
SAPSM: Smart Adaptive 802.11 PSM for Smartphones

Andrew J. Pyles, Xin Qi, Gang Zhou, Matthew Keally and Xue Liu†

College of William and Mary, †McGill University
{ajpyles, xqi, gzhou, makeal}@cs.wm.edu, †xueliu@cs.mcgill.ca

ABSTRACT
Effective WiFi power management can strongly impact the
energy consumption on Smartphones. Through controlled
experiments, we find that WiFi power management on a wide
variety of Smartphones is a largely autonomous process that
is processed completely at the driver level. Driver level im-
plementations suffer from the limitation that important power
management decisions can be made only by observing pack-
ets at the MAC layer. This approach has the unfortunate
side effect that each application has equal opportunity to
impact WiFi power management to consume more energy,
since distinguishing between applications is not feasible at
the MAC layer. The power cost difference between WiFi
power modes is high (a factor of 20 times when idle), there-
fore determining which applications are permitted to impact
WiFi power management is an important and relevant prob-
lem. In this paper we propose SAPSM: Smart Adaptive
Power Save Mode. SAPSM labels each application with a
priority with the assistance of a machine learning classifier.
Only high priority applications affect the client’s behavior to
switch to CAM or Active mode, while low priority traffic is
optimized for energy efficiency. Our implementation on an
Android Smartphone improves energy savings by up to 56%
under typical usage patterns.

ACM Classification Keywords
C.2.1 Computer-Communication Networks: Network Archi-
tecture and Design—Wireless communication; C.4 Perfor-
mance of Systems: Design studies

General Terms
Design, Performance, Measurement, Experimentation

Author Keywords
Energy efficiency, WiFi, Adaptive Power Save Mode, Smart-
phones

INTRODUCTION
WiFi on Smartphones is a significant source of energy con-
sumption. Constantly Awake Mode (CAM) consumes 20

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp ’12, Sep 5-Sep 8, 2012, Pittsburgh, USA.
Copyright 2012 ACM 978-1-4503-1224-0/12/09...$10.00.

times more power than Power Save Mode (PSM) when idle
[1]. PSM consumes little power at the cost of added latency
of up to 300ms. Latency can cause performance issues for
interactive applications such as web browsers [2] and real-
time VoIP applications [3]. CAM consumes high power but
delivers high performance and low latency.

There are a number of existing PSM and adaptive PSM mech-
anisms [4] [2] [5] that utilize PSM to save energy (described
in the background section). Adaptive PSM alternates be-
tween PSM and CAM based soley upon network activity
thresholds. Clearly, the choice between PSM and CAM should
be done carefully. But what criteria should be considered
when the switch is made? Existing Adaptive PSM behav-
ior on Smartphones, we find through controlled experiments,
has a simple threshold based approach reacting to aggregate
traffic volume. Unimportant traffic bears the same weight as
foreground highly interactive traffic.

How can Adaptive PSM on Smartphones be improved? Clearly
the Adaptive PSM implementations we evaluate here are not
adequate. Certain applications have varying delay tolerances.
Background traffic with a high delay tolerance should use
a strategy optimized for energy conservation. On the other
hand, interactive traffic should be optimized for performance.
STPM [6] is a pioneering work that considers the priority of
different traffic flows. However, it requires application de-
velopers to indicate traffic intent through the use of a cus-
tom API. With the prevalence of application stores like the
Android Market with thousands of developers of varying
skill levels, it is impractical to rely upon developers to ac-
curately provide application intent through an API. For in-
stance, developers generating revenue from advertising may
not be motivated to indicate their application is low prior-
ity background traffic. Recently, [7] has shown that 65-75%
of energy consumed by free Smartphone apps is spent on
downloading ads and uploading user tracking information.

A key challenge is how to determine which applications are
high priority without assistance from application develop-
ers. Non-technical users may not be able to determine which
applications should be high priority. Once an application’s
priority is established, an additional challenge is how to en-
sure an application’s priority is tracked through the system
in an efficient and energy conscious manner.

In this paper we present SAPSM, a Smart Adaptive PSM
solution that prioritizes network traffic based on application
priority, which we now define. Each application is tagged

1

with a priority. When an application is set to high priority,
the application’s network traffic is permitted to adaptively
switch to CAM. A low priority setting for an application
means that application’s network traffic is not permitted to
switch to CAM, but will instead remain in PSM1. There-
fore, SAPSM works with any Android application without
any modifications. Additionally, any traffic not associated
with an application is considered low priority to save more
energy. SAPSM is able to handle both high priority and low
priority traffic simultaneously. Only high priority applica-
tions are permitted to switch the WiFi driver to CAM by
incrementing a high priority traffic counter, which can only
be incremented by high priority traffic. SAPSM unobtru-
sively determines an application’s priority by observing net-
work usage patterns and assisting users with a short list of
applications that might benefit from high priority Adaptive
PSM behavior. Each application’s priority is stored within
a kernel module. SAPSM tracks network traffic priority by
comparing the owner of the active listening socket associated
with the current traffic flow to a list of known high priority
applications. If a match occurs, treat as high priority. If no
match is found, the app is treated as low priority.

In summary, motivated by current Adaptive PSM implemen-
tation’s inability to distinguish network importance, We con-
tribute SAPSM with the following features:

• In SAPSM, we propose the Core component to augment
Adaptive PSM behavior by favoring application priority
compared to aggregate network traffic. We maximize en-
ergy savings by staying in PSM for low priority applica-
tions when it is expedient to do so, while switching to
CAM for high priority applications.

• In SAPSM, we propose the Application Priority Manager
(APM). The APM is responsible for observing network
behavior. By unobtrusively gathering feedback from users
it provides an easy to use mechanism for setting applica-
tion priority.

• We implement SAPSM on Android. Using extensive ex-
periments performed on an Android HTC Hero Smart-
phone, we show that SAPSM provides significant energy
savings for Android applications that have background
low priority traffic: 56% with an RSS reader application
and 44% with a popular streaming audio application.

BACKGROUND AND MOTIVATION
In this section, we first explain the background knowledge
of CAM, PSM, and Adaptive PSM. Then, we take two steps
to examine Adaptive PSM implementations on a multitude
of Smartphones and also a few other devices: in the first
subsection, we report on the internals of the Sprint HTC
Hero driver; next, we analyze Adaptive PSM implementa-
tions by sending spurious network traffic unassociated with
any application. By observing Adaptive PSM behavior of
1Low priority traffic remains in PSM for most traffic flows. We ex-
perimentally determine that data rates exceeding 3Mb/sec while in
PSM consume more power than in CAM. When high data rates are
observed, Low priority traffic always chooses the path with lowest
energy consumption. See the Evaluation section for more details.

different Smartphones, we show that no commercial imple-
mentation of Adaptive PSM that we test is able to differen-
tiate between important and unimportant traffic. Every im-
plementation switches to high power CAM when spurious
traffic is received. This wastes energy and shows the need
for improvement.

Background
First standardized in 1999 [4], the static PSM approach was
developed for the client to conserve energy. The client and
the access point (AP) agree upon a beacon period. Between
the beacon periods, the AP buffers packets. Right before
the beacon period, the client awakes and listens for the bea-
con. The beacon contains a Traffic Indication Map (TIM),
which tells the client if packets are currently being buffered.
If packets are buffered by the AP, the client will send a PS-
POLL message to the AP. The AP will send a data frame
back to the client. The data frame includes a MORE field
which indicates if more packets are buffered. The client con-
tinues to PS-POLL until no further packets are buffered. The
static PSM approach saves energy by keeping the radio off
except during the beacon period where it briefly wakes up to
communicate with the AP.

The static PSM approach saves energy by minimizing the
amount of time that the WiFi radio is active. However, there
is a tradeoff. Static PSM adds a delay of 100-300ms. In be-
tween beacon periods when the client’s WiFi radio is off, any
incoming packets are buffered at the AP. This added delay
impacts real-time applications such as VoIP and interactive
applications like web browsers [2]. Because of this issue,
Adaptive PSM [2] [8] is now commonly used to switch be-
tween CAM and PSM. The client switches to CAM based
upon aggregate traffic volume. To switch between the two
modes, the client sends a NULL frame with the POWER
field disabled. When the AP receives the NULL frame, it
will cease to buffer packets for the client. To switch back to
PSM, the client sends a NULL frame with the POWER field
enabled. In this case, the AP is now aware the client is in
PSM and will start to buffer packets for it.

After the client switches operation to CAM, it will stay in
CAM for an idle timeout period before switching back to
PSM. This tail energy cost, also prevalent in 3G networks
[9] differs between implementations. Our results show a 1.5
second idle timeout period in the HTC Hero, while [8] shows
a 20-25ms timeout period for an iPhone 3GS. In the follow-
ing subsections, we show the results from our survey of var-
ious devices.

Sprint HTC Hero Adaptive PSM
Now we examine the source code of the Sprint HTC Hero
WiFi driver and describe its Adaptive PSM implementation.
Due to the open-source nature of Android, we were able to
obtain the complete source of the driver, later modified in
the implementation Section. The driver is built as a kernel
module and is loaded on-demand by Android.

The behavior is illustrated in Figure 1. During a one second
interval, which is not configurable, both ingress and egress

2

Figure 1. Sprint HTC Hero Adaptive PSM implementation; initial state
is PSM, timer is set to one second.

0 5 10 15 20
pkts/sec

0

5

10

15

20

25

30

35

40

Ti
m
e
 i
n
 C
A
M
 (
se
c)

Blackberry
Incredible
iPad
iPhone3
iPhone4
Hero
DroidX
Kindle

Figure 2. Adaptive PSM implementation response to UDP network
traffic.

frames are counted. If the frame count exceeds a config-
urable UP threshold, the driver will switch to CAM. When
the frame rate drops below a configurable DOWN threshold,
it will switch back to PSM.

Since CAM consumes much more energy than PSM, we
contend that certain packets should not impact this decision.
To illustrate this point, in the next section we send unwanted
traffic to a number of Smartphones. In all cases, each Adap-
tive PSM implementation switches to CAM unnecessarily.
In contrast to our approach, which emphasizes the priority
of network traffic based upon Application priority, existing
implementations place equal weight on all network traffic.

Adaptive PSM Behavior of Different Smartphones (and
other Handheld Devices)
How different WiFi driver implementations react to various
network traffic is discussed in this section. The methodology
for testing the Adaptive PSM behavior is as follows. First,
a Linux server is setup running hostapd to operate as an Ac-
cess Point. The devices were placed less than one meter
away to minimize delay and retransmissions. Second, all
applications accessing the network were stopped to ensure
the only source of network traffic to/from the device is due
to the packets transmitted during the test. Finally, all net-
work interfaces besides WiFi, such as 3G/4G and Bluetooth
were disabled.

We test the Adaptive PSM behavior of a Blackberry Curve,
three Android phones from various manufacturers, a Kindle,
an iPhone3, iPhone4 and iPad. The methodology of these
tests is described in this section.

By observing 802.11 management frames Adaptive PSM be-

havior can be observed. Recall that the client utilizes the
POWER field in NULL frames as an indication to the AP
when to switch between CAM and PSM. The difference in
timestamps between NULL frames with opposing POWER
settings indicates how long the client stayed in CAM or PSM.

To determine if the test is successful, we measure the packet
rate (UP threshold) at which the phone will remain in CAM
for an extended amount of time. First, one packet per second
of a given traffic type is sent to the device. Gradually the rate
is increased up until 20 packets per second. Each test lasts
for 30 seconds and is repeated for each traffic type.

Different Adaptive PSM implementations have varying Adap-
tive PSM bandwidth timer windows. As described previ-
ously, the HTC Hero has a timer of one second. Other de-
vices, like the iPhone, have smaller timer windows some-
times referred to as aggressive Adaptive PSM timeout [8].
To compensate for this variation, if the device stays in CAM
for at least 50% of the time we assume the UP threshold has
been reached.

To illustrate the problem we send Multicast, UDP, ICMP and
TCP based traffic to gauge each device’s Adaptive PSM re-
sponse to unwanted traffic. Unwanted traffic in this context
means that traffic is generated where there is intentionally
no listening socket on the device. For consistency, we keep
the packet size to 512bytes across all tests, except for TCP2

which is 60 bytes.

Smart devices Traffic type reaction
Model Version UP MCAST UDP TCP ICMP

threshold
iPhone4 4.2.1 10pkts/sec N Y N Y
iPad1 3.2.2 12pkts/sec N Y N Y
Curve-8530 5.0.0.973 12pkts/sec N Y N Y
Droid 2.2 2pkts/sec N Y Y Y
Incredible
DroidX 2.2.1 1pkt/sec N Y Y Y
HTC Hero 2.1 1pkt/sec Y Y Y Y
Kindle 3.1 2pkts/sec Y Y N Y

Table 1. Smart devices tested

The results are shown in Table 1. The UP threshold is mea-
sured for each device. The next several columns show what
traffic types can trigger the device to switch to CAM. In most
cases, MCAST packets were ignored and did not trigger the
device to switch to CAM. All devices were susceptible to the
ICMP and UDP variations, while three devices were vulner-
able to the TCP traffic.

Figure 2 shows the response of each device to the UDP traf-
fic test. Due to the connectionless nature of UDP datagrams,
it is easy to understand why all devices tested are suscepti-
ble to unwanted UDP traffic. Although some devices have
a higher UP threshold than others, all devices react to this
kind of traffic once the packet rate is increased. By observ-
ing this figure, we can determine what the UP threshold for
each device.
2Since TCP requires a connection to be established first and since
there is no listening socket, we generate a SYN packet to a non-
listening TCP port on the device. The host responds with an RST
packet. A SYN packet is 60 bytes: IP 20 bytes + TCP 40 bytes.

3

As shown, all adaptive PSM implementations are triggered
by unwanted network traffic. Adaptive PSM behavior is
implemented within the WiFi driver which is responsible
only for the MAC layer. Any unwanted traffic that is de-
tected by examining layer 3 and above will not be detected.
Therefore, current implementations are not able to deter-
mine which packets should influence Adaptive PSM behav-
ior without additional information from the TCP/IP stack.
We discuss our solution to this problem in the next section.

SAPSM DESIGN
In order to address the challenge of what traffic is permit-
ted to influence Adaptive PSM behavior, we present SAPSM
(Smart Adaptive 802.11 Power Save Mode). SAPSM is de-
signed with the following constraints in mind: (1) Minimal
user interaction; even non-technical users can use the sys-
tem. (2) Performance must not be impacted; the critical-path
is respected. (3) Any hints from either the Android system
or individual applications are honored.

Figure 3. SAPSM Architecture; the packet flow is diverted through the
SAPSM core kernel module.

The first step in the SAPSM system is to observe individual
usage metrics of a specific app running on the phone. This
entails recording low level network characteristics and usage
patterns, such as the data rate an application uses, which can
be used to train a classifier. We develop a classifier which is
trained with an assortment of applications specifically cho-
sen which have diverse network patterns. We conduct a user
study where users interact with these applications and set
the priority of applications. From these results we create a
classifier. This classifier can then be used to compare new
applications to the training done in our user study.

After the individual usage patterns are observed for an app,
these usage patterns are compared with the classifier. By
comparing the usage patterns of the existing application with
known patterns learned from the classifier, the priority of
each application can be estimated with minimal user inter-
vention. Once the priority is determined, the kernel compo-
nent of the SAPSM system will ensure that the system stays
in PSM when low priority applications transmit network data
or adaptively switch to CAM based upon the amount of traf-
fic for high priority applications.

The SAPSM system is designed to work autonomously with-
out assistance from the Operating System. However, any
hints given are freely utilized. When the screen is off, we as-

sume that the phone is not currently actively used. We then
set the entire system to low priority to save energy. This
is a reasonable assumption, since by turning the screen off,
Android will disable the WiFi driver after 15 minutes. To
get around this issue, some applications such as Pandora and
Skype keep the screen on, but very dim, when network traffic
is anticipated for long periods of time.

Background and Foreground Traffic: The Android API
provides developers with several options for retrieving data
in the background. Background data be used used to enable a
push notification background service [10]. Android provides
multiple ways of running data in the background: Back-
ground threads and Android services [11] are just two such
methods. Android services or background threads, however,
are not necessarily an indication of low priority intent. For
instance [12] uses a background service for receiving delay-
sensitive RTP packets. Therefore, we cannot rely upon this
factor alone to indicate low priority intent.

Architecture
In summary, the SAPSM system saves energy on the device
with smart WiFi Power management. By receiving hints
from the Operating system, and confirmation from end-users,
the SAPSM system is designed to intelligently save energy
on Smartphones.

The SAPSM system architecture is described in Figure 3.
In order to address all of the design criteria mentioned pre-
viously, the SAPSM system includes components running at
the Kernel level and within Android. These modules are the
WiFi driver modifications WiFi Manager, the kernel compo-
nent SAPSM core, and an Android application component,
the Application Priority Manager.

WiFi Manager is a component of the Smartphone’s WiFi
driver that is responsible for exposing the internals of the
Adaptive PSM implementation to be controlled by the SAPSM
Core kernel module.

SAPSM Core is a kernel module responsible for determin-
ing the priority of packets traversing through the network
stack. It performs a check if the current packet either orig-
inated from or is destined to an application running on the
device. If the socket is currently paired to an application,
it determines the priority of the application by performing a
lookup in the high priority application table. If the current
packet is paired to a high priority application, it will update
the Adaptive PSM traffic counter in the driver. Otherwise,
the traffic counter will not be updated.

Application Priority Manager is an Android application
that runs as a background service. It gathers usage metrics of
Android applications running on the phone. Based on infer-
ences gathered from these metrics, hints are provided to the
end-user regarding the priority of the application. Finally,
it is responsible for communicating application priority set-
tings to the SAPSM core.

SAPSM Core

4

The SAPSM Core module functionality is detailed in this
section. We describe how we track each application’s net-
work traffic and how applications priority is enforced.

Inbound Packets: When a packet first enters the WiFi inter-
face, the driver does checking on the MAC header and passes
the packet on to the networking stack. Before the packet is
processed by the networking stack, the packet is intercepted
by the kernel module. We check the destination port number
and determine if there is a process listening on that port. If
a valid process is found we compare the UID of the process
against the list of known high priority applications.

Android pairs each application to a unique UID [13] allow-
ing efficient matching of Android Application to sockets. If
the packet is deemed to be high priority, the driver’s Adap-
tive PSM traffic counter is updated. This allows traffic only
from High priority applications to trigger the WiFi driver to
switch to CAM.

Outbound Packets: When an outbound packet is sent by an
application, the packet is intercepted before being processed
by the networking stack. As with inbound packets, checks
for socket validity and valid UID are also done. We then
rewrite the IP header by setting the TOS bit and recalculate
the IP header checksum. Then the packet is returned to the
networking stack for normal processing. When the packet
eventually arrives at the WiFi driver, if an IP header with
the TOS bit set exists, the Adaptive PSM traffic counter is
updated.

The UID validity check is performed to check the priority of
the userid of the socket’s owning process. The High-Priority
list contains userids of high priority applications. The High-
Priority list is updated over a netlink socket by the Applica-
tion Priority Manager.

To summarize, the SAPSM Core kernel module permits only
high priority packets to switch the WiFi driver into CAM.
The WiFi driver looks only at the high priority traffic counter
to adaptively switch to CAM. This design allows both traffic
types to occur simultaneously, since only the high priority
packets can increment the high priority traffic counter.

Application Priority Manager
To facilitate non-technical users setting priority for each ap-
plication, we design the Application Priority Manager (APM)
that is implemented as an Android service. When the WiFi
interface is active, it polls the Kernel using the TrafficStats
API for all available per application statistics as described in
the implementation section. The TrafficStats API provides
us with the total amount of bytes each application has trans-
mitted and received at a given time. By polling every few
seconds (one second in our evaluation) we can determine the
data rate that each application is using. Each individual poll
performs a low impact atomic read() from the /proc file sys-
tem which has a low energy consumption. By polling every
second we can determine the current data rate.

Through the TrafficStats API, APM collects the following

four statistics. RXBytes: the total received bytes by the WiFi
driver. TXBytes: the total transmitted bytes by WiFi driver.
RXRate: receiving data rate in KBytes/sec. TXRate: trans-
mitting data rate in KBytes/sec. For each application, RXBytes
and TXBytes reflect the total traffic while RXRate and TXRate
reflect instantaneous traffic. These four statistics together
capture each application’s ingress and egress traffic.

With the collected information of each application’s WiFi
usage, APM uses an offline-trained classifier (trained through
our user study data detailed in the next section) to classify
each application into either high priority or low priority. While
this information is being collected each application is set to
low priority. We select low priority by default. This allows
users to save energy on newly installed applications during
the data gathering phase. If the latency introduced by PSM
noticeably places the usability of an application in question,
the user can manually set the application’s priority to high.

Figure 4. The pop-up win-
dow to assist user decision.

The application priority de-
cision is then offered for
confirmation to the end-
user. While this process
could be completely auto-
mated, we require confir-
mation from the end-user
because this decision can
impact the battery life of the
device. Also, this feedback
can eventually be used to

train an individualized classifier which we reserve for fu-
ture work. If an application is classified as high priority,
APM pops up a window and asks the user whether this ap-
plication should be set to high priority (Figure 4). APM
then stores the user’s decision in a database and updates the
SAPSM Core kernel module with the userid of the applica-
tion in question.

In APM design, we choose Support Vector Machine (SVM)
to differentiate applications into high priority and low prior-
ity based on the collected information of each application’s
WiFi usage. SVM is one of the best classifiers and has been
successfully applied in many real-world classification prob-
lems, including text categorization [14], image recognition
[15], hand-written digit recognition [16], and bioinformatics
[17]. In general, SVM has four advantages over other clas-
sifiers [18] [19]: (1) the optimization problem involved in
SVM is a convex optimization problem, whose local solu-
tion is also a global solution; (2) it is able to achieve high
accuracy with a relatively small number of training exam-
ples; (3) it scales well with data dimensionality; (4) it is fast
to execute at runtime. These four nice properties of SVM
make it a perfect fit for our Smartphone application priority
management.

USER STUDY
In order to train an SVM classifier and also to evaluate whether
it is able to provide accurate classification results for differ-
ent users, we conduct a user study. A random mixture of
fourteen technical and non-technical users participate in the

5

user study. In the study, each application is set to low pri-
ority, which is the default WiFi configuration for each appli-
cation in SAPSM. Each participant is required to use each
of six applications for ten minutes. We selected a number of
applications that have a diverse array of network behavior.
We select applications that are interactive (Android Market
and the Android web browser), while also addressing those
with a low degree of interactivity (Tanks and Turrets game).
Social networking applications with ambiguous priority de-
pending on usage are also selected (Gmail, Facebook and
Twitter). These applications are ambiguous because, on the
one hand, they can be used interactively, i.e. clicking on
every link or, on the other hand, run in the background non-
interactively.

Major/Minor Count
Computer Science 7

Economics/Finance 1
Government/Math 1

Kinesiology 1
Math/Physics 1
Neuroscience 1

Rhythmic Gymnastics 1
Sociology 1

Table 2. Majors.

During the user study, we as-
sign each participant a set of in-
structions that they should fol-
low. Each phone was con-
figured with static PSM en-
abled. As mentioned in the
background section, static PSM
adds approximately 100-300
ms of network delay or latency.

We vary the degrees of interactivity among all participants’
instructions and ask them to determine if they feel the ob-
served latency is acceptable. The answers from participants
are used as labels for the applications. If a participant feels
the observed latency is unacceptable, this application is la-
beled as high priority. Otherwise, the application is labeled
as low priority, which means that any perceived latency does
not impact the users experience with the application. At the
end of the user study, we do a brief survey to collect par-
ticipants’ basic information such as their majors and their
experience about Smartphone. The major distribution of all
the participants is summarized in Table 2.

In the background, APM collects four statistics (described
previously in the Application Priority Manager) that mea-
sure WiFi usage for each application. APM groups the statis-
tics for each application and extracts a set of features: (i)
the maximum, mean, median and variance of RXRate and
TXRate; (ii) RXBytes, TXBytes as well as the ratio of RXB-
ytes / TXBytes. These features measure different statistical
characteristics of WiFi usage.

RXBytes / TXBytes can reflect an Application’s network in-
teractivity much better than non-network features like the
touch screen rate. If a user is regularly touching the screen,
this does not always mean that network traffic is occuring;
video games for example are very interactive with respect
to the user and the screen, but typically non-interactive with
respect to to the network.

The accuracy of an SVM classifier depends on the input fea-
tures. We use the Sequential Forward Search based feature
selection algorithm [20] to select the best features from these
11 features. The algorithm returns two optimal features - the
maximum and mean of RXRate.

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

max(RXRate) (KBytes/s)

m
ea

n
(R

X
R

a
te

)
(K

B
y
te

s/
s)

High Priority

Low Priority

Decision Boundary

AndroidMarket

Browser

Facebook

Gmail

Tank Game

Twitter

Figure 5. Application classification result.

These two features are meaningful in terms of predicting
whether any perceived latency added to a given application
by static PSM is noticeable by end-users. The reasons are:
(1) comparing to TX related features, RX related features
are more important because Smartphones are more receivers
rather than producers of information. The time spent on re-
ceiving is usually much longer than that of transmitting; (2)
the maximum of RXRate reflects the participant’s experi-
ence at the network traffic peak and the mean of RXRate
reflects the participant’s long-term network experience.

With these two features, we select the optimal parameters
for the SVM classifier from the user study data following
the routine of 6-folds cross validation to avoid overfitting
and estimate the runtime accuracy. In each round of cross
validation, data is divided into 6 subsets, 5 of which are used
for training and the remaining 1 is used for testing, so that
the testing data is different from the training data. This pro-
cess is repeated 6 times and each of the 6 subsets is used
exactly once as testing data. The accuracy is the average ac-
curacy over 6 rounds [18]. The parameters with the maximal
accuracy during cross validation are selected. Then, the re-
sulting classifier is trained with the selected parameters and
achieves 88.1% accuracy.

Figure 5 describes the classification results. There are three
zones. The top and bottom zones reflect low priority appli-
cations. While the middle of the figure reflects high priority
applications.

First, from the classification results, we observe that all par-
ticipants label the Tank game as low priority. It is because
the Tank game is offline except for periodically fetching ad-
vertisements in a background thread. The SVM classifier ac-
curately classifies all the Tank game data points in the user
study data as low priority.

Second, we observe that the Browser, Facebook, Gmail and
Twitter are ambiguous in terms of user-defined priority. This
is due to different users have different degrees of interactiv-
ity. For instance, repeatedly clicking on a URL leads the
user to label the browser as high priority while simply up-
dating the Twitter status leads the user to label the Twitter or
Facebook as low priority. For these applications, the SVM

6

classifier is able to accurately classify 47 out of 56 user study
data points.

Third, the most interesting observation is that some appli-
cations with either high maximum or high mean values of
RXRate are labeled as low priority. For instance, three users
label the Android Market as low priority as depicted in the
top zone of Figure 5. These applications contradict the com-
mon intuition that an application with a high RXRate will
have unacceptable latency and should be labeled as high pri-
ority. One possible explanation is the network data is re-
ceived in a background thread so the latency is not notica-
ble. The SVM classifier is robust to these applications and
accurately classifies all of them.

To sum up, the SVM classifier achieves satisfiable classifica-
tion accuracy for different users with different backgrounds.
Integrating with the SVM classifier, APM is adequate to as-
sist even non-technical users in configuring application pri-
ority.

IMPLEMENTATION
We implement SAPSM on the Sprint HTC Hero [21]. The
phone comes with the TI 1251 WiFi chipset which is capable
of 802.11 b/g. The driver is freely available and is part of the
Android Linux Kernel tree. The Android platform is a nat-
ural choice because the source code is freely available. The
implementation consists of the SAPSM core system, imple-
mented completely at the kernel level and the Application
Priority Manager, which is developed as an Android appli-
cation.

SAPSM Core System. The SAPSM Core system is imple-
mented as a Linux kernel module and is dependent upon the
WiFi driver, also implemented as a module. Android loads
and unloads the WiFi driver on demand. The user has the
ability to load and unload the module at will. The SAPSM
core design requires access to the WiFi module to update
the traffic counter. This causes dependency issues if the
WiFi driver needs to be unloaded. To address this problem,
we implement (un)register() functions in the SAPSM mod-
ule and export them so that they are available to the WiFi
driver. When the WiFi driver is loaded it registers the Up-
dateTrafficCounter() function with the module. When the
WiFi driver is unloaded, SAPSM is notified with the unreg-
ister() function. The SAPSM kernel module is loaded at boot
time to avoid any further dependency problems.

We listen on a netlink socket within the SAPSM module. In
order for the Application Priority Manager to connect to the
netlink socket, we require the use of raw sockets which re-
quires root access. Since Android applications do not run
with root privileges for security reasons, we developed a
“netlink manager” system service with root privileges. “netlink
manager” listens for packets with a FIFO socket interface
and then relays the packet through the netlink socket to the
SAPSM kernel module.

We use the Linux Netfilter API [22] for packet interception
in the SAPSM module which can be used to register a hook

for inbound and outbound processing.

We store the list of high priority applications in a linked list
that is kept persistent after a system reboot. The Application
Priority Manager maintains an internal list of high priority
applications for persistency. When the system is rebooted,
the list is pushed to the kernel module through a netlink
socket.

Application Priority Manager. The Application Priority
Manager uses the Android TrafficStats API for the periodic
check of network statistics per application. The TrafficStats
API retrieves information from the Android specific loca-
tion of /proc/uid stat/%UID/ directory. Each time a packet
is transmitted or received, this /proc directory is updated on a
per user basis. This allows a detailed snapshot of each appli-
cation’s network usage. The Android system supports both
UDP and TCP packets per application [23].

EVALUATION
In this section we evaluate the SAPSM solution by answer-
ing the following questions: (1) Do low priority applications
save energy over high priority applications? We address
this by measuring the power consumed by Adaptive PSM,
static PSM and SAPSM while conducting the load tests ex-
plained in the motivation section. (2) How does the SAPSM
solution save energy with a typical use case? We address
by comparing energy use of low priority applications using
SAPSM and those same applications with Adaptive PSM.
(3) Does general networking performance suffer for appli-
cations placed into high priority? We determine that the
SAPSM implementation does not impede high priority ap-
plications by comparing Adaptive PSM to SAPSM high pri-
ority using a networking benchmark application.

Evaluation Method
For performance testing, we use an off the shelf access point
and router. A laptop is configured with to the router via Gi-
gabit Ethernet. The Smartphone is connected to the router
via WiFi.

We use the Monsoon Solutions Power Monitor [24] to mea-
sure the energy consumption on the Hero Smartphone. The
Power Monitor is configured by blocking the positive termi-
nal on the phone’s battery with electrical tape. The voltage
normally supplied by the battery is supplied by the Power
Monitor. The Monsoon records voltage and current with a
sample rate of 5 kHz. We disable all radio communication
except for WiFi.

Low Priority Application Behavior
In this section we evaluate SAPSM behavior with low pri-
ority applications. We first evaluate behavior with network
traffic with no listening socket (Multicast,UDP, TCP, ICMP).
Next, we experimentally determine what point is it expedient
to switch to CAM if the goal is to maximize energy savings.

Traffic with no listening socket
In this section we evaluate the behavior of SAPSM, Static
PSM and Adaptive PSM when subjected to traffic not as-

7

sociated with a listening socket. We repeat the load tests
described in the motivation section. The applications were
placed in low priority for the SAPSM case. All categories of
traffic were transmitted at 20pkts/sec for 30 seconds.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Ping Multicast UDP TCP

P
o
w

e
r

(m
W

)

Traffic Type

Adaptive PSM
SAPSM

Static PSM

Figure 6. Comparison of power
consumed from ingress traffic
with no listening socket.

Adaptive PSM switches
to CAM for the dura-
tion of the test due to
the high traffic levels
and results in signif-
icantly higher power
consumption (340%)
compared to SAPSM
as shown in Figure
6. Adaptive PSM
has no way to distin-
guish unwanted traf-
fic from necessary
traffic. This test
shows the potential

for unnecessary excessive power consumption. Since traffic
not associated with a listening socket is treated as low pri-
ority traffic by SAPSM, SAPSM is able to save significantly
more energy than Adaptive PSM. SAPSM has an overhead
compared to Static PSM of approximately 20% due to the
listening socket check we perform on each packet. A faster
listening socket check could improve these results. If all ap-
plications were low priority, Static PSM would be a good
fit. However, in reality there is a mix of high priority and
low priority applications which Static PSM is not able to ad-
dress.

Low Priority Energy Inversion

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 1.5 2 2.5 3 4 5 6 7 8

E
n
e
rg

y
 (

J
o
u
le

s
)

Data Rate (Mbit/sec)

PSM
Adaptive PSM

Figure 7. Energy inversion: 10MB file
downloaded w/varying data rates.

In this section we de-
termine experimentally
the data rate for which
static PSM network
traffic ultimately con-
sumes more energy
than CAM. To con-
duct this test, we con-
figure traffic shap-
ing on a web server.
Traffic shaping per-
mits us to accurately
limit the data rate
for files downloaded
from the server. We

limit the data rate ranging from 1Mbit/sec to 8Mbit/sec.
Our results, which also coincide with [2], show that as the
data rate exceeds 3Mbit/sec, a PSM energy inversion occurs:
static PSM consumes more energy than Adaptive PSM. For
data rates less than this threshold the energy savings can be
significant. As shown in Figure 7, data rates of 1Mbit/sec
potential energy savings of over 500% are possible . Ex-
ceeding the 3Mbit/sec threshold for sustained periods with
Internet traffic is unlikely. As shown in [25], WLAN data
rates typically far exceed that of WAN connection speeds.
This shows that low priority applications can achieve signif-
icant energy savings, especially when the data rates are low.

Energy Savings of Typical Applications
In this section we evaluate the energy use of several typical
applications which consume a significant amount of network
traffic. The applications we selected are a streaming audio
application that allows users to stream audio over the Inter-
net, an offline map application which downloads in-advance
maps of a new area you are traveling to with limited net-
work coverage and an RSS reader application that retrieves
RSS feeds from the Internet and caches them on the SD card.
Finally, we evaluate social networking applications, includ-
ing email, Facebook and Twitter, running in the background
while the screen is off.

After each application is installed, we perform the following
steps. First, we allow the application to run for approxi-
mately 10 minutes. During this time the APM gathers each
application’s network statistics described in the design sec-
tion. Next, APM classifies these measured results with the
classifier trained by the user study data. After running this
process for these applications that we selected, we discov-
ered that the RSS reader and the offline map applications
are correctly classified as low priority. The streaming audio
application was incorrectly classified as high priority.

Further investigation into why the streaming audio applica-
tion was incorrectly classified produced a surprising result.
We would expect the application to have a higher receiv-
ing data rate and a very small transmitting data rate since
the primary function of the application is to stream audio
from a remote server. However, we discovered that RXrate
and TXrate are identical. It is not clear why the application
transmits and receives simultaneously. This is most likely
why the classifier incorrectly classified this application. In
this case we manually set the application to low priority.

Each application’s behavior is compared with Adaptive PSM
and low priority SAPSM, Since the applications we selected
were determined to be low priority. The Adaptive PSM re-
sults indicate the default behavior on Android Phones with-
out SAPSM enabled. Figure 8 shows the comparison. The
energy savings range from 13% for social networking appli-
cations up to 56% energy savings for the RSS reader appli-
cation.

Streaming Audio. The streaming audio (XiiaLive) applica-
tion has a wide selection of streaming radio stations where
users can play different music styles. This application is very
popular with millions of installations. We select a station at
random with a 128kbps stream. The added delay of PSM
does not affect the quality of the playback since the appli-
cation is able to buffer the audio stream as noted in [6]. We
play the same audio stream for 10 minutes. SAPSM saves
44% energy compared to Adaptive PSM. This kind of traf-
fic is clearly low priority; there is no noticeable effect if this
traffic runs in CAM or in PSM. SAPSM is able to make this
distinction over Adaptive PSM and save considerable energy
in the process.

Map Offline Download. The offline map application (Map-
Droyd) has an extensive collection of free maps that can be

8

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Streaming Audio

Map Download

RSS Feeder

Social Networking

E
n
e
rg

y
 (

J
o
u
le

s
)

SAPSM
Adaptive PSM

Figure 8. Application energy comparison.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

00:00
01:00

02:00
03:00

04:00
05:00

06:00
07:00

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

M
e
a
n
 P

o
w

e
r(

m
W

)

D
a
ta

R
a
te

 (
K

ib
/s

e
c
)

Time

Mean Power
Total DataRate

Figure 9. RSS Reader with Adaptive PSM

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

00:00
01:00

02:00
03:00

04:00
05:00

06:00
07:00

08:00

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

M
e
a
n
 P

o
w

e
r(

m
W

)

D
a
ta

R
a
te

 (
K

ib
/s

e
c
)

Time

Mean Power
Total DataRate

Figure 10. RSS Reader w/ low priority SAPSM

downloaded. For this test we download a map of a US state
which is 70MB. After running the test several times, SAPSM
saves 18-22% energy compared with Adaptive PSM. As we
described previously, since the data rate is small approxi-
mately 1.5Mbit/sec SAPSM clearly save more energy at the
expense of taking more time. Since delays of this type are
acceptable, SAPSM clearly wins in this case.

RSS Reader. The RSS reader application (RssDemon) has
a default install of 16 feeds dispersed over categories of gen-
eral interest. These include sports, news, technology and
Entertainment. Periodically, feeds are updated by retrieving
the latest from the Internet. Figures (9 and 10) show the
plot of power consumption and combined data rate during
an update. The RSS reader downloads a number of XML
RSS files at the first part of the update period, the first 3-4
minutes. At approximately 4.5 minutes several larger files
are downloaded. The UP threshold is triggered quickly at
the beginning and stays for the duration of the test. SAPSM
saves 56% energy over Adaptive PSM in this case.

Combined Social Networking. Applications using push
technology are often run in the background. Even with the
screen off, new data is actively pushed to applications. This
type of application is clearly low priority. We select the fol-
lowing popular applications: Gmail, Facebook and Twitter.
For the test we subscribe to the Linux kernel mailing list and
subscribe to a number of popular Twitter feeds. Facebook,
which does not use push-based notifications, is set to update
every 30 minutes (the lowest setting). We conduct a test in
the early morning for one hour. During this period we re-
ceived a total of 12 tweets and 30 emails while observing
no Facebook activity. We record the timestamps when each
email and tweet is received and then replayed each for com-
parison.

The Adaptive PSM results show that the data rate during this
test is quite low yet high enough to switch the radio in to
CAM at several occasions. SAPSM results show that the
radio stays in PSM the entire time. Even with light traffic,
SAPSM results in a 13% energy savings over Adaptive PSM.

SAPSM High Priority Networking Performance
While saving energy is important, having solid networking
performance for high priority traffic is equally important.
We use Netperf [26] to evaluate the performance of SAPSM.

We install the Netperf server component on the laptop and
the client component on the phone. We measure the maxi-
mum sustained TCP throughput rate that the device can tol-
erate.

We repeat the Netperf test 10 times and the results are shown
in Table 3. SAPSM incurs a 3% general networking per-
formance penalty compared to Adaptive PSM. The critical
section is the lookup function as described in the imple-
mentation section. The use of a better data structure, like
a hash table, for UID lookup would make a small improve-
ment. To address this issue we test a version of SAPSM with
the lookup disabled, which is labeled SAPSM1 in Table 3.
In this case the data rate shows a slight improvement, very
similar to the Adaptive PSM result.

Additionally, we also perform another test where we down-
load a 10MB file from a local web server and record the
time. This test, repeated 10 times per implementation, shows
no significant differences per implementation. Interestingly,
No improvements are seen from the SAPSM1 results, sug-
gesting that the optimization results seen with Netperf are
of negligible impact outside of extreme performance tests.
Overall, SAPSM high priority performs on-par with Adap-
tive PSM.

Throughput Time Delay
Type (u) (σ) (u) (σ)

Adaptive
PSM 8.34Mbps 0.25 14.83s .50

SAPSM 8.08Mbps 0.10 14.70s .47
SAPSM1 8.48Mbps 0.13 15.04s .50

Table 3. SAPSM high priority TCP Performance results with associ-
ated standard deviation.

RELATED WORK
A number of prior solutions have been proposed to reduce
energy consumption on mobile devices. We focus on these
most closely related to SAPSM.

A number of solutions have been proposed for optimizing
PSM behavior on 802.11 clients for greater efficiency. PSM-
Throttling [27] uses traffic shaping on the client to add bursti-
ness to TCP traffic which contributes to more efficient PSM
behavior. Sleep durations are modified [2] in reaction to cur-
rent traffic levels maintaining a bounded RTT for more ef-
ficient adaptive PSM behavior. µPower management [28]

9

uses prediction to determine microsecond sleep periods dur-
ing busy intervals to save energy. Down-clocking the radio
during idle listening periods to reduce energy consumption
is explored in [29]. Most closely related to SAPSM, STPM
[6] adapts PSM behavior by combining the monitoring of
current traffic and knowledge of application intent provided
by an API made available to developers. SAPSM is comple-
mentary; application intent can be combined with applica-
tion priority to achieve further energy savings.

Other solutions propose modifications to network infrastruc-
ture. In [25] the difference in bandwidth between Wire-
less and WAN connectivity is exploited. Napman[8] reduces
contention by staggering beacon intervals per client and the
use of a fair scheduling algorithm. In [30] network con-
tention reduction is explored: beacon periods are staggered
by eavesdropping on APs in close proximity. SAPSM is
complimentary in reducing energy with these solutions. Any
improvements reducing network contention will result in ad-
ditional energy savings.

A number of projects have considered idle periods to duty
cycle the radio into a minimal power state to save additional
energy. In [1] silence periods are exploited in VoIP calls to
save additional energy. Coolspots [31] uses multiple radios
to only enable the radio with highest energy cost when re-
quired.

CONCLUSIONS & FUTURE WORK
Effective WiFi power management is an important issue. We
have shown that by labeling each application with a priority,
the overall system is able to save energy by allowing only the
traffic from high priority applications to impact WiFi power
management behavior. By using a user study trained clas-
sifier we demonstrate that even non-technical users can ef-
fectively label the priority of applications. Our evaluations
of real scenarios show energy savings from 13% to 56% de-
pending on the application.

The user study demonstrates that the SVM classifier used
by APM can achieve satisfying classification accuracy. In
future work, we plan to to develop an optional individual-
ized classifier. Newly acquired data such as personal appli-
cation priority decisions and corresponding network traffic
measurements can be offloaded to a server and can be used
to adapt to an individual’s usage patterns. When the server
receives a retraining request, the server will train a new clas-
sifier which can then be used to replace the default classifier
that is trained through our user study. Finally, we plan to
extend SAPSM to other smart handheld devices.

REFERENCES
1. A. Pyles, Z. Ren, G. Zhou, and X. Liu. SiFi: exploiting VoIP silence

for WiFi energy savings in smart phones. In ACM UbiComp, 2011.

2. R. Krashinsky and H. Balakrishnan. Minimizing Energy for Wireless
Web Access with Bounded Slowdown. In ACM MobiCom, 2002.

3. V. Namboodiri and L. Gao. Towards Energy Efficient VoIP over
Wireless LANs. In ACM MobiHoc, 2008.

4. IEEE 802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specification, 1999. ANSI/IEEE Std.
802.11dcf.

5. Medium Access Control (MAC) and Physical Layer (PHY)
specifications Amendment 8: Medium Access Control (MAC) Quality
of Service Enhancements, 2005. ANSI/IEEE Std. 802.11e.

6. M. Anand, E. B. Nightingale, and J. Flinn. Self-Tuning Wireless
Network Power Management. In ACM MobiCom, 2003.

7. A. Pathak, Y. Hu, and M. Zhang. Fine Grained Energy Accounting on
Smartphones with Eprof. In ACM Eurosys, 2012.

8. E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu. NAPman:
Network-Assisted Power Management for WiFi Devices. In ACM
MobiSys, 2010.

9. A. Balasubramanian, R. Mahajan, A. Venkataramani, B. Neil Levine,
and J. Zahorjan. Interactive wifi connectivity for moving vehicles. In
ACM SIGCOMM, 2008.

10. Android Cloud to Device Messaging Framework, 2012.
http://code.google.com/android/c2dm/.

11. Android Services Reference Documentation, 2012.
http://developer.android.com/reference/android/ app/Service.html.

12. Sipdroid, 2010. http://www.sipdroid.org.

13. Android Technical Information, 2011.
http://source.android.com/tech/index.html.

14. Thorsten Joachims. Text categorization with suport vector machines:
Learning with many relevant features. In ECML, pages 137–142,
1998.

15. Massimiliano Pontil and Alessandro Verri. Support vector machines
for 3-d object recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20:637–646, 1998.

16. Corinna Cortes and Vladimir Vapnik. Support-vector networks. In
Machine Learning, pages 273–297, 1995.

17. Tommi Jaakkola and David Haussler. Exploiting generative models in
discriminative classifiers. In In Advances in Neural Information
Processing Systems 11, pages 487–493. MIT Press, 1998.

18. Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

19. Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods.
Cambridge University Press, 2000.

20. Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. J. Mach. Learn. Res., 3:1157–1182, March 2003.

21. Sprint HTC HERO, 2010. www.htc.com/us/support/hero-sprint.

22. NetFilter packet filtering framework, 2011. http://www.netfilter.org.

23. Android TrafficStats Information, 2011.
http://developer.android.com/reference/android/ net/TrafficStats.html.

24. Monsoon Solutions, 2011. http://www.msoon.com/LabEquipment/
PowerMonitor.

25. F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: Exploiting
High Bandwidth Wireless Interfaces to Save Energy for Mobile
Devices. In ACM MobiSys, 2010.

26. Netperf Networking Benchmark, 2011. http://www.netperf.org.

27. E. Tan, L. Guo, S. Chen, and X. Zhang. PSM-throttling: Minimizing
Energy Consumption for Bulk Data Communications in WLANs. In
IEEE ICNP, 2007.

28. J. Liu and L. Zhong. Micro Power Management of Active 802.11
Interfaces. In ACM MobiSys, 2008.

29. X. Zhang and K. G. Shin. E-MiLi: Energy Minimizing Idle Listening
in Wireless Networks. In ACM MobiCom, 2011.

30. J. Manweiler and R. Choudhury. Avoiding the Rush Hours: WiFi
Energy Management via Traffic Isolation. In ACM MobiSys, 2011.

31. T. Pering, Y. Agarwal, R. Gupta, and R. Want. Coolspots: Reducing
the Power Consumption of Wireless Mobile Devices with Multiple
Radio Interfaces. In ACM MobiSys, 2006.

10

	Introduction
	Background and Motivation
	Background
	Sprint HTC Hero Adaptive PSM
	Adaptive PSM Behavior of Different Smartphones (and other Handheld Devices)

	SAPSM Design
	Architecture
	SAPSM Core
	Application Priority Manager

	User Study
	Implementation
	Evaluation
	Evaluation Method
	Low Priority Application Behavior
	Traffic with no listening socket
	Low Priority Energy Inversion

	Energy Savings of Typical Applications
	SAPSM High Priority Networking Performance

	Related Work
	Conclusions & Future Work
	REFERENCES

