance gene (nptII) as a 

selectable marker and the GFP gene, each flanked by the HAM promoter and terminator 

(Si-Ammour et al. 2003).  
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Figure 6.1: Map of plasmid pVW2 containing the Green Fluorescent Protein (GFP) gene flanked 

by HAM promoter and terminator (van West et. al 1999).   

 

                                  
Figure 6.2: Map of plasmid pVBK1 containing the Green Fluorescent Protein (GFP) gene flanked 

by HAM promoter and terminator (O’Brien and Kelly unpublished).   

 

 
Figure 6.3: Map of plasmid pHAMT35G containing the β-glucuronidase (GUS) gene flanked by 

HAM promoters and terminators (van West et. al 1999).   
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Figure 6.4: Map of binary pBinHL1 plasmid containing the hph-gene for Hygromycin resistance as 

well as left (LB) and right (RB) border for Agrobacterium-mediated transformation (Wu 2004).   
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Figure 6.5: Map of plasmid p34GFN.  P34GFN contains the Green Fluorescent Protein (GFP) gene 

and the geneticin resistance (npt׀׀), both flanked by the HAM promoters and terminators (Si-

Ammour et al. 2003). 
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Plasmid extraction 

Following the instructions from the manufacturer, the QIAprep
®

 Spin Miniprep Kit 

(QIAGEN; Australia) was used for small scale preparations of plasmid DNA (pHAMT35G, 

pVW2 and pVBK1). 

 

The method described by Birnboim and Doly (1979) was used for large-scale extraction of 

pBINHL1 and p34GFN from their Escherichia coli hosts.  Escherichia coli containing 

pBINHL1 was grown in 250 ml LB Broth (1 % (w/v) tryptone, 0.5 % (w/v) yeast extract, 

0.5 % (w/v) NaCl) containing kanamycin (50 µg ml
-1

) on a rotary shaker at 37 °C 

overnight.  Escherichia coli containing p34GFN was grown under the same conditions but 

with the replacement of kanamycin with ampicillin (100 µg ml
-1

).  

 

Cells were centrifuged at 1 700 g for 10 minutes and the supernatant discarded.  Cells were 

resuspended in 5 ml of ice-cold buffer 1 (50 mM glucose; 10 mM EDTA Na2; 25 mM Tris-

HCl pH 8.0) and left for 10 minutes. 

 

10ml of freshly made buffer 2 (200 mM NaOH; 1 % (w/v) SDS) was added to the bacterial 

suspension, shaken and incubated on ice for 10 minutes.  7.5 ml of buffer 3 (3 M potassium 

acetate; 11.5 % glacial acetic acid) was added, the mixture shaken vigorously and incubated 

on ice for 10 minutes.  The precipitate was collected by centrifugation at 1 300 g for 10 

minutes, and the supernatant poured into a fresh tube.   

 

Two volumes of 100 % ethanol was mixed with the solution and allowed to stand for two 

minutes.  The tube was centrifuged for 15 minutes at 2 700 g, the supernatant discarded and 
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the tube inverted to allow the last of the ethanol to evaporate.  Pellets were dissolved in 1 

ml sterile distilled water containing 200 µg RNAse and incubated at 37°C for 15 minutes. 

 

To clean the plasmid preparations, 100 µl of a 1:1 solution of phenol:chloroform was mixed 

into the solution and the mixture was centrifuged for 5 minutes at 10600 g.  The top 

aqueous layer was transferred to a fresh tube to which 100 µl of chloroform was mixed.  

The tube was centrifuged (10 600 g, 5 minutes) and the upper aqueous layer transferred to a 

fresh microcentrifuge tube.   

 

The plasmid preparations were purified using the ethanol precipitation method.  500 µl of 

the extracted plasmid was mixed by shaking with 50 µl of 3 M sodium acetate and 1 ml of 

100 % ethanol (stored at –20 °C).  This was incubated in the freezer for 2 hours.  After this 

time, the mixture was centrifuged at 10 600 g for 10 minutes and the supernatant decanted.  

The tube was inverted over tissue to allow excess ethanol to drain off 15 minutes.  The 

inside top of the tube was then wiped with a tissue to remove any remaining ethanol before 

resuspending the plasmid in 100 µl sterile water. 

 

The concentration of all plasmids was then measured using the Hoefer DyNA Quant 200 

Fluorometer (Amersham Pharmacia Biotech; USA) and checked on a 1 % (w/v) 

electrophoresis gel. 
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Restriction Digestion of Binary Plasmid  

Digestion reactions were carried out in 80 µl volumes containing pBINHL1 DNA 

(approximately 20 ng), 5 µl of enzyme (10 units µl
-1

), 10 µl buffer and 55 µl sterile water.  

Enzymes including those from Klebsiella pneumoniae (Kpn1) (Promega; Australia), 

Bacillus amyloliquefaciens H. (BamH1) (Promega; Australia), Streptomyces 

phaeochromogenes (Sph1) (Promega; Australia) and Streptomyces stanford (Sst1) 

(Promega; Australia) were used to separately digest pBINHL1.  Buffer used for each 

enzyme varied so that Kpn1 and Sst1 enzymes used Multicore buffer (Promega; Australia) 

(250 mM Tris acetate, 1 M Potassium acetate, 100 mM Magnesium acetate, 10 mM 

dithiothreitol (pH 7.9)), Buffer E (Promega; Australia) (60 mM Tris.HCl, 60 mM MgCl2, 1 

M NaCl, 10 mM dithiothreitol) was used for BamH1 enzyme and Buffer K (Promega; 

Australia) (100 mM Tris.HCL, 100 mM MgCl2, 1.5 M KCl, 10 mM dithiothrietol) was 

used for Sph1 enzyme.  The reaction was incubated in a 37 ºC waterbath for 3 hours and the 

digestion confirmed by electrophoresis.   

 

Removal of Phosphate Group from end of DNA 

The phosphate group on the ends of the digested pBINHL1 plasmid were removed by 

mixing approximately 20 ng of digested plasmid DNA with 50 mM Tris-HCl (pH 9.0), 10 

mM MgCl2, 16 units Shrimp Alkaline Phosphatase (SAP) (Promega; Australia) in a total 

volume of 80 µl.  This mixture was incubated at 37 ºC for 30 minutes.  A further 10 µl (10 

units) of SAP were added and the incubation continued for a further 30 minutes at 37 °C.  

To purify the product the QIAquick PCR purification kit was used, following the 

manufacturer’s instructions (QIAGEN, Australia). 
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PCR Amplification of Gene of Interest 

The GFP and GUS genes were amplified from plasmids pVW2 and pHAMT35G by PCR.  

PCR amplifications were carried out in 10 µl reactions containing 10.7 mM Tris.HCl (pH 

8.8), 2.7 mM (NH4)2SO4, 0.45% (w/v) Triton X-100, 0.2 µg µl
-1

 gelatin, 0.03 mM dNTP’s, 

10 pmol µl
-1

 of each primer, 0.5 units Tth Plus DNA polymerase (Biotech; Australia) and 

1.5 mM MgCl2. 

 

Amplification of the GUS and GFP genes in pVW2 and pHAMT35G and the attachment of 

a Kpn1 site at each end was carried out using the primer pair  

5’ CGGGGTACCAGGGTTTTCCCAGTCACGAC 3’ (Proligo),  

5’ CGGGGTACCTGACCATGATTACGCCAAGC 3’, designed using the Vector NTI 

program.  The primers were synthesized by Proligo Ltd.  The Kpn1 site in each primer is 

underlined.  Since Kpn1 does not cut efficiently at sites located at the end of a molecule 

(Fermentas 2005) a CGG triplet was inserted 5’ to the Kpn1 site in each primer. 

 

The cycling conditions for these primers consisted of:  

1 cycle        95°C 2 minutes 

30 cycles        94°C 1 minute 

        63°C 1 minute 

        72°C 2 minutes 

1 cycle        72°C 10 minutes 

 

PCR products from pVW2 and pHAMT35G were digested with the Kpn1 enzyme as 

described earlier.  The digested PCR products of plasmids pVW2 and pHAMT35G were 

extracted by adding an equivalent volume of chloroform: isoamylalcohol (24:1) solution 

and mixing.  This mixture was then centrifuged at 10 600 g for 5 minutes.  The upper layer 
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was then carefully transferred to a new microcentrifuge tube.  The product was then 

cleaned using the ethanol precipitation method as described earlier. 

 

Ligation of PCR Products to pBINHL1 

The final concentration of DNA for pBINHL1, pVW2 and pHAMT35G was determined 

using the Hoefer DyNA Quant 200 Fluorometer (Amersham Pharmacia Biotech; USA).  

The concentration of the PCR digested products of pVW2 and pHAMT35G was adjusted 

with sterile water to measure 10 ng µl
-1

.  Twenty-four ng of digested pBINHL1 was used 

for the ligations. 

 

Nine ligation reactions were conducted.  Three different concentrations (10, 20 and 40 ng 

µl
-1

) of Kpn1 digested amplicons from pVW2 and pHAMT35G were used in combination 

with 24 ng µl
-1

 pBINHL1, 20 units T4 DNA Ligase (Invitrogen; Australia), 25 mM Tris-

HCl (pH 7.6), 5 mM MgCl2, 0.5 mM ATP, 0.5 mM DTT and 2.5 % (w/v) Polyethylene 

Glycol 8000.  Control reactions did not include pVW2 or pHAMT35G but used digested 

pBINHL1 or 25 ngµl
-1

 undigested pBINHL1 only for positive controls and no DNA was 

included in a reaction for a negative control.  Each reaction was mixed and incubated at 15 

°C overnight. 

 



CHAPTER 6: TRANSFORMATION 

 135

6.2.2  Transformation 

Bacterial transformation 

Plasmids from successful ligation reactions were transformed into E. coli using the E. coli 

Competent Cells kit according to the manufacturer directions (Product No. 9FB035; 

Promega, Australia).  Growing colonies were subcultured to fresh selective plates (LB agar 

+ 50 µg ml
-1

 kanamycin).  To confirm successful plasmid formation and bacterial 

transformation, colonies of E. coli growing on selective plates were tested for successful 

bacterial transformation.  Amplification of the desired fragment was achieved using PCR 

amplification as described earlier with the exception that the initial denaturation step was 

adjusted to 95 ºC for 10 minutes.  An electrophoresis gel was run and the band produced 

was excised.  DNA was extracted using the QIAquick Gel Extraction Kit, following the 

manufacturer’s instructions (QIAGEN, Australia).  Digestion of 3 µl of each product using 

the enzyme Nco1, from Nocardia corallina (Promega; Australia), was performed in 15 µl 

as described earlier.  An electrophoresis gel was run and products producing bands of the 

desired length were traced back to the original bacterial colony and labelled as 

pBINHLGUS.  The colony was grown overnight in 10 ml L-Broth (50 µg ml
-1 

kanamycin).  

1.8 ml of the broth was added to a freezer vial with 0.2 ml DMSO (dimethylsulphoxide) for 

long-term storage at –80 °C. 

 

Conjugal transfer of plasmids to Agrobacterium tumefaciens 

Plasmids pBINHLGUS (GUS + hph), pVBK1 (GFP and kanamycin resistance gene) and 

pBINHL1 (hph only) were introduced into the Agrobacterium tumefaciens strains 

LBA4404 and AGLO by conjugation (Hooykaas, 1988). These strains were confirmed as 
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Agrobacterium using the ketolactose test (Hooykaas 1988).  This involved streaking the 

organism to be tested onto lactose medium (1 % (w/v) lactose, 0.1 % (w/v) yeast, 2 % (w/v) 

Bacto agar), incubating at 28 °C for 24 hours before flooding the plate with Benedict’s 

reagent  (25.6 % (w/v) Na2CO3.10H2O, 13.2 % (w/v) sodium citrate, 1.32 % (w/v) 

CuSO4.5H2O).  Colonies were confirmed as positive for Agrobacterium if they produced a 

yellow colour around the colony in the lactose medium. 

 

LBA4404 and AGLO were grown overnight at 28 °C in LBMG broth (L-Broth mixed with 

an equal quantity of MG broth – 1 % (w/v) Mannitol, 0.23 % (w/v) sodium glutamate, 0.05 

% (w/v) KH2PO4, 0.02 % (w/v) NaCl, 0.02 % (w/v) MgSO4.7H2O, 0.2 % (w/v) Biotin).  

Escherichia coli cultures containing plasmids pRK2013 (mobilising plasmid), 

pBINHLGUS, pVBK1 and pBINHL1 were grown overnight in L-Broth at 37 °C. 

 

Cultures were centrifuged at 1 700 g for 5 minutes and the supernatant discarded.  Cells 

were washed with 5 ml MG Broth and centrifuged (1 700 g, 5 minutes), the supernatant 

decanted.  Cells were resuspended in 0.1 ml MG broth.  20 µl of the E. coli suspensions 

were then mixed separately with 20 µl Agrobacterium (LB4044 or AGLO), with or without 

E. coli pRK2013 (controls), in the centre of an LBMG agar plate. 

 

Plates were left uncovered in the laminar flow until the liquid containing bacteria had dried.  

Plates were incubated at 28 °C overnight.  The next day, bacteria was scraped from each 

plate and streaked onto Hooykaas minimal medium (Appendix 2) with 50 µg ml
-1 

kanamycin.  Plates were incubated at 28 °C. 
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To confirm successful transformation, a PCR was run on colonies growing on selective 

medium as described earlier with some exceptions.  To test for pBINHLGUS incorporation, 

the primer pair 5’-GGTGGAAAGCGCGTTACAAG-3’ and  

5’-GTTTACGCGTTGCTTCCGCCA-3’ (50 pmol µl
-1

; Proligo) were used.  Primer pair 5’-

TGTCACTACTTTCTCTTATGG-3’ and 5’-CCATCTTTAATGTTGTGTCT-3’ (50 pmol 

µl
-1

; Proligo) were used for identifying incorporation of pVBK1 and the primer pair  

5’-CCATGGAAAAGCCTGAACTCACCGCG-3’ and  

5’-CCATGGTCCATGGCCTCCGCGACCGG-3’ (10 pmol µl
-1

; Proligo) were for 

identification of successful transformation of pBINHL1.  The PCR products from the 

pVBK1 and pBINHL1 amplifications were run on a 2.5 % high resolution gel.   

 

Transformation of Phytophthora by Agrobacterium 

A loop of each transformed Agrobacterium culture was grown overnight in 5 ml Hooykaas 

minimal medium (50 µg kanamycin ml
-1

) at 28 ºC on a shaker (1.5 g).  1 ml of the culture 

was then transferred to 100 ml Hooykaas minimal broth (50 µg kanamycin ml
-1

) and 

incubated under the same conditions.  Bacteria were collected by centrifugation at 420 g for 

5 minutes.  Bacteria were resuspended in induction medium (Appendix 2) diluted to 

OD600nm 0.5 – 0.8 and incubated between 3 – 6 hours with shaking (1.5 g) to induce 

virulence.  A dilution of 1:100 was then made using induction media.  1 ml of the non-

diluted culture and 1 ml of the culture that had been diluted 1:100 was added to 19 ml 

induction media and these were the mixtures used for transformation of Phytophthora.   

 

Intact and damaged mycelium was used for transformation.  To prepare intact mycelium, 

five plugs of mycelium from clarified V8 agar (Appendix 2) from P. cinnamomi isolates 
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MP94-15, MP127, MP128 and MP103, were grown on cellophane on clarified V8 agar for 

48 hours at 25 ºC under cool white fluorescent light.  For preparing damaged mycelium, the 

same isolates were grown in clarified V8 broth (Appendix 2) at 25 ºC for 72 hours before 

being macerated using either a scalpel or a mortar and pestle.  For intact mycelium, the 

Agrobacterium suspension, un-diluted or diluted 1:100, was added to cover the mycelium 

so that isolates were covered with Agrobacterium containing the pBINHLGUS, pVBK1 or 

pBINHL1 plasmids.  Co-transformation was tested by combining pVBK1 and pBINHL1.  

For damaged mycelium, the same transformed Agrobacterium cultures and combination 

cultures were used.  The macerated mycelium was mixed separately with 10 ml of each 

Agrobacteria suspension.  Mixtures were spread onto sterile cellophane that had been 

placed on induction medium.  All plates from both intact or damaged mycelia were 

incubated for 1, 2 or 3 days at 28 ºC under cool white fluorescent light before the 

cellophane was transferred to a NARPH (Appendix 2) plate containing 400 µg hygromycin 

ml
-1

 (Roche Diagnostics, Germany) or cellophane cultures were covered by molten 

NARPH agar (400 µg hygromycin ml
-1

). Plates were observed for the next month to 

observe if any mycelial growth occurred on the medium.  Experiments were repeated on P. 

drechsleri (MU14, MU13), P. cinnamomi (MU33. MU35, MU31, MP97-16A), P. 

cambivora (MU136A), P. citricola (MU1A), P. megasperma (MP41B) and P. cryptogea 

(MU28, MU25) (collaboratively with E. Moek, an exchange student from Germany).   

 

Non-sterile zoospores of P. cinnamomi were also used for transformation.  To produce non-

sterile zoospores, approximately ten cubes (5 mm
2
) from a clarified V8 agar culture of P. 

cinnamomi (isolates MP94-15, MP127, MP128 and MP103) was placed in a 9 cm Petri 

dish and covered with clarified V8 broth.  These plates were incubated at 25 ºC for two 

days in the dark.  The clarified V8 broth was removed and the culture washed three times 
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with sterile water.  Soil leachate (10 % (w/v) potting mix, incubated overnight and filtered 

through Whatman No. 1 filter paper), was added to the plates to cover the growing culture.  

Plates were incubated at 25 ºC for three days under cool white fluorescent light.  Cultures 

were checked for the presence of sporangia and were placed at 4 ºC for 30 minutes.  Plates 

were then stored at 25 ºC until zoospores were released.  Water containing zoospores was 

collected in a 50 ml tube and adjusted to approximately 5x10
7 

zoospores ml
-1

 (Vijn and 

Govers 2003).    

 

Transformation of non-sterile zoospores of P. cinnamomi was attempted using the method 

of Vijn and Govers (2003).  To  50 ml tubes containing 1 ml of zoospores, 1 ml of either 

the non-diluted or 1:100 dilution of Agrobacterium was added.  Co-transformation was 

tested with Agrobacterium containing either pBINHL1 or pVBK1.  Tubes were left at room 

temperature for 30 minutes before zoospore encystment was induced by vigorous manual 

shaking for 2 minutes.  Tubes were incubated at 25 ºC for 2 hours to allow germination and 

then centrifuged for 5 minutes at 260 g.  The supernatant was discarded and the remaining 

pellet was resuspended in 50 µl sterile water and spread onto induction medium.  After 1, 2 

and 3 days incubation, plates were checked for growth and if growth was observed, this 

was subcultured to NARPH plates containing hygromycin (400 µg ml
-1

).   

 



CHAPTER 6: TRANSFORMATION 

 140

Transformation of Phytophthora cinnamomi using the protoplast method 

To produce sterile zoospores of P. cinnamomi, the method of O’Gara (1998) was followed, 

a modification of the method by Dolan and Coffey (1986).  Mycelial plugs (5 mm
2
) from 

clarified V8 agar plates (P. cinnamomi isolates MP94-15, MP127, and MP103) were 

transferred mycelial side down to 6 cm
2
 sterile cheesecloth on clarified V8 agar plates.  

Cheesecloth had previously been prepared by boiling for two hours in water containing 

0.02 % (w/v) EDTANa2, washed with tap water and boiled for a further two hours in water.  

Cheesecloth was removed from the water, excess water squeezed out, placed in 250 ml 

wide-mouthed Erlenmeyer flasks and autoclaved at 121 ºC for 20 minutes on three 

consecutive days.   

 

Plates with cheesecloth inoculated with P. cinnamomi were wrapped in aluminium foil and 

incubated at 25 ºC for six days.  Agar plugs on the cheesecloth were removed and the 

cheesecloth was placed in sterile 250 ml wide-mouthed Erlenmeyer flasks to which 50 ml 

of clarified V8 broth was added.  The flasks were incubated overnight at 25 ºC under cool 

white fluorescent light with shaking (100 rpm).  The V8 broth was removed and the 

cheesecloth washed 5 times with sterile deionised water before adding 50 ml of a mineral 

salts solution (Appendix 2).  Flasks were incubated overnight under cool white fluorescent 

light at 25 ºC with shaking (100 rpm).  Cheesecloth was transferred to a sterile 9 cm Petri 

dish.  Sterile, deionised water was added to cover the cheesecloth and plates were incubated 

at     4 ºC for 30 minutes.  Plates were transferred to a light box and left until the sporangia 

began releasing zoospores.  If zoospores were not released after 90 minutes, plates were 

incubated again at 4 ºC for 30 minutes and then returned to the light box until zoospore 

release.  Zoospores were distributed between four 9 cm Petri dishes and 15 ml of clarified 
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V8 broth was added.  Water was again added to cheesecloth and the cold shock treatment 

was repeated so more Petri dishes could be filled with zoospores until 16 Petri dishes of 

zoospores and clarified V8 broth was obtained.  Plates were incubated at 25 ºC under cool 

white fluorescent light between 36 and 48 hours. 

 

To prepare protoplasts, the 16 plates containing mycelium from zoospores was transferred 

to 50ml Falcon tubes (Sarstedt; Australia) and centrifuged for 5 minutes at 960 g.  The 

liquid was discarded and the mycelium resuspended in 10 ml KC osmoticum (0.64 M KCl, 

0.2 M CaCl2).  Mycelium was pelleted (150 g, 2 minutes) and the supernatant discarded.  

The mycelial pellet was resuspended in 10 ml of KC osmoticum.  To this suspension, 5 mg 

ml
-1

 lysing enzymes from Trichoderma harzianum (Sigma; Germany) and 3 mg ml
-1

 

Cellulase “Onozuka” R-10 (Yakult Pharmaceutical; Japan) was added.  The suspension was 

incubated at room temperature for approximately 1 hour.   

 

The solution was then filtered through sterilised cheesecloth into a fresh 50 ml Falcon tube.  

The protoplasts were pelleted (830 g, 4 minutes), the supernatant discarded and protoplasts 

resuspended in 10 ml KC buffer.  This was centrifuged for a further 4 minutes at 830 g, the 

supernatant discarded and the pellet resuspended in 10 ml of a KC/ MT buffer solution (MT 

buffer – 1 M Mannitol, 10 mM Tris.HCl (pH 7.5), 20 mM CaCl2).  This was centrifuged 

(830 g, 4 minutes), the supernatant discarded and the pellet resuspended in 10 ml MT 

buffer and again centrifuged at 830 g for 4 minutes.  The supernatant was discarded and the 

pellet completely resuspended in 1 ml MT buffer. 

 

Between 20 – 30 µg of plasmid p34GFN was added to the 1 ml suspension of protoplasts 

(approximately 10
6 

protoplasts) in MT buffer and mixed by gentle rolling of the tube before 
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incubating for 5 minutes at room temperature.  Turning the tube slowly, 1 ml of freshly 

prepared 50 % (w/v) Polyethylene glycol 4000 (BDH; England) was added over a 30 

second period.  The suspension was allowed to sit for 2 minutes before inverting the tube 

once and allowing incubation for a further 3 minutes at room temperature.  2 ml of V8 

broth with 1M mannitol was added to the tube, inverting gently to mix.  After 2 minutes, a 

further 6 ml of V8 broth with 1M Mannitol was added and the tube again inverted once to 

mix.  Three minutes later, the entire contents were added to approximately 10 ml V8 broth 

with 1 M mannitol on a 9 cm sterile Petri dish.  This was incubated for 2 – 3 days at 25 ºC 

and the mixture centrifuged in a 50 ml Falcon tube for 5 minutes at 830 g.  The supernatant 

was discarded and the pellet was resuspended in 200 µl of clarified V8 broth.  This was 

spread over a 9 cm Petri dish containing clarified V8 agar (with 20 µg geneticin ml
-1

 

[Sigma, Germany]).   

 

Protoplast growth was followed under the microscope and any growth observed over a 4 

week period was transferred to fresh selective plates and also checked under the 

microscope (Olympus BX51; Olympus, Australia) using blue excitation (wavelength 480 

nm) for fluorescence. 
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6.2.3 Southern Blot Analysis  

DNA extraction 

Putative transformants were considered those cultures that continued to grow on selective 

medium after three subcultures (Judelson et al. 1993).  DNA from all putative 

transformants (approximately 24 cultures from three parents) and their non-transformed 

parents was extracted using Graham’s extraction method (Graham et al. 1994) with some 

modifications.  Approximately 100 – 400 mg of mycelium was collected for each isolate to 

which 5 ml of extraction buffer (2 % (w/v) Hexadecyltrimethyl-ammonium bromide, 100 

mM Tris.HCl pH 8.0, 1.4 M NaCl, 20 mM EDTA) was added.  The suspension was 

incubated at 65 ºC for 60 minutes.  The suspension was separated through centrifugation at 

15 000 g for 5 minutes, the supernatant being transferred to a fresh eppendorf tube and 

mixed with an equal volume of chloroform: isoamylalcohol (24:1).  The mixture was 

centrifuged at 15 000 g for 5 minutes.  The upper aqueous layer was collected to which 0.1 

volumes of 7.5 M ammonium acetate and 2 volumes of absolute ethanol were added.  To 

precipitate the DNA, samples were incubated at -20 ºC for 16 hours.  Samples were then 

centrifuged at 1 500 g for 2 minutes, the supernatant discarded and the pellet washed once 

with 70 % ethanol.  Pellets were dried in a vacuum before resuspending in 500 µl of sterile 

distilled water.   DNA concentration was measured for each sample using the Nanodrop 

ND-1000 Spectrophotometer (Biolab, Australia). 
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Restriction Digestion of Phytophthora DNA 

Digestion of Phytophthora DNA was carried out using 10 µg DNA, 5 µl of enzyme from 

Xanthomonas badrii (Xba1; Promega, Australia), 15 µl buffer (90 mM Tris-HCL (pH 7.9), 

2.25 NaCl, 90 mM MgCl2, 15 mM dithiothreitol) and sterile water to make the final volume 

to 100 µl.  The reaction was incubated in a 37 ºC waterbath for 18 hours.  The products 

were concentrated using ethanol precipitation as described earlier and resuspended in 10 µl 

sterile water.  The samples were run alongside a 1 kb DNA ladder (Promega, Australia) and 

plasmid p34 GFN 1, 10, 100 and 1000 copy number controls on a 1 % electrophoresis gel 

for 18 hours at 25 V.  This process was repeated using 50 µg DNA for the initial digestion. 

 

Southern blot hybridisation 

Gels were soaked in 0.25 M HCl for 5 minutes, followed by rinsing in fresh water for 

another 5 minutes.  With gentle agitation, gels were soaked in 0.5 M NaOH and 1.5 M 

NaCl combined for 45 minutes.  Gels were rinsed with fresh water before soaking in 

neutralisation buffer (0.5 M Tris-HCl (pH 7.2), 1.5 M NaCl, 0.001 M EDTA Na2) for 30 

minutes.  The gels were washed in 2x SSC (0.3 M NaCl, 30 mM sodium citrate) for 5 

minutes.   

 

A capillary transfer system was set up (Figure 6.6).  A dish was filled with 20x SSC (3 M 

NaCl, 300 mM sodium citrate), a long piece of chromatography paper was soaked in the 

solution and overlayed on a glass plate separated from 20x SSC by a plastic block.  The gel 

with DNA to be transferred was placed on top, surrounded but not covered by parafilm and 

a Hybond-N
+
 Nucleic acid transfer membrane (0.45 µm; Amersham, Australia) was placed 

on top.  Chromatography paper was rested on the membrane and a wad of paper towels 
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separated the membrane from the top glass plate on which a weight was placed.  This was 

left for 24 hours at room temperature to allow the DNA transfer to take place. 

 

Figure 6.6:  Capillary transfer system for transferring DNA from an agarose gel to a Hybond-N+ 

Nucleic acid transfer membrane (0.45 µm; Amersham, Australia). 

 

The capillary transfer system was dismantled, the slots of the gel marked with pencil onto 

the Hybond N
+ 

membrane.  The gel was soaked in ethidium bromide (1 µg ml
-1

) for 10 

minutes and then viewed on an ultraviolet transilluminator (Gibco BRL TFX-35M Life 

Technologies) to determine the success of the DNA transfer.  The membrane was soaked in 

6x SSC (0.9 M NaCl, 90 mM sodium citrate) to remove remaining agar.  The membrane 

was allowed to dry for 30 minutes and DNA was fixed to the membrane by exposure to UV 

light (150 m Joule) using the GS Gene Linker UV chamber (BioRad, Australia).   

                                                                                                                                                                      

For DNA hybridization, each membrane was immersed in 6x SSC until it was thoroughly 

wet.  The membrane containing 12 µg DNA was placed into a heat sealable bag to which 

0.2 ml of pre-hybridisation buffer (1 M NaCl, 10 % sodium dodecyl sulfate (SDS), 50 %  
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formamide) was added for each square centimetre of the membrane.  Most of the air was 

removed from the bag and the open end was sealed with a heat sealer.  The bag containing 

the membrane was submerged in a 42 ºC waterbath for 2 hours.  In repeat experiments, 

both the 12 µg DNA and 50 µg DNA membranes were pre-hybridised in Rapid-hyb buffer 

(Amersham Biosciences, UK) for 30 minutes in 0.2 ml for each square centimetre of the 

membrane. 

 

After pre-hybridisation, 100 µg denatured calf thymus ml
-1

 was added to the 12 µg DNA 

membrane in pre-hybridisation buffer.  Template DNA, plasmid p34GFN, was labelled 

using the Megaprime DNA Labelling Systems (Amersham Biosciences, Australia), 

according to the manufacturer instructions using Redivue [α-
32

P]dCTP (Amersham 

Biosceinces, Australia).  Redivue 5’-[α-
32

P]dCTP pipette tips (3000 Ci mmol
-1

) 

(Amersham Biosciences) were used for the 12 µg DNA membrane in pre-hybridisation 

buffer and in experiments with membranes hybridised in Rapid-hyb buffer, the template 

DNA was labelled in the same way but with Redivue 5-[α-
32

P]dCTP stored in 

vials(Amersham Biosciences).  2 ng ml
-1

 labelled probe was added to the membranes 

soaking in buffers.  Bags were resealed and the 12 µg DNA membrane in pre-hybridisation 

buffer was submerged in a 42 ºC waterbath for 18 hours, while the 50 µg DNA membrane 

and the 12 µg DNA membrane in the repeat experiment in Rapid-hyb buffer were 

incubated in a 65 ºC waterbath for 2 hours.   

 

The 12 µg DNA membrane that had been in pre-hybridisation buffer was washed in 2x SSC 

and 0.1 % (w/v) SDS at room temperature for 10 minutes and then submerged in this 

solution for a further hour.  This was followed by washing twice for 30 minutes in 0.1x 
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SSC and 0.1 % (w/v) SDS.  The 50 µg and 12 µg DNA membranes that had been in Rapid-

hyb buffer were washed twice for 10 minutes at room temperature in 2 x SSC and 0.1 % 

(w/v) SDS, followed by soaking in 1x SSC and 0.1 % (w/v) SDS for 15 minutes at 65 ºC.  

Finally, the membrane was washed in 0.1x SSC and 0.1 % SDS for 50 minutes at 65 ºC.  

Excess liquid was removed and the membrane wrapped in plastic (Gladwrap, Australia) 

and placed inside a X-ray film cassette with an X-ray film (Super HR-G 30, Fujifilm, 

Germany) on top.  The X-ray film cassette was incubated at -80 ºC for 1 day and the X-ray 

film was developed using a film processor (FPM 3000, Fuji, Germany).  The X-ray film 

was replaced and incubated for a further 7 days.  
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6.3 Results 

Plasmid preparation 

Plasmids pBINHL1, pHAMT35G, pVW2 and p34GFN were successfully extracted (Figure 

6.7).  Of the four different enzymes (Kpn1, BamH1, Sph1, Sst1) used to digest pBINHL1, 

only enzymes Kpn1 and Sst1 were found to cut plasmid pBINHL1 once (Figure 6.8).  This 

was important for future experiments for insertion of single genes into the plasmid and 

Kpn1 was subsequently chosen for digestion reactions.  

 

Figure 6.7:  Products of plasmid extraction.  A. Lamba HindIII Marker (Biotech); B. pHAMT35G; 

C. pVW2; D. pBINHL1; E. 1kb Marker (Promega); F. p34GFN.   

 

 

Figure 6.8: Digestion of pBINHL1 with enzymes kpn1 (C), BamH1 (D), Sst1 (E) and Sph1 (F).  A.  

Lambda HindIII Marker (Biotech). B. pBINHL1 undigested control. 
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Following the PCR amplification of the GUS and GFP genes from pVW2 and pHAMT35G 

and the incorporation of these into the binary vector pBINHL1, banding patterns were only 

observed in some of the cultures screened for 40 ng μl
-1

 pHAMT35G (Figure 6.9).  No 

banding patterns were observed in cultures screened for pVW2.  The concentration of 

pHAMT35G at 40 ng µl
-1

 was found to be the concentration at which recombinants formed 

with the vector pBINHL1 at the highest frequency.   

 

The HaeIII marker was unsuitable for the gel electrophoresis in Figure 6.8 as its banding 

pattern ranged between 72 – 1353 bp but bands were observed in the 40 ng μl
-1

 

pHAMT35G lanes indicating a product larger than this range (Figure 6.9).  However, the 

exact size could not be determined as no marker was available for comparison, therefore, 

positive bands were extracted from the gel in Figure 6.9 (F) and digested with Nco1 to 

confirm banding patterns typical of the GUS gene (Figure 6.10 D & E).  Therefore, the 

integration of the GUS gene into pBINHL1 and subsequent transformation into E. coli was 

deemed successful.  These products were named pBINHLGUS. 
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Figure 6.9:  PCR reactions to screen the success of the integration of the GFP (from pVW2) gene 

and the GUS (from pHAMT35G) gene into the pBINHL1 plasmid and subsequent incorporation 

into Esherichia coli.  Observable bands were only present in lanes F.  A. HaeIII Marker (Biotech); 

B. Transformation using 20 ng µl-1 pVW2 DNA; C. Transformation using 40 ng µl-1 pVW2 DNA; 

D. Transformation using 10 ng µl-1 pHAMT35G DNA; E. Transformation using 20 ng µl-1 

pHAMT35G DNA; F. Transformation using 40 ng µl-1 pHAMT35G; G. Blank control.  NB – 

Multiple lanes with same letter indicate replicate E. coli plasmids. 
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Figure 6.10: Banding patterns resulting from the digestion of the PCR product from pBINHL1 with 

Nco1 to confirm the success of integration of the GUS gene into plasmid pBINHL1.  A. Lambda 

HindIII Marker (Biotech); B. Positive control – original GUS plasmid; C - F. Digestion of positive 

PCR bands in Figure 6.9.  Lanes D & E showed a product in the range 2322 bp to 4361 bp, 

indicative for the length of the desired fragment; G. Blank control. 

 

Cultures of A. tumefaciens growing on selective agar plates after conjugal transfer were 

confirmed by PCR as successfully transformed with pBINHLGUS, pBINHL1 and pVBK1 

(Figure 6.11).  The primers used for the PCR of pBINHLGUS amplified the desired 

fragment of 1200 bp, the PCR of pBINHL1 amplified the desired fragment of 367 bp and 

the PCR of pVBK1 amplified the desired fragment of 524 bp (Figure 6.11).  
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Figure 6.11:  PCR screening for successful transformation of pBINHLGUS (1), pBINHL1 (2) and 

pVBK1 (3) plasmids into Agrobacterium tumefaciens isolates LB4044 and AGLO.  
A. 1kb Marker (Promega); B & E Positive control (Escherichia coli + pBINHLGUS);  C & F. 

AGLO + pBINHLGUS; D & G. LB4044 & pBINHLGUS; H. Negative control (AGLO + PCR 

mix); I. Positive control (pHAMT35G); J. Blank control. 

K. pUC19DNA/ HpaII marker (Biotech); L. Positive control (E. coli + pBINHL1); M. AGLO + 

pBINHL1; N & O. LB4044 + pBINHL1;  P. Blank control. 

Q. 100 bp Marker (Promega); R. Positive control (E. coli + pVBK1); S. Positive control (E. coli + 

pVW2); T. AGLO + pVBK1; U & V. LB4044 + pVBK1. W. Blank control.   

 

Transformation of Phytophthora using Agrobacterium tumefaciens 

No method tested for transformation of Phytophthora using the transformed A. tumefaciens 

was successful as there was no survival or growth on selective medium.  Neither intact or 

damaged mycelium of P. cinnamomi, P. drechsleri, P. cambivora, P. citricola, P. 

megasperma or P. cryptogea was transformed at either diluted or un-diluted concentrations 

of A. tumefaciens containing pBINHL1, pVBK1 or pBINHLGUS genes.  Co-

transformation using pVBK1 and pBINHL1 was also unsuccessful.  Zoospores produced 

under non-sterile conditions were only used for this method and also showed no 

transformation. 
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Protoplast Transformation  

Treatment of P. cinnamomi mycelium with lysing enzymes from Trichoderma harzianum 

and cellulase weakened the cell walls which allowed protoplasts to be released into KC 

osmoticum (Figure 6.12).  

 

Figure 6.12: Mycelium of Phytophthora cinnamomi releasing protoplasts into KC osmoticum.  

(Arrows indicate some protoplasts).  Bar = 50 µm. 

 

 

After transformation of the protoplasts with the plasmid p34GFN and their regeneration on 

V8 broth for 2 -3 days, it was found that many of the growing protoplasts clumped together 

when transferred to selective medium and were difficult to spread evenly across the plate.   

This meant that after 10 days, colonies of many regenerating protoplasts (Figure 6.13) were 

difficult to distinguish individually and it was possible that more that one protoplast 

contributed to the single colonies that were subcultured to a fresh plate.  For this reason, 

tips of hyphae were then subcultured to ensure single colonies but as a result, 

transformation efficiency could not be determined. 
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Figure 6.13: Different stages of growth of regenerating protoplasts of Phytophthora cinnamomi on 

media containing geneticin for selection. A. Initial germination of protoplast (1 germination tube); 

B. Germ tube branching; C & D. Further branching of germ tube.  Arrows point to original 

protoplast.  Bar = 50 µm. 

 

Protoplasts from P. cinnamomi isolates MP127, MP103 and MP94-15 were successfully 

transformed as determined by fluorescence (Figure 6.14).  Fluorescence was observed in 

the cytoplasm of the mycelium and chlamydospores.  Isolates did not fluoresce until after 9 

days in culture and as cultures aged, fluorescence intensity increased.   Hyphae of P. 

cinnamomi that had not been transformed did not fluoresce under blue excitation to give 

green fluorescence.    
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Figure 6.14: Isolates of Phytophthora cinnamomi fluorescing after transformation under light at 

480 nm. A, B & C. Fluorescent mycelium; D. Fluorescent patches in chlamydospores; E. 

Chlamydospores under bright light; F. Same as E but under light at 480 nm.  Arrows point to some 

fluorescence.  Bar = 50 µm. 
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Southern blot analysis 

The Southern blot analysis was only able to detect DNA as low as 100 copy numbers of the 

gene and was not sensitive enough to detect the 10 and 1 copy number dilutions (Figure 

6.15).  Variations in initial DNA concentration, incubation time of the labelled membrane 

with the X-ray film, hybridisation buffers, radioisotope storage, washing buffers and times 

did not affect the sensitivity of the probe.  Background was reduced when the membrane 

was washed in 2x SSC and 0.1 % (w/v) SDS for 10 minutes and then submerged in this 

solution for an hour, followed by washing twice for 30 minutes in 0.1x SSC and 0.1 % 

(w/v) SDS (Figure 6.15 A & B).   
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Figure 6.15:  Southern blot analysis of putative transformants to assess the success of integration of 

the Green Fluorescent Protein and geneticin resistance genes.  Membranes were blotted from gels 

containing 12 μg DNA (A, B, C & D) and 50 μg DNA (E & F).  Hybridisation buffer, source of 

radioisotope for labelling, incubation and membrane washing times for (A & B) differed to that 

used for (C, D, E & F).    A, C & E. 1 day incubation period at -80 ˚C after labelling.  B, D & F.  7 

day incubation period at -80 ˚C after labelling.  a. Molecular marker, b. Control 1000 copy number, 

c. Control 100 copy number, d. Control 10 copy number, e.  Control 1 copy number.  Background 

interference from the probe was high for C, D, E & F. 
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6.4 Discussion 

Phytophthora cinnamomi was successfully transformed to express GFP and geneticin 

resistance using mycelial protoplasts treated with polyethylene glycol.  Transformation 

using protoplasts and polyethylene glycol has been used quite extensively for Phytophthora 

species (Judelson et al. 1991, 1993; Kamoun et al. 1998; van West et al. 1999) but P. 

cinnamomi had not previously been transformed using this method. 

 

Protoplast transformation using polyethylene glycol was found to be successful for each of 

the three P. cinnamomi isolates tested.  Improving transformation efficiency was beyond 

the scope of this experiment although previous researchers have found transformation 

efficiency of Phytophthora spp. using the protoplast transformation method to be around 

0.1 – 2 transformants per µg DNA or per 10
8
 protoplasts (Judelson and Michelmore 1991; 

van West et al. 1999) but variations within species have been observed (Si-Ammour et al. 

2003).  It was found that transformed cultures needed to be at least 9-days-old before their 

fluorescence was easily visible which is consistent with previous research that has found 

transformed cultures may take between 9 – 20 days before fluorescing under blue excitation 

(Champouret and Kamoun 2004).   

 

Fluorescence was confined to the cytoplasmic material within the mycelium and 

developing chlamydospores.  In fully formed, aging chlamydospores, fluorescence was 

seen in small unidentified vesicles.  This has not been clearly described in previous 

research and thin-sectioning is required to determine where the green fluorescent protein is 

accumulating in the spore.  Hyphal walls of the transformants produced a dull green colour 

similar to that seen in non-transformed controls.  This autofluorescence was easily 

recognisable from the vibrant green colour produced in cytoplasm of transformants.   
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Time constraints meant the Southern blot was unable to be optimised to confirm the 

stability of the integration or determine the copy number of p34GFN DNA integration into 

the DNA of P. cinnamomi.  Previous reports have shown that stable integration of p34GFN 

into P. brassicae and P. infestans occurred in 85 % of transformants (Si-Ammour et al. 

2003), showing the necessity to optimise the Southern blot to determine transient and stable 

transformants in the current experiment.  Future optimisation strategies for Southern blot 

analysis could involve using more 
32

P-labelled probe, a combination of radio-labelled 

dNTPs and the use of a shorter probe to increase specificity and sensitivity. 

 

In contrast to protoplast transformation, transformation attempts using A. tumefaciens were 

unsuccessful.  The development of a plasmid containing the hygromycin resistance gene 

and the gene for the GUS protein was successful.  The GFP gene however was not 

successfully incorporated into a separate plasmid containing the hygromycin gene but this 

may have occurred if experiments were repeated.   

 

Transformation of pBINHL1, pVBK1 and the newly developed pBINHLGUS into separate 

strains of A. tumefaciens was successful.  However, using the Agrobacterium-mediated 

transformation system to subsequently transform Phytophthora species with these plasmids 

was unsuccessful as no cultures of Phytophthora species grew on selective media 

containing hygromycin.  This showed either that the antibiotic resistant gene had not been 

incorporated into the genome of the organism or it was not being expressed by the 

pathogen.   
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Previously, the GUS and hygromycin resistance gene with a Ustilago maydis hsp 70 

promoter (pCM54) had been successfully incorporated into P. cinnamomi using the 

biolistics approach to transformation (Bailey et al. 1993).  However, Judelson et al. (1993) 

compared the vector used by Bailey et al. (1993) to vectors with promoters from an 

oomycete organism (ie. Bremia lactucae).  They could not obtain transformation of P. 

megasperma unless the promoters were from an oomycete organism and suggested that 

pCM54 was unstable in P. megasperma (Judelson et al. 1993).  This had previously been 

reported by Bailey et al. (1993) as they had found pCM54 to be extrachromosomally 

inherited and unstable in P. capsici and P. parasitica.  Another possibility is that vectors 

used for transformation of filamentous fungi were unsuitable for Phytophthora due to the 

different sequence requirements for transcription (Judelson and Michelmore 1991; Judelson 

et al. 1993). 

  

The lack of success in Agrobacterium-transformation of Phytophthora spp. using 

pHAMT35GUS or the co-transformation of pVBK1 and pBINHL1 provides further 

evidence of the unsuitability of non-oomycete promoters for P. cinnamomi transformation.  

The inserted hygromycin resistance gene being flanked by a promoter and terminator from 

the yeast fungus, Ustilago maydis, appears not to have been expressed in P. cinnamomi as 

the organism is unable to recognise the promoter and terminator sequences flanking the 

hygromycin resistance gene with the result that the organism was unable to grow on 

medium containing hygromycin.   

 

The transformation of P. cinnamomi to incorporate a GFP gene provides an important 

molecular tool for the study of the biology of the pathogen, in particular, the way it survives 

and grows within plant and soil material. 
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CHAPTER 7 

The Effect of GFP Transformation on Fitness and Pathogenicity of 

Phytophthora cinnamomi 

 

7.1 Introduction 

Transformants of P. brassicae and P. infestans with p34GFN are known to have reduced 

fitness in in vitro growth compared to non-transformed controls (Si-Ammour et al. 2003).  

Similarly, Bae and Knudsen (2000), studying GFP transformed Trichoderma harzianum 

found transformants grew significantly slower than the wild type on Potato Dextrose Agar, 

so that by day 3, there was an 18 % reduction in growth.   The stability of GFP expression 

has been found to vary (Bottin et al. 1999; Cvitanich and Judelson 2003; Si-Ammour et al. 

2003; Vijn and Govers 2003) and there are reports of many subcultures of putative GFP 

transformed P. megasperma f.sp. glycinea failing to grow on selective media (Judelson et 

al. 1993; Cvitanich and Judelson 2003). 

 

Tests were designed to examine the stability of GFP expression and the effect of the 

transformation process on culture fitness in P. cinnamomi by assessing their root 

colonisation ability and colony growth rates compared to their non-transformed parents.  

Due to time constraints of the project, the Southern blot analysis was not optimised and was 

unable to determine success of the integration.  Therefore only these preliminary tests could 

be performed on two putative transformants. 
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7.2 Methods and Materials 

Experimental Design  

Putative transformed cultures of P. cinnamomi, MP103 (1/44) and MP127 (17/27), were 

selected based on their ability to grow on selective media after three subcultures (Judelson 

et al. 1993) and the intensity of their fluorescence after this time.  Controls were the parent 

non-transformed P. cinnamomi isolates MP103 and MP127.  All isolates were passaged 

through aseptically grown lupins (L. augustifolius) prior to experimentation.  Lupin 

seedlings were prepared by surface sterilising the seeds in 6 % solution of sodium 

hypochlorite for 30 minutes before washing three times in sterile water and placing them on 

filter paper moistened with sterile water in a 90 mm Petri dish 7 days at 25 ºC.  A 5 mm
2
 

cube taken from the outer growing edge of a one-week-old culture of P. cinnamomi 

growing on V8 agar (Appendix 2) was inoculated onto the tips of the lupin roots and 

seedlings were incubated for a further 7 days before the roots were excised and plated onto 

NARPH (Appendix 2).  Mycelium growth from these roots was then plated onto V8 agar 

and incubated for 1 week before a 5 mm
2
 colonised agar cube from the outer colony edge 

was used, unless otherwise stated. 

 

Experiments 

Comparisons between growth of transformed and non-transformed isolates 

Five replicates of each transformed and non-transformed isolate of P. cinnamomi were 

grown on V8 agar and V8 agar containing 20 µg geneticin ml
-1

 at 25 ºC until cultures 

reached the edge of a 90 mm Petri dish.  Colony diameter was measured daily.  The 

experiment was repeated twice on media without geneticin and once for media with 

geneticin.  
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The effect of repeated subculturing on the fluorescence emitted by the GFP gene and 

growth on geneticin medium 

Five replicates of each transformed and non-transformed isolate of P. cinnamomi were 

grown on V8 agar, with or without geneticin (20 µg ml
-1

) for 1 week at 25 ºC.  After 7 

days, colonies were subcultured to fresh V8 agar and V8 agar containing 20 µg geneticin 

ml
-1

.  After 4 weeks, a 5 mm
2
 agar plug from the mid-radial section of the colony was 

squashed underneath a coverslip on a microscope slide and observed under blue excitation 

(480 nm) at 400 – 1000x magnification (Olympus BX51; Olympus, Australia) for 

fluorescence.  This was repeated for 10 subcultures, each subculture being one week apart.  

 

Comparisons between aggressiveness of colonisation of lupin roots for transformed and 

non-transformed isolates 

Lupin seeds were grown aseptically for one week as described above.  Four lupin seedlings 

were then evenly placed around the edges of a 140 mm Petri dish with roots resting towards 

the centre on filter paper moistened with sterile water.  15 plates were set up in this way for 

each parent or transformant.   A 2 mm
2
 colonised agar cube taken from the outer growing 

edge of a one week culture of a transformed or non-transformed culture of P. cinnamomi 

was placed on each root tip so that in each plate, one lupin seedling was inoculated with 

each isolate (MP103 (1/44), MP127 (17/27), MP103 or MP127).  Plates were sealed with 

clingfilm (Glad wrap, Australia) to reduce evaporation.  After 4 days incubation at 25 ºC, 

the extent of colonisation in each root was determined.  The agar cube was removed and 

roots of each lupin were cross-sectioned into 5 mm lengths so that the first segment 

contained the initial inoculation site.  Segments were plated onto NARPH media.  Plates 
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were incubated for 3 days after which segments were scored as positive or negative for the 

presence of P. cinnamomi.  The experiment was repeated twice.   

 

Statistical Analysis 

Statistical analysis was performed using Minitab’s General Linear Model for each 

experiment.  Pairwise t-tests were conducted where appropriate.   

 

7.3 Results 

Comparisons between growth of transformed and non-transformed isolates 

The difference between the behaviour of the isolates in repeat experiments was 

insignificant (P > 0.05) so data were bulked from all experiments.  The transformed isolates 

grew significantly (P < 0.05) slower on V8 agar than the non-transformed isolates so that 

by day number 5, when MP103 reached the edge of the agar plate, the percentage reduction 

in growth for MP103 (1/44) was 18.8 % and 12.3 % for MP127 (17/27) compared to their 

non-transformed parents (Figure 7.1). 

 



CHAPTER 7: GROWTH AND PATHOGENICITY OF TRANSFORMED ISOLATES 

 165

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

Day number

M
ea

n
 c

o
lo

n
y
 d

ia
m

et
er

 (
m

m
)

 
Figure 7.1: Mean colony diameter for non-transformed isolates of Phytophthora cinnamomi 

compared to transformed isolates on V8 agar. (Δ) MP127 control; (▲) MP127 (17/27) transformed; 

(□) MP103 control; (■) MP103(1/44) transformed.  Bars represent positive standard error of the 

mean. 

 

The diameter of non-transformed isolates on selective V8 agar (20 µg geneticin ml
-1

) was 

never greater than 10 mm whereas transformed isolates grew to a colony diameter of 

approximately 70 mm (MP127 (17/27)) and 40 mm (MP103 (1/44)) (Figure 7.2).  

However, once these transformed organisms reached this diameter, their radial growth 

stopped.  When subcultured to fresh V8 agar containing 20 µg geneticin ml
-1

, the mycelium 

began to grow again.  No significant (P > 0.05) difference was found between the two 

experiments run for either transformed isolate MP127 (17/27) or MP103 (1/44) so the data 

were bulked.    
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Figure 7.2: Mean colony diameter for non-transformed isolates of Phytophthora cinnamomi 

compared to transformed isolates on selective V8 agar (+ 20 µg geneticin ml-1). (Δ) MP127 control; 

(▲) MP127 (17/27) transformed; (□) MP103 control; (■) MP103 (1/44) transformed.  Bars 

represent positive standard error of the mean. 

 

The effect of repeated subculture on the fluorescence emitted by the GFP gene and growth 

on geneticin medium 

Transformed cultures of P. cinnamomi were found to fluoresce for a total of five 

subcultures but fluorescence emitted at each subculture appeared to fade over this time.  By 

the sixth subculture, no fluorescence could be observed in transformed isolates MP127 

(17/27) and MP103 (1/44).  Both MP127 (17/27) and MP103 (1/44) were capable of 

growing on V8 agar containing geneticin (20 µg ml
-1

) for the full 10 subcultures.  Non-

transformed isolates, MP127 and MP103, did not fluoresce nor could they grow on 

selective medium.  
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The effect of transformation on the pathogenicity of the organism 

There was no significant (P > 0.05) difference between the three repeat experiments on 

growth of transformed and non-transformed P. cinnamomi in lupin roots so data were 

bulked.  There was a significant (P < 0.05) difference in pathogenicities of the transformed 

and non-transformed organisms as assessed by the length of the root colonised by the 

pathogen using a pairwise t-test (Figure 7.3).  The percentage reduction in root length 

colonised was 19.3 % for MP127 (17/27) and 14.1 % for MP103 (1/44) as compared to 

their parent lines for the same period of time.  
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Figure 7.3: Length of aseptic lupin root colonisation with non-transformed (black bars) and 

transformed (grey bars) Phytophthora cinnamomi isolates, MP127, MP127 (17/27), MP103, MP103 

(1/44).  Roots were incubated with the isolates for 4 days.  Bars represent positive standard error of 

the mean. 
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7.4 Discussion 

Transformants were found to be pathogenic as they colonised sterile lupin roots but they 

were less aggressive than their non-transformed parents.  Radial growth rate of 

transformants on V8 agar was slower than their non-transformed parents.  Interestingly, the 

larger reduction in growth observed for MP103 (1/44) than MP127 (17/27) on V8 agar did 

not correspond to a larger reduction in aggressiveness in pathogenicity testing where it was 

found that MP127 (17/27) was the less aggressive of the two transformants by colonising 

lupin roots slower than MP103 (1/44).   

 

The reduction in growth rate of transformants compared to non-transformants is similar to 

previously that reported (Bae and Knudsen 2000; Si-Ammour et al. 2003).  It is possible 

that the differences noted in growth of transformants as opposed to non-transformants may 

be in part due to the metabolites utilised in the production of an extra protein.  However, 

Lee et al. (2002) and Si-Ammour et al. (2003) have found isolates with similar fitness of 

growth to their wild type parents in transformants of Ophiostoma piceae and P. infestans.  

Therefore, screening of more transformants of P. cinnamomi may find transformants with 

similar fitness characteristics to their wild type parents.   

 

The stability of the transgene in P. cinnamomi isolates MP127 (17/27) and MP103 (1/44) is 

uncertain as the two transformants studied showed reduction in the intensity of the GFP 

fluorescence over five subcultures until by subculture 6, no fluorescence could be observed.  

Cultures continued to grow on the selective medium on which their wild type parents could 

not.  This is similar to studies by Bottin et al. (1999) where only 13 % of transformants of 

P. parasitica var. nicotianae fluoresced and Vijn and Govers (2003) who found that only 

60 % of zoospore cultures arising from transformants, showed GUS expression, yet all 
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transformants were capable of growing on selective medium which non-transformants 

could not.  A Southern blot analysis showed that the GUS gene was present but they could 

not explain why GUS expression was lost but thought it may be due to transcriptional gene 

silencing (Judelson et al. 1993; Bottin et al. 1999; Cvitanich and Judelson 2003; Vijn and 

Govers 2003).  Loss of DNA expression in transgenic organisms including fungi is a well 

documented phenomenon, especially for DNA sequences that do not confer a selective 

advantage (Monke and Schaefer 1993).  However, GFP expression in P. brassicae and P. 

infestans with p34GFN has been stable for at least two years with fortnightly subculturing 

on selective medium, quantified by GFP intensity (Si-Ammour et al. 2003).  This indicates 

that further screening of transformants is required.   

 

There has been an observed link between the integration of multiple copies of donor DNA 

and methylation in Schizophyllum commune transformed with hygromycin B (hph) 

(Mooibroek et al. 1990).  It was proposed that after transformation, multiple copies of 

integrated DNA are methylated to prevent over-expression (Mooibroek et al. 1990).  

Organisms transformed using the PEG/ protoplast system have been shown to often carry 

more than one transgene copy (de Groot et al. 1998; Covert et al. 2001; Vijn and Govers 

2003).  Time constraints limited optimisation of the Southern blot to determine the number 

of transgene copies (Chapter 6) but future studies in number of donor DNA inserted into P. 

cinnamomi could provide a possible explanation why the intensity of fluorescence declined 

over 10 subcultures in two transformants.   

 

Although transformed isolates grew successfully on V8 agar with geneticin, colonies never 

reached the edge of the plate and ceased to grow at approximately 45 mm and 65 mm 

(MP127 (17/27) and MP103 (1/44), respectively).  Robinson and Deacon (2001) described 
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a similar occurrence in transformed Rhizoctonia solani.  They observed transformants 

stopping growth at 35 or 65 mm colony diameters, depending on the gene insert.  In these 

cases, the explanation was probably non-integrative transformation as 99 % of these 

isolates fail to grow upon subculture (Monke and Schafer 1993; Robinson and Deacon 

2001).   However, in the case of P. cinnamomi, upon subculturing from the outer edge of 

MP127 (17/27) and MP103 (1/44), to fresh selective media, cultures continued to grow but 

again did not exceed the 45 or 65 mm colony diameter.  This would suggest that the gene 

had been successfully integrated into the genome and the cessation of growth might be due 

to the build-up of staling products in the media (Park 1961; Griffin 1994).  A Southern blot 

analysis would be required to determine if the gene had been integrated but due to time 

restraints of the project, this could not be achieved.    

 

More work is required to analyse other transformants to find those isolates that behave 

more closely in growth rates and aggressiveness to their non-transformed parent as it has 

previously been found that fitness can vary across transformants (Si-Ammour et al. 2003).  

Due to time constraints of this project, this was not possible but results obtained here 

highlight the necessity that future experiments always use non-transformed controls to 

ensure all behavioural characteristics observed were real and not a result of the reduced 

fitness of the pathogen.  
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CHAPTER 8 

General Discussion 

 

This thesis has investigated the short-falls in our knowledge on the saprophytic ability of 

Phytophthora cinnamomi.  The research provided evidence to support the accepted 

knowledge on the existence of thick-walled chlamydospores and challenged the assumption 

that oospores play no role in the survival of the pathogen.  The major findings and the 

further work that is required included: 

 P. cinnamomi is not a saprophyte except under conditions of low microbial 

competition (Chapter 2).  While the pathogen was not considered a saprophyte of 

ecological importance, it displayed a competitive ability in the colonisation of added 

organic matter that had been sterilised by autoclaving.  This fits with the ability of P. 

cinnamomi to colonise healthy plant tissue such as the roots and collars of healthy plants in 

the bush (Shearer et al. 1981).  Such tissue would not contain microbial competitors. 

 Solid evidence for the existence of thick-walled chlamydospores of P. 

cinnamomi in vitro under sterile and non-sterile conditions (Chapter 3).  Production of 

thick-walled spores was however sporadic and investigations into the stimulus 

(environmental, chemical or biological) for their production is required. 

 Evidence that the ontogeny of thick-walled chlamydospores might be different 

from previous reports (Chapter 3).  Thick-walled chlamydospores formed from hyphae 

with similar wall thickness.    This is in contrast to previous research by Hemmes and 

Wong (1975) who found that chlamydospores walls were originally thin, thickening after 

the basal septum was formed.  The preliminary research of this thesis indicates that 
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chlamydospore formation and how their walls thicken may need to be re-assessed and 

further work is required.   

 An in vitro technique to produce selfed oospores of P. cinnamomi (Chapter 5).  

In Australia, the role of oospores in survival of P. cinnamomi is believed to be of little 

importance as only the A2 mating type is abundant and widespread (Weste and Vithanage 

1979; Zentmyer 1980; Weste 1983a).  In areas where A1 and A2 isolates occur in the same 

area, no evidence for sexual reproduction has been found (Dobrowolski et al. 2002).  

However, the current research has shown oospores, always with amphigynous antheridia, 

forming in four A2 isolates of P. cinnamomi in vitro therefore behaving as a homothallic 

species in the absence of stress factors (eg. presence of volatiles or Trichoderma spp.).  As 

selfed oospores on modified Ribeiro’s medium has previously not been reported, a PCR 

using specific primers confirmed their identity.  Prior to all experiments, isolates were 

passaged through sterile lupin roots to reduce any stress associated with long-term storage 

and constant subculturing on agar.  Large numbers of oospores only occurred in one isolate 

tested and testing of more isolates is required.  A constraint of the project was time to 

investigate whether these isolates of P. cinnamomi are capable of producing selfed 

oospores in the natural environment and what triggers their germination.  

 The stimulation of chlamydospore production in vitro by phosphite, while 

oospore production was inhibited (Chapter 4 and 5).  The inhibition of selfed oospores by 

phosphite was similar to that observed in oospores produced by mating of P. cinnamomi 

(Coffey and Joseph 1985).  The initial inhibition of chlamydospore production during in 

vitro growth was similar to research of Coffey and Joseph (1985).  However, 

chlamydospore production was then stimulated in vitro in the presence of phosphite, which 

has not been previously reported and is of concern for the management of the pathogen. 
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 The induction of dormancy of chlamydospores by the presence of phosphite 

during their formation (Chapter 4).  Chlamydospores produced in the presence of phosphite 

in vitro displayed higher levels of dormancy than controls.  This, combined with an 

increase in chlamydospore numbers as a result of phosphite, has implications for survival of 

the pathogen during phosphite treatments in the natural environment.  Conditions that may 

break dormancy of chlamydospores and whether chlamydospore production is being 

stimulated by phosphite in planta in the natural environment needs to be assessed.  

 The development of a transformed isolate of P. cinnamomi containing the 

Green Fluorescent Protein for future survival studies in non-sterile systems (Chapter 6).  

Transformed isolates of P. cinnamomi contained the Green Fluorescent Protein gene and 

the nptII gene for geneticin resistance.  Time constraints limited the chance to test the 

stability of the transgene but early indications suggested successful stable transformation 

due to the pathogen still being capable of growing on media containing geneticin which 

parental cultures could not after 10 subcultures (Chapter 7).  However, the intensity of the 

fluorescence produced by the GFP gene declined until, by the sixth subculture, fluorescence 

could not be observed in the two putative transformants tested (Chapter 7).  Further 

screening of transformants is required. 

 

Future research and management directions 

Difficulties in the visualisation of mycelium growing through soil for saprophytic studies 

and distinguishing propagules such as chlamydospores and oospores of P. cinnamomi from 

spores of other fungi, led to the development of transgenic cultures of P. cinnamomi.  In the 

past, it has been difficult to find hyphae and other structures of P. cinnamomi in plant 

tissues especially woody plant tissues, even using staining and other techniques (Shea et al. 

1980; Old et al. 1984; Schild 1995).  Transgenic isolates should facilitate the location of the 
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pathogen in plant tissues in the future and help in studies on survival, infection, 

colonisation and defence.  If transgenic cultures are used in the future, it will not be 

necessary to germinate propagules found in roots or soil as the presence of green 

fluorescence will be sufficient to identify them as P. cinnamomi.   

 

Rehabilitation of bauxite mine sites, forestry and road building operations may involve the 

movement of large volumes of soil (Colquhoun and Hardy 2000; Hardy et al. 2001).  While 

mapping of disease sites and soil baiting can be used to determine the disease status of a 

site (Colquhoun and Hardy 2000; Hardy et al. 2001), it does not allow for the possibility of 

pathogen dormancy.  Chlamydospore dormancy, although widely stated to exist (Blackwell 

1949; Zentmyer and Erwin 1970; Erwin and Ribeiro 1996), has had no definitive evidence.  

In the current thesis, dormant thin-walled chlamydospores were produced in the presence of 

phosphite, however, the dormancy status of thick-walled chlamydospores was not 

determined.  The dormancy of selfed oospores in vitro was shown and it is possible that the 

same may occur in the natural environment.  This aspect of the biology of P. cinnamomi 

needs further study.  The suggestion that false-negative results often observed during soil 

baiting experiments are due to propagule dormancy (Hüberli et al. 2000) may be confirmed 

using a transgenic (eg. transformed with GFP) P. cinnamomi strain by examining soil and 

plant material for dormant oospores and chlamydospores in glasshouse and laboratory 

experiments.  Propagule dormancy is an important issue to resolve for quarantine and 

hygiene reasons.  Better detection of the dormant pathogen could reduce the accidental 

movement of infested soils, believed to be free of Phytophthora as determined by baiting 

and disease mapping.  Additional research is required to understand the mechanisms of 

dormancy and to develop quick and reliable ways to break dormancy to ensure 100 % 

reliability. 
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Phosphite is an effective control for Phytophthora diseases in Western Australia (Hardy et 

al. 2001).  However, from results obtained in this thesis the effectiveness may be limited.  

Currently, foliar applications of phosphite to run-off in Western Australia are applied at 5 g 

L
-1

 (Hardy et al. 2001).  Seven days after spraying Corymbia calophylla to run-off at 5 g L
-

1
, 1094 μg and 2205 µg phosphite g

-1
 tissue accumulated in mature roots and root tips, 

respectively (Fairbanks et al. 2000).  As phosphite at 40 and 100 µg ml
-1

 (approximately 40 

and 100 µg g
-1

 medium) stimulated chlamydospore production in vitro in this thesis, it is 

possible that the same may occur in root tissue of phosphite treated plants in the natural 

environment where phosphite is accumulating and P. cinnamomi is present.  Further 

investigations are required for management to determine whether phosphite treatment 

increases the inoculum level of P. cinnamomi in planta in the natural environment.  It is 

also important to determine which propagules, chlamydospores or oospores, contribute 

more to survival of P. cinnamomi as phosphite stimulates chlamydospore production while 

inhibiting oospore production in vitro.   

 

Oospores and thick-walled chlamydospores are thought to survive long periods due to the 

protection from their thick outer wall from desiccation and microbial antagonists (Weste 

and Vithanage 1979; Zentmyer 1980; Weste 1983).  The development of thick-walled 

chlamydospores from hyphae of a similar thickness could indicate that production of thick-

walled hyphae are also a survival mechanism for the pathogen.  Mycelium of P. cinnamomi 

is known to lay down septa with age (Waterhouse 1970) and this could be an alternative 

mode of survival for the pathogen, taking advantage of its thick-walled hyphae.  This needs 

further investigation. 
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The reliance on phosphite to induce host defence responses to protect against Phytophthora 

invasion (Colquhoun and Hardy 2000; Hardy et al. 2001) needs further investigation as its 

benefits may only be short-term.  If the in vitro studies of the current thesis are shown to 

produce similar results in planta under more natural conditions, it is possible that high 

inoculum levels of P. cinnamomi may be accumulating in plants in the presence of 

phosphite.  It is important to understand exactly how the pathogen survives and what 

triggers dormant spores to germinate before management mechanisms to eliminate P. 

cinnamomi might be developed.   
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APPENDIX 1 

Soil characteristics 

 

Table A1: Soil characteristics of Jarrah Forest soil, Bassendean sand, Potting mix and red loam 

Havel classified ‘Q’ jarrah vegetation type soils as analysed by CSBP Soil and Plant Analysis 

Service (Bibra Lake, Western Australia).  
 Jarrah Forest 

Soil 

Bassendean 

Sand 

Potting Mix Red loam 

Havel classified 

‘Q’ jarrah 

vegetation type 

Texture  1.5 1.5 1.5 2.0 

Gravel (%) 40 - 45 - 5 15 - 20 

Colour  Brown/ Grey Grey Dark Brown Dark brown 

Nitrate Nitrogen (mg kg-1) 3 1 5 9 

Ammonium Nitrogen (mg kg-1) 2 3 1 12 

Phosphorus Colwell (mg kg-1) 1 2 5 2 

Potassium Colwell (mg kg-1) 25 15 95 105 

Sulfur (mg kg-1) 4.0 3.4 14.5 7.0 

Organic Carbon (%) 1.65 0.93 3.59 4.38 

Reactive Iron (mg kg-1) 633 207 233 1321 

Conductivity (dS m-1) 0.034 0.035 0.119 0.103 

pH level (CaCl2) 5.0 4.3 4.7 5.2 

pH level (H2O) 6.2 5.7 5.8 6.1 

Copper (mg kg-1) 0.40 0.34 0.81 0.98 

Zinc (mg kg-1) 0.75 0.37 1.69 0.60 

Manganese (mg kg-1) 2.99 1.02 5.00 26.73 

Iron (mg kg-1) 21.41 32.99 29.21 53.91 
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APPENDIX 2 

Agar and Broth Recipes 

 

Phytophthora-selective agar medium (NARPH) 

Recipe published by Shearer and Dillon (1995) and modified by Hüberli (2001). 

 
Ingredient Product Name Quantity Manufacturer 

Nystatin  Nilstat 1 ml Wyeth-Ayerst, Australia 

Sodium Ampicillin  100 mg Fisons, Australia 

Rifampicin Rifadin 500 µl Hoechst Marion Roussel, 

Australia 

Pentachloronitrobenzene 

(PCNB) 

Terrachlor 100 mg Uniroyal, Australia 

Hymexazol Tachigaren 50 mg Sankyo Company, Japan 

Corn meal agar (CMA) Oxoid 17 g Unipath, UK 

Deionised water  1 L  

 

CMA was autoclaved in the deionised water for 20 minutes at 121 ºC.  The other 

ingredients were dissolved in 10 ml of sterile, deionised water at room temperature before 

being added to agar when the agar had cooled to approximately 50 ºC. 

 

 

 

Pea agar 

Based on recipe published by Erwin and Ribeiro (1996). 

 
Ingredient Quantity Manufacturer 

Blended peas 160 g Heinz, Australia 

Sucrose 5 g  

Bacto Agar 15 g Difco Laboratories, USA 

β-sitosterol 0.02 g Sigma, USA 

Water 1 L  

 

Blended peas were soaked in the water for 30 minutes with stirring before filtering through 

cheesecloth.  β-sitosterol was dissolved in 5 ml 100 % ethanol and added along with the 

other ingredients to the pea water.  The media was made up to 1 L with water.  The medium 

was autoclaved at 121 ºC for 20 minutes. 
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Modified Ribeiro’s minimal medium 

Based on recipe published by Ribeiro et al. (1975). 

 

Microelement stock solution: 
Ingredient Quantity 

H3BO3 4.32 g 

MnCl2.4H2O 2.77 g 

CuSO4 80 mg 

ZnSO4.7H2O 288 mg 

Na2MoO4.2H2O 48 mg 

NaCl 580 mg 

CoCl2.6H2O 2.38 mg 

Deionised water 100 ml 

 

Ferric stock solution: 
Ingredient Quantity 

FeCl3.6H2O 50 mg 

EDTA 2.6 g 

KOH 1.5 g 

Deionised water 100 ml 

 

EDTA and KOH were dissolved in deionised water and made up volume to 100 ml.  Add 

FeCl3.6H2O. 

 

Thiamine stock solution: 
Ingredient Quantity Manufacturer 

Thiamine.HCl 0.1 mg Sigma-Aldrich, Germany 

Deionised water 100 ml  

 

Basal medium: 
Ingredient Quantity Manufacturer 

Glucose 4.5 g  

L-asparagine 0.1 g Sigma-Aldrich, Germany 

KNO3 0.15 g  

ΚΗ2PO4 1.0 g  

MgSO4.7H2O 0.5 g  

CaCl2 0.1 g  

Bacto agar 17 g Difco Laboratories, USA 

Deionised water 1 L  

Microelement stock solution 1 ml  

Ferric stock solution 1 ml  

β-sitosterol 0.02 g  

 

β-sitosterol was dissolved in 5 ml 100 % ethanol before addition.  PH of the basal medium 

was adjusted with 6 M KOH to 6.2.  The medium was autoclaved at 121 ºC for 20 minutes.  

After the medium had cooled to approximately 50 ºC, 1ml of thiamine stock solution was 

added through a 0.22 µm Millipore filter (Schleicher and Schuell, Australia).   

 

 



APPENDIX 2: AGAR AND BROTH RECIPES 

 180

Clarified V8 agar and broth 

Based on the recipe published by Hardham et al. (1991). 

 
Ingredient Quantity Manufacturer 

Cleared Vegetable-8 Juice * 100 ml Campbells, Australia 

CaCO3 0.1 g  

β-sitosterol 0.02 g Sigma, USA 

Bacto agar 15 g Difco Laboratories, USA 

Water 900 ml  

* Vegetable-8 Juice was cleared by centrifugation at 10 600 g for 10 minutes before 

filtering the supernatant through Whatman No. 1 filter paper (Springfield Mill, UK). 

 

β-sitosterol was dissolved in 5 ml 100 % ethanol before addition.  The pH of the medium 

was adjusted to 6.2 with KOH before autoclaving at 121 ºC for 20 minutes.  To make V8 

broth, the Bacto agar was omitted. 

 

 

 

 

S + L medium 

Based on recipe published by Ann and Ko (1988). 

 

Basal salt solution: 
Ingredient Quantity 

(NH4)2SO4 100 mg 

MgSO4.7H2O 100 mg 

CaCl2.2H2O 30 mg 

ZnSO4.7H2O 3 mg 

KH2PO4 30 mg 

K2HPO4 60 mg 

Distilled water 100 ml 
 

The solution was filter sterilised through a 0.22 µm Millipore filter (Schleicher and Schuell, 

Australia). 

 

Basal medium: 
Ingredient Quantity Manufacturer 

Lecithin (98 % Lectihin granules) 100 mg Lowan, Australia 

Glucose 20 mg   

Bacto agar 15 g Difco Laboratories, USA 

Deionised water 1 L  

*Nystatin  1 ml Wyeth-Ayerst, Australia 

*Sodium Ampicillin  100 mg Fisons, Australia 

*Pentachloronitrobenzene  

(PCNB) 

100 mg Uniroyal, Australia 

* Basal salt solution 1 ml  

* These were added to the basal medium after the basal medium had been autoclaved and 

cooled to approximately 50 ºC. 

 

The basal medium was brought to pH 7 with 1 M KOH before autoclaving at 121 ºC for 20 

minutes. 
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Hooykaas minimal medium 

Based on recipe published by Hookaas (1988). 

 

K-salt solution: 
Ingredient Quantity 

K2HPO4 20.5 g 

KH2PO4 14.5 g 

Distilled water 1 L 

 

The solution was autoclaved at 121 ºC for 20 minutes. 

 

M-salt solution: 
Ingredient  Quantity 

MgSO4.7H2O 3 g 

(NH4)2SO4 2.5 g 

NaCl 1.5 g 

Distilled water 1 L 

 

The solution was autoclaved at 121 ºC for 20 minutes. 

 

Basal medium: 
Ingredient Quantity 

CaCl2 1 mg 

Glucose 200 mg 

Bacto agar 1.8 g 

Distilled water 965 ml 

* K-salt solution 10 ml 

* M-salt solution 25 ml 

* These were added to the basal medium after the basal medium had been autoclaved at 121 

ºC for 20 minutes and allowed to cool to approximately 50 ºC. 
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Induction medium 

Based on recipe published by Erwin and Ribeiro (1996). 

 

Z-salt solution: 
Ingredient Quantity 

ZnSO4.H2O 0.01 g 

CuSO4.5H2O 0.01 g 

H3BO3 0.01 g 

MnSO4.H2O 0.01 g 

Distilled water 1 L 

 

The pH of the solution was adjusted to 7.0 and the solution was autoclaved at 121 ºC for 20 

minutes. 

 

Basal medium: 
Ingredient Quantity 

NH4NO3 50 mg 

CaCl2 1 mg 

Glucose 400 mg 

0.1 M Acetosyringone 1 ml 

Distilled water 909 ml 

* K-salt solution  10 ml 

* M-salt solution 20 ml 

* Z-salt solution 5 ml 

** 2-[N-Morpholino]ethanesulfonic acid (MES) 40 ml 

*** 0.5 % (w/v) solution of Glycerol  5 ml 

*** 0.01 % (w/v) FeSO4 10 ml 

* This was added to the cooled autoclaved basal medium.  

** A 1M solution of MES was adjusted to pH 6.3 before the desired aliquot was added to 

the cooled, autoclaved basal medium.  

*** This was autoclaved prior to addition to the cooled, autoclaved basal medium. 

  

The basal medium was autoclaved at 121 ºC for 20 minutes. 

 

 

 

Mineral salts solution 

Based on the recipe of Chen and Zentmyer (1970). 
 

Ingredient  Quantity 

Ca(NO3)2.4H2O 2.36 g 

KNO3 0.51 g 

MgSO4.7H2O 0.70 g 

* 0.1 M FeEDTA 1 ml 

Distilled water 1 L 

* This was filter sterilised through a 0.22 µm Millipore filter.  The desired aliquot was 

added to the remaining medium after the medium had been autoclaved at 121 ºC for 20 

minutes and allowed to cool to room temperature. 
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